51
|
Zurzolo C. Tunneling nanotubes: Reshaping connectivity. Curr Opin Cell Biol 2021; 71:139-147. [PMID: 33866130 DOI: 10.1016/j.ceb.2021.03.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs), open membranous channels between connected cells, represent a novel direct way of communication between distant cells for the diffusion of various cellular material, including survival or death signals, genetic material, organelles, and pathogens. Their discovery prompted us to review our understanding of many physiological and pathological processes involving cellular communication but also allowed us to discover new mechanisms of communication at a distance. While this has enriched the field, it has also generated some confusion, as different TNT-like protrusions have been described, and it is not clear whether they have the same structure-function. Most studies have been based on low-resolution imaging methods, and one of the major problems is the inconsistency in demonstrating the capacity of these various connections to transfer material between cells belonging to different populations. This brief review examines the fundamental properties of TNTs. In adult tissues, TNTs are stimulated by different diseases, stresses, and inflammatory signals. 'Moreover', based on the similarity of the processes of development of synaptic spines and TNT formation, we argue that TNTs in the brain predate synaptic transmission, being instrumental in the orchestration of the immature neuronal circuit.
Collapse
Affiliation(s)
- Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015, Paris, France.
| |
Collapse
|
52
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
53
|
Opportunities and Challenges in Tunneling Nanotubes Research: How Far from Clinical Application? Int J Mol Sci 2021; 22:ijms22052306. [PMID: 33669068 PMCID: PMC7956326 DOI: 10.3390/ijms22052306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Tunneling nanotubes (TNTs) are recognized long membrane nanotubes connecting distance cells. In the last decade, growing evidence has shown that these subcellular structures mediate the specific transfer of cellular materials, pathogens, and electrical signals between cells. As intercellular bridges, they play a unique role in embryonic development, collective cell migration, injured cell recovery, cancer treatment resistance, and pathogen propagation. Although TNTs have been considered as potential drug targets for treatment, there is still a long way to go to translate the research findings into clinical practice. Herein, we emphasize the heterogeneous nature of TNTs by systemically summarizing the current knowledge on their morphology, structure, and biogenesis in different types of cells. Furthermore, we address the communication efficiency and biological outcomes of TNT-dependent transport related to diseases. Finally, we discuss the opportunities and challenges of TNTs as an exciting therapeutic approach by focusing on the development of efficient and safe drugs targeting TNTs.
Collapse
|
54
|
Zhu C, Shi Y, You J. Immune Cell Connection by Tunneling Nanotubes: The Impact of Intercellular Cross-Talk on the Immune Response and Its Therapeutic Applications. Mol Pharm 2021; 18:772-786. [PMID: 33529022 DOI: 10.1021/acs.molpharmaceut.0c01248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Direct intercellular communication is an important prerequisite for the development of multicellular organisms, the regeneration of tissue, and the maintenance of various physiological activities. Tunnel nanotubes (TNTs), which have diameters of approximately 50-1500 nm and lengths of up to several cell diameters, can connect cells over long distances and have emerged as one of the most important recently discovered types of efficient communication between cells. Moreover, TNTs can also directly transfer organelles, vehicles, proteins, genetic material, ions, and small molecules from one cell to adjacent and even distant cells. However, the mechanism of intercellular communication between various immune cells within the complex immune system has not been fully elucidated. Studies in the past decades have confirmed the existence of TNTs in many types of cells, especially in various kinds of immune cells. TNTs display different structural and functional characteristics between and within different immunocytes, playing a major role in the transmission of signals across various kinds of immune cells. In this review, we introduce the discovery and structure of TNTs, as well as their different functional properties within different immune cells. We also discuss the roles of TNTs in potentiating the immune response and their potential therapeutic applications.
Collapse
Affiliation(s)
- Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
55
|
Utilization of Laser Capture Microdissection Coupled to Mass Spectrometry to Uncover the Proteome of Cellular Protrusions. Methods Mol Biol 2021; 2259:25-45. [PMID: 33687707 DOI: 10.1007/978-1-0716-1178-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laser capture microdissection (LCM) provides a fast, specific, and versatile method to isolate and enrich cells in mixed populations and/or subcellular structures, for further proteomic study. Furthermore, mass spectrometry (MS) can quickly and accurately generate differential protein expression profiles from small amounts of samples. Although cellular protrusions-such as tunneling nanotubes, filopodia, growth cones, invadopodia, etc.-are involved in essential physiological and pathological actions such as phagocytosis or cancer-cell invasion, the study of their protein composition is progressing slowly due to their fragility and transient nature. The method described herein, combining LCM and MS, has been designed to identify the proteome of different cellular protrusions. First, cells are fixed with a novel fixative method to preserve the cellular protrusions, which are isolated by LCM. Next, the extraction of proteins from the enriched sample is optimized to de-crosslink the fixative agent to improve the identification of proteins by MS. The efficient protein recovery and high sample quality of this method enable the protein profiling of these small and diverse subcellular structures.
Collapse
|
56
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
57
|
Ljubojevic N, Henderson JM, Zurzolo C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Trends Cell Biol 2020; 31:130-142. [PMID: 33309107 DOI: 10.1016/j.tcb.2020.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
Actin remodeling is at the heart of the response of cells to external or internal stimuli, allowing a variety of membrane protrusions to form. Fifteen years ago, tunneling nanotubes (TNTs) were identified, bringing a novel addition to the family of actin-supported cellular protrusions. Their unique property as conduits for cargo transfer between distant cells emphasizes the unique nature of TNTs among other protrusions. While TNTs in different pathological and physiological scenarios have been described, the molecular basis of how TNTs form is not well understood. In this review, we discuss the role of several actin regulators in the formation of TNTs and suggest potential players based on their comparison with other actin-based protrusions. New perspectives for discovering a distinct TNT formation pathway would enable us to target them in treating the increasing number of TNT-involved pathologies.
Collapse
Affiliation(s)
- Nina Ljubojevic
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France; Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, 75005 Paris, France
| | - J Michael Henderson
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
58
|
Chastagner P, Loria F, Vargas JY, Tois J, I Diamond M, Okafo G, Brou C, Zurzolo C. Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol Med 2020; 12:e12025. [PMID: 33179866 PMCID: PMC7721367 DOI: 10.15252/emmm.202012025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Tau accumulation in the form of neurofibrillary tangles in the brain is a hallmark of tauopathies such as Alzheimer's disease (AD). Tau aggregates accumulate in brain regions in a defined spatiotemporal pattern and may induce the aggregation of native Tau in a prion-like manner. However, the underlying mechanisms of cell-to-cell spreading of Tau pathology are unknown and could involve encapsulation within exosomes, trans-synaptic passage, and tunneling nanotubes (TNTs). We have established a neuronal cell model to monitor both internalization of externally added fibrils, synthetic (K18) or Tau from AD brain extracts, and real-time conversion of microtubule-binding domain of Tau fused to a fluorescent marker into aggregates. We found that these endogenously formed deposits colabel with ubiquitin and p62 but are not recruited to macroautophagosomes, eventually escaping clearance. Furthermore, endogenous K18-seeded Tau aggregates spread to neighboring cells where they seed new deposits. Transfer of Tau aggregates depends on direct cell contact, and they are found inside TNTs connecting neuronal cells. We further demonstrate that contact-dependent transfer occurs in primary neurons and between neurons and astrocytes in organotypic cultures.
Collapse
Affiliation(s)
| | - Frida Loria
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
- Present address:
Laboratorio de Apoyo a la InvestigaciónHospital Universitario Fundación AlcorcónMadridSpain
| | - Jessica Y Vargas
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Josh Tois
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | | | - Christel Brou
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| |
Collapse
|
59
|
Bhat S, Ljubojevic N, Zhu S, Fukuda M, Echard A, Zurzolo C. Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci Rep 2020; 10:16803. [PMID: 33033331 PMCID: PMC7544914 DOI: 10.1038/s41598-020-74013-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Tunneling nanotubes (TNTs) are F-actin rich structures that connect distant cells, allowing the transport of many cellular components, including vesicles, organelles and molecules. Rab GTPases are the major regulators of vesicle trafficking and also participate in actin cytoskeleton remodelling, therefore, we examined their role in TNTs. Rab35 functions with several proteins that are involved in vesicle trafficking such as ACAP2, MICAL-L1, ARF6 and EHD1, which are known to be involved in neurite outgrowth. Here we show that Rab35 promotes TNT formation and TNT-mediated vesicle transfer in a neuronal cell line. Furthermore, our data indicates that Rab35-GTP, ACAP2, ARF6-GDP and EHD1 act in a cascade mechanism to promote TNT formation. Interestingly, MICAL-L1 overexpression, shown to be necessary for the action of Rab35 on neurite outgrowth, showed no effect on TNTs, indicating that TNT formation and neurite outgrowth may be processed through similar but not identical pathways, further supporting the unique identity of these cellular protrusions.
