51
|
Roh M, van der Meer R, Abdulkadir SA. Tumorigenic polyploid cells contain elevated ROS and ARE selectively targeted by antioxidant treatment. J Cell Physiol 2012; 227:801-12. [PMID: 21503880 PMCID: PMC3156849 DOI: 10.1002/jcp.22793] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyploidy has been linked to tumorigenicity mainly due to the chromosomal aberrations. Elevated reactive oxygen species (ROS) generation, on the other hand, has also been associated with oncogenic transformation in most cancer cells. However, a possible link between ploidy and ROS is largely unexplored. Here we have examined the role of ROS in the tumorigenicity of polyploid cells. We show that polyploid prostate and mammary epithelial cells contain higher levels of ROS due to their higher mitochondrial contents. ROS levels and mitochondrial mass are also higher in dihydrocytochalasin B (DCB)-induced polyploid cells, suggesting that higher levels of ROS observed in polyploid cell can occur due to cytokinesis failure. Interestingly, polyploid cells were more sensitive to the inhibitory effect of the antioxidant, N-Acetyl-L-cysteine (NAC), than control diploid cells. Treatment of polyploid/diploid cells with NAC led to the selective elimination of polyploid cells over time and abrogated the tumorigenicity of polyploid cells. This effect was partially mediated via the Akt signaling pathway. We next explored a possible role for ROS in promoting chromosomal instability by analyzing the effects of ROS on the mitotic stage of the cell cycle. Enhancing ROS levels by treating cells with hydrogen peroxide delayed not only entry into and but also exit from mitosis. Furthermore, increasing ROS levels significantly increased taxol resistance. Our results indicated that increased ROS in polyploid cells can contribute to tumorigenicity and highlight the therapeutic potential of antioxidants by selectively targeting the tumorigenic polyploid cells and by reversing taxol resistance.
Collapse
Affiliation(s)
- Meejeon Roh
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Riet van der Meer
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sarki A. Abdulkadir
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
52
|
Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int J Hepatol 2012; 2012:282430. [PMID: 23150829 PMCID: PMC3485502 DOI: 10.1155/2012/282430] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023] Open
Abstract
Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.
Collapse
|
53
|
Cano-Gutiérrez G, Acevedo-Nava S, Santamaría A, Altamirano-Lozano M, Cano-Rodríguez MC, Fortoul TI. Hepatic megalocytosis due to vanadium inhalation: participation of oxidative stress. Toxicol Ind Health 2011; 28:353-60. [DOI: 10.1177/0748233711412424] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to evaluate the morphological changes, liver function test (LFT), and oxidative stress damage caused by thiobarbituric acid reactive substances (TBARS), in mice exposed to vanadium via inhalation. Male CD-1 mice were exposed to vanadium pentoxide (V2O5) via inhalation (0.02 M), 1 hour twice a week for 6 weeks. At the end of the protocol, controls and exposed mice were killed to evaluate the changes. Histological analysis and LFT were performed to detect the damage. TBARS detection was assessed for oxidative stress. Inflammatory infiltration, binucleation, and meganucleus were detected in the liver of V2O5-exposed mice ( p < 0.05). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were also significantly increased ( p < 0.05). Lipid peroxidation was significantly higher in V2O5-exposed animals compared to controls ( p < 0.05). V2O5 exposure induced inflammation and cell damage detected by the increase in ALT and AST levels, as well as histological changes that suggest regenerative changes, such as binucleation and meganucleus.
Collapse
Affiliation(s)
- Gumaro Cano-Gutiérrez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Sandra Acevedo-Nava
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México City, México
| | - Mario Altamirano-Lozano
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - María Concepción Cano-Rodríguez
- Departamento de Cirugía. Instituto Nacional de Ciencias Médicas y de la Nutrición “Salvador Zubiran” (INCMNSZ), México City, México
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México
| |
Collapse
|
54
|
Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011; 27:585-610. [PMID: 21801013 DOI: 10.1146/annurev-cellbio-092910-154234] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although nearly all mammalian species are diploid, whole-genome duplications occur in select mammalian tissues as part of normal development. Such programmed polyploidization involves changes in the regulatory pathways that normally maintain the diploid state of the mammalian genome. Unscheduled whole-genome duplications, which lead primarily to tetraploid cells, also take place in a substantial fraction of human tumors and have been proposed to constitute an important step in the development of cancer aneuploidy. The origins of these polyploidization events and their consequences for tumor progression are explored in this review.
Collapse
Affiliation(s)
- Teresa Davoli
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
55
|
Metabolism, genomics, and DNA repair in the mouse aging liver. Curr Gerontol Geriatr Res 2011; 2011:859415. [PMID: 21559242 PMCID: PMC3087416 DOI: 10.1155/2011/859415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/11/2011] [Indexed: 12/22/2022] Open
Abstract
The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.
Collapse
|
56
|
Sharma AD, Iacob R, Bock M, Cantz T, Manns MP, Ott M. Liver. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
57
|
Ganji PN, Nalla AK, Gupta R, Mohanam S, Gujrati M, Dinh DH, Rao JS. siRNA-mediated downregulation of MMP-9 and uPAR in combination with radiation induces G2/M cell-cycle arrest in Medulloblastoma. Mol Cancer Res 2011; 9:51-66. [PMID: 21148633 PMCID: PMC3022965 DOI: 10.1158/1541-7786.mcr-10-0399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.
