51
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
52
|
Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Toure M, Dong H, Qian Y, Wang J, Crew AP, Hines J, Crews CM. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem Biol 2018; 25:67-77.e3. [PMID: 29129716 PMCID: PMC5831399 DOI: 10.1016/j.chembiol.2017.09.009] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach.
Collapse
Affiliation(s)
- George M Burslem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Blake E Smith
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Ashton C Lai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Daniel C McQuaid
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Momar Toure
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Hanqing Dong
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Yimin Qian
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jing Wang
- Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | | | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, USA; Departments of Chemistry and Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
53
|
Kanojia D, Garg M, Martinez J, M T A, Luty SB, Doan NB, Said JW, Forscher C, Tyner JW, Koeffler HP. Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets. J Hematol Oncol 2017; 10:173. [PMID: 29132397 PMCID: PMC5683536 DOI: 10.1186/s13045-017-0540-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Liposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management. METHODS Large RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial. RESULTS Screening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model. CONCLUSIONS Two large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Manoj Garg
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jacqueline Martinez
- Cell, Developmental & Cancer, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Anand M T
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Samuel B Luty
- Cell, Developmental & Cancer, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, 90095, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, 90095, USA
| | - Charles Forscher
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, California, 90048, USA
| | - Jeffrey W Tyner
- Cell, Developmental & Cancer, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, California, 90048, USA.,National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
54
|
Bllaci L, Torsetnes SB, Wierzbicka C, Shinde S, Sellergren B, Rogowska-Wrzesinska A, Jensen ON. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO2 Affinity Resins. Anal Chem 2017; 89:11332-11340. [DOI: 10.1021/acs.analchem.7b02091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Loreta Bllaci
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Silje B. Torsetnes
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Celina Wierzbicka
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Sudhirkumar Shinde
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| |
Collapse
|
55
|
Ayoub NM, Al-Shami KM, Alqudah MA, Mhaidat NM. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents. Onco Targets Ther 2017; 10:4869-4883. [PMID: 29042798 PMCID: PMC5634371 DOI: 10.2147/ott.s148604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MET is a receptor tyrosine kinase known for its pleiotropic effects in tumorigenesis. Dysregulations of MET expression and/or signaling have been reported and determined to be associated with inferior outcomes in breast cancer patients rendering MET a versatile candidate for targeted therapeutic intervention. Crizotinib is a multi-targeted small-molecule kinase inhibitor for MET, ALK, and ROS1 kinases. This study evaluated the anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects of crizotinib in breast cancer cells in vitro. Cell viability was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay. In vitro wound-healing assay was used to examine the effect of crizotinib on breast cancer cell migration. The expressions of Ki-67, MET, and phospho-MET receptors were characterized using immunofluorescence staining. Results showed that crizotinib has significant anti-proliferative activity on all mammary tumor cells with IC50 values of 5.16, 1.5, and 3.85 µM in MDA-MB-231, MCF-7, and SK-BR-3 cells, respectively. Crizotinib induced cytotoxic effects in all breast cancer cells examined. Combined treatment of small dose of crizotinib with paclitaxel or doxorubicin exhibited a highly synergistic inhibition of growth of MDA-MB-231 and MCF-7 cells with combination index values <1 while no significant effect was observed in SK-BR-3 cells compared with individual compounds. Treatment with crizotinib demonstrated a remarkable reduction in the expression of Ki-67 protein in all 3 tested cell lines. Crizotinib inhibited migration and invasion of MDA-MB-231 cells in a dose-dependent fashion. Crizotinib reduced MET receptor activation in MDA-MB-231 cells when treated at effective concentrations. In conclusion, crizotinib suppressed proliferation, migration, and invasion of breast cancer cells in vitro. The results of this study demonstrated that combined treatment of crizotinib with chemotherapeutic agents resulted in a synergistic growth inhibition of specific breast cancer cell lines.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Kamal M Al-Shami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad A Alqudah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
56
|
Yang SY, Nguyen TT, Ung TT, Jung YD. Role of Recepteur D'origine Nantais on Gastric Cancer Development and Progression. Chonnam Med J 2017; 53:178-186. [PMID: 29026705 PMCID: PMC5636756 DOI: 10.4068/cmj.2017.53.3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Abstract
Recepteur d'origine nantais (RON) is a receptor tyrosine kinase belonging to the subfamily of which c-MET is the prototype. Large epidemiologic studies have confirmed the strong association between RON and gastric cancer development. Constitutive activation of RON signaling directly correlates with tumorigenic phenotypes of gastric cancer and a poor survival rate in advanced gastric cancer patients. In this review, we focus on recent evidence of the aberrant expression and activation of RON in gastric cancer tumors and provide insights into the mechanism of RON signaling associated with gastric cancer progression and metastasis. Current therapeutics against RON in gastric cancer are summarized.
