51
|
Eltit JM, García AA, Hidalgo J, Liberona JL, Chiong M, Lavandero S, Maldonado E, Jaimovich E. Membrane electrical activity elicits inositol 1,4,5-trisphosphate-dependent slow Ca2+ signals through a Gbetagamma/phosphatidylinositol 3-kinase gamma pathway in skeletal myotubes. J Biol Chem 2006; 281:12143-54. [PMID: 16513646 DOI: 10.1074/jbc.m511218200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tetanic electrical stimulation of myotubes evokes a ryanodine receptor-related fast calcium signal, during the stimulation, followed by a phospholipase C/inositol 1,4,5-trisphosphate-dependent slow calcium signal few seconds after stimulus end. L-type calcium channels (Cav 1.1, dihydropyridine receptors) acting as voltage sensors activate an unknown signaling pathway involved in phospholipase C activation. We demonstrated that both G protein and phosphatidylinositol 3-kinase were activated by electrical stimulation, and both the inositol 1,4,5-trisphosphate rise and slow calcium signal induced by electrical stimulation were blocked by pertussis toxin, by a Gbetagamma scavenger peptide, and by phosphatidylinositol 3-kinase inhibitors. Immunofluorescence using anti-phosphatidylinositol 3-kinase gamma antibodies showed a clear location in striations within the cytoplasm, consistent with a position near the I band region of the sarcomere. The time course of phosphatidylinositol 3-kinase activation, monitored in single living cells using a pleckstrin homology domain fused to green fluorescent protein, was compatible with sequential phospholipase Cgamma1 activation as confirmed by phosphorylation assays for the enzyme. Co-transfection of a dominant negative form of phosphatidylinositol 3-kinase gamma inhibited the phosphatidylinositol 3-kinase activity as well as the slow calcium signal. We conclude that Gbetagamma/phosphatidylinositol 3-kinase gamma signaling pathway is involved in phospholipase C activation and the generation of the slow calcium signal induced by tetanic stimulation. We postulate that membrane potential fluctuations in skeletal muscle cells can activate a pertussis toxin-sensitive G protein, phosphatidylinositol 3-kinase, phospholipase C pathway toward modulation of long term, activity-dependent plastic changes.
Collapse
Affiliation(s)
- José M Eltit
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultades de Medicina y Ciencias Químicas y Farmacéuticas, Universidad de Chile, Independecia 1027, Santiago 7, Chile
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Campbell NR, Podugu SP, Ferrari MB. Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis. Dev Biol 2006; 292:253-64. [PMID: 16460724 DOI: 10.1016/j.ydbio.2005.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 11/10/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Intracellular calcium (Ca(2+)) signals are essential for several aspects of muscle development, including myofibrillogenesis-the terminal differentiation of the sarcomeric lattice. Ryanodine receptor (RyR) Ca(2+) stores must be operative during this period and contribute to the production of spontaneous global Ca(2+) transients of long duration (LDTs; mean duration approximately 80 s). In this study, high-speed confocal imaging of intracellular Ca(2+) in embryonic myocytes reveals a novel class of spontaneous Ca(2+) transient. These short duration transients (SDTs; mean duration approximately 2 s) are blocked by ryanodine, independent of extracellular Ca(2+), insensitive to changes in membrane potential, and propagate in the subsarcolemmal space. SDTs arise from RyR stores localized to the subsarcolemmal space during myofibrillogenesis. While both LDTs and SDTs occur prior to myofibrillogenesis, LDT production ceases and only SDTs persist during a period of rapid sarcomere assembly. However, eliminating SDTs during this period results in only minor myofibril disruption. On the other hand, artificial extension of LDT production completely inhibits sarcomere assembly. In conjunction with earlier work, these results suggest that LDTs have at least two roles during myofibrillogenesis-activation of sarcoplasmic regulatory cascades and regulation of gene expression. The distinct spatiotemporal patterns of LDTs versus SDTs may be utilized for differential regulation of cytosolic cascades, control of nuclear gene expression, and localized activation of assembly events at the sarcolemma.
Collapse
Affiliation(s)
- Nolan R Campbell
- School of Biological Sciences, University of Missouri, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA.
| | | | | |
Collapse
|
53
|
Cárdenas C, Liberona JL, Molgó J, Colasante C, Mignery GA, Jaimovich E. Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation. J Cell Sci 2006; 118:3131-40. [PMID: 16014380 DOI: 10.1242/jcs.02446] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several lines of evidence indicate that increases in nuclear Ca(2+) have specific biological effects that differ from those of cytosolic Ca(2+), suggesting that they occur independently. The mechanisms involved in controlling nuclear Ca(2+) signaling are both controversial and still poorly understood. Using hypotonic shock combined with mechanical disruption, we obtained and characterized a fraction of purified nuclei from cultured rat skeletal myotubes. Both immunoblot studies and radiolabeled inositol 1,4,5-trisphosphate [IP(3)] binding revealed an important concentration of IP(3) receptors in the nuclear fraction. Immunofluorescence and immunoelectron microscopy studies localized type-1 and type-3 IP(3) receptors in the nucleus with type-1 receptors preferentially localized in the inner nuclear membrane. Type-2 IP(3) receptor was confined to the sarcoplasmic reticulum. Isolated nuclei responded to IP(3) with rapid and transient Ca(2+) concentration elevations, which were inhibited by known blockers of IP(3) signals. Similar results were obtained with isolated nuclei from the 1B5 cell line, which does not express ryanodine receptors but releases nuclear Ca(2+) in an IP(3)-dependent manner. Nuclear Ca(2+) increases triggered by IP(3) evoked phosphorylation of cAMP response element binding protein with kinetics compatible with sequential activation. These results support the idea that Ca(2+) signals, mediated by nuclear IP(3) receptors in muscle cells, are part of a distinct Ca(2+) release component that originates in the nucleus and probably participates in gene regulation mediated by cAMP response element binding protein.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/biosynthesis
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Fluorometry
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Confocal
- Microscopy, Immunoelectron
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Nuclear Envelope/metabolism
- Phosphorylation
- Protein Binding
- Protein Isoforms
- Rats
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Cesar Cárdenas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7, Chile
| | | | | | | | | | | |
Collapse
|
54
|