Collapse
Affiliation(s)
- Purnachandra Nagaraju Ganji
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Arun Kumar Nalla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Reshu Gupta
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Sanjeeva Mohanam
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| |
Collapse
|
58
|
Pinho MJ, Cabral JM, Silva E, Serrão MP, Soares-da-Silva P. LAT1 overexpression and function compensates downregulation of ASCT2 in an in vitro model of renal proximal tubule cell ageing. Mol Cell Biochem 2010; 349:107-16. [DOI: 10.1007/s11010-010-0665-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
59
|
Park JK, Hong IH, Ki MR, Chung HY, Ishigami A, Ji AR, Goo MJ, Kim DH, Kwak JH, Min CW, Lee SS, Jeong KS. Vitamin C deficiency increases the binucleation of hepatocytes in SMP30 knock-out mice. J Gastroenterol Hepatol 2010; 25:1769-76. [PMID: 21039840 DOI: 10.1111/j.1440-1746.2010.06239.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The binucleation of hepatocytes, which was known as an important feature of liver growth and physiology, has been reported to be increased during the chronic oxidative injury stage and has been regarded as an age-related change of hepatic structures. Therefore, we investigated the binuclearity pattern in the livers of senescence marker proteins-30 (SMP30) knock-out (KO) mice compared with wild-type (WT) mice and vitamin C-treated KO (KO + VC) mice. METHODS The WT, KO and KO + VC mice were fed a vitamin C free diet and VC(+) group mice were given vitamin C water containing 1.5 g/L of vitamin C, whereas VC(-) group was given normal drinking water without vitamin C, for 16 weeks. RESULTS In microscopic examination, the livers of KO mice showed a significantly increased number of binuclear hepatocytes compared with that of WT mice and KO + VC mice. KO mice also showed the most increased expression level of CYP2E1 and PCNA determined by immunohistochemistry and immunoblot analysis. Moreover, KO mice indicated the highest level of serum alanine aminotransferase and aspartate aminotransferase level in serum biochemical analysis. Accordingly, significantly decreased levels of reactive oxygen species, MDA (malondialdehyde) and HAE (4-hydroxyalkenals) were detected in KO + VC mice compared with KO mice. CONCLUSION Therefore, it is concluded that vitamin C deficiency induces an increase of CYP2E1 expression and elevated ROS production, which causes oxidative liver injury and the elevation of hepatocyte binucleation in SMP30 KO mice.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Nakajima T, Nakashima T, Okada Y, Jo M, Nishikawa T, Mitsumoto Y, Katagishi T, Kimura H, Itoh Y, Kagawa K, Yoshikawa T. Nuclear size measurement is a simple method for the assessment of hepatocellular aging in non-alcoholic fatty liver disease: Comparison with telomere-specific quantitative FISH and p21 immunohistochemistry. Pathol Int 2010; 60:175-83. [PMID: 20403043 DOI: 10.1111/j.1440-1827.2009.02504.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Telomere-specific quantitative fluorescent in situ hybridization (Q-FISH) accurately evaluates hepatocellular aging on histological sections, but it requires appropriate tissue processing. To establish a more simple method for the assessment of hepatocellular aging, the usefulness of nuclear size measurement was clarified using biopsy liver samples from 64 patients with non-alcoholic fatty liver disease (NAFLD), a model for oxidative stress-associated hepatocellular aging, and 11 control individuals. Relative telomere intensity (RTI) was measured on Q-FISH, and the relative nuclear size (RNS) was calculated as the average nuclear size of the hepatocytes divided by that of lymphocytes. In normal individuals and NAFLD patients, the RTI and RNS were negatively correlated. The degree of nuclear enlargement in NAFLD patients was larger than that in normal individuals with the same telomere length, possibly reflecting telomere-independent senescence. In NAFLD patients with RNS >2.0, the regenerative responses, indicated by the ratio of Ki-67-positive index to serum alanine aminotransferase level, were significantly reduced. The RNS positively correlated with the p21 expression, another marker of senescence. This all indicates that nuclear enlargement progresses in parallel with reduced regenerative responses, telomere shortening, and p21 upregulation. Nuclear size measurement is an effective method for estimation of hepatocellular aging.
Collapse
Affiliation(s)
- Tomoki Nakajima
- Department of Medicine, Saiseikai Kyoto Hospital, Nagaoka-kyo City, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
BACKGROUND Maternal metabolic demands change dramatically during the course of gestation and must be co-ordinated with the needs of the developing placenta and fetus. The liver is critically involved in metabolism and other important functions. However, maternal hepatic adjustments to pregnancy are poorly understood. AIM The aim of the study was to evaluate the influences of pregnancy on the maternal liver growth and gene expression profile. METHODS Holtzman Sprague-Dawley rats were mated and sacrificed at various stages of gestation and post-partum. The maternal livers were analysed in gravimetric response, DNA content by PicoGreen dsDNA quantitation reagent, hepatocyte ploidy by flow cytometry and hepatocyte proliferation by ki-67 immunostaining. Gene expression profiling of non-pregnant and gestation d18.5 maternal hepatic tissue was analysed using a DNA microarray approach and partially verified by northern blot or quantitative real-time PCR analysis. RESULTS During pregnancy, the liver exhibited approximately an 80% increase in size, proportional to the increase in body weight of the pregnant animals. The pregnancy-induced hepatomegaly was a physiological event of liver growth manifested by increases in maternal hepatic DNA content and hepatocyte proliferation. Pregnancy did not affect hepatocyte polyploidization. Pregnancy-dependent changes in hepatic expression were noted for a number of genes, including those associated with cell proliferation, cytokine signalling, liver regeneration and metabolism. CONCLUSIONS The metabolic demands of pregnancy cause marked adjustments in maternal liver physiology. Central to these adjustments are an expansion in hepatic capacity and changes in hepatic gene expression. Our findings provide insights into pregnancy-dependent hepatic adaptations.
Collapse
Affiliation(s)
- Juan J. Bustamante
- Institute of Maternal-Fetal Biology, Division of Cancer & Developmental Biology, Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bryan L. Copple
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael J. Soares
- Institute of Maternal-Fetal Biology, Division of Cancer & Developmental Biology, Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Guoli Dai
- Institute of Maternal-Fetal Biology, Division of Cancer & Developmental Biology, Departments of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
62
|
Celton-Morizur S, Desdouets C. Polyploidization of liver cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 676:123-35. [PMID: 20687473 DOI: 10.1007/978-1-4419-6199-0_8] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Eukaryotic organisms usually contain a diploid complement of chromosomes. However, there are a number of exceptions. Organisms containing an increase in DNA content by whole number multiples of the entire set of chromosomes are defined as polyploid. Cells that contain more than two sets of chromosomes were first observed in plants about a century ago and it is now recognized that polyploidy cells form in many eukaryotes under a wide variety of circumstance. Although it is less common in mammals, some tissues, including the liver, show a high percentage of polyploid cells. Thus, during postnatal growth, the liver parenchyma undergoes dramatic changes characterized by gradual polyploidization during which hepatocytes of several ploidy classes emerge as a result of modified cell-division cycles. This process generates the successive appearance of tetraploid and octoploid cell classes with one or two nuclei (mononucleated or binucleated). Liver cells polyploidy is generally considered to indicate terminal differentiation and senescence and to lead both to the progressive loss of cell pluripotency and a markedly decreased replication capacity. In adults, liver polyploidization is differentially regulated upon loss of liver mass and liver damage. Interestingly, partial hepatectomy induces marked cell proliferation followed by an increase in liver ploidy. In contrast, during hepatocarcinoma (HCC), growth shifts to a nonpolyploidizing pattern and expansion of the diploid hepatocytes population is observed in neoplastic nodules. Here we review the current state of understanding about how polyploidization is regulated during normal and pathological liver growth and detail by which mechanisms hepatocytes become polyploid.
Collapse
|
63
|
Zietkiewicz E, Wojda A, Witt M. Cytogenetic perspective of ageing and longevity in men and women. J Appl Genet 2009; 50:261-73. [PMID: 19638683 DOI: 10.1007/bf03195682] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analysis of relationships between the ageing cell phenotype and the age of cell donors is one of the ways towards understanding the link between cellular and organismal ageing. Cytogenetically, ageing is associated with a number of gross cellular changes, including altered size and morphology, genomic instability, and changes in expression and proliferation. Genomic instability can be easily assessed by analyzing the level of cytogenetic aberrations. In this review, we focus on the differences in the level and profile of cytogenetic aberrations observed in donors of different age and gender. Centenarians are a small fraction of the population at the extreme of human longevity. Their inclusion in such studies may shed light on one of the basic questions: whether genome stability is better maintained in successfully aged individuals compared to the rest of the population. At the same time, comparing the profile of age-related amount of chromosomal aberrations in men and women may help explaining the commonly observed gender differences in longevity.