Collapse
Affiliation(s)
- Shaarvari Bhat
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Nina Ljubojevic
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, ED394-Physiologie, Physiopathologie et Thérapeutique, 75005, Paris, France
| | - Seng Zhu
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, UMR3691 CNRS, Institut Pasteur, 75015, Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, UMR3691 CNRS, Institut Pasteur, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
60
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
61
|
Lotfi S, Nasser H, Noyori O, Hiyoshi M, Takeuchi H, Koyanagi Y, Suzu S. M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology 2020; 17:20. [PMID: 32650782 PMCID: PMC7350586 DOI: 10.1186/s12977-020-00528-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis. Results We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. Conclusions By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell–cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.
Collapse
Affiliation(s)
- Sameh Lotfi
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hesham Nasser
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41511, Egypt
| | - Osamu Noyori
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Masateru Hiyoshi
- Department of Safety Research On Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto University, KyotoKyoto, 606-8507, Japan
| | - Shinya Suzu
- Division of Infection & Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
62
|
Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12071787. [PMID: 32635428 PMCID: PMC7407231 DOI: 10.3390/cancers12071787] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a fundamental process in every multicellular organism. In addition to membrane-bound and released factors, the sharing of cytosolic components represents a new, poorly explored signaling route. An extraordinary example of this communication channel is the direct transport of mitochondria between cells. In this review, we discuss how intercellular mitochondrial transfer can be used by cancer cells to sustain their high metabolic requirements and promote drug resistance and describe relevant molecular players in the context of current and future cancer therapy.
Collapse
|
63
|
Jean P, Anttonen T, Michanski S, de Diego AMG, Steyer AM, Neef A, Oestreicher D, Kroll J, Nardis C, Pangršič T, Möbius W, Ashmore J, Wichmann C, Moser T. Macromolecular and electrical coupling between inner hair cells in the rodent cochlea. Nat Commun 2020; 11:3208. [PMID: 32587250 PMCID: PMC7316811 DOI: 10.1038/s41467-020-17003-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/30/2020] [Indexed: 11/10/2022] Open
Abstract
Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in 'mini-syncytia'. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.
Collapse
Affiliation(s)
- Philippe Jean
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tommi Anttonen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Susann Michanski
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Antonio M G de Diego
- UCL Ear Institute and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Andreas Neef
- Neurophysics laboratory, Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
| | - David Oestreicher
- Experimental Otology Group, Institute for Auditory Neuroscience, InnerEarLab, and Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Kroll
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Christos Nardis
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Tina Pangršič
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Experimental Otology Group, Institute for Auditory Neuroscience, InnerEarLab, and Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Jonathan Ashmore
- UCL Ear Institute and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Carolin Wichmann
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
- Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
64
|
|
65
|
Affiliation(s)
- Kate E Keller
- Department of Ophthalmology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
66
|
Franchi M, Piperigkou Z, Riti E, Masola V, Onisto M, Karamanos NK. Long filopodia and tunneling nanotubes define new phenotypes of breast cancer cells in 3D cultures. Matrix Biol Plus 2020; 6-7:100026. [PMID: 33543024 PMCID: PMC7852320 DOI: 10.1016/j.mbplus.2020.100026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cell invasion into the surrounding extracellular matrix (ECM) takes place when cell-cell junctions are disrupted upon epithelial-to-mesenchymal transition (EMT). Both cancer cell-stroma and cell-cell crosstalk are essential to support the continuous tumor invasion. Cancer cells release microvesicles and exosomes containing bioactive molecules and signal peptides, which are recruited by neighboring cells or carried to distant sites, thus supporting intercellular communication and cargo transfer. Besides this indirect communication mode, cancer cells can develop cytoplasmic intercellular protrusions or tunneling nanotubes (TNTs), which allow the direct communication and molecular exchange between connected distinct cells. Using scanning electron microscopy (SEM) we show for the first time that MDA-MB-231 (high metastatic potential) and shERβ MDA-MB-231 (low metastatic potential) breast cancer cells cultured on fibronectin and collagen type I or 17β-estradiol (E2) develop TNTs and very long flexible filopodia. Interestingly, the less aggressive shERβ MDA-MB-231 cells treated with E2 in 3D collagen matrix showed the highest development of TNTs and filopodia. TNTs were often associated to adhering exosomes and microvesicles surfing from one cell to another, but no filopodia exhibited vesicle-like cytoplasmic structures on their surface. Moreover, E2 affected the expression of matrix macromolecules and cell effectors mostly in the presence of ERβ. Our novel data highlights the significance of matrix substrates and the presence of E2 and ERβ in the formation of cellular protrusion and the production of surface structures, defining novel phenotypes that unravel nodal reports for breast cancer progression.
Collapse
Key Words
- 3D, three dimensional
- Breast cancer
- CAFs, cancer-associated fibroblasts
- E2, 17β-estradiol
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- Estrogen receptor beta
- FGF, fibroblast growth factor
- FIB-SEM, focused-ion beam scanning electron microscopy
- Filopodia
- HGF, hepatocyte growth factor
- Intercellular communication
- MMPs, matrix metalloproteinases
- SEM, scanning electron microscope
- Scanning electron microscopy
- TGFβ, transforming growth factor beta
- TNTs, tunneling nanotubes
- Tunneling nanotubes
- miRNAs, microRNAs
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eirini Riti
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
67
|
Tunneling Nanotubes and the Eye: Intercellular Communication and Implications for Ocular Health and Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7246785. [PMID: 32352005 PMCID: PMC7171654 DOI: 10.1155/2020/7246785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Cellular communication is an essential process for the development and maintenance of all tissues including the eye. Recently, a new method of cellular communication has been described, which relies on formation of tubules, called tunneling nanotubes (TNTs). These structures connect the cytoplasm of adjacent cells and allow the direct transport of cellular cargo between cells without the need for secretion into the extracellular milieu. TNTs may be an important mechanism for signaling between cells that reside long distances from each other or for cells in aqueous environments, where diffusion-based signaling is challenging. Given the wide range of cargoes transported, such as lysosomes, endosomes, mitochondria, viruses, and miRNAs, TNTs may play a role in normal homeostatic processes in the eye as well as function in ocular disease. This review will describe TNT cellular communication in ocular cell cultures and the mammalian eye in vivo, the role of TNTs in mitochondrial transport with an emphasis on mitochondrial eye diseases, and molecules involved in TNT biogenesis and their function in eyes, and finally, we will describe TNT formation in inflammation, cancer, and stem cells, focusing on pathological processes of particular interest to vision scientists.
Collapse
|
68
|
Abstract
Tunneling nanotubes (TNTs) are actin-based intercellular conduits that connect distant cells and allow intercellular transfer of molecular information, including genetic information, proteins, lipids, and even organelles. Besides providing a means of intercellular communication, TNTs may also be hijacked by pathogens, particularly viruses, to facilitate their spread. Viruses of many different families, including retroviruses, herpesviruses, orthomyxoviruses, and several others have been reported to trigger the formation of TNTs or TNT-like structures in infected cells and use these structures to efficiently spread to uninfected cells. In the current review, we give an overview of the information that is currently available on viruses and TNT-like structures, and we discuss some of the standing questions in this field.