Voigt T, Dauber W. About the T-system in the myofibril-free sarcoplasm of the frog muscle fibre. Tissue Cell 2005; 36:245-8. [PMID: 15261743 DOI: 10.1016/j.tice.2004.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 01/31/2004] [Accepted: 03/05/2004] [Indexed: 11/23/2022]
Abstract
Previous investigations of the T-system in skeletal muscle fibres described the inter-myofibrillar relationships between T-tubules and the sarcoplasmic reticulum. They disregarded the arrangement of the T-system in the myofibril-free sarcoplasm in the area of muscle fibre nuclei. In the present investigation, the T-system was filled by means of lanthanum incubation and the myofibril-free sarcoplasm was ultrastructural examined by means of thin (< or = 100 nm) as well as thick sections (> 300 nm-1 microm) with the electron microscope. The investigation of thick sections revealed that T-tubules meander through this myofibril-free sarcoplasm and tangle up at the poles of muscle fibre nuclei and in the area of fundamental nuclei of the motor end plate. They are, far from myofibrils, in proximity to these nuclei, the Golgi apparatus and mitochondria. On basis of this proximity and their openings at the muscle fibre surface, a contribution at the drainage of metabolic products and at the local calcium control is discussed.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Fribourg, Rte Albert-Gockel 1, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
55
|
Liu Y, Shen T, Randall WR, Schneider MF. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 2005; 26:13-21. [PMID: 16096682 DOI: 10.1007/s10974-005-9002-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/09/2005] [Accepted: 06/17/2005] [Indexed: 01/07/2023]
Abstract
Adult fast- and slow-twitch skeletal muscle fibers exhibit characteristic differences in functional properties due to differences in the isoforms and quantities of expression of most muscle proteins. However, these differences may be reversed by chronic electrical stimulation of denervated muscle with the pattern typical of the other fiber type. Here, we review three possible signaling pathways that may contribute to fast to slow fiber type transformation. The first pathway involves cytosolic activation of the Ca(2+) sensitive posphatase calcineurin (CaN) due to elevated cytosolic [Ca(2+)], resulting in dephosphorylation of cytoplasmic NFATc, translocation of dephosphorylated NFATc from cytoplasm into the nucleus and activation of slow fiber gene expression by NFATc in the nucleus. The second pathway involves elevated intranuclear [Ca(2+)] causing the activation of nuclear calmodulin dependent protein kinase, which phosphorylates HDAC within the nucleus and thereby permits nuclear efflux of HDAC, thus decreasing the HDAC suppression of MEF2 activation of slow fiber gene expression. The third possible pathway involves nuclear entry of CaN, dephosphorylation of intranuclear MEF2 and consequent increased activation of slow fiber type gene expression by dephosphorylated MEF2. Evidence for the first two pathways from our studies on adult fast twitch skeletal muscle fibers is briefly reviewed.
Collapse
Affiliation(s)
- Yewei Liu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | |
Collapse
|
56
|
Koopman WJH, Willems PHGM, Oosterhof A, van Kuppevelt TH, Gielen SCAM. Amplitude modulation of nuclear Ca2+ signals in human skeletal myotubes: A possible role for nuclear Ca2+ buffering. Cell Calcium 2005; 38:141-52. [PMID: 16054687 DOI: 10.1016/j.ceca.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 11/20/2022]
Abstract
Video-rate confocal microscopy of Indo-1-loaded human skeletal myotubes was used to assess the relationship between the changes in sarcoplasmic ([Ca(2+)](S)) and nuclear ([Ca(2+)](N)) Ca(2+) concentration during low- and high-frequency electrostimulation. A single stimulus of 10 ms duration transiently increased [Ca(2+)] in both compartments with the same time of onset. Rate and amplitude of the [Ca(2+)] rise were significantly lower in the nucleus (4.0- and 2.5-fold, respectively). Similarly, [Ca(2+)](N) decayed more slowly than [Ca(2+)](S) (mono-exponential time constants of 6.1 and 2.5 s, respectively). After return of [Ca(2+)] to the prestimulatory level, a train of 10 stimuli was applied at a frequency of 1 Hz. The amplitude of the first [Ca(2+)](S) transient was 25% lower than that of the preceding single transient. Thereafter, [Ca(2+)](S) increased stepwise to a maximum that equalled that of the single transient. Similarly, the amplitude of the first [Ca(2+)](N) transient was 20% lower than that of the preceding single transient. In contrast to [Ca(2+)](S), [Ca(2+)](N) then increased to a maximum that was 2.3-fold higher than that of the single transient and equalled that of [Ca(2+)](S). In the nucleus, and to a lesser extent in the sarcoplasm, [Ca(2+)] decreased faster at the end of the stimulus train than after the preceding single stimulus (time constants of 3.3 and 2.1 s, respectively). To gain insight into the molecular principles underlying the shaping of the nuclear Ca(2+) signal, a 3-D mathematical model was constructed. Intriguingly, quantitative modelling required the inclusion of a satiable nuclear Ca(2+) buffer. Alterations in the concentration of this putative buffer had dramatic effects on the kinetics of the nuclear Ca(2+) signal. This finding unveils a possible mechanism by which the skeletal muscle can adapt to changes in physiological demand.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of 160 Biochemistry NCMLS, Radboud University Nijmegen Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
57
|
Vassilopoulos S, Thevenon D, Rezgui SS, Brocard J, Chapel A, Lacampagne A, Lunardi J, De Waard M, Marty I. Triadins are not triad-specific proteins: two new skeletal muscle triadins possibly involved in the architecture of sarcoplasmic reticulum. J Biol Chem 2005; 280:28601-9. [PMID: 15927957 PMCID: PMC2739232 DOI: 10.1074/jbc.m501484200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have cloned two new triadin isoforms from rat skeletal muscle, Trisk 49 and Trisk 32, which were named according to their theoretical molecular masses (49 and 32 kDa, respectively). Specific antibodies directed against each protein were produced to characterize both new triadins. Both are expressed in adult rat skeletal muscle, and their expression in slow twitch muscle is lower than that in fast twitch muscle. Using double immunofluorescent labeling, the localization of these two triadins was studied in comparison to well-characterized proteins such as ryanodine receptor, calsequestrin, desmin, Ca(2+)-ATPase, and titin. None of these two triadins are localized within the rat skeletal muscle triad. Both are instead found in different parts of the longitudinal sarcoplasmic reticulum. We attempted to identify partners for each isoform: neither is associated with ryanodine receptor; Trisk 49 could be associated with titin or another sarcomeric protein; and Trisk 32 could be associated with IP(3) receptor. These results open further fields of research concerning the functions of these two proteins; in particular, they could be involved in the set up and maintenance of a precise sarcoplasmic reticulum structure.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Dominique Thevenon