Collapse
|
64
|
Borradaile NM, Pickering JG. Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase. Am J Physiol Cell Physiol 2009; 298:C66-74. [PMID: 19846757 DOI: 10.1152/ajpcell.00357.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyploid endothelial cells are found in aged and atherosclerotic arteries. However, whether increased chromosome content has an impact on endothelial cell function is unknown. We show here that human aortic endothelial cells become tetraploid as they approach replicative senescence. Furthermore, accumulation of tetraploid endothelial cells was accelerated during growth in high glucose. Interestingly, induction of polyploidy was completely prevented by modest overexpression of the NAD+ regenerating enzyme, nicotinamide phosphoribosyltransferase (Nampt). To determine the impact of polyploidy on endothelial cell function, independent of replicative senescence, we induced tetraploidy using the spindle poison, nocodazole. Global gene expression analyses of tetraploid endothelial cells revealed a dysfunctional phenotype characterized by a cell cycle arrest profile (decreased CCNE2/A2, RBL1, BUB1B; increased CDKN1A) and increased expression of genes involved in inflammation (IL32, TNFRSF21/10C, PTGS1) and extracellular matrix remodeling (COL5A1, FN1, MMP10/14). The protection from polyploidy conferred by Nampt was not associated with enhanced poly(ADP-ribose) polymerase-1 or sirtuin (SIRT) 2 activity, but with increased SIRT1 activity, which reduced cellular reactive oxygen species and the associated oxidative stress stimulus for the induction of polyploidy. We conclude that human aortic endothelial cells are prone to chromosome duplication that, in and of itself, can induce characteristics of endothelial dysfunction. Moreover, the emergence of polyploid endothelial cells during replicative aging and glucose overload can be prevented by optimizing the Nampt-SIRT1 axis.
Collapse
Affiliation(s)
- Nica M Borradaile
- London Health Sciences Centre, 339 Windermere Rd., London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
65
|
Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009; 119:1880-7. [PMID: 19603546 PMCID: PMC2701880 DOI: 10.1172/jci38677] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023] Open
Abstract
The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.
Collapse
Affiliation(s)
- Séverine Celton-Morizur
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Grégory Merlen
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Dominique Couton
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Germain Margall-Ducos
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| | - Chantal Desdouets
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris, France.
INSERM U567, Paris, France
| |
Collapse
|
66
|
Joseph B, Kapoor S, Schilsky ML, Gupta S. Bile salt-induced pro-oxidant liver damage promotes transplanted cell proliferation for correcting Wilson disease in the Long-Evans Cinnamon rat model. Hepatology 2009; 49:1616-24. [PMID: 19185006 PMCID: PMC2677114 DOI: 10.1002/hep.22792] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Insights into disease-specific mechanisms for liver repopulation are needed for cell therapy. To understand the efficacy of pro-oxidant hepatic perturbations in Wilson disease, we studied Long-Evans Cinnamon (LEC) rats with copper toxicosis under several conditions. Hepatocytes from healthy Long-Evans Agouti (LEA) rats were transplanted intrasplenically into the liver. A cure was defined as lowering of copper to below 250 microg/g liver, presence of ATPase, Cu++ transporting, beta polypeptide (atp7b) messenger RNA (mRNA) in the liver and improvement in liver histology. Treatment of animals with the hydrophobic bile salt, cholic acid, or liver radiation before cell transplantation produced cure rates of 14% and 33%, respectively; whereas liver radiation plus partial hepatectomy followed by cell transplantation proved more effective, with cure in 55%, P < 0.01; and liver radiation plus cholic acid followed by cell transplantation was most effective, with cure in 75%, P < 0.001. As a group, cell therapy cures in rats preconditioned with liver radiation plus cholic acid resulted in less hepatic copper, indicating greater extent of liver repopulation. We observed increased hepatic catalase and superoxide dismutase activities in LEC rats, suggesting chronic oxidative stress. After liver radiation or cholic acid, hepatic lipid peroxidation levels increased, indicating further oxidative injury, although we did not observe overt additional cytotoxicity. This contrasted with healthy animals in which liver radiation and cholic acid produced hepatic steatosis and loss of injured hepatocytes. We concluded that pro-oxidant perturbations were uniquely effective for cell therapy in Wilson disease because of the nature of preexisting hepatic damage.
Collapse
Affiliation(s)
- Brigid Joseph
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Sorabh Kapoor
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| | - Michael L. Schilsky
- The Yale-New Haven Transplantation Center, Yale-New Haven Hospital, New Haven, Connecticut
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Diabetes Research Center, Cancer Research Center, Departments of Medicine and Pathology, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
67
|
Effects of bicyclol on liver regeneration after partial hepatectomy in rats. Dig Dis Sci 2009; 54:774-81. [PMID: 19219550 DOI: 10.1007/s10620-009-0715-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/12/2009] [Indexed: 12/26/2022]
Abstract
Bicyclol is a synthetic antihepatitis drug with antioxidative property. The present study was performed to investigate the effect of bicyclol on liver regeneration after partial hepatectomy in rats. Bicyclol (300 mg/kg) was given to rats subjected to 70% hepatectomy three times before operation. At 6, 24, and 48 h after resection, samples were collected for the measurement of serum alanine aminotransferase (ALT), total bilirubin (TBil), hepatic glycogen, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Moreover, liver regeneration rate, proliferating cell nuclear antigen (PCNA) labeling, proliferation index, and histopathological examination were evaluated at 48 h after hepatectomy. As a result, bicyclol significantly increased regeneration rate, mitotic index (MI), PCNA labeling index, and proliferation index in PH rats. Additionally, bicyclol remarkably inhibited the elevation of serum ALT and TBil levels, alleviated the formation of liver MDA, restored impaired antioxidant SOD and GSH, increased hepatic glycogen content, and also attenuated hepatic vacuolar degeneration. These results suggested that bicyclol had a beneficial effect on liver regenerative capacity of the remnant liver tissue after hepatectomy, probably due to its antioxidative property.
Collapse
|
68
|
Leikam C, Hufnagel A, Schartl M, Meierjohann S. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 2008; 27:7070-82. [PMID: 18806824 DOI: 10.1038/onc.2008.323] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Contrary to malignant melanoma, nevi are a benign form of melanocytic hyperproliferation. They are frequently observed as precursor lesions of melanoma, but they also feature biochemical markers of senescence. In particular, evidence for oncogene-induced melanocyte senescence as natural means to prevent tumorigenesis has been obtained in nevi with mutated B-Raf(V600E). Here, we demonstrate that strong oncogenic growth factor receptor signalling drives melanocytes into senescence, whereas weaker signals keep them in the proliferative state. Activation of oncogene-induced senescence also produces multinucleated giant cells, a long known histological feature of nevus cells. The protein levels of the senescence mediators, p53 and pRB, and their upstream activators do not correlate with senescence. However, strong oncogene signalling leads to pronounced reactive oxygen stress, and scavenging of reactive oxygen species (ROS) efficiently prevents the formation of multinucleated cells and senescence. Similarly, expression of oncogenic N-RAS results in ROS generation, DNA damage and the same multinuclear senescent phenotype. Hence, we identified oncogenic signalling-dependent ROS production as critical mediator of the melanocytic multinuclear phenotype and senescence, both of them being hallmarks of human nevus cells.