Collapse
|
69
|
English K, Shepherd A, Uzor NE, Trinh R, Kavelaars A, Heijnen CJ. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun 2020; 8:36. [PMID: 32197663 PMCID: PMC7082981 DOI: 10.1186/s40478-020-00897-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative disorders, including chemotherapy-induced cognitive impairment, are associated with neuronal mitochondrial dysfunction. Cisplatin, a commonly used chemotherapeutic, induces neuronal mitochondrial dysfunction in vivo and in vitro. Astrocytes are key players in supporting neuronal development, synaptogenesis, axonal growth, metabolism and, potentially mitochondrial health. We tested the hypothesis that astrocytes transfer healthy mitochondria to neurons after cisplatin treatment to restore neuronal health.We used an in vitro system in which astrocytes containing mito-mCherry-labeled mitochondria were co-cultured with primary cortical neurons damaged by cisplatin. Culture of primary cortical neurons with cisplatin reduced neuronal survival and depolarized neuronal mitochondrial membrane potential. Cisplatin induced abnormalities in neuronal calcium dynamics that were characterized by increased resting calcium levels, reduced calcium responses to stimulation with KCl, and slower calcium clearance. The same dose of cisplatin that caused neuronal damage did not affect astrocyte survival or astrocytic mitochondrial respiration. Co-culture of cisplatin-treated neurons with astrocytes increased neuronal survival, restored neuronal mitochondrial membrane potential, and normalized neuronal calcium dynamics especially in neurons that had received mitochondria from astrocytes which underlines the importance of mitochondrial transfer. These beneficial effects of astrocytes were associated with transfer of mitochondria from astrocytes to cisplatin-treated neurons. We show that siRNA-mediated knockdown of the Rho-GTPase Miro-1 in astrocytes reduced mitochondrial transfer from astrocytes to neurons and prevented the normalization of neuronal calcium dynamics.In conclusion, we showed that transfer of mitochondria from astrocytes to neurons rescues neurons from the damage induced by cisplatin treatment. Astrocytes are far more resistant to cisplatin than cortical neurons. We propose that transfer of functional mitochondria from astrocytes to neurons is an important repair mechanism to protect the vulnerable cortical neurons against the toxic effects of cisplatin.
Collapse
Affiliation(s)
- Krystal English
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Andrew Shepherd
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology & Anatomy, The University of Texas McGovern Medical School, Houston, TX 77030 USA
- Department of Neurology, The University of Texas McGovern Medical School, Houston, TX 77030 USA
| | - Ronnie Trinh
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Cobi J. Heijnen
- Division of Internal Medicine, Department of Symptom Research, Laboratories of Neuroimmunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
70
|
Omsland M, Andresen V, Gullaksen SE, Ayuda-Durán P, Popa M, Hovland R, Brendehaug A, Enserink J, McCormack E, Gjertsen BT. Tyrosine kinase inhibitors and interferon-α increase tunneling nanotube (TNT) formation and cell adhesion in chronic myeloid leukemia (CML) cell lines. FASEB J 2020; 34:3773-3791. [PMID: 31945226 PMCID: PMC10894852 DOI: 10.1096/fj.201802061rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukemia (CML) is a stem cell disease of the bone marrow where mechanisms of inter-leukemic communication and cell-to-cell interactions are proposed to be important for optimal therapy response. Tunneling nanotubes (TNTs) are novel intercellular communication structures transporting different cargos with potential implications in therapy resistance. Here, we have investigated TNTs in CML cells and following treatment with the highly effective CML therapeutics tyrosine kinase inhibitors (TKIs) and interferon-α (IFNα). CML cells from chronic phase CML patients as well as the blast crisis phase cell lines, Kcl-22 and K562, formed few or no TNTs. Treatment with imatinib increased TNT formation in both Kcl-22 and K562 cells, while nilotinib or IFNα increased TNTs in Kcl-22 cells only where the TNT increase was associated with adherence to fibronectin-coated surfaces, altered morphology, and reduced movement involving β1integrin. Ex vivo treated cells from chronic phase CML patients showed limited changes in TNT formation similarly to bone marrow cells from healthy individuals. Interestingly, in vivo nilotinib treatment in a Kcl-22 subcutaneous mouse model resulted in morphological changes and TNT-like structures in the tumor-derived Kcl-22 cells. Our results demonstrate that CML cells express low levels of TNTs, but CML therapeutics increase TNT formation in designated cell models indicating TNT functionality in bone marrow derived malignancies and their microenvironment.
Collapse
MESH Headings
- Animals
- Cell Adhesion/drug effects
- Cell Communication/drug effects
- Cell Line, Tumor
- Cells, Cultured
- Female
- Fluorescent Antibody Technique
- Humans
- Immunoblotting
- Integrin beta1/metabolism
- Interferon-alpha/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Microscopy, Electron, Scanning
- Protein Kinase Inhibitors/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maria Omsland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vibeke Andresen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Stein-Erik Gullaksen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Pilar Ayuda-Durán
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mihaela Popa
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
- KinN Therapeutics, Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Atle Brendehaug
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jorrit Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Emmet McCormack
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
71
|
Sun YY, Bradley JM, Keller KE. Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2020; 60:4583-4595. [PMID: 31675075 PMCID: PMC6827425 DOI: 10.1167/iovs.19-28084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Trabecular meshwork (TM) cells detect and coordinate responses to intraocular pressure (IOP) in the eye. TM cells become dysfunctional in glaucoma where IOP is often elevated. Recently, we showed that normal TM (NTM) cells communicate by forming tubular connections called tunneling nanotubes (TNTs). Here, we investigated TNTs in glaucomatous TM (GTM) cells. Methods Primary GTM and NTM cells were established from cadaver eyes. Transfer of Vybrant DiO and DiD-labeled vesicles via TNT connections was measured. Imaris software measured the number and length of cell protrusions from immunofluorescent confocal images. Live-cell imaging of the actin cytoskeleton was performed. The distribution of myosin-X, a regulator of TNTs/filopodia, was investigated in TM cells and tissue. Results GTM cells contained significantly more transferred fluorescent vesicles than NTM cells (49.6% vs. 35%). Although NTM cells had more protrusions at the cell surface than GTM cells (7.61 vs. 4.65 protrusions/cell), GTM protrusions were significantly longer (12.1 μm vs. 9.76 μm). Live-cell imaging demonstrated that the GTM actin cytoskeleton was less dynamic, and vesicle transfer between cells was significantly slower than NTM cells. Furthermore, rearrangement of the actin cortex adjacent to the TNT may influence TNT formation. Myosin-X immunostaining was punctate and disorganized in GTM cells and tissue compared to age-matched NTM controls. Conclusions Together, our data demonstrate that GTM cells have phenotypic and functional differences in their TNTs. Significantly slower vesicle transfer via TNTs in GTM cells may delay the timely propagation of cellular signals when pressures become elevated in glaucoma.
Collapse
Affiliation(s)
- Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John M Bradley
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
72
|
Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell Stress 2020; 4:30-43. [PMID: 32043076 PMCID: PMC6997949 DOI: 10.15698/cst2020.02.212] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intercellular communication is a fundamental property of multicellular organisms, necessary for their adequate responses to changing environment. Tunneling nanotubes (TNTs) represent a novel means of intercellular communication being a long cell-to-cell conduit. TNTs are actively formed under a broad range of stresses and are also proposed to exist under physiological conditions. Development is a physiological condition of particular interest, as it requires fine coordination. Here we discuss whether protrusions shown to exist during embryonic development of different species could be TNTs or if they represent other types of cell structure, like cytonemes or intercellular bridges, that are suggested to play an important role in development.
Collapse
Affiliation(s)
- Olga Korenkova
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.,Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Anna Pepe
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
73
|
Vargas JY, Loria F, Wu Y, Córdova G, Nonaka T, Bellow S, Syan S, Hasegawa M, van Woerden GM, Trollet C, Zurzolo C. The Wnt/Ca 2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO J 2019; 38:e101230. [PMID: 31625188 PMCID: PMC6885744 DOI: 10.15252/embj.2018101230] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023] Open
Abstract
Tunneling nanotubes (TNTs) are actin-based transient tubular connections that allow direct communication between distant cells. TNTs play an important role in several physiological (development, immunity, and tissue regeneration) and pathological (cancer, neurodegeneration, and pathogens transmission) processes. Here, we report that the Wnt/Ca2+ pathway, an intracellular cascade that is involved in actin cytoskeleton remodeling, has a role in TNT formation and TNT-mediated transfer of cargoes. Specifically, we found that Ca2+ /calmodulin-dependent protein kinase II (CaMKII), a transducer of the Wnt/Ca2+ pathway, regulates TNTs in a neuronal cell line and in primary neurons. We identified the β isoform of CaMKII as a key molecule in modulating TNT formation and transfer, showing that this depends on the actin-binding activity of the protein. Finally, we found that the transfer of vesicles and aggregated α-synuclein between primary neurons can be regulated by the activation of the Wnt/Ca2+ pathway. Our findings suggest that Wnt/Ca2+ pathway could be a novel promising target for therapies designed to impair TNT-mediated propagation of pathogens.