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Sophia Smida Rezgui
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Julie Brocard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Agnès Chapel
- DRDC, Département réponse et dynamique cellulaire
INSERM : IFR27CNRS : IFR27INRACEAbat. C3 17 Rue des martyrs 38054 GRENOBLE CEDEX 9,FR
| | - Alain Lacampagne
- Physiopathologie cardiovasculaire
INSERM : U637IFR3Université Montpellier IHopital Arnaud de Villeneuve 171, Avenue du Doyen Gaston Giraud 34295 MONTPELLIER CEDEX 5,FR
- CHU Arnaud de Villeneuve
CHRU MontpellierMontpellier F-3400,,FR
| | - Joël Lunardi
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Isabelle Marty
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
- * Correspondence should be adressed to: Isabelle Marty
| |
Collapse
|
58
|
Jaimovich E, Mattei C, Liberona JL, Cardenas C, Estrada M, Barbier J, Debitus C, Laurent D, Molgó J. Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells. FEBS Lett 2005; 579:2051-7. [PMID: 15811317 DOI: 10.1016/j.febslet.2005.02.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 11/25/2022]
Abstract
Xestospongin B, a macrocyclic bis-1-oxaquinolizidine alkaloid extracted from the marine sponge Xestospongia exigua, was highly purified and tested for its ability to block inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release. In a concentration-dependent manner xestospongin B displaced [(3)H]IP(3) from both rat cerebellar membranes and rat skeletal myotube homogenates with an EC(50) of 44.6 +/- 1.1 microM and 27.4 +/- 1.1 microM, respectively. Xestospongin B, depending on the dose, suppressed bradykinin-induced Ca(2+) signals in neuroblastoma (NG108-15) cells, and also selectively blocked the slow intracellular Ca(2+) signal induced by membrane depolarization with high external K(+) (47 mM) in rat skeletal myotubes. This slow Ca(2+) signal is unrelated to muscle contraction, and involves IP(3) receptors. In highly purified isolated nuclei from rat skeletal myotubes, Xestospongin B reduced, or suppressed IP(3)-induced Ca(2+) oscillations with an EC(50) = 18.9 +/- 1.35 microM. In rat myotubes exposed to a Ca(2+)-free medium, Xestospongin B neither depleted sarcoplasmic reticulum Ca(2+) stores, nor modified thapsigargin action and did not affect capacitative Ca(2+) entry after thapsigargin-induced depletion of Ca(2+) stores. Ca(2+)-ATPase activity measured in skeletal myotube homogenates remained unaffected by Xestospongin B. It is concluded that xestospongin B is an effective cell-permeant, competitive inhibitor of IP(3) receptors in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.
Collapse
Affiliation(s)
- Enrique Jaimovich
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, casilla 70005, Santiago 7, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Jordan T, Jiang H, Li H, DiMario JX. Regulation of skeletal muscle fiber type and slow myosin heavy chain 2 gene expression by inositol trisphosphate receptor 1. J Cell Sci 2005; 118:2295-302. [PMID: 15870113 DOI: 10.1242/jcs.02341] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Innervation-dependent signaling cascades that control activation of downstream transcription factors regulate expression of skeletal muscle fiber type-specific genes. Many of the innervation-regulated signaling cascades in skeletal muscle are dependent on intracellular calcium and the mechanisms by which calcium is released from the sarcoplasmic reticulum (SR). We report that the inositol trisphosphate receptor 1 (IP3R1), responsible for calcium release from the SR as a slow wave, was more abundant in fast contracting compared to slow contracting avian muscle fibers. Furthermore, inhibition of IP3R1 activity by 2-aminoethoxydiphenylborate (2-APB) and xestospongin D induced a fiber type transition and expression of the slow myosin heavy chain 2 (slow MyHC2) gene in innervated fast muscle fibers. Activation of the slow MyHC2 promoter by IP3R1 inhibition was accompanied by a reduction in protein kinase C activity. In addition, inhibition of IP3R1 activity resulted in a reduction of nuclear factor of activated T cells (NFAT)-dependent transcription and nuclear localization, indicating that IP3R1 activity regulated NFAT transcription factor activity in skeletal muscle fibers. Myocyte enhancer factor 2 (MEF2)-dependent transcriptional activity was increased by innervation, but unaffected by IP3R1 activity. The results indicate that IP3R1 activity regulates muscle fiber type-specific gene expression in innervated muscle fibers.
Collapse
MESH Headings
- Animals
- Boron Compounds/pharmacology
- Calcium/metabolism
- Calcium Channels/physiology
- Cells, Cultured
- Chick Embryo
- Gene Expression Regulation
- Inositol 1,4,5-Trisphosphate Receptors
- MEF2 Transcription Factors
- Macrocyclic Compounds
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/metabolism
- Myoblasts/ultrastructure
- Myogenic Regulatory Factors/metabolism
- Myosin Heavy Chains/biosynthesis
- NFATC Transcription Factors/physiology
- Oxazoles/pharmacology
- Promoter Regions, Genetic
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/physiology
- Sarcoplasmic Reticulum/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Theresa Jordan
- Department of Cell Biology and Anatomy, Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
60
|
Collet C, Ma J. Calcium-dependent facilitation and graded deactivation of store-operated calcium entry in fetal skeletal muscle. Biophys J 2005; 87:268-75. [PMID: 15240463 PMCID: PMC1304349 DOI: 10.1529/biophysj.103.039305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of store-operated Ca(2+) entry (SOCE) into the cytoplasm requires retrograde signaling from the intracellular Ca(2+) release machinery, a process that involves an intimate interaction between protein components on the intracellular and cell surface membranes. The cellular machinery that governs the Ca(2+) movement in muscle cells is developmentally regulated, reflecting maturation of the junctional membrane structure as well as coordinated expression of related Ca(2+) signaling molecules. Here we demonstrate the existence of SOCE in freshly isolated skeletal muscle cells obtained from embryonic days 15 and 16 of the mouse embryo, a critical stage of muscle development. SOCE in the fetal muscle deactivates incrementally with the uptake of Ca(2+) into the sarcoplasmic reticulum (SR). A novel Ca(2+)-dependent facilitation of SOCE is observed in cells transiently exposed to high cytosolic Ca(2+). Our data suggest that cytosolic Ca(2+) can facilitate SOCE whereas SR luminal Ca(2+) can deactivate SOCE in the fetal skeletal muscle. This cooperative mechanism of SOCE regulation by Ca(2+) ions not only enables tight control of SOCE by the SR membrane, but also provides an efficient mechanism of extracellular Ca(2+) entry in response to physiological demand. Such Ca(2+) signaling mechanism would likely contribute to contraction and development of the fetal skeletal muscle.