Collapse
Affiliation(s)
- C Leikam
- Department of Physiological Chemistry I, Biocenter, Am Hubland, University of Wurzburg, Wurzburg, Germany
| | | | | | | |
Collapse
|
69
|
Perryman SV, Jenkins DD, Streetz KL, Longaker MT, Sylvester KG. Hepatic injury and the kinetics of bone marrow-derived hepatocyte transgene expression. J Pediatr Surg 2008; 43:1511-9. [PMID: 18675644 DOI: 10.1016/j.jpedsurg.2007.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 01/05/2023]
Abstract
BACKGROUND Numerous congenital and acquired liver diseases could benefit from a successful hepatic cell therapy strategy. Hepatotypic cells derived from bone marrow have been recognized during liver injury, repair, and regeneration. To study this phenomenon, we compared the effect of several modes of experimental hepatic injury on hepatotypic protein expression in a mouse model after bone marrow transplantation. METHODS Male mice transgenic for the liver-specific protein human alpha-1 antitrypsin (hAAT) were used as bone marrow donors. Syngeneic wild-type recipient mice were subjected to 1 of 3 hepatic injuries: (1) sublethal irradiation, (2) injection of a hepatotoxic adenoviral construct, and (3) administration of a hepatotoxic diet. Bone marrow-derived hepatotypic (BMdH) transgene expression was determined by serial serum enzyme-linked immunosorbent assay for hAAT. RESULTS In both acute injury models, hAAT expression was detected as early as 1 week, whereas the control group never elicited hAAT expression. The adenovirus-treated group demonstrated transient hAAT level expression lasting up to 2 weeks postinjury, whereas the irradiated group maintained persistent hAAT expression through 4 months. In the chronic injury (hepatotoxin) model, hAAT expression persisted and was noted to increase over time to 200 to 300 ng/mL. CONCLUSIONS Irradiation favors long-term establishment of BMdH transgene expression, and chronic injury further promotes this phenomenon.
Collapse
Affiliation(s)
- Scott V Perryman
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
70
|
Yin Z, Ellis ECS, Nowak G. Isolation of mouse hepatocytes for transplantation: a comparison between antegrade and retrograde liver perfusion. Cell Transplant 2008; 16:859-65. [PMID: 18088005 DOI: 10.3727/000000007783465235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We compared antegrade with retrograde liver perfusion when isolating mouse hepatocytes for hepatocyte transplantation. Male mouse hepatocytes were isolated by different perfusion methods and transplanted into the spleen of congeneic female mice. Retrograde perfusion yielded a larger number of cells (4.90 x 10(7)) than antegrade (4.09 x 10(7), p < 0.05), but hepatocytes obtained by antegrade perfusion gave higher engraftment efficiency (p < 0.05). More of the transplanted hepatocytes could be recovered from recipient liver with antegrade perfusion than with retrograde perfusion (p < 0.05). Our results indicate that hepatocytes isolated by antegrade perfusion gave a higher engraftment efficiency.
Collapse
Affiliation(s)
- Zhaohui Yin
- Division of Transplantation Surgery, Department for Clinical Science, Intervention and Technology CLINTEC, Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
71
|
McCrann DJ, Nguyen HG, Jones MR, Ravid K. Vascular smooth muscle cell polyploidy: An adaptive or maladaptive response? J Cell Physiol 2008; 215:588-92. [DOI: 10.1002/jcp.21363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
72
|
Ueberham E, Lindner R, Kamprad M, Hiemann R, Hilger N, Woithe B, Mahn D, Cross M, Sack U, Gebhardt R, Arendt T, Ueberham U. Oval cell proliferation in p16INK4a expressing mouse liver is triggered by chronic growth stimuli. J Cell Mol Med 2007; 12:622-38. [PMID: 18053084 PMCID: PMC3822548 DOI: 10.1111/j.1582-4934.2007.00178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16INK4a.Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16INK4a in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16INK4a leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Lu P, Prost S, Caldwell H, Tugwood JD, Betton GR, Harrison DJ. Microarray analysis of gene expression of mouse hepatocytes of different ploidy. Mamm Genome 2007; 18:617-26. [PMID: 17726633 DOI: 10.1007/s00335-007-9048-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/01/2007] [Indexed: 12/21/2022]
Abstract
Polyploidisation in hepatocytes has been associated with many physiologic and pathologic processes such as proliferation, metabolism, regeneration, aging, and cancer. We studied gene expression patterns in hepatocytes of different ploidy. Primary hepatocytes were obtained from mice of different ages: young (4-6 weeks old), adult (8-10 weeks old), and older (22-24 weeks old). Diploid (2N), tetraploid (4N), and octoploid (8N) hepatocytes were isolated for studies using a high-density mouse genome microarray. No major changes of gene expression patterns between hepatocytes of different ploidy were found. Fifty genes were identified as differentially expressed in the diploid and tetraploid populations, but the changes were less than twofold either way. Four genes (Gas2, Igfbp2, Nr1i3, and Ccne2) were differentially expressed in tetraploid and octoploid cells. This was confirmed in two age groups, "adult" and "older," but once again the factors were less than twofold and the expressions of Gas2 and Igfbp2 were more different between age groups than between ploidy classes. Our results show that polyploid hepatocytes are stable and "normal" without aberrant gene expression, unlike what is thought for cancer cells. By contrast to megakaryocytes, hepatocyte polyploidisation is not a differentiation step associated with major changes in gene expression. Our data support the hypothesis that hepatocyte polyploidisation is a protective mechanism against oxidative stress that occurs via a controlled process throughout growth and aging where binucleation is important.
Collapse
Affiliation(s)
- Pin Lu
- Pathology Division, School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
74
|
Joseph B, Kumaran V, Berishvili E, Bhargava KK, Palestro CJ, Gupta S. Monocrotaline promotes transplanted cell engraftment and advances liver repopulation in rats via liver conditioning. Hepatology 2006; 44:1411-20. [PMID: 17133480 DOI: 10.1002/hep.21416] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disruption of the hepatic endothelial barrier or Kupffer cell function facilitates transplanted cell engraftment in the liver. To determine whether these mechanisms could be activated simultaneously, we studied the effects of monocrotaline, a pyrollizidine alkaloid, with reported toxicity in liver sinusoidal endothelial cells and Kupffer cells. The effects of monocrotaline in Fischer 344 rats were examined by tissue morphology, serum hyaluronic acid levels, and liver tests (endothelial and hepatocyte injury) or incorporation of carbon and (99m)Tc-sulfur colloid (Kupffer cell damage). To study changes in cell engraftment and liver repopulation, Fischer 344 rat hepatocytes were transplanted into syngeneic dipeptidyl peptidase IV-deficient rats followed by histological assays. We observed extensive endothelial injury without Kupffer cell or hepatocyte damage in monocrotaline-treated rats. Monocrotaline enhanced transplanted cell engraftment without changes in transplanted cell numbers or induction of proliferation in native hepatocytes over 3 months. In monocrotaline-treated rats, transplanted cells integrated into the liver parenchyma and survived in vascular spaces. To determine whether native hepatocytes suffered inapparent damage after monocrotaline, we introduced further liver injury with carbon tetrachloride subsequent to cell transplantation. Monocrotaline sensitized the liver to carbon tetrachloride-induced necrosis, which advanced transplanted cell proliferation, leading to significant liver repopulation. During this process, we observed proliferation of bile duct cells and small epithelial cells, although transplanted hepatocytes did not appear to reconstitute bile ducts. The studies showed that perturbation of multiple liver cell compartments by monocrotaline promoted transplanted cell engraftment and proliferation. In conclusion, development of drugs with monocrotaline-like effects will help advance liver cell therapy.