Collapse
Affiliation(s)
- Jessica Y Vargas
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Frida Loria
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
- Present address:
Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Departamento de Biología MolecularUniversidad Autónoma de MadridMadridSpain
| | - Yuan‐Ju Wu
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Gonzalo Córdova
- Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieCentre de Recherche en MyologieUMRS974Sorbonne UniversitéParisFrance
| | - Takashi Nonaka
- Department of Dementia and Higher Brain FunctionTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Sylvie Syan
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| | - Masato Hasegawa
- Department of Dementia and Higher Brain FunctionTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Geeske M van Woerden
- Department of NeuroscienceErasmus Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus Medical CenterRotterdamThe Netherlands
| | - Capucine Trollet
- Institut National de la Santé et de la Recherche MédicaleAssociation Institut de MyologieCentre de Recherche en MyologieUMRS974Sorbonne UniversitéParisFrance
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et PathogénèseDépartement de Biologie Cellulaire et de l'InfectionInstitut PasteurParisFrance
| |
Collapse
|
74
|
Civita P, M. Leite D, Pilkington GJ. Pre-Clinical Drug Testing in 2D and 3D Human In Vitro Models of Glioblastoma Incorporating Non-Neoplastic Astrocytes: Tunneling Nano Tubules and Mitochondrial Transfer Modulates Cell Behavior and Therapeutic Respons. Int J Mol Sci 2019; 20:E6017. [PMID: 31795330 PMCID: PMC6929151 DOI: 10.3390/ijms20236017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive "reactive" astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.
Collapse
Affiliation(s)
- Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| | - Diana M. Leite
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
- Department of Chemistry, University College London, 20 Gordon Street, Christopher Ingold Building, London WC1H 0AJ, UK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| |
Collapse
|
75
|
Goodman S, Naphade S, Khan M, Sharma J, Cherqui S. Macrophage polarization impacts tunneling nanotube formation and intercellular organelle trafficking. Sci Rep 2019; 9:14529. [PMID: 31601865 PMCID: PMC6787037 DOI: 10.1038/s41598-019-50971-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023] Open
Abstract
Tunneling nanotubes (TNTs) are cellular extensions enabling cytosol-to-cytosol intercellular interaction between numerous cell types including macrophages. Previous studies of hematopoietic stem and progenitor cell (HSPC) transplantation for the lysosomal storage disorder cystinosis have shown that HSPC-derived macrophages form TNTs to deliver cystinosin-bearing lysosomes to cystinotic cells, leading to tissue preservation. Here, we explored if macrophage polarization to either proinflammatory M1-like M(LPS/IFNγ) or anti-inflammatory M2-like M(IL-4/IL-10) affected TNT-like protrusion formation, intercellular transport and, ultimately, the efficacy of cystinosis prevention. We designed new automated image processing algorithms used to demonstrate that LPS/IFNγ polarization decreased bone marrow-derived macrophages (BMDMs) formation of protrusions, some of which displayed characteristics of TNTs, including cytoskeletal structure, 3D morphology and size. In contrast, co-culture of macrophages with cystinotic fibroblasts yielded more frequent and larger protrusions, as well as increased lysosomal and mitochondrial intercellular trafficking to the diseased fibroblasts. Unexpectedly, we observed normal protrusion formation and therapeutic efficacy following disruption of anti-inflammatory IL-4/IL-10 polarization in vivo by transplantation of HSPCs isolated from the Rac2-/- mouse model. Altogether, we developed unbiased image quantification systems that probe mechanistic aspects of TNT formation and function in vitro, while HSPC transplantation into cystinotic mice provides a complex in vivo disease model. While the differences between polarization cell culture and mouse models exemplify the oversimplicity of in vitro cytokine treatment, they simultaneously demonstrate the utility of our co-culture model which recapitulates the in vivo phenomenon of diseased cystinotic cells stimulating thicker TNT formation and intercellular trafficking from macrophages. Ultimately, we can use both approaches to expand the utility of TNT-like protrusions as a delivery system for regenerative medicine.
Collapse
Affiliation(s)
- Spencer Goodman
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Swati Naphade
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Meisha Khan
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Jay Sharma
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
76
|
Abstract
Communication between cells is essential for multicellular life. During cognate immune interactions, T cells communicate with antigen-presenting cells (APC) via direct cell-cell contact or the release of molecules and vesicles containing T cell messages. A wide variety of mechanisms have been reported and among them a process called "trogocytosis" has traditionally been thought to be the fastest way to directly transfer membrane portions containing intact proteins from one cell to another; however, the mechanism is unverified. Trogocytosis has been distinguished from the generation of extracellular vesicles (EVs), a term that encompasses exosomes and microvesicles, as EVs are released via a contact-independent manner and are suggested to potentially send molecular messages over a distance. However, some previous reports regarding EVs in T cells may be misleading in terms of explaining their cellular origins. In addition, there is little evidence on how EVs are generated from T cells in vivo and function to regulate complex immune responses. A recent work demonstrated that T cell microvilli-thin and finger-like membrane protrusions-are highly fragile and easily separated as membrane particles by trogocytosis, forming a new class of EVs. Surprisingly, released T cell microvilli-derived particles act as vectors, transmitting T cell messages to cognate APCs. This review focuses on how T cell microvilli vesicles are connected with immune regulation mechanisms discovered previously.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
77
|
Sun YY, Yang YF, Keller KE. Myosin-X Silencing in the Trabecular Meshwork Suggests a Role for Tunneling Nanotubes in Outflow Regulation. Invest Ophthalmol Vis Sci 2019; 60:843-851. [PMID: 30807639 PMCID: PMC6390986 DOI: 10.1167/iovs.18-26055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The actin cytoskeleton plays a key role in outflow regulation through the trabecular meshwork (TM). Although actin stress fibers are a target of glaucoma therapies, the role of other actin cellular structures is unclear. Myosin-X (Myo10) is an actin-binding protein that is involved in tunneling nanotube (TNT) and filopodia formation. Here, we inhibited Myo10 pharmacologically or by gene silencing to investigate the role of filopodia/TNTs in the TM. Methods Short hairpin RNA interference (RNAi) silencing lentivirus targeting myosin-X (shMyo10) was generated. Human anterior segments were perfused with shMyo10 or CK-666, an Arp2/3 inhibitor. Confocal microscopy investigated the colocalization of Myo10 with matrix metalloproteinase (MMPs). Western immunoblotting investigated the protein levels of MMPs and extracellular matrix (ECM) proteins. MMP activity and phagocytosis assays were performed. Results CK-666 and shMyo10-silencing lentivirus caused a significant reduction in outflow rates in anterior segment perfusion culture, an ex vivo method to study intraocular pressure regulation. In human TM cells, Myo10 colocalized with MMP2, MMP14, and cortactin in podosome-like structures, which function as regions of focal ECM degradation. Furthermore, MMP activity, thrombospondin-1 and SPARC protein levels were significantly reduced in the media of CK-666-treated and shMyo10-silenced TM cells. However, neither Myo10 silencing or CK-666 treatment significantly affected phagocytic uptake. Conclusions Inhibiting filopodia/TNTs caused opposite effects on outflow compared with inhibiting stress fibers. Moreover, Myo10 may also play a role in focal ECM degradation in TM cells. Our results provide additional insight into the function of actin supramolecular assemblies and actin-binding proteins in outflow regulation.