Collapse
Affiliation(s)
- Claude Collet
- Department of Physiology and Biophysics, The University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, USA
| | | |
Collapse
|
61
|
Hong SJ, Liang HC, Shen CJ. Alteration of cyclopiazonic acid-mediated contracture of mouse diaphragm after denervation. Pharmacology 2004; 73:180-9. [PMID: 15604590 DOI: 10.1159/000082755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 10/04/2004] [Indexed: 11/19/2022]
Abstract
As a major Ca(2+) source for muscle contraction, the sarcoplasmic reticulum (SR) of skeletal muscle maintains its Ca(2+) content by uptake of myoplasmic Ca(2+) and by replenishment with extracellular Ca(2+). Since transection of motor nerve alters the functions of SR Ca(2+) pump and sarcolemma ion channels, this study explored the effect of denervation on the contracture evoked by cyclopiazonic acid (CPA), an inhibitor of SR Ca(2+) pump. In innervated hemidiaphragm, CPA elicited a bimodal elevation of muscle tone, which was dependent on extracellular Ca(2+) and differentially inhibited by pretreatment with 2-aminoethoxydiphenylborane (APB) and U73122. Activation of muscle Na(+) channels to simulate denervation-induced membrane depolarization did not change the contracture profile. After denervation for 5-14 days when the contracture induced by caffeine was not yet depressed, CPA elicited only APB-sensitive monophasic contracture. Stimulation of ATP-regulated K(+) channels with lemakalim hyperpolarized muscle membrane and attenuated CPA contracture in denervated, but not innervated, hemidiaphragm. The effects of lemakalim were antagonized by glybenclamide. It is inferred that the bimodal CPA contracture is resulted from distinct recruitments of Ca(2+) entry and that denervation alters the voltage dependence and down-regulates CPA-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- S J Hong
- Department of Pharmacology, College of Medicine, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, Taiwan.
| | | | | |
Collapse
|
62
|
Basset O, Boittin FX, Dorchies OM, Chatton JY, van Breemen C, Ruegg UT. Involvement of Inositol 1,4,5-Trisphosphate in Nicotinic Calcium Responses in Dystrophic Myotubes Assessed by Near-plasma Membrane Calcium Measurement. J Biol Chem 2004; 279:47092-100. [PMID: 15322099 DOI: 10.1074/jbc.m405054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle cells, plasma membrane depolarization causes a rapid calcium release from the sarcoplasmic reticulum through ryanodine receptors triggering contraction. In Duchenne muscular dystrophy (DMD), a lethal disease that is caused by the lack of the cytoskeletal protein dystrophin, the cytosolic calcium concentration is known to be increased, and this increase may lead to cell necrosis. Here, we used myotubes derived from control and mdx mice, the murine model of DMD, to study the calcium responses induced by nicotinic acetylcholine receptor stimulation. The photoprotein aequorin was expressed in the cytosol or targeted to the plasma membrane as a fusion protein with the synaptosome-associated protein SNAP-25, thus allowing calcium measurements in a restricted area localized just below the plasma membrane. The carbachol-induced calcium responses were 4.5 times bigger in dystrophic myotubes than in control myotubes. Moreover, in dystrophic myotubes the carbachol-mediated calcium responses measured in the subsarcolemmal area were at least 10 times bigger than in the bulk cytosol. The initial calcium responses were due to calcium influx into the cells followed by a fast refilling/release phase from the sarcoplasmic reticulum. In addition and unexpectedly, the inositol 1,4,5-trisphosphate receptor pathway was involved in these calcium signals only in the dystrophic myotubes. This surprising involvement of this calcium release channel in the excitation-contraction coupling could open new ways for understanding exercise-induced calcium increases and downstream muscle degeneration in mdx mice and, therefore, in DMD.
Collapse
Affiliation(s)
- Olivier Basset
- Pharmacology Laboratory, School of Pharmacy, University of Lausanne-Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
63
|
Hong SJ, Liang HC, Shen CJ. Dependence of cyclopiazonic-acid-induced muscle contractures on extracellular Ca2+. Can J Physiol Pharmacol 2004; 81:1101-9. [PMID: 14719028 DOI: 10.1139/y03-116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of Ca2+ uptake by the sarcoplasmic reticulum decreases cytosolic Ca2+ clearance and also triggers Ca2+ influx in response to Ca2+ store depletion. The role of extracellular Ca2+ in the contractures evoked by cyclo-piazonic acid (CPA) and thapsigargin (TG), Ca2+ pump inhibitors, was assessed in mouse diaphragm. At 3-100 microM, CPA elicited a rapid-onset contracture followed by a large elevation of muscle tone, which corresponded temporally to the monophasic slow contracture evoked by TG (1-30 microM). Irrespective of the differences in profiles, contractures were prevented and inhibited by the removal of extracellular Ca2+, but not by nicardipine and SK&F96365, blockers of voltage-gated (L-type) and receptor-operated Ca2+ channels. Mn2+ and Ni2+ preferentially depressed the fast-phase contracture, whereas long-term pretreatment with LY294002, U73122, and 2-aminoethoxydiphenylborance, inhibitors of phosphatidylinositol kinase, phospholipase C, and inositol trisphosphate receptors, suppressed the slow-phase contracture. When contracture was inhibited, the twitch response remained augmented and prolonged by CPA and TG, indicating that the inhibition was not due to malfunction of the contractile apparatus. For preparations incubated in Ca2+-free medium containing CPA, a monophasic fast upstroke of muscle tone developed as extracellular Ca2+ was restored. The results suggest that the bimodal contracture induced by CPA is mediated by the recruitment of distinct Mn2+- and U73122-sensitive Ca2+ entries. The ongoing two-component Ca2+ entries might merge if the muscle preparation was preconditioned with CPA in Ca2+-free medium to deplete cellular Ca2+ stores.