Collapse
Affiliation(s)
- Brigid Joseph
- Department of Medicine and Pathology, Marion Bessin Liver Research Center, Jack and Pearl Resnick Campus, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
75
|
Wojda A, Zietkiewicz E, Mossakowska M, Pawłowski W, Skrzypczak K, Witt M. Correlation between the level of cytogenetic aberrations in cultured human lymphocytes and the age and gender of donors. J Gerontol A Biol Sci Med Sci 2006; 61:763-72. [PMID: 16912092 DOI: 10.1093/gerona/61.8.763] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To answer whether the age-related accumulation of chromosomal damage differs in men and women, and whether the aberration level in centenarians is proportional to their age, cytogenetic aberrations in dividing cells were analyzed. G-band karyotyping of mitotic spreads from lymphocytes was performed in 52 Polish centenarians and 71 controls (aged 21-78). Statistical evaluation was performed using nonparametric tests and regression analysis. The average level of all chromosomal aberrations was comparable in centenarians of both genders, but the age-related increase in chromosomal damage occurred faster in women than in men. Aging in both genders was marked by the increasing level of all aberrations rather than by chromosome-specific changes; the loss of X chromosome was the leading contributor in women. The age-related increase in the level of chromosomal damage reflected accumulation of dividing cells with a small number of aberrations. Individuals who survive to the extreme old age appear to accumulate aberrations at the slower rate.
Collapse
Affiliation(s)
- Alina Wojda
- Institute of Human Genetics, Clinical and Molecular Genetics, Strzeszyńska 32, Poznań A 60-479, Poland
| | | | | | | | | | | |
Collapse
|
76
|
Stéphenne X, Najimi M, Sibille C, Nassogne MC, Smets F, Sokal EM. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 2006; 130:1317-23. [PMID: 16618422 DOI: 10.1053/j.gastro.2006.01.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/21/2005] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Donor cell engraftment with expression of enzyme activity is the goal of liver cell transplantation for inborn errors of liver metabolism with a view to achieving sustained metabolic control. METHODS Sequential hepatic cell transplantations using male and female cells were performed in a 3.5-year-old girl with argininosuccinate lyase deficiency over a period of 5 months. Beside clinical, psychomotor, and metabolic follow-up, engraftment was analyzed in repeated liver biopsies (2.5, 5, 8, and 12 months after first infusion) by fluorescence in situ hybridization for the Y-chromosome and by measurement of tissue enzyme activity. RESULTS Metabolic control was achieved together with psychomotor catch-up, changing the clinical phenotype from a severe neonatal one to a moderate late-onset type. The child was no longer hospitalized and was able to attend normal school. Sustained engraftment of male donor liver cells was shown in repeated biopsies, reaching 19% at 8 months and 12.5% at the 12-month follow-up. XXYY tetraploid donor cells were mainly detected during the infusion period (2.5- and 5-month biopsies), whereas in the follow-up 8-month and 1-year biopsies, diploid donor cell subpopulations had become dominant. Moreover, argininosuccinate lyase activity, originally absent, became measurable in 2 different biopsy samples at 8 months, reaching 3% of control activity, indicating in situ metabolic effect and supporting the clinical evolution to a moderate form of the disease. CONCLUSIONS Liver cell transplantation can achieve donor cell engraftment in humans in a significant proportion, leading to sustained metabolic and clinical control with psychomotor catch-up.
Collapse
Affiliation(s)
- Xavier Stéphenne
- Laboratoire d'hépatologie Pédiatrique et Transplantation Cellulaire, Département GYPE, Service de Pédiatrie, Université Catholique de Louvain & Cliniques St Luc, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
77
|
Schneider C, Aurich H, Wenkel R, Christ B. Propagation and functional characterization of serum-free cultured porcine hepatocytes for downstream applications. Cell Tissue Res 2005; 323:433-42. [PMID: 16315006 DOI: 10.1007/s00441-005-0089-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/22/2005] [Indexed: 11/28/2022]
Abstract
Hepatocyte transplantation is considered an alternative to whole organ transplantation. However, the availability of human cadaveric livers for the isolation of transplantation-quality hepatocytes is increasingly restricted. Xenogeneic porcine hepatocytes may therefore serve as an alternate cell ressource. The propagation of hepatocytes is often necessary to yield a sufficient cell number for downstream applications in xenotransplantation and in, for example, bioartificial liver support or pharmacological and toxicological studies. Our goal has been to propagate primary porcine hepatocytes in vitro and to determine the functional maintenance of the propagated cells. Porcine hepatocytes were cultured under serum-free conditions in the presence of hepatocyte growth factor and epidermal growth factor and passaged several times. The viability, proliferation and maintenance of liver-specific functions were determined as culture proceeded. Total cell number increased by 12-fold during four sequential passages, although the proliferative capacity was higher in primary cells and early passages as compared with late passages. Xenobiotics metabolism and urea synthesis gradually decreased with ongoing culture but could be restored by treatment with appropriate stimuli such, as beta-naphthoflavone and cAMP. The expression of hepatocyte-specific genes was generally lower at the beginning than at later time-points of culture of individual passages. Porcine hepatocytes can thus be propagated in vitro. The partial loss of hepatocyte function may be restored in vitro by appropriate stimuli. This may also be achieved in a recipient liver after hepatocyte transplantation provided that the proper physiological environment for the maintenance of the differentiated hepatocyte phenotype is present.
Collapse
Affiliation(s)
- Christian Schneider
- Universitätsklinik und Poliklinik fuer Innere Medizin I, Martin-Luther-Universitaet Halle-Wittenberg, 06097, Halle, Germany.
| | | | | | | |
Collapse
|
78
|
Abstract
This review discusses current understanding of the role that endogenous and exogenous progenitor cells may have in the treatment of the diseased heart. In the last several years, a major effort has been made in an attempt to identify immature cells capable of differentiating into cell lineages different from the organ of origin to be employed for the regeneration of the damaged heart. Embryonic stem cells (ESCs) and bone marrow-derived cells (BMCs) have been extensively studied and characterized, and dramatic advances have been made in the clinical application of BMCs in heart failure of ischemic and nonischemic origin. However, a controversy exists concerning the ability of BMCs to acquire cardiac cell lineages and reconstitute the myocardium lost after infarction. The recognition that the adult heart possesses a stem cell compartment that can regenerate myocytes and coronary vessels has raised the unique possibility to rebuild dead myocardium after infarction, to repopulate the hypertrophic decompensated heart with new better functioning myocytes and vascular structures, and, perhaps, to reverse ventricular dilation and wall thinning. Cardiac stem cells may become the most important cell for cardiac repair.