Collapse
Affiliation(s)
- Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
78
|
Osswald M, Jung E, Wick W, Winkler F. Tunneling nanotube‐like structures in brain tumors. Cancer Rep (Hoboken) 2019. [DOI: 10.1002/cnr2.1181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Matthias Osswald
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Erik Jung
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
79
|
Sharma M, Subramaniam S. Rhes travels from cell to cell and transports Huntington disease protein via TNT-like protrusion. J Cell Biol 2019; 218:1972-1993. [PMID: 31076452 PMCID: PMC6548131 DOI: 10.1083/jcb.201807068] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/17/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Tunneling nanotubes (TNT) are membranous tubes that connect two cells, but their functional roles and mechanism of biogenesis remain obscure. Sharma and Subramaniam demonstrate that Rhes, a brain-enriched protein, increases biogenesis of TNT-like cellular protrusions or “Rhes tunnels” through which Rhes travels from cell to cell and transports Huntington disease (HD) protein. Tunneling nanotubes (TNT) are thin, membranous, tunnel-like cell-to-cell connections, but the mechanisms underlying their biogenesis or functional role remains obscure. Here, we report, Rhes, a brain-enriched GTPase/SUMO E3-like protein, induces the biogenesis of TNT-like cellular protrusions, “Rhes tunnels,” through which Rhes moves from cell to cell and transports Huntington disease (HD) protein, the poly-Q expanded mutant Huntingtin (mHTT). The formation of TNT-like Rhes tunnels requires the Rhes’s serine 33, C-terminal CAAX, and a SUMO E3-like domain. Electron microscopy analysis revealed that TNT-like Rhes tunnels appear continuous, cell–cell connections, and <200 nm in diameter. Live-cell imaging shows that Rhes tunnels establish contact with the neighboring cell and deliver Rhes-positive cargoes, which travel across the plasma membrane of the neighboring cell before entering it. The Rhes tunnels carry Rab5a/Lyso 20-positive vesicles and transport mHTT, but not normal HTT, mTOR, or wtTau proteins. SUMOylation-defective mHTT, Rhes C263S (cannot SUMOylate mHTT), or CRISPR/Cas9-mediated depletion of three isoforms of SUMO diminishes Rhes-mediated mHTT transport. Thus, Rhes promotes the biogenesis of TNT-like cellular protrusions and facilitates the cell–cell transport of mHTT involving SUMO-mediated mechanisms.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
| | | |
Collapse
|
80
|
Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu SVS. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem 2019; 294:7177-7193. [PMID: 30877198 DOI: 10.1074/jbc.ra118.005659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.
Collapse
Affiliation(s)
- Rajaiah Pergu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Sunayana Dagar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| | - Harsh Kumar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Rajesh Kumar
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Jayanta Bhattacharya
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Sivaram V S Mylavarapu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and .,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| |
Collapse
|
81
|
A novel Microproteomic Approach Using Laser Capture Microdissection to Study Cellular Protrusions. Int J Mol Sci 2019; 20:ijms20051172. [PMID: 30866487 PMCID: PMC6429397 DOI: 10.3390/ijms20051172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Cell–cell communication is vital to multicellular organisms, and distinct types of cellular protrusions play critical roles during development, cell signaling, and the spreading of pathogens and cancer. The differences in the structure and protein composition of these different types of protrusions and their specific functions have not been elucidated due to the lack of a method for their specific isolation and analysis. In this paper, we described, for the first time, a method to specifically isolate distinct protrusion subtypes, based on their morphological structures or fluorescent markers, using laser capture microdissection (LCM). Combined with a unique fixation and protein extraction protocol, we pushed the limits of microproteomics and demonstrate that proteins from LCM-isolated protrusions can successfully and reproducibly be identified by mass spectrometry using ultra-high field Orbitrap technologies. Our method confirmed that different types of protrusions have distinct proteomes and it promises to advance the characterization and the understanding of these unique structures to shed light on their possible role in health and disease.
Collapse
|
82
|
Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat Commun 2019; 10:342. [PMID: 30664666 PMCID: PMC6341166 DOI: 10.1038/s41467-018-08178-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/18/2018] [Indexed: 01/07/2023] Open
Abstract
The orchestration of intercellular communication is essential for multicellular organisms. One mechanism by which cells communicate is through long, actin-rich membranous protrusions called tunneling nanotubes (TNTs), which allow the intercellular transport of various cargoes, between the cytoplasm of distant cells in vitro and in vivo. With most studies failing to establish their structural identity and examine whether they are truly open-ended organelles, there is a need to study the anatomy of TNTs at the nanometer resolution. Here, we use correlative FIB-SEM, light- and cryo-electron microscopy approaches to elucidate the structural organization of neuronal TNTs. Our data indicate that they are composed of a bundle of open-ended individual tunneling nanotubes (iTNTs) that are held together by threads labeled with anti-N-Cadherin antibodies. iTNTs are filled with parallel actin bundles on which different membrane-bound compartments and mitochondria appear to transfer. These results provide evidence that neuronal TNTs have distinct structural features compared to other cell protrusions. The architecture of functional TNTs is still under debate. Here, the authors combine correlative FIB-SEM, light- and cryo-electron microscopy approaches to elucidate the structure of TNTs in neuronal cells, showing that they form structures that are distinct form other membrane protrusions.
Collapse
|
83
|
Abstract
The pathological propagation of Tau protein is a hallmark of multiple neurodegenerative disorders, collectively referred to tauopathies with Alzheimer's disease (AD) being most prevalent, but including a range of frontotemporal dementias (FTDs). The extracellular Tau is important during the progression of tauopathies, although Tau is mainly expressed intracellularly for physiological functions. Extracellular Tau could be actively secreted by one cell then taken up by adjacent cells, leading to the cell-to-cell transmission of Tau. Accumulating evidence has demonstrated that Tau propagation is not only by the trans-synaptic spreading but also via exo-synaptic spreading pathways especially under the pathological conditions. Among these, exosomes, microvesicles and tunneling nanotubes (TNTs) are proposed exo-synaptic pathways for the spread of Tau pathology. These findings have led to the idea that extracellular Tau could be a novel therapeutic target to halt the propagation of Tau pathology. From this perspective, this charter focuses on recent advances in understanding the mechanisms of Tau secretion and discusses the role of such mechanisms in the development of Tau pathology.
Collapse
Affiliation(s)
- Zhi Ruan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
84
|
Myosins in Osteoclast Formation and Function. Biomolecules 2018; 8:biom8040157. [PMID: 30467281 PMCID: PMC6317158 DOI: 10.3390/biom8040157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.
Collapse
|
85
|
Uhl J, Gujarathi S, Waheed AA, Gordon A, Freed EO, Gousset K. Myosin-X is essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes. J Cell Commun Signal 2018; 13:209-224. [PMID: 30443895 DOI: 10.1007/s12079-018-0493-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Tunneling nanotubes (TNTs) are intercellular structures that allow for the passage of vesicles, organelles, genomic material, pathogenic proteins and pathogens. The unconventional actin molecular motor protein Myosin-X (Myo10) is a known inducer of TNTs in neuronal cells, yet its role in other cell types has not been examined. The Nef HIV-1 accessory protein is critical for HIV-1 pathogenesis and can self-disseminate in culture via TNTs. Understanding its intercellular spreading mechanism could reveal ways to control its damaging effects during HIV-1 infection. Our goal in this study was to characterize the intercellular transport mechanism of Nef from macrophages to T cells. We demonstrate that Nef increases TNTs in a Myo10-dependent manner in macrophages and observed the transfer of Nef via TNTs from macrophages to T cells. To quantify this transfer mechanism, we established an indirect flow cytometry assay. Since Nef expression in T cells down-regulates the surface receptor CD4, we correlated the decrease in CD4 to the transfer of Nef between these cells. Thus, we co-cultured macrophages expressing varying levels of Nef with a T cell line expressing high levels of CD4 and quantified the changes in CD4 surface expression resulting from Nef transfer. We demonstrate that Nef transfer occurs via a cell-to-cell dependent mechanism that directly correlates with the presence of Myo10-dependent TNTs. Thus, we show that Nef can regulate Myo10 expression, thereby inducing TNT formation, resulting in its own transfer from macrophages to T cells. In addition, we demonstrate that up-regulation of Myo10 induced by Nef also occurs in human monocyte derived macrophages during HIV-1 infection.