Collapse
Affiliation(s)
- S J Hong
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
64
|
Voigt T, Dauber W. About the morphological relationships of the sarcoplasmic reticulum in the sole plate area of the frog. Tissue Cell 2004; 36:249-52. [PMID: 15261744 DOI: 10.1016/j.tice.2004.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 01/31/2004] [Accepted: 03/03/2004] [Indexed: 11/22/2022]
Abstract
In the present investigation the sole plate area of motor end plates of the frog is ultrastructurally examined with different postfixation methods. We concentrated in this case on the proof of the smooth and rough sarcoplasmic reticulum of the sole plate. The relations of the smooth and rough sarcoplasmic reticulum to subsynaptic folds and the local T-system and its connections to diads and triads in the sole plate area are represented. The morphological differences between mammal and frog are pointed out. The possible functions of the sarcoplasmic reticulum in the myofibril-free sarcoplasm are discussed.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Fribourg, Rte Albert-Gockel 1, CH-1700 Fribourg, Switzerland.
| | | |
Collapse
|
65
|
Cárdenas C, Müller M, Jaimovich E, Pérez F, Buchuk D, Quest AFG, Carrasco MA. Depolarization of skeletal muscle cells induces phosphorylation of cAMP response element binding protein via calcium and protein kinase Calpha. J Biol Chem 2004; 279:39122-31. [PMID: 15262987 DOI: 10.1074/jbc.m401044200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane depolarization of skeletal muscle cells induces slow inositol trisphosphate-mediated calcium signals that regulate the activity of transcription factors such as the cAMP-response element-binding protein (CREB), jun, and fos. Here we investigated whether such signals regulate CREB phosphorylation via protein kinase C (PKC)-dependent pathways. Western blot analysis revealed the presence of seven isoforms (PKCalpha, -betaI, -betaII, -delta, -epsilon, -, and -zeta) in rat primary myotubes. The PKC inhibitors bisindolymaleimide I and Gö6976, blocked CREB phosphorylation. Chronic exposure to phorbol ester triggered complete down-regulation of several isoforms, but reduced PKCalpha levels to only 40%, and did not prevent CREB phosphorylation upon myotube depolarization. Immunocytochemical analysis revealed selective and rapid PKCalpha translocation to the nucleus following depolarization, which was blocked by 2-amino-ethoxydiphenyl borate, an inositol trisphosphate receptor inhibitor, and by the phospholipase C inhibitor U73122. In C2C12 cells, which expressed PKCalpha,-epsilon, and -zeta, CREB phosphorylation also depended on PKCalpha. These results strongly implicate nuclear PKCalpha translocation in CREB phosphorylation induced by skeletal muscle membrane depolarization.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Down-Regulation
- Estrenes/pharmacology
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/chemistry
- Mice
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Skeletal/metabolism
- Phorbol Esters/pharmacology
- Phosphorylation
- Potassium/chemistry
- Precipitin Tests
- Protein Isoforms
- Protein Kinase C/metabolism
- Pyrrolidinones/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
Affiliation(s)
- César Cárdenas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7, Chile
| | | | | | | | | | | | | |
Collapse
|
66
|
Eltit JM, Hidalgo J, Liberona JL, Jaimovich E. Slow calcium signals after tetanic electrical stimulation in skeletal myotubes. Biophys J 2004; 86:3042-51. [PMID: 15111418 PMCID: PMC1304170 DOI: 10.1016/s0006-3495(04)74353-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 01/22/2004] [Indexed: 11/21/2022] Open
Abstract
The fluorescent calcium signal from rat myotubes in culture was monitored after field-stimulation with tetanic protocols. After the calcium signal sensitive to ryanodine and associated to the excitation-contraction coupling, a second long-lasting calcium signal refractory to ryanodine was consistently found. The onset kinetics of this slow signal were slightly modified in nominally calcium-free medium, as were both the frequency and number of pulses during tetanus. No signal was detected in the presence of tetrodotoxin. The participation of the dihydropyridine receptor (DHPR) as the voltage sensor for this signal was assessed by treatment with agonist and antagonist dihydropyridines (Bay K 8644 and nifedipine), showing an enhanced and inhibitory response, respectively. In the dysgenic GLT cell line, which lacks the alpha1(S) subunit of the DHPR, the signal was absent. Transfection of these cells with the alpha1(S) subunit restored the slow signal. In myotubes, the inositol 1,4,5-trisphosphate (IP(3)) mass increase induced by a tetanus protocol preceded in time the slow calcium signal. Both an IP(3) receptor blocker and a phospholipase C inhibitor (xestospongin C and U73122, respectively) dramatically inhibit this signal. Long-lasting, IP(3)-generated slow calcium signals appear to be a physiological response to activity-related fluctuations in membrane potential sensed by the DHPR.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/metabolism
- Calcium Channels, L-Type/metabolism
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Electrophysiology/methods
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Image Processing, Computer-Assisted
- Inositol 1,4,5-Trisphosphate Receptors
- Kinetics
- Macrocyclic Compounds
- Mice
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Nifedipine/pharmacology
- Oxazoles/pharmacology
- Pyrrolidinones/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ryanodine/metabolism
- Ryanodine/pharmacology
- Signal Transduction
- Time Factors
- Transfection
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- José M Eltit
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
67
|
Spangenburg EE, Bowles DK, Booth FW. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Endocrinology 2004; 145:2054-63. [PMID: 14684598 DOI: 10.1210/en.2003-1476] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IGF-I activates signaling pathways that increase the expression of muscle-specific genes in differentiating myoblasts. Induction of skeletal alpha-actin expression occurs during differentiation through unknown mechanisms. The purpose of this investigation was to examine the mechanisms that IGF-I uses to induce skeletal alpha-actin gene expression in C2C12 myoblasts. IGF-I increased skeletal alpha-actin promoter activity by 107% compared with the control condition. Ni(+) [T-type voltage-gated Ca(2+) channel (VGCC) inhibitor] reduced basal-induced activation of the skeletal alpha-actin promoter by approximately 84%, and nifedipine (L-type VGCC inhibitor) inhibited IGF-I-induced activation of the skeletal alpha-actin promoter by 29-48%. IGF-I failed to increase skeletal alpha-actin promoter activity in differentiating dysgenic (lack functional L-type VGCC) myoblasts; 30 mm K(+) and 30 mm K(+)+IGF-I increased skeletal alpha-actin promoter activity by 162% and 76% compared with non-IGF-I or IGF-I-only conditions, respectively. IGF-I increased calcineurin activity, which was inhibited by cyclosporine A. Further, cyclosporine A inhibited K(+)+IGF-I-induced activation of the skeletal alpha-actin promoter. Constitutively active calcineurin increased skeletal alpha-actin promoter activity by 154% and rescued the nifedipine-induced inhibition of L-type VGCC but failed to rescue the Ni(+)-inhibition of T-type VGCC. IGF-I-induced nuclear factor of activated T-cells transcriptional activity was not inhibited by nifedipine or Ni(+). IGF-I failed to increase serum response factor transcriptional activity; however, serum response factor activity was reduced in the presence of Ni(+). These data suggest that IGF-I-induced activation of the skeletal alpha-actin promoter is regulated by the L-type VGCC and calcineurin but independent of nuclear factor of activated T-cell transcriptional activity as C2C12 myoblasts differentiate into myotubes.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Biomedical Sciences, University of Missouri, Columbia 65211, USA.