Collapse
Affiliation(s)
- Annarosa Leri
- Cardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, NY10595, USA
| | | | | |
Collapse
|
79
|
Gagos S, Irminger-Finger I. Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol 2005; 37:1014-33. [PMID: 15743675 DOI: 10.1016/j.biocel.2005.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 12/31/2022]
Abstract
Multiple rearrangements of chromosome number and structure are common manifestations of genomic instability encountered in mammalian tumors. In neoplasia, in continuous immortalized growth in vitro, and in animal models, the accumulation of various defects on DNA repair and telomere maintenance machineries, mitotic spindle abnormalities, and breakage-fusion-bridge cycles, deteriorate the precise mitotic distribution of the genomic content, thus producing various types of chromosomal anomalies. These lesions generate tremendous genomic imbalances, which are evolutionary selected, since they force the function of the whole genome towards continuous growth. For more than a century chromosomal rearrangements and aneuploidy in neoplasia have been discussed and a vast number of genes and pathways, directly or indirectly implicated, have been described. In this review, we focus on the biological mechanisms that generate numerical or structural deviations of the normal diploid chromosomal constitution in epithelial neoplasia. There is growing evidence that chromosomal instability is both an epiphenomenon and a leading cause of cancer. We will discuss the roles of genes, chromosome structure, and telomere dysfunction in the initiation of chromosomal instability. We will explore research strategies that can be applied to identify rates of chromosomal instability in a specimen, and the putative biological consequences of karyotypic heterogeneity. Finally, we will re-examine the longstanding hypothesis of the generation of aneuploidy in the context of telomere dysfunction and restoration.
Collapse
Affiliation(s)
- Sarantis Gagos
- Laboratory of Genetics, Foundation for Biomedical Research of the Academy of Athens Greece, Soranou Efessiou 4, Athens 11527, Greece.
| | | |
Collapse
|
80
|
Gupta S, Inada M, Joseph B, Kumaran V, Benten D. Emerging insights into liver-directed cell therapy for genetic and acquired disorders. Transpl Immunol 2005; 12:289-302. [PMID: 15157922 DOI: 10.1016/j.trim.2003.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Treatment of acute or chronic liver diseases by cell transplantation is an attractive prospect because organ shortages greatly restrict liver transplantation. Moreover, a variety of genetic deficiency states affecting extrahepatic organs are amenable to liver-directed cell therapy. While the initial clinical experience with liver cell transplantation has been encouraging, further advances in several areas are necessary to improve these results. Insights into how engraftment and proliferation of transplanted cells may be modulated to obtain therapeutically effective masses of transplanted cells will be important in this pursuit. Studies of cell therapy in animal models of specific diseases have provided insights into the development of clinically relevant strategies for various disorders. Also, identification of suitable cell types, including stem/progenitor cells that could be expanded and manipulated in cell culture conditions, has begun to provide important new information for cell therapy. Similarly, advances in cryopreservation of cells and prevention of allograft rejection offer ways to accomplish cell therapy in an effective manner. Taken together, these advances indicate that liver-directed cell therapy will be well positioned in the near future to play significant roles in transplantation medicine.
Collapse
Affiliation(s)
- Sanjeev Gupta
- Department of Medicine, Marion Bessin Liver Research Center, Cancer Research Center and General Clinical Research Center, Albert Einstein College of Medicine Ullmann Building, Rm 625, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
81
|
ANATSKAYA OLGAV, VINOGRADOV ALEXANDERE. Heart and liver as developmental bottlenecks of mammal design: evidence from cell polyploidization. Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2004.00377.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
82
|
Almeida-Porada G, Porada CD, Chamberlain J, Torabi A, Zanjani ED. Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood 2004; 104:2582-90. [PMID: 15231580 DOI: 10.1182/blood-2004-01-0259] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We took advantage of the proliferative and permissive environment of the developing preimmune fetus to develop a noninjury large animal model in sheep, in which the transplantation of defined populations of human hematopoietic stem cells resulted in the establishment of human hematopoiesis and led to the formation of significant numbers of long-lasting, functional human liver cells, with some animals exhibiting levels as high as 20% of donor (human) hepatocytes 11 months after transplantation. A direct correlation was found between hepatocyte activity and phenotype of transplanted cells, cell dose administered, source of cells used on a cell-per-cell basis (bone marrow, cord blood, mobilized peripheral blood), and time after transplantation. Human hepatocytes generated in this model retained functional properties of normal hepatocytes, constituted hepatic functional units with the presence of human endothelial and biliary duct cells, and secreted human albumin that was detected in circulation. Transplanting populations of hematopoietic stem cells can efficiently generate significant numbers of functional hepatic cells in this noninjury large animal model and thus could be a means of ameliorating or curing genetic diseases in which a deficiency of liver cells or their products threatens the life of the fetus or newborn.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, Reno, NV 89557-0104, USA.
| | | | | | | | | |
Collapse
|
83
|
Anatskaya OV, Vinogradov AE. Paraoxical relationship between protein content and nucleolar activity in mammalian cardiomyocytes. Genome 2004; 47:565-78. [PMID: 15190374 DOI: 10.1139/g04-015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It was recently demonstrated that polyploidization of the avian myocardium is associated with a reduction of cardiac aerobic capacity evaluated by the heart mass to body mass ratio (heart index). To investigate possible cellular correlates of polyploidization, the protein content and nucleolar activity per cell and per genome were examined by image cytometry in 21 mammalian species, differing in the degree of heart polyploidization and heart index. We found that average cardiomyocyte ploidy level correlates negatively with the animal heart index (r = –0.75, p < 10–4), i.e., the large heart of athletic mammals is polyploidized to a lesser degree than the relatively smaller heart of sedentary species, which confirms the picture observed in birds. The protein content per genome decreased with the elevation of cardiomyocyte ploidy level. This inverse correlation was especially pronounced with the removed effect of body mass (r = –0.79, p < 10–4). Surprisingly, these changes were accompanied by the increase of nucleolar activity per genome (r = 0.61, p < 10–3). In the two species, for which the microarray gene expression data were available (human and mouse), this increase was paralleled by the elevated expression of ribosomal protein genes (but there was no increase in the expression of tissue-specific genes). Thus, in the polyploid cardiomyocytes there is a misbalance between protein content per genome and ribosome biogenesis. The reduction of protein content (per genome) of polyploid cardio my ocytes should further curtail heart functionality (in addition to reduction of heart index), because it is known that cardio myocyte protein content consists of more than 90% contractile proteins. This finding makes doubtful a widespread notion that polyploidization is necessary for cell function. Because somatic polyploidization is associated with stressful conditions and impaired energetics, we suppose that additional genomes can serve for cell regeneration and as a defense against oxidative damage in the organs that work at the limit of their metabolic capacity.Key words: somatic polyploidy, heart, functional capacity, protein–DNA ratio.