Collapse
Affiliation(s)
- Jaime Uhl
- Biology Department, California State University Fresno, Fresno, 93740, USA
| | - Shivalee Gujarathi
- Biology Department, California State University Fresno, Fresno, 93740, USA
| | - Abdul A Waheed
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Ana Gordon
- Biology Department, California State University Fresno, Fresno, 93740, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Karine Gousset
- Biology Department, California State University Fresno, Fresno, 93740, USA.
| |
Collapse
|
86
|
Dubois F, Jean-Jacques B, Roberge H, Bénard M, Galas L, Schapman D, Elie N, Goux D, Keller M, Maille E, Bergot E, Zalcman G, Levallet G. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Commun Signal 2018; 16:66. [PMID: 30305100 PMCID: PMC6180646 DOI: 10.1186/s12964-018-0276-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND By allowing intercellular communication between cells, tunneling nanotubes (TNTs) could play critical role in cancer progression. If TNT formation is known to require cytoskeleton remodeling, key mechanism controlling their formation remains poorly understood. METHODS The cells of human bronchial (HBEC-3, A549) or mesothelial (H2452, H28) lines are transfected with different siRNAs (inactive, anti-RASSF1A, anti-GEFH1 and / or anti-Rab11). At 48 h post-transfection, i) the number and length of the nanotubes per cell are quantified, ii) the organelles, previously labeled with specific tracers, exchanged via these structures are monitored in real time between cells cultured in 2D or 3D and in normoxia, hypoxia or in serum deprivation condition. RESULTS We report that RASSF1A, a key-regulator of cytoskeleton encoded by a tumor-suppressor gene on 3p chromosome, is involved in TNTs formation in bronchial and pleural cells since controlling proper activity of RhoB guanine nucleotide exchange factor, GEF-H1. Indeed, the GEF-H1 inactivation induced by RASSF1A silencing, leads to Rab11 accumulation and subsequent exosome releasing, which in turn contribute to TNTs formation. Finally, we provide evidence involving TNT formation in bronchial carcinogenesis, by reporting that hypoxia or nutriment privation, two almost universal conditions in human cancers, fail to prevent TNTs induced by the oncogenic RASSF1A loss of expression. CONCLUSIONS This finding suggests for the first time that loss of RASSF1A expression could be a potential biomarker for TNTs formation, such TNTs facilitating intercellular communication favoring multistep progression of bronchial epithelial cells toward overt malignancy.
Collapse
Affiliation(s)
- Fatéméh Dubois
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Bastien Jean-Jacques
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France
| | - Hélène Roberge
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France
| | - Magalie Bénard
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Ludovic Galas
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Damien Schapman
- Normandie Université, Rouen, SFR IRIB, Plateau PRIMACEN, F-76821, Mont-Saint-Aignan, France
| | - Nicolas Elie
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Didier Goux
- Normandie Université, UNICAEN, SFR ICORE, Plateau CMABio3, F-14032, Caen, France
| | - Maureen Keller
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UPRES-EA-2608, F-14032, Caen, France
| | - Elodie Maille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Normandie Université, UNICAEN, UMR 1086 INSERM, F-14032, Caen, France
| | - Emmanuel Bergot
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France.,Service de Pneumologie, CHU de Caen, F-14033, Caen, France
| | - Gérard Zalcman
- U830 INSERM, "Génétique et Biologie des cancers" Centre de Recherche, Institut Curie, Paris, France.,Service d'oncologie thoracique, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris-Diderot, Paris, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP CYCERON, F-14000, Caen, France. .,Service d'Anatomie et Cytologie Pathologique, CHU de Caen, F-14033, Caen, France. .,Service D'Anatomie et Cytologie Pathologique, Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, CHU de Caen, Avenue de la côte de Nacre, 14032, Caen, France.
| |
Collapse
|
87
|
Zhu S, Bhat S, Syan S, Kuchitsu Y, Fukuda M, Zurzolo C. Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling. J Cell Sci 2018; 131:jcs.215889. [PMID: 30209134 DOI: 10.1242/jcs.215889] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/29/2018] [Indexed: 01/02/2023] Open
Abstract
Tunneling nanotubes (TNTs) are actin-enriched membranous channels enabling cells to communicate over long distances. TNT-like structures form between various cell types and mediate the exchange of different cargos, such as ions, vesicles, organelles and pathogens; thus, they may play a role in physiological conditions and diseases (e.g. cancer and infection). TNTs also allow the intercellular passage of protein aggregates related to neurodegenerative diseases, thus propagating protein misfolding. Understanding the mechanism of TNT formation is mandatory in order to reveal the mechanism of disease propagation and to uncover their physiological function. Vesicular transport controlled by the small GTPases Rab11a and Rab8a can promote the formation of different plasma membrane protrusions (filopodia, cilia and neurites). Here, we report that inhibiting membrane recycling reduces the number of TNT-connected cells and that overexpression of Rab11a and Rab8a increases the number of TNT-connected cells and the propagation of vesicles between cells in co-culture. We demonstrate that these two Rab GTPases act in a cascade in which Rab11a activation of Rab8a is independent of Rabin8. We also show that VAMP3 acts downstream of Rab8a to regulate TNT formation.
Collapse
Affiliation(s)
- Seng Zhu
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Shaarvari Bhat
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Sylvie Syan
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| | - Yoshihiko Kuchitsu
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Chiara Zurzolo
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris 75015, France
| |
Collapse
|
88
|
Lou E, Zhai E, Sarkari A, Desir S, Wong P, Iizuka Y, Yang J, Subramanian S, McCarthy J, Bazzaro M, Steer CJ. Cellular and Molecular Networking Within the Ecosystem of Cancer Cell Communication via Tunneling Nanotubes. Front Cell Dev Biol 2018; 6:95. [PMID: 30333973 PMCID: PMC6176212 DOI: 10.3389/fcell.2018.00095] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023] Open
Abstract
Intercellular communication is vital to the ecosystem of cancer cell organization and invasion. Identification of key cellular cargo and their varied modes of transport are important considerations in understanding the basic mechanisms of cancer cell growth. Gap junctions, exosomes, and apoptotic bodies play key roles as physical modalities in mediating intercellular transport. Tunneling nanotubes (TNTs)-narrow actin-based cytoplasmic extensions-are unique structures that facilitate direct, long distance cell-to-cell transport of cargo, including microRNAs, mitochondria, and a variety of other sub cellular components. The transport of cargo via TNTs occurs between malignant and stromal cells and can lead to changes in gene regulation that propagate the cancer phenotype. More notably, the transfer of these varied molecules almost invariably plays a critical role in the communication between cancer cells themselves in an effort to resist death by chemotherapy and promote the growth and metastases of the primary oncogenic cell. The more traditional definition of "Systems Biology" is the computational and mathematical modeling of complex biological systems. The concept, however, is now used more widely in biology for a variety of contexts, including interdisciplinary fields of study that focus on complex interactions within biological systems and how these interactions give rise to the function and behavior of such systems. In fact, it is imperative to understand and reconstruct components in their native context rather than examining them separately. The long-term objective of evaluating cancer ecosystems in their proper context is to better diagnose, classify, and more accurately predict the outcome of cancer treatment. Communication is essential for the advancement and evolution of the tumor ecosystem. This interplay results in cancer progression. As key mediators of intercellular communication within the tumor ecosystem, TNTs are the central topic of this article.