Collapse
Affiliation(s)
- Sung Yeul Yang
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Thi Thinh Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Trong Thuan Ung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
57
|
Covell DG. A data mining approach for identifying pathway-gene biomarkers for predicting clinical outcome: A case study of erlotinib and sorafenib. PLoS One 2017; 12:e0181991. [PMID: 28792525 PMCID: PMC5549706 DOI: 10.1371/journal.pone.0181991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
A novel data mining procedure is proposed for identifying potential pathway-gene biomarkers from preclinical drug sensitivity data for predicting clinical responses to erlotinib or sorafenib. The analysis applies linear ridge regression modeling to generate a small (N~1000) set of baseline gene expressions that jointly yield quality predictions of preclinical drug sensitivity data and clinical responses. Standard clustering of the pathway-gene combinations from gene set enrichment analysis of this initial gene set, according to their shared appearance in molecular function pathways, yields a reduced (N~300) set of potential pathway-gene biomarkers. A modified method for quantifying pathway fitness is used to determine smaller numbers of over and under expressed genes that correspond with favorable and unfavorable clinical responses. Detailed literature-based evidence is provided in support of the roles of these under and over expressed genes in compound efficacy. RandomForest analysis of potential pathway-gene biomarkers finds average treatment prediction errors of 10% and 22%, respectively, for patients receiving erlotinib or sorafenib that had a favorable clinical response. Higher errors were found for both compounds when predicting an unfavorable clinical response. Collectively these results suggest complementary roles for biomarker genes and biomarker pathways when predicting clinical responses from preclinical data.
Collapse
Affiliation(s)
- David G. Covell
- Information Technology Branch, Developmental Therapeutics Program, National Cancer Institute, Frederick, MD, United States of America
| |
Collapse
|
58
|
Manupati K, Dhoke NR, Debnath T, Yeeravalli R, Guguloth K, Saeidpour S, De UC, Debnath S, Das A. Inhibiting epidermal growth factor receptor signalling potentiates mesenchymal–epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs. FEBS J 2017; 284:1830-1854. [DOI: 10.1111/febs.14084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Kanakaraju Manupati
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| | - Neha R. Dhoke
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| | - Tanusree Debnath
- Department of Chemistry Maharaja Bir Bikram College Agartala Tripura India
| | - Ragini Yeeravalli
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| | - Kalpana Guguloth
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Shahrzad Saeidpour
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Utpal Chandra De
- Department of Chemistry Tripura University Agartala Tripura India
| | - Sudhan Debnath
- Department of Chemistry Maharaja Bir Bikram College Agartala Tripura India
| | - Amitava Das
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| |
Collapse
|
59
|
Abstract
The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells.
Collapse
Affiliation(s)
- Laura Stransky
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Kristina Cotter
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Michael Forgac
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
60
|
Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications. Neurotherapeutics 2017; 14:372-384. [PMID: 28374184 PMCID: PMC5398995 DOI: 10.1007/s13311-017-0524-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.
Collapse
Affiliation(s)
- Tamara J Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case, Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Stephen M Dombrowski
- Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
61
|
Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, Shapiro LH. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal 2017; 10:10/470/eaag3326. [PMID: 28292957 DOI: 10.1126/scisignal.aag3326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors.