| | | | | |
Collapse
|
68
|
Ishiyama T, Miyaura N. Metal-catalyzed reactions of diborons for synthesis of organoboron compounds. CHEM REC 2004; 3:271-80. [PMID: 14762827 DOI: 10.1002/tcr.10068] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metal-catalyzed borylation of alkenes, alkynes, arenes, and organic halides with B-B or H-B compounds has been developed for the synthesis of organoboron compounds from simple organic substrates. The platinum(0)-catalyzed addition of bis(pinacolato)diboron to alkenes and alkynes provided a method for the stereoselective synthesis of cis-bis(boryl)alkanes or cis-bis(boryl)alkenes. The addition of diboron to 1,3-dienes with platinum(0) complexes provided a new access to cis-1,4-bis(boryl)-2-butene derivatives, which are versatile reagents for diastereoselective allylboration of carbonyl compounds. The first one-step procedure for the syntheses of aryl-, vinyl-, and allylboronates was achieved via crosscoupling reactions of diborons with aryl and 1-alkenyl halides or triflates and allyl acetates. Direct C-H borylation of arenes catalyzed by a transition metal complex was studied as an economical protocol for the synthesis of a variety of arylboron derivatives. Ir-catalyzed C-H borylation of arenes, heteroarenes, and benzylic positions of alkylarenes by bis(pinacolato)diboron or pinacolborane furnished aryl-, heteroaryl-, and benzylboron compounds. This article discusses the mechanisms of these reactions and their synthetic applications.
Collapse
Affiliation(s)
- Tatsuo Ishiyama
- Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | |
Collapse
|
69
|
Ishiyama T, Miyaura N. Transition metal-catalyzed borylation of alkanes and arenes via CH activation. J Organomet Chem 2003. [DOI: 10.1016/s0022-328x(03)00176-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Faenza I, Bavelloni A, Fiume R, Lattanzi G, Maraldi NM, Gilmour RS, Martelli AM, Suh PG, Billi AM, Cocco L. Up-regulation of nuclear PLCbeta1 in myogenic differentiation. J Cell Physiol 2003; 195:446-52. [PMID: 12704654 DOI: 10.1002/jcp.10264] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phospholipase C beta(1) (PLCbeta(1)) signaling in both cell proliferation and differentiation has been largely investigated, but its role in myoblast differentiation is still unclear. The C2C12 myogenic cell line has been used in this study in order to find out the role of the two subtypes of PLCbeta(1), i.e., a and b in this process. C2C12 myoblast proliferate in response to mitogens and upon mitogen withdrawal differentiates into multinucleated myotubes. We found that differentiation of C2C12 skeletal muscle cells is characterized by a marked increase in the amount of nuclear PLCbeta(1)a and PLCbeta(1)b. Indeed, treatment with insulin induces a dramatic rise of both PLCbeta(1) subtypes expression and activity, as determined by immunochemical and enzymatic assays. Immunofluorescence experiments with anti-PLCbeta(1) specific monoclonal antibody showed a low level of cytoplasmatic and nuclear staining during the initial 12 h of differentiation whilst a massive nuclear staining is appreciable in differentiating cells. The time course of PLCbeta(1) expression versus Troponin T expression clearly indicates that the increase in the amount of PLCbeta(1) takes place 24 h earlier than that of Troponin T. Moreover, the overexpression of the PLCbeta(1)M2b mutant, lacking the nuclear localization signal and entirely located in the cytoplasm, represses the formation of mature multinucleated myotube. Taken together these results suggest that nuclear PLCbeta(1) is a key player in myoblast differentiation, functioning as a positive regulator of this process.
Collapse
Affiliation(s)
- Irene Faenza
- Cellular Signalling Laboratory, Department of Anatomical Science, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Carrasco MA, Riveros N, Ríos J, Müller M, Torres F, Pineda J, Lantadilla S, Jaimovich E. Depolarization-induced slow calcium transients activate early genes in skeletal muscle cells. Am J Physiol Cell Physiol 2003; 284:C1438-47. [PMID: 12529240 DOI: 10.1152/ajpcell.00117.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The signaling mechanisms by which skeletal muscle electrical activity leads to changes in gene expression remain largely undefined. We have reported that myotube depolarization induces calcium signals in the cytosol and nucleus via inositol 1,4,5-trisphosphate (IP(3)) and phosphorylation of both ERK1/2 and cAMP-response element-binding protein (CREB). We now describe the calcium dependence of P-CREB and P-ERK induction and of the increases in mRNA of the early genes c-fos, c-jun, and egr-1. Increased phosphorylation and early gene activation were maintained in the absence of extracellular calcium, while the increase in intracellular calcium induced by caffeine could mimic the depolarization stimulus. Depolarization performed either in the presence of the IP(3) inhibitors 2-aminoethoxydiphenyl borate or xestospongin C or on cells loaded with BAPTA-AM, in which slow calcium signals were abolished, resulted in decreased activation of the early genes examined. Both early gene activation and CREB phosphorylation were inhibited by ERK phosphorylation blockade. These data suggest a role for calcium in the transcription-related events that follow membrane depolarization in muscle cells.