Collapse
Affiliation(s)
- Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Edward Zhai
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Akshat Sarkari
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Snider Desir
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Phillip Wong
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Yoshie Iizuka
- Division of Gynecologic Oncology and Women's Health, Department of Obstetrics and Gynecology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - James McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Martina Bazzaro
- Division of Gynecologic Oncology and Women's Health, Department of Obstetrics and Gynecology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Clifford J. Steer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
89
|
Mattes B, Scholpp S. Emerging role of contact-mediated cell communication in tissue development and diseases. Histochem Cell Biol 2018; 150:431-442. [PMID: 30255333 PMCID: PMC6182708 DOI: 10.1007/s00418-018-1732-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Abstract
Cells of multicellular organisms are in continuous conversation with the neighbouring cells. The sender cells signal the receiver cells to influence their behaviour in transport, metabolism, motility, division, and growth. How cells communicate with each other can be categorized by biochemical signalling processes, which can be characterised by the distance between the sender cell and the receiver cell. Existing classifications describe autocrine signals as those where the sender cell is identical to the receiver cell. Complementary to this scenario, paracrine signalling describes signalling between a sender cell and a different receiver cell. Finally, juxtacrine signalling describes the exchange of information between adjacent cells by direct cell contact, whereas endocrine signalling describes the exchange of information, e.g., by hormones between distant cells or even organs through the bloodstream. In the last two decades, however, an unexpected communication mechanism has been identified which uses cell protrusions to exchange chemical signals by direct contact over long distances. These signalling protrusions can deliver signals in both ways, from sender to receiver and vice versa. We are starting to understand the morphology and function of these signalling protrusions in many tissues and this accumulation of findings forces us to revise our view of contact-dependent cell communication. In this review, we will focus on the two main categories of signalling protrusions, cytonemes and tunnelling nanotubes. These signalling protrusions emerge as essential structural components of a vibrant communication network in the development and tissue homeostasis of any multicellular organism.
Collapse
Affiliation(s)
- Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
90
|
Mittal R, Karhu E, Wang JS, Delgado S, Zukerman R, Mittal J, Jhaveri VM. Cell communication by tunneling nanotubes: Implications in disease and therapeutic applications. J Cell Physiol 2018; 234:1130-1146. [PMID: 30206931 DOI: 10.1002/jcp.27072] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Intercellular communication is essential for the development and maintenance of multicellular organisms. Tunneling nanotubes (TNTs) are a recently recognized means of long and short distance communication between a wide variety of cell types. TNTs are transient filamentous membrane protrusions that connect cytoplasm of neighboring or distant cells. Cytoskeleton fiber-mediated transport of various cargoes occurs through these tubules. These cargoes range from small ions to whole organelles. TNTs have been shown to contribute not only to embryonic development and maintenance of homeostasis, but also to the spread of infectious particles and resistance to therapies. These functions in the development and progression of cancer and infectious disease have sparked increasing scrutiny of TNTs, as their contribution to disease progression lends them a promising therapeutic target. Herein, we summarize the current knowledge of TNT structure and formation as well as the role of TNTs in pathology, focusing on viral, prion, and malignant disease. We then discuss the therapeutic possibilities of TNTs in light of their varied functions. Despite recent progress in the growing field of TNT research, more studies are needed to precisely understand the role of TNTs in pathological conditions and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Elisa Karhu
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jay-Shing Wang
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Stefanie Delgado
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Ryan Zukerman
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Vasanti M Jhaveri
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| |
Collapse
|
91
|
Weidle UH, Rohwedder I, Birzele F, Weiss EH, Schiller C. LST1: A multifunctional gene encoded in the MHC class III region. Immunobiology 2018; 223:699-708. [PMID: 30055863 DOI: 10.1016/j.imbio.2018.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
The LST1 gene is located in the MHC class III cluster between the MHC class I and II regions. While most genes in this cluster have been sufficiently characterised, a definitive function and expression pattern for LST1 still remains elusive. In the present review we describe its promotor, gene organisation, splice variants and expression in human tissues, cell lines and cancer. We focus on LST1 expression in inflammation and discuss known correlations with autoimmune diseases and cancer. Current data on LST1 polymorphisms and their known associations with pathologies are also discussed in detail. We summarize the potential functions that have been described for the full-length LST1 protein including its function as a transmembrane adaptor protein with inhibitory signal transduction and its role as a membrane scaffold facilitating the formation of tunnelling nanotubes. We also discuss further potential functions by compiling all known LST1-interacting proteins. Furthermore, we address knowledge gaps and conflictive issues regarding disease association, non-hematopoietic expression and the discrepancy between RNA and protein expression data.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Zentrum Seniorenstudium, Ludwig-Maximilians-Universität München, Hohenstaufenstrasse 1, 80801 München, Germany
| | - Ina Rohwedder
- Department of Biology II, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Fabian Birzele
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Grenzacherstrasse 124, 4052 Basel, Switzerland
| | - Elisabeth H Weiss
- Zentrum Seniorenstudium, Ludwig-Maximilians-Universität München, Hohenstaufenstrasse 1, 80801 München, Germany; Department of Biology II, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Christian Schiller
- Department of Biology II, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
92
|
|
93
|
Zhu S, Abounit S, Korth C, Zurzolo C. Transfer of disrupted-in-schizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine. Open Biol 2018; 7:rsob.160328. [PMID: 28275106 PMCID: PMC5376705 DOI: 10.1098/rsob.160328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022] Open
Abstract
The disrupted-in-schizophrenia 1 (DISC1) gene was identified as a genetic risk factor for chronic mental illnesses (CMI) such as schizophrenia, bipolar disorder and severe recurrent depression. Insoluble aggregated DISC1 variants were found in the cingular cortex of sporadic, i.e. non-genetic, CMI patients. This suggests protein pathology as a novel, additional pathogenic mechanism, further corroborated in a recent transgenic rat model presenting DISC1 aggregates. Since the potential role of aggregation of DISC1 in sporadic CMI is unknown, we investigated whether DISC1 undergoes aggregation in cell culture and could spread between neuronal cells in a prion-like manner, as shown for amyloid proteins in neurodegenerative diseases. Co-culture experiments between donor cells forming DISC1 aggregates and acceptor cells showed that 4.5% of acceptor cells contained donor-derived DISC1 aggregates, thus indicating an efficient transfer in vitro. DISC1 aggregates were found inside tunnelling nanotubes (TNTs) and transfer was enhanced by increasing TNT formation and notably by dopamine treatment, which also induces DISC1 aggregation. These data indicate that DISC1 aggregates can propagate between cells similarly to prions, thus providing some molecular basis for the role of protein pathology in CMI.
Collapse
Affiliation(s)
- Seng Zhu
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Saïda Abounit
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Chiara Zurzolo
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| |
Collapse
|
94
|
Gordon A, Kannan SK, Gousset K. A Novel Cell Fixation Method that Greatly Enhances Protein Identification in Microproteomic Studies Using Laser Capture Microdissection and Mass Spectrometry. Proteomics 2018; 18:e1700294. [PMID: 29579344 DOI: 10.1002/pmic.201700294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/21/2017] [Indexed: 11/05/2022]
Abstract
Microproteomic studies have improved our knowledge of cell biology. Yet, with mass spectrometry (MS) analysis, accuracy can be lost for protein identification and quantification when using heterogeneous samples. Laser capture microdissection (LCM) allows for the enrichment of specific subsets of cells to study their proteome; however, sample fixation is necessary. Unfortunately, fixation hampers MS results due to protein cross-linking. The aim of this study was to identify both a fixation protocol and an extraction method that returns the best yield of proteins for downstream MS analysis, while preserving cellular structures. We compared glutaraldehyde (GLU), a common fixative to preserve cells, to dithiobispropionimidate (DTBP), a cleavable cross-linker. Our DTBP fixation/extraction protocol greatly increased the protein recovery. In fact, while 1000 GLU fixed cells returned only 159 unique protein hits, from 1464 unique peptides of 1994 unique collected spectra, 1000 DTBP fixed cells resulted in 567 unique collected protein hits, from 7542 unique peptides, of 10,401 unique collected spectra. That is, a 3.57-fold increase in protein hits, 5.15-fold increase in unique peptides, and a 5.22-fold increase in unique collected spectra. Overall, the novel protocol introduced here allows for a very efficient protein recovery and good sample quality for MS after sample collection using LCM.