Collapse
Affiliation(s)
- Leslie Ann Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kristina Dortche
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christina L Grant
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christopher Stoddard
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fernando A Ferrer
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
62
|
GDNF induces RET–SRC–HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells. Breast Cancer Res Treat 2017; 162:231-241. [DOI: 10.1007/s10549-016-4078-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 01/09/2023]
|
63
|
Vagin O, Beenhouwer DO. Septins: Regulators of Protein Stability. Front Cell Dev Biol 2016; 4:143. [PMID: 28066764 PMCID: PMC5168428 DOI: 10.3389/fcell.2016.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, Geffen School of Medicine at UCLALos Angeles, CA, USA; VA Greater Los Angeles Healthcare SystemLos Angeles, CA, USA
| | - David O Beenhouwer
- Department of Medicine, Geffen School of Medicine at UCLALos Angeles, CA, USA; Division of Infectious Diseases, VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
64
|
Bian Y, Li L, Dong M, Liu X, Kaneko T, Cheng K, Liu H, Voss C, Cao X, Wang Y, Litchfield D, Ye M, Li SSC, Zou H. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol 2016; 12:959-966. [DOI: 10.1038/nchembio.2178] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 07/11/2016] [Indexed: 12/26/2022]
|
65
|
Chen SJ, Liu H, Liao CT, Huang PJ, Huang Y, Hsu A, Tang P, Chang YS, Chen HC, Yen TC. Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature. Oncotarget 2016; 6:18066-80. [PMID: 25980437 PMCID: PMC4621868 DOI: 10.18632/oncotarget.3768] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with advanced oral squamous cell carcinoma (OSCC) have heterogeneous outcomes that limit the implementation of tailored treatment options. Genetic markers for improved prognostic stratification are eagerly awaited. METHODS Herein, next-generation sequencing (NGS) was performed in 345 formalin-fixed paraffin-embedded (FFPE) samples obtained from advanced OSCC patients. Genetic mutations on the hotspot regions of 45 cancer-related genes were detected using an ultra-deep (>1000×) sequencing approach. Kaplan-Meier plots and Cox regression analyses were used to investigate the associations between the mutation status and disease-free survival (DFS). RESULTS We identified 1269 non-synonymous mutations in 276 OSCC samples. TP53, PIK3CA, CDKN2A, HRAS and BRAF were the most frequently mutated genes. Mutations in 14 genes were found to predict DFS. A mutation-based signature affecting ten genes (HRAS, BRAF, FGFR3, SMAD4, KIT, PTEN, NOTCH1, AKT1, CTNNB1, and PTPN11) was devised to predict DFS. Two different resampling methods were used to validate the prognostic value of the identified gene signature. Multivariate analysis demonstrated that presence of a mutated gene signature was an independent predictor of poorer DFS (P = 0.005). CONCLUSIONS Genetic variants identified by NGS technology in FFPE samples are clinically useful to predict prognosis in advanced OSCC patients.
Collapse
Affiliation(s)
- Shu-Jen Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan.,Genomic Core Laboratory, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Hsuan Liu
- Genomic Core Laboratory, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Po-Jung Huang
- Bioinformatics Core Laboratory, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Yi Huang
- Genomic Core Laboratory, Chang Gung University, Taoyuan, 33302, Taiwan
| | - An Hsu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Petrus Tang
- Bioinformatics Core Laboratory, Chang Gung University, Taoyuan, 33305, Taiwan
| | - Yu-Sun Chang
- Genomic Core Laboratory, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Hua-Chien Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan.,Genomic Core Laboratory, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| |
Collapse
|
66
|
Matsumura Y, Owada Y, Yamaura T, Muto S, Osugi J, Hoshino M, Higuchi M, Ohira T, Suzuki H, Gotoh M. Epidermal growth factor receptor gene mutation as risk factor for recurrence in patients with surgically resected lung adenocarcinoma: a matched-pair analysis. Interact Cardiovasc Thorac Surg 2016; 23:216-22. [DOI: 10.1093/icvts/ivw116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/17/2016] [Indexed: 11/14/2022] Open
|
67
|
Liu X, Jing X, Cheng X, Ma D, Jin Z, Yang W, Qiu W. FGFR3 promotes angiogenesis-dependent metastasis of hepatocellular carcinoma via facilitating MCP-1-mediated vascular formation. Med Oncol 2016; 33:46. [PMID: 27044356 DOI: 10.1007/s12032-016-0761-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023]
Abstract
The biological role of fibroblast growth factor receptor 3 (FGFR3) in tumor angiogenesis of hepatocellular carcinoma (HCC) has not been discussed before. Our previous work had indicated FGFR3 was overexpressed in HCC, and silencing FGFR3 in Hu7 cells could regulate tumorigenesis via down-regulating the phosphorylation level of key members of classic signaling pathways including ERK and AKT. In the present work, we explored the role of FGFR3 in angiogenesis-dependent metastasis by using SMMC-7721 and QGY-7703 stable cell lines. Our results indicated FGFR3 could regulate in vitro cell migration ability and in vivo lung metastasis ability of HCC, which was in accordance with increased angiogenesis ability in vitro and in vivo. Using the supernatant from SMMC-7721/FGFR3 cells, we conducted a human angiogenesis protein microarray including 43 angiogenesis factors and found that FGFR3 modulated angiogenesis and metastasis of HCC mainly by promoting the protein level of monocyte chemotactic protein 1 (MCP-1). Silencing FGFR3 by short hairpin RNA (shRNA) could reduce MCP-1 level in lysates and supernatant of QGY-7703 cells and SMMC-7721 cells. Silencing MCP-1 in QGY-7703 or SMMC-7721 cells could induce similar phenotypes compared with silencing FGFR3. Our results suggested FGFR3 promoted metastasis potential of HCC, at least partially if not all, via facilitating MCP-1-mediated angiogenesis, in addition to previously found cell growth and metastasis. MCP-1, a key medium between HCC cells and HUVECs, might be a novel anti-vascular target in HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Gene Expression Regulation, Neoplastic
- Human Umbilical Vein Endothelial Cells
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China
| | - Xiaoqian Jing
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China
| | - Xi Cheng
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China
| | - Ding Ma
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China
| | - Zhijian Jin
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China
| | - Weiping Yang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China.