Collapse
MESH Headings
- Animals
- Caffeine/metabolism
- Calcium/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins
- Early Growth Response Protein 1
- Enzyme Inhibitors/metabolism
- Gene Expression Regulation, Developmental
- Genes, Immediate-Early
- Genes, fos
- Genes, jun
- Immediate-Early Proteins
- Membrane Potentials/physiology
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Phosphorylation
- Potassium/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/physiology
- Transcription Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Maria Angélica Carrasco
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 6530499, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Vermassen E, Van Acker K, Annaert WG, Himpens B, Callewaert G, Missiaen L, De Smedt H, Parys JB. Microtubule-dependent redistribution of the type-1 inositol 1,4,5-trisphosphate receptor in A7r5 smooth muscle cells. J Cell Sci 2003; 116:1269-77. [PMID: 12615969 DOI: 10.1242/jcs.00354] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In A7r5 vascular smooth muscle cells, the two expressed inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms were differentially localized. IP(3)R1 was predominantly localized in the perinuclear region, whereas IP(3)R3 was homogeneously distributed over the cytoplasm. Prolonged stimulation (1-5 hours) of cells with 3 microM arginine-vasopressin induced a redistribution of IP(3)R1 from the perinuclear region to the entire cytoplasm, whereas the localization of IP(3)R3 appeared to be unaffected. The redistribution process occurred independently of IP(3)R downregulation. No structural changes of the endoplasmic reticulum were observed, but SERCA-type Ca(2+) pumps redistributed similarly to IP(3)R1. The change in IP(3)R1 localization induced by arginine-vasopressin could be blocked by the simultaneous addition of nocodazole or taxol and depended on Ca(2+) release from intracellular stores since Ca(2+)-mobilizing agents such as thapsigargin and cyclopiazonic acid could induce the redistribution. Furthermore, various protein kinase C inhibitors could inhibit the redistribution of IP(3)R1, whereas the protein kinase C activator 1-oleoyl-2-acetyl-sn-glycerol induced the redistribution. Activation of protein kinase C also induced an outgrowth of the microtubules from the perinuclear region into the cytoplasm, similar to what was seen for the redistribution of IP(3)R1. Finally, blocking vesicular transport at the level of the intermediate compartment inhibited the redistribution. Taken together, these findings suggest a role for protein kinase C and microtubuli in the redistribution of IP(3)R1, which probably occurs via a mechanism of vesicular trafficking.
Collapse
MESH Headings
- Animals
- Arginine Vasopressin/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Transporting ATPases/drug effects
- Calcium-Transporting ATPases/metabolism
- Cell Compartmentation/drug effects
- Cell Compartmentation/physiology
- Cell Line
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enzyme Inhibitors/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Microtubules/drug effects
- Microtubules/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Transport Vesicles/drug effects
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Elke Vermassen
- Laboratory of Physiology, CME/VIB04, K.U. Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Launikonis BS, Barnes M, Stephenson DG. Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc Natl Acad Sci U S A 2003; 100:2941-4. [PMID: 12601149 PMCID: PMC151445 DOI: 10.1073/pnas.0536227100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Examination of store-operated Ca(2+) entry (SOC) in single, mechanically skinned skeletal muscle cells by confocal microscopy shows that the inositol 1,4,5-trisphosphate (IP(3)) receptor acts as a sarcoplasmic reticulum [Ca(2+)] sensor and mediates SOC by physical coupling without playing a key role in Ca(2+) release from internal stores, as is the case with various cell types in which SOC was investigated previously. The results have broad implications for understanding the mechanism of SOC that is essential for cell function in general and muscle function in particular. Moreover, the study ascribes an important role to the IP(3) receptors in skeletal muscle, the role of which with respect to Ca(2+) homeostasis was ill defined until now.
Collapse
|
74
|
Araya R, Liberona JL, Cárdenas JC, Riveros N, Estrada M, Powell JA, Carrasco MA, Jaimovich E. Dihydropyridine receptors as voltage sensors for a depolarization-evoked, IP3R-mediated, slow calcium signal in skeletal muscle cells. J Gen Physiol 2003; 121:3-16. [PMID: 12508050 PMCID: PMC2217318 DOI: 10.1085/jgp.20028671] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dihydropyridine receptor (DHPR), normally a voltage-dependent calcium channel, functions in skeletal muscle essentially as a voltage sensor, triggering intracellular calcium release for excitation-contraction coupling. In addition to this fast calcium release, via ryanodine receptor (RYR) channels, depolarization of skeletal myotubes evokes slow calcium waves, unrelated to contraction, that involve the cell nucleus (Jaimovich, E., R. Reyes, J.L. Liberona, and J.A. Powell. 2000. Am. J. Physiol. Cell Physiol. 278:C998-C1010). We tested the hypothesis that DHPR may also be the voltage sensor for these slow calcium signals. In cultures of primary rat myotubes, 10 micro M nifedipine (a DHPR inhibitor) completely blocked the slow calcium (fluo-3-fluorescence) transient after 47 mM K(+) depolarization and only partially reduced the fast Ca(2+) signal. Dysgenic myotubes from the GLT cell line, which do not express the alpha(1) subunit of the DHPR, did not show either type of calcium transient following depolarization. After transfection of the alpha(1) DNA into the GLT cells, K(+) depolarization induced slow calcium transients that were similar to those present in normal C(2)C(12) and normal NLT cell lines. Slow calcium transients in transfected cells were blocked by nifedipine as well as by the G protein inhibitor, pertussis toxin, but not by ryanodine, the RYR inhibitor. Since slow Ca(2+) transients appear to be mediated by IP(3), we measured the increase of IP(3) mass after K(+) depolarization. The IP(3) transient seen in control cells was inhibited by nifedipine and was absent in nontransfected dysgenic cells, but alpha(1)-transfected cells recovered the depolarization-induced IP(3) transient. In normal myotubes, 10 micro M nifedipine, but not ryanodine, inhibited c-jun and c-fos mRNA increase after K(+) depolarization. These results suggest a role for DHPR-mediated calcium signals in regulation of early gene expression. A model of excitation-transcription coupling is presented in which both G proteins and IP(3) appear as important downstream mediators after sensing of depolarization by DHPR.