Collapse
Affiliation(s)
- Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
84
|
Eisenberg LM, Eisenberg CA. Stem cell plasticity, cell fusion, and transdifferentiation. ACTA ACUST UNITED AC 2004; 69:209-18. [PMID: 14671774 DOI: 10.1002/bdrc.10017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, BSB Rm 654, 171 Ashley Ave., Charleston, SC 29425, USA.
| | | |
Collapse
|
85
|
Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5:45-54. [PMID: 14708009 DOI: 10.1038/nrm1276] [Citation(s) in RCA: 582] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyploidy is a frequent phenomenon in the eukaryotic world, but the biological properties of polyploid cells are not well understood. During evolution, polyploidy is thought to be an important mechanism that contributes to speciation. Polyploid, usually non-dividing, cells are formed during development in otherwise diploid organisms. A growing amount of evidence indicates that polyploid cells also arise during a variety of pathological conditions. Genetic instability in these cells might provide a route to aneuploidy and thereby contribute to the development of cancer.
Collapse
Affiliation(s)
- Zuzana Storchova
- Department of Pediatric Oncology of The Dana-Farber Cancer Institute, Children's Hospital and Harvard Medical School, Room M621A, 44 Binney Street Boston, Massachusetts 02115, USA
| | | |
Collapse
|
86
|
Gandillet A, Alexandre E, Holl V, Royer C, Bischoff P, Cinqualbre J, Wolf P, Jaeck D, Richert L. Hepatocyte ploidy in normal young rat. Comp Biochem Physiol A Mol Integr Physiol 2003; 134:665-73. [PMID: 12600676 DOI: 10.1016/s1095-6433(02)00374-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to examine the relation between hepatocyte size and ploidy in Sprague-Dawley rat liver. Therefore, subpopulations of hepatocytes of various sizes were separated from the isolated crude hepatocyte population either mechanically or by using centrifugal elutriation. Hepatocyte size was determined on scanning electron microscopy photographs. Ploidy of hepatocytes was assessed by flow cytometry. The crude hepatocyte population was very heterogeneous in sizes, with diameters ranging from 8 to 39 microm. Hepatocyte ultrastructure was well preserved as demonstrated by transmission electron microscopy. The distribution of hepatocytes within the ploidy classes was the following: 19.6+/-3.6% diploid, 56.2+/-3.2% tetraploid and 3.4+/-0.6% octoploid mononucleated cells. Thus approximately 79% of hepatocytes appeared mononucleated. The binucleated hepatocytes (21%) had two diploid nuclei (18.7+/-2.9%) or two tetraploid nuclei (2.1+/-0.6%). A similar distribution of hepatocytes into ploidy classes was obtained in subpopulations of hepatocytes of various sizes. Our findings suggest that distribution into ploidy classes is not strictly correlated with hepatocyte size. In accordance with previous observations, our results on hepatocyte ploidy from periportal or perivenous origin using digitonin perfusion, is in favour of the existence of ploidy zonation within the rat hepatic lobule.
Collapse
Affiliation(s)
- Arnaud Gandillet
- Laboratoire de Chirurgie Expérimentale, Fondation Transplantation, 5, Avenue Molière, 67200, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Adult cardiac muscle is unable to repair itself following severe disease or injury. Because of this fundamental property of the myocardium, it was long believed that the adult myocardium is a postmitotic tissue. Yet, recent studies have indicated that new cardiac myocytes are generated throughout the life span of an adult and that extracardiac cells can contribute to the renewal of individual cells within the myocardium. In addition, investigations of the phenotypic capacity of adult stem cells have suggested that their potential is not solely restricted to the differentiated cell phenotypes of the source tissue. These observations have great implications for cardiac biology, as stem cells obtained from the bone marrow and other readily accessible adult tissues may serve as a source of replacement cardiac myocytes. In this review, we describe the evidence for these new findings and discuss their implications in context of the continuing controversy over stem cell plasticity.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
88
|
Abstract
Liver repopulation with transplanted cells offers unique opportunities for treating a variety of diseases and for studies of fundamental mechanisms in cell biology. Our understanding of the basis of liver repopulation has come from studies of transplanted cells in animal models. A variety of studies established that transplanted hepatocytes as well as stem/progenitor cells survive, engraft, and function in the liver. Transplanted cells survive life-long, although cells do not proliferate in the normal liver. On the other hand, the liver is repopulated extensively when diseases or other injuries afflict native hepatocytes but spare transplanted cells. The identification of ways to repopulate the liver with transplanted cells has greatly reinvigorated the field of liver cell therapy. The confluence of insights in stem/progenitor cells, transplantation immunology, cryobiology, and liver repopulation in specific models of human diseases indicates that the field of liver cell therapy will begin to reap the promised fruit in the near future.
Collapse
Affiliation(s)
- Sanjeev Gupta
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
89
|
Zimmermann A. Pediatric liver tumors and hepatic ontogenesis: common and distinctive pathways. MEDICAL AND PEDIATRIC ONCOLOGY 2002; 39:492-503. [PMID: 12228906 DOI: 10.1002/mpo.10174] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several types of pediatric liver tumors exhibit structural features apparently reflecting processes which normally occur during hepatic ontogenesis: some hepatoblastomas mimic distinct phases of hepatogenesis, including the formation of mesenchymal structures closely associated with immature epithelia, and there are tumors almost exclusively consisting of complex mesenchymal patterns. Current classifications of hepatoblastomas refer to the identification of more or less mature (differentiated) single or mixed components seen in histologic preparations. These do not, however, attempt to integrate ontogenic pathways, in contrast for example, to nephroblastoma and associated lesions, where such a view has proved to be highly fruitful. Based on the fact that an enormous amount of knowledge has recently been accumulated regarding hepatic ontogenesis, time may have come to look at these tumors with a new eye. In what follows, we aim at trying to analyze distinct features of pediatric hepatic tumors (except vascular tumors) within the background of ontogenesis. Some key steps of hepatogenesis and the regulatory factors involved may, in the future, deliver an armamentarium to search for novel molecular mechanisms involved in tumorigenic pathways.