| | - Weihua Qiu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Rd, Shanghai, 200025, China.
| |
Collapse
|
68
|
OTSSP167 Abrogates Mitotic Checkpoint through Inhibiting Multiple Mitotic Kinases. PLoS One 2016; 11:e0153518. [PMID: 27082996 PMCID: PMC4833387 DOI: 10.1371/journal.pone.0153518] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/16/2022] Open
Abstract
OTSSP167 was recently characterized as a potent inhibitor for maternal embryonic leucine zipper kinase (MELK) and is currently tested in Phase I clinical trials for solid tumors that have not responded to other treatment. Here we report that OTSSP167 abrogates the mitotic checkpoint at concentrations used to inhibit MELK. The abrogation is not recapitulated by RNAi mediated silencing of MELK in cells. Although OTSSP167 indeed inhibits MELK, it exhibits off-target activity against Aurora B kinase in vitro and in cells. Furthermore, OTSSP167 inhibits BUB1 and Haspin kinases, reducing phosphorylation at histones H2AT120 and H3T3 and causing mislocalization of Aurora B and associated chromosomal passenger complex from the centromere/kinetochore. The results suggest that OTSSP167 may have additional mechanisms of action for cancer cell killing and caution the use of OTSSP167 as a MELK specific kinase inhibitor in biochemical and cellular assays.
Collapse
|
69
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
70
|
Smith YE, Vellanki SH, Hopkins AM. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk. World J Biol Chem 2016; 7:64-77. [PMID: 26981196 PMCID: PMC4768125 DOI: 10.4331/wjbc.v7.i1.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology.
Collapse
|
71
|
García-Vilas JA, Martínez-Poveda B, Quesada AR, Medina MÁ. Aeroplysinin-1, a Sponge-Derived Multi-Targeted Bioactive Marine Drug. Mar Drugs 2015; 14:1. [PMID: 26703630 PMCID: PMC4728498 DOI: 10.3390/md14010001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 11/16/2022] Open
Abstract
Organisms lacking external defense mechanisms have developed chemical defense strategies, particularly through the production of secondary metabolites with antibiotic or repellent effects. Secondary metabolites from marine organisms have proven to be an exceptionally rich source of small molecules with pharmacological activities potentially beneficial to human health. (+)-Aeroplysinin-1 is a secondary metabolite isolated from marine sponges with a wide spectrum of bio-activities. (+)-Aeroplysinin-1 has potent antibiotic effects on Gram-positive bacteria and several dinoflagellate microalgae causing toxic blooms. In preclinical studies, (+)-aeroplysinin-1 has been shown to have promising anti-inflammatory, anti-angiogenic and anti-tumor effects. Due to its versatility, (+)-aeroplysinin-1 might have a pharmaceutical interest for the treatment of different pathologies.
Collapse
Affiliation(s)
- Javier A García-Vilas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, Málaga 29071, Spain.
- CIBER de Enfermedades Raras (CIBERER), Málaga E-29071, Spain.
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, Málaga 29071, Spain.
| | - Ana R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, Málaga 29071, Spain.
- CIBER de Enfermedades Raras (CIBERER), Málaga E-29071, Spain.
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, Málaga 29071, Spain.