Collapse
Affiliation(s)
- Ana Gordon
- Biology Department, California State University Fresno, 2555 East San Ramon Ave M/S SB73, Fresno, CA, 93740, USA
| | - Shravan Kumar Kannan
- Biology Department, California State University Fresno, 2555 East San Ramon Ave M/S SB73, Fresno, CA, 93740, USA
| | - Karine Gousset
- Biology Department, California State University Fresno, 2555 East San Ramon Ave M/S SB73, Fresno, CA, 93740, USA
| |
Collapse
|
95
|
Liang D. A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication. Front Cell Dev Biol 2018; 6:2. [PMID: 29503816 PMCID: PMC5821100 DOI: 10.3389/fcell.2018.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
The reactive oxygen species, generally labeled toxic due to high reactivity without target specificity, are gradually uncovered as signaling molecules involved in a myriad of biological processes. But one important feature of ROS roles in macromolecule movement has not caught attention until recent studies with technique advance and design elegance have shed lights on ROS signaling for intercellular and interorganelle communication. This review begins with the discussions of genetic and chemical studies on the regulation of symplastic dye movement through intercellular tunnels in plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning macromolecule movement including small RNA-mediated gene silencing movement and protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in mammalian cells are the key physical structures to sustain intercellular communication, movement of macromolecules and signals is efficiently facilitated by ROS-induced membrane protrusions formation, which is analogously applied to the interorganelle communication in plant cells. Although ROS regulatory differences between plant and mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying conservative theme in multicellular organisms. These mechanisms may represent the evolutionary advances that have enabled multicellularity to gain the ability to generate and utilize ROS to govern material exchanges between individual cells in oxygenated environment.
Collapse
Affiliation(s)
- Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China.,Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
96
|
D’Aloia A, Berruti G, Costa B, Schiller C, Ambrosini R, Pastori V, Martegani E, Ceriani M. RalGPS2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells. Exp Cell Res 2018; 362:349-361. [DOI: 10.1016/j.yexcr.2017.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 11/25/2022]
|
97
|
Masnata M, Cicchetti F. The Evidence for the Spread and Seeding Capacities of the Mutant Huntingtin Protein in in Vitro Systems and Their Therapeutic Implications. Front Neurosci 2017; 11:647. [PMID: 29234268 PMCID: PMC5712341 DOI: 10.3389/fnins.2017.00647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative disorders are not only characterized by specific patterns of cell loss but the presence and accumulation of various pathological proteins—both of which correlate with disease evolution. There is now mounting evidence to suggest that these pathological proteins present with toxic, at times prion-like, properties and can therefore seed pathology in neighboring as well remotely connected healthy neurons as they spread across the brain. What is less clear, at this stage, is how much this actually contributes to, and drives, the core pathogenic events. In this review, we present a comprehensive, up-to-date summary of the reported in vitro studies that support the spreading and seeding capacities of pathological proteins, with an emphasis on mutant huntingtin protein in the context of Huntington's disease, although in vivo work remains to be performed to validate this theory in this particular disease. We have further reviewed these findings in light of their potential implications for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Masnata
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Quebec, QC, Canada
| |
Collapse
|
98
|
Keller KE, Bradley JM, Sun YY, Yang YF, Acott TS. Tunneling Nanotubes are Novel Cellular Structures That Communicate Signals Between Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2017; 58:5298-5307. [PMID: 29049733 PMCID: PMC5656416 DOI: 10.1167/iovs.17-22732] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose The actin cytoskeleton of trabecular meshwork (TM) cells plays a role in regulating aqueous humor outflow. Many studies have investigated stress fibers, but F-actin also assembles into other supramolecular structures including filopodia. Recently, specialized filopodia called tunneling nanotubes (TNTs) have been described, which communicate molecular signals and organelles directly between cells. Here, we investigate TNT formation by TM cells. Methods Human TM cells were labeled separately with the fluorescent dyes, DiO and DiD, or with mitochondrial dye. Fixed or live TM cells were imaged using confocal microscopy. Image analysis software was used to track fluorescent vesicles and count the number and length of filopodia. The number of fluorescently labeled vesicles transferred between cells was counted in response to specific inhibitors of the actin cytoskeleton. Human TM tissue was stained with phalloidin. Results Live-cell confocal imaging of cultured TM cells showed transfer of fluorescently labeled vesicles and mitochondria via TNTs. In TM tissue, a long (160 μm) actin-rich cell process bridged an intertrabecular space and did not adhere to the substratum. Treatment of TM cells with CK-666, an Arp2/3 inhibitor, significantly decreased the number and length of filopodia, decreased transfer of fluorescently labeled vesicles and induced thick stress fibers compared to vehicle control. Conversely, inhibiting stress fibers using Y27632 increased transfer of vesicles and induced long cell processes. Conclusions Identification of TNTs provides a means by which TM cells can directly communicate with each other over long distances. This may be particularly important to overcome limitations of diffusion-based signaling in the aqueous humor fluid environment.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John M Bradley
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ted S Acott
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
99
|
Ariazi J, Benowitz A, De Biasi V, Den Boer ML, Cherqui S, Cui H, Douillet N, Eugenin EA, Favre D, Goodman S, Gousset K, Hanein D, Israel DI, Kimura S, Kirkpatrick RB, Kuhn N, Jeong C, Lou E, Mailliard R, Maio S, Okafo G, Osswald M, Pasquier J, Polak R, Pradel G, de Rooij B, Schaeffer P, Skeberdis VA, Smith IF, Tanveer A, Volkmann N, Wu Z, Zurzolo C. Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Front Mol Neurosci 2017; 10:333. [PMID: 29089870 PMCID: PMC5651011 DOI: 10.3389/fnmol.2017.00333] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Monique L Den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Haifeng Cui
- GlaxoSmithKline, Collegeville, PA, United States
| | | | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| | - David Favre
- GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Spencer Goodman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Karine Gousset
- Department of Biology, College of Science and Math, California State University, Fresno, CA, United States
| | - Dorit Hanein
- Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery, La Jolla, CA, United States
| | | | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Nastaran Kuhn
- Division of Cancer Biology, Physical Sciences-Oncology Network, Cancer Tissue Engineering Collaborative Research Program, Program Director, Structural Biology and Molecular Applications Branch, National Cancer Institute, Bethesda, MD, United States
| | - Claire Jeong
- GlaxoSmithKline, King of Prussia, PA, United States
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Robbie Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Maio
- GlaxoSmithKline, King of Prussia, PA, United States
| | | | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Pasquier
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar Foundation, Ar-Rayyan, Qatar
| | - Roel Polak
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Bob de Rooij
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ahmad Tanveer
- Section of Intracellular Trafficking and Neurovirology, National Institute of Health, Bethesda, MD, United States
| | - Niels Volkmann
- Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery, La Jolla, CA, United States
| | - Zhenhua Wu
- GlaxoSmithKline, Collegeville, PA, United States
| | - Chiara Zurzolo
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris, France
| |
Collapse
|
100
|
Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M, Hodgson L, Cox D. The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Sci Rep 2017; 7:8547. [PMID: 28819224 PMCID: PMC5561213 DOI: 10.1038/s41598-017-08950-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/17/2017] [Indexed: 01/06/2023] Open
Abstract
Macrophage interactions with other cells, either locally or at distances, are imperative in both normal and pathological conditions. While soluble means of communication can transmit signals between different cells, it does not account for all long distance macrophage interactions. Recently described tunneling nanotubes (TNTs) are membranous channels that connect cells together and allow for transfer of signals, vesicles, and organelles. However, very little is known about the mechanism by which these structures are formed. Here we investigated the signaling pathways involved in TNT formation by macrophages using multiple imaging techniques including super-resolution microscopy (3D-SIM) and live-cell imaging including the use of FRET-based Rho GTPase biosensors. We found that formation of TNTs required the activity and differential localization of Cdc42 and Rac1. The downstream Rho GTPase effectors mediating actin polymerization through Arp2/3 nucleation, Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous 2 (WAVE2) proteins are also important, and both pathways act together during TNT biogenesis. Finally, TNT function as measured by transfer of cellular material between cells was reduced following depletion of a single factor demonstrating the importance of these factors in TNTs. Given that the characterization of TNT formation is still unclear in the field; this study provides new insights and would enhance the understanding of TNT formation towards investigating new markers.
Collapse
Affiliation(s)
- Samer J Hanna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Kessler McCoy-Simandle
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Veronika Miskolci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Cammer
- Microscopy Core, DART, NYU Langone Medical Center, Bronx, NY, 10016, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA. .,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|