Collapse
|
90
|
Malhi H, Gorla GR, Irani AN, Annamaneni P, Gupta S. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation. Proc Natl Acad Sci U S A 2002; 99:13114-9. [PMID: 12244212 PMCID: PMC130595 DOI: 10.1073/pnas.192365499] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inability of transplanted cells to proliferate in the normal liver hampers cell therapy. We considered that oxidative hepatic DNA damage would impair the survival of native cells and promote proliferation in transplanted cells. Dipeptidyl peptidase-deficient F344 rats were preconditioned with whole liver radiation and warm ischemia-reperfusion followed by intrasplenic transplantation of syngeneic F344 rat hepatocytes. The preconditioning was well tolerated, although serum aminotransferase levels rose transiently and hepatic injury was observed histologically, along with decreased catalase activity and 8-hydroxy adducts of guanine, indicating oxidative DNA damage. Transplanted cells did not proliferate in the liver over 3 months in control animals and animals preconditioned with ischemia-reperfusion alone. Animals treated with radiation alone showed some transplanted cell proliferation. In contrast, the liver of animals preconditioned with radiation plus ischemia-reperfusion was replaced virtually completely over 3 months. Transplanted cells integrated in the liver parenchyma and liver architecture were preserved normally. These findings offer a paradigm for repopulating the liver with transplanted cells. Progressive loss of cells experiencing oxidative DNA damage after radiation and ischemia-reperfusion injury could be of significance for epithelial renewal in additional organs.
Collapse
Affiliation(s)
- Harmeet Malhi
- Marion Bessin Liver Research Center, Departments of Medicine, Radiation Oncology, and Pathology, Comprehensive Cancer Research Center, and General Clinical Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
91
|
Cho JJ, Malhi H, Wang R, Joseph B, Ludlow JW, Susick R, Gupta S. Enzymatically labeled chromosomal probes for in situ identification of human cells in xenogeneic transplant models. Nat Med 2002; 8:1033-6. [PMID: 12185363 DOI: 10.1038/nm756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Analysis of the viability, differentiation, clonogenicity and function of human stem/progenitor cells requires suitable xenograft models. However, the identification of transplanted cells has been generally difficult. Fluorescence in situ hybridization is a tedious method for analyzing tissues, and localization of transplanted cells with X or Y chromosome probes is limited by the sparse signals produced. Therefore, we examined the possibility of generating either pan-nuclear signals with a total human DNA probe or multiple nuclear signals with a pan-centromeric human DNA probe. The probes were labeled with digoxigenin to make reaction products visible by light microscopy and to allow the use of immunohistochemistry methods incorporating various color schemes to demonstrate specific properties of transplanted cells. The ability to localize all types of nucleated human cells with such probes will facilitate studies of stem cell biology and cell and gene therapy, as well as the development of new animal models.
Collapse
Affiliation(s)
- Jae-Jin Cho
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci 2002; 115:2679-88. [PMID: 12077359 DOI: 10.1242/jcs.115.13.2679] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The liver can regenerate itself through the progenitor cells it harbors. Here we demonstrate isolation of epithelial progenitor/stem cells from the fetal human liver, which contains a large number of hepatoblasts. Progenitor liver cells displayed clonogenic capacity, expressed genes observed in hepatocytes, bile duct cells and oval cells, and incorporated genes transferred by adenoviral or lentiviral vectors. Under culture conditions,progenitor cells proliferated for several months, with each cell undergoing more than forty divisions, but they retained normal karyotypes. Progenitor cells differentiated into mature hepatocytes in mice with severe combined immunodeficiency, both when in an ectopic location and when in the liver itself. Cells integrated in the liver parenchyma and proliferated following liver injury. An abundance of progenitor cells in the fetal human liver is consistent with models indicating depletion of progenitor/stem cells during aging and maturation of organs. The studies indicate that isolation of progenitor cells from fetal organs will be appropriate for establishing novel systems to investigate basic mechanisms and for cell and gene therapy.
Collapse
Affiliation(s)
- Harmeet Malhi
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
93
|
Malhi H, Annamaneni P, Slehria S, Joseph B, Bhargava KK, Palestro CJ, Novikoff PM, Gupta S. Cyclophosphamide disrupts hepatic sinusoidal endothelium and improves transplanted cell engraftment in rat liver. Hepatology 2002; 36:112-21. [PMID: 12085355 DOI: 10.1053/jhep.2002.33896] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
To determine whether disruption of the hepatic sinusoidal endothelium will facilitate engraftment of transplanted cells, we treated Fischer 344 (F344) rats lacking dipeptidyl peptidase IV (DPPIV) activity with cyclophosphamide (CP). Electron microscopy showed endothelial injury within 6 hours following CP, and, after 24 and 48 hours, the endothelium was disrupted in most hepatic sinusoids. CP did not affect Kupffer cell function. Similarly, CP had no obvious effects on hepatocytes. Intrasplenic transplantation of F344 rat hepatocytes followed by their localization with DPPIV histochemistry showed 3- to 5-fold increases in the number of transplanted cells in CP-treated animals. Transplanted cells integrated in the liver parenchyma more rapidly in CP-treated animals, and hybrid bile canaliculi developed even 1 day after cell transplantation, which was not observed in control animals. To demonstrate whether improved cell engraftment translated into superior liver repopulation, recipient animals were conditioned with retrorsine and two-thirds partial hepatectomy (PH), which induces transplanted cell proliferation. CP treatment of these animals before cell transplantation significantly increased the number and size of transplanted cell foci. In conclusion, disruption of the hepatic sinusoidal endothelium was associated with accelerated entry and integration of transplanted cells in the liver parenchyma. These results provide insights into hepatocyte engraftment in the liver and will help in optimizing liver-directed cell therapy.
Collapse
Affiliation(s)
- Harmeet Malhi
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Ullmann 625, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Malhi H, Irani AN, Volenberg I, Schilsky ML, Gupta S. Early cell transplantation in LEC rats modeling Wilson's disease eliminates hepatic copper with reversal of liver disease. Gastroenterology 2002; 122:438-47. [PMID: 11832458 DOI: 10.1053/gast.2002.31086] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS The Long-Evans Cinnamon (LEC) rat is an excellent model of Wilson's disease with impaired copper excretion, hypoceruloplasminemia, and copper toxicosis. We hypothesized that early hepatocyte transplantation would improve copper excretion and liver disease in Wilson's disease. METHODS Normal syngeneic Long-Evans Agouti rat hepatocytes were transplanted intrasplenically into 2-week-old LEC rats. Untreated LEC pups were controls. Liver repopulation was shown by changes in serum ceruloplasmin, hepatic atp7b messenger RNA, and bile and liver copper levels. Histologic analysis of the liver was performed. RESULTS Significant copper accumulation and liver disease were observed in 5-month-old LEC rats, with occasional treated rats showing increased bile copper excretion. The liver was repopulated extensively in 10 of 14 treated LEC rats (71%) 20 months after cell transplantation. In these 10 rats, hepatic copper content was virtually normal in 6 rats (53 +/- 12 microg/g liver) and substantially less in 4 others (270 +/- 35 microg/g) compared with elevated liver copper levels in untreated LEC rats (1090 +/- 253 microg/g) (P < 0.001). Changes in serum ceruloplasmin levels, bile copper excretion capacity, and liver histology were in concordance with decreases in liver copper levels. CONCLUSIONS Transplanted cells proliferated subsequent to the onset of liver injury, and the liver was repopulated over an extended period. Cell transplantation eventually restored copper homeostasis and reversed liver disease without hepatic preconditioning in LEC rats.
Collapse
Affiliation(s)
- Harmeet Malhi
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|