- CIBER de Enfermedades Raras (CIBERER), Málaga E-29071, Spain.
| |
Collapse
|
72
|
Abstract
INTRODUCTION The past decade has witnessed tremendous progress in surface micropatterning techniques for generating arrays of various types of biomolecules. Multiplexed protein micropatterning has tremendous potential for drug discovery providing versatile means for high throughput assays required for target and lead identification as well as diagnostics and functional screening for personalized medicine. However, ensuring the functional integrity of proteins on surfaces has remained challenging, in particular in the case of membrane proteins, the most important class of drug targets. Yet, generic strategies to control functional organization of proteins into micropatterns are emerging. AREAS COVERED This review includes an overview introducing the most common approaches for surface modification and functional protein immobilization. The authors present the key photo and soft lithography techniques with respect to compatibility with functional protein micropatterning and multiplexing capabilities. In the second part, the authors present the key applications of protein micropatterning techniques in drug discovery with a focus on membrane protein interactions and cellular signaling. EXPERT OPINION With the growing importance of target discovery as well as protein-based therapeutics and personalized medicine, the application of protein arrays can play a fundamental role in drug discovery. Yet, important technical breakthroughs are still required for broad application of these approaches, which will include in vitro "copying" of proteins from cDNA arrays into micropatterns, direct protein capturing from single cells as well as protein microarrays in living cells.
Collapse
Affiliation(s)
- Changjiang You
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| | - Jacob Piehler
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| |
Collapse
|
73
|
Breitkopf SB, Yuan M, Helenius KP, Lyssiotis CA, Asara JM. Triomics Analysis of Imatinib-Treated Myeloma Cells Connects Kinase Inhibition to RNA Processing and Decreased Lipid Biosynthesis. Anal Chem 2015; 87:10995-1006. [PMID: 26434776 PMCID: PMC5585869 DOI: 10.1021/acs.analchem.5b03040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of metabolomics, lipidomics, and phosphoproteomics that incorporates triple stable isotope labeling by amino acids in cell culture (SILAC) protein labeling, as well as (13)C in vivo metabolite labeling, was demonstrated on BCR-ABL-positive H929 multiple myeloma cells. From 11 880 phosphorylation sites, we confirm that H929 cells are primarily signaling through the BCR-ABL-ERK pathway, and we show that imatinib treatment not only downregulates phosphosites in this pathway but also upregulates phosphosites on proteins involved in RNA expression. Metabolomics analyses reveal that BCR-ABL-ERK signaling in H929 cells drives the pentose phosphate pathway (PPP) and RNA biosynthesis, where pathway inhibition via imatinib results in marked PPP impairment and an accumulation of RNA nucleotides and negative regulation of mRNA. Lipidomics data also show an overall reduction in lipid biosynthesis and fatty acid incorporation with a significant decrease in lysophospholipids. RNA immunoprecipitation studies confirm that RNA degradation is inhibited with short imatinib treatment and transcription is inhibited upon long imatinib treatment, validating the triomics results. These data show the utility of combining mass spectrometry-based "-omics" technologies and reveals that kinase inhibitors may not only downregulate phosphorylation of their targets but also induce metabolic events via increased phosphorylation of other cellular components.
Collapse
Affiliation(s)
- Susanne B. Breitkopf
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
| | - Katja P. Helenius
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
74
|
Roy J, Pondenis H, Fan TM, Das A. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs. Biochemistry 2015; 54:6299-302. [PMID: 26415091 DOI: 10.1021/acs.biochem.5b00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.
Collapse
Affiliation(s)
- Jahnabi Roy
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Holly Pondenis
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Timothy M Fan
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, ‡Department of Veterinary Clinical Medicine, §Department of Chemistry, and ∥Department of Biochemistry, Department of Bioengineering, and Beckman Institute for Advanced Science and Department of Bioengineering, University of Illinois Urbana-Champaign , Urbana, Illinois 61802, United States
| |
Collapse
|
75
|
Jung SY, Yi JY, Kim MH, Song KH, Kang SM, Ahn J, Hwang SG, Nam KY, Song JY. IM-412 inhibits the invasion of human breast carcinoma cells by blocking FGFR-mediated signaling. Oncol Rep 2015; 34:2731-7. [PMID: 26351897 DOI: 10.3892/or.2015.4249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/29/2015] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer with a poor prognosis due to its epithelial‑to-mesenchymal transition (EMT) phenotype. Cancer patients often experience several detrimental effects of cancer treatment, such as chemoresistance, radioresistance and the maintenance of cancer stem cells due to EMT. Thus, EMT signaling is considered to be a valuable therapeutic target for cancer treatment, and its inhibition is being attempted as a new treatment option for TNBC patients. Previously, we showed that 3-(2-chlorobenzyl)-1,7-dimethyl-1H-imidazo[2,1-f]purine‑2,4(3H,8H)-dione (IM-412) inhibits transforming growth factor-β (TGF-β)-induced differentiation of human lung fibroblasts through both Smad-dependent and -independent pathways. In the present study, we examined the inhibitory effect of IM-412 on EMT pathways and invasiveness in TNBC cells since the TGF-β signaling pathway is a typical signaling pathway that functions in EMT. IM-412 not only potently suppressed the migration and invasion of MDA-MB-231 cells, but also lowered the expression of mesenchymal markers and EMT-activating transcription factors in these cells. IM-412 inhibited the activation of several signaling proteins, including Smad2/Smad3, p38MAPK, Akt and JNK, and it also attenuated the phosphorylation of FGFR1 and FGFR3. Collectively, our findings suggest that the synthetic compound IM-412 suppressed the EMT process in MDA-MB-231 cells and thereby effectively inhibited the migration and invasion of these cancer cells. Thus, IM-412 could serve as a novel therapeutic agent for malignant cancers.
Collapse
Affiliation(s)
- Seung-Youn Jung
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae Youn Yi
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Mi-Hyoung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seong-Mook Kang
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ky-Youb Nam
- Center for Development and Commercialization of Anti-Cancer Therapeutics, Asan Medical Center, Seoul, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
76
|
Regad T. Targeting RTK Signaling Pathways in Cancer. Cancers (Basel) 2015; 7:1758-84. [PMID: 26404379 PMCID: PMC4586793 DOI: 10.3390/cancers7030860] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions.
Collapse
Affiliation(s)
- Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK.
| |
Collapse
|
77
|
Vasiliauskas J, Nashu MA, Pathrose P, Starnes SL, Waltz SE. Hepatocyte growth factor-like protein is required for prostate tumor growth in the TRAMP mouse model. Oncotarget 2015; 5:5547-58. [PMID: 24980820 PMCID: PMC4170603 DOI: 10.18632/oncotarget.2139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Ron receptor is deregulated in a variety of cancers. Hepatocyte growth factor-like protein (HGFL) is the ligand for Ron and is constitutively secreted from hepatocytes into the circulation. While a few recent reports have emerged analyzing ectopic HGFL overexpression in cancer cells, no studies have examined the effect of host-produced HGFL in tumorigenesis. To examine HGFL function in prostate cancer, the TRAMP mouse model, which is predisposed to develop prostate tumors, was utilized. Prostate tumors from TRAMP mice exhibit elevated levels of HGFL, which correlated with upregulation in human prostate cancer. To directly implicate HGFL in prostate tumorigenesis, TRAMP mice deficient in HGFL (HGFL-/-TRAMP+) were generated. HGFL-/- TRAMP+ mice developed significantly smaller prostate tumors compared to controls. Analysis of HGFL-/- tumors revealed reduced tumor vascularization. No differences in cancer cell proliferation were detected between HGFL-/- TRAMP+ and HGFL+/+ TRAMP+ mice. However, a significant increase in cancer cell death was detected in HGFL-/- TRAMP+ prostates which correlated with decreased pro-survival targets. In vitro analysis demonstrated robust STAT3 activation resulting in Bcl2-dependent survival following treatment of prostate cancer cells with HGFL. These data document a novel function for endogenous HGFL in prostate cancer by imparting a critical survival signal to tumor cells.
Collapse
Affiliation(s)
- Juozas Vasiliauskas
- Departments of Cancer Biology , Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Madison A Nashu
- Departments of Cancer Biology , Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Peterson Pathrose
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Sandra L Starnes
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Susan E Waltz
- Departments of Cancer Biology , Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio. Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
78
|
Gil da Costa RM. C-kit as a prognostic and therapeutic marker in canine cutaneous mast cell tumours: From laboratory to clinic. Vet J 2015; 205:5-10. [PMID: 26021891 DOI: 10.1016/j.tvjl.2015.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/28/2022]
Abstract
Cutaneous mast cell tumours (MCTs) are some of the most common canine neoplasms and their variable and often aggressive biological behaviour makes them particularly challenging for the veterinary practitioner. Over the