Collapse
Affiliation(s)
- Roberto Araya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 6530499, Chile
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Schiaffino S, Serrano A. Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol Sci 2002; 23:569-75. [PMID: 12457775 DOI: 10.1016/s0165-6147(02)02111-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nerve activity controls muscle contractile function and muscle gene expression. Although excitation-contraction coupling is well characterized, excitation-transcription coupling is still poorly understood. Pharmacological and genetic approaches have been used to dissect the signaling pathways that mediate the effect of nerve activity on muscle fiber type and size. In particular, the role of calcineurin has recently been the subject of intensive investigation and debate. The identification of the transduction pathways involved in neuromuscular signaling has implications for the development of new therapeutic strategies to prevent muscle wasting and loss of muscle power resulting from aging, disuse and neuromuscular disorders.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Dept of Biomedical Sciences, CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, Italy.
| | | |
Collapse
|
76
|
Hidalgo J, Liberona JL, Molgó J, Jaimovich E. Pacific ciguatoxin-1b effect over Na+ and K+ currents, inositol 1,4,5-triphosphate content and intracellular Ca2+ signals in cultured rat myotubes. Br J Pharmacol 2002; 137:1055-62. [PMID: 12429578 PMCID: PMC1573594 DOI: 10.1038/sj.bjp.0704980] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The action of the main ciguatoxin involved in ciguatera fish poisoning in the Pacific region (P-CTX-1b) was studied in myotubes originated from rat skeletal muscle cells kept in primary culture. 2. The effect of P-CTX-1b on sodium currents at short times of exposure (up to 1 min) showed a moderate increase in peak Na+ current. During prolonged exposures, P-CTX-1b decreased the peak Na+ current. This action was always accompanied by an increase of leakage currents, tail currents and outward Na+ currents, resulting in an intracellular Na+ accumulation. This effect is blocked by prior exposure to tetrodotoxin (TTX) and becomes evident only after washout of TTX. 3. Low to moderate concentrations of P-CTX-1b (2-5 nM) partially blocked potassium currents in a manner that was dependent on the membrane potential. 4. P-CTX-1b (2-12 nM) caused a small membrane depolarization (3-5 mV) and an increase in the frequency of spontaneous action potential discharges that reached in general low frequencies (0.1-0.5 Hz). 5. P-CTX-1b (10 nM) caused a transient increase of intracellular inositol 1,4,5-trisphosphate (IP(3)) mass levels, which was blocked by TTX. 6. In the presence of P-CTX-1b (10 nM) and in the absence of external Ca2+, the intracellular Ca2+ levels show a transient increase in the cytoplasm as well as in the nuclei. The time course of this effect may reflect the action of IP(3) over internal stores activated by P-CTX-1b-induced membrane depolarization.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile.
| | | | | | | |
Collapse
|
77
|
Gailly P. New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:38-44. [PMID: 12445457 DOI: 10.1016/s1570-9639(02)00442-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Calcium is the most ubiquitous second messenger. Its concentration inside the cell is tightly regulated by a series of mechanisms, among which some have been extensively studied in nonmuscle cells. This is the case of the "store-operated entry of Ca(2+)", the uptake of Ca(2+) by mitochondria and the inositol 1,4,5-trisphosphate (IP(3)) cascade. These processes were recently found to be also present in skeletal muscle and are reviewed here. The "store-operated entry of Ca(2+)" allows the refilling of the stores after muscle fiber depolarization and is activated even after a partial depletion of the sarcoplasmic reticulum (SR). The uptake of Ca(2+) by mitochondria accelerates muscle relaxation and allows the adaptation of ATP supply to the increased energy demand. IP(3) receptors are found in the nuclear envelope and are involved in Ca(2+) waves propagating from one nucleus to another. This pathway is possibly involved in gene expression regulation. Finally, cytosolic Ca(2+) buffers like parvalbumins modify [Ca(2+)](i) transients and, therefore, muscle mechanics. The importance of these regulation mechanisms is also evaluated in Duchenne muscular dystrophy (DMD), a disease in which impairment of [Ca(2+)](i) homeostasis has been postulated but remains, however, controversial. This genetic disease is indeed characterized by the absence of a cytoskeletal protein called dystrophin, a situation leading to a disorganization of the cytoskeleton and to an abnormal influx of Ca(2+). How this increased entry of Ca(2+) affects the local concentration of Ca(2+) in subcellular compartments and whether this process is involved in the development of the disease are still unclear.
Collapse
Affiliation(s)
- P Gailly
- Département de Physiologie et de Pharmacologie, Université catholique de Louvain, Av. Hippocrate 55/40, 1200, Brussels, Belgium.
| |
Collapse
|
78
|
Salanova M, Priori G, Barone V, Intravaia E, Flucher B, Ciruela F, McIlhinney RAJ, Parys JB, Mikoshiba K, Sorrentino V. Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium 2002; 32:193-200. [PMID: 12379179 DOI: 10.1016/s0143416002001549] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Striated muscle represents one of the best models for studies on Ca(2+) signalling. However, although much is known on the localisation and molecular interactions of the ryanodine receptors (RyRs), far less is known on the localisation and on the molecular interactions of the inositol trisphosphate receptors (InsP(3)Rs) in striated muscle cells. Recently, members of the Homer protein family have been shown to cluster type 1 metabotropic glutamate receptors (mGluR1) in the plasma membrane and to interact with InsP(3)R in the endoplasmic reticulum of neurons. Thus, these scaffolding proteins are good candidates for organising plasma membrane receptors and intracellular effector proteins in signalosomes involved in intracellular Ca(2+) signalling. Homer proteins are also expressed in skeletal muscle, and the type 1 ryanodine receptor (RyR1) contains a specific Homer-binding motif. We report here on the relative sub-cellular localisation of InsP(3)Rs and Homer proteins in skeletal muscle cells with respect to the localisation of RyRs. Immunofluorescence analysis showed that both Homer and InsP(3)R proteins present a staining pattern indicative of a localisation at the Z-line, clearly distinct from that of RyR1. Consistent herewith, in sub-cellular fractionation experiments, Homer proteins and InsP(3)R were both found in the fractions enriched in longitudinal sarcoplasmic reticulum (LSR) but not in fractions of terminal cisternae that are enriched in RyRs. Thus, in skeletal muscle, Homer proteins may play a role in the organisation of a second Ca(2+) signalling compartment containing the InsP(3)R, but are apparently not involved in the organisation of RyRs at triads.
Collapse
Affiliation(s)
- M Salanova
- Department of Neuroscience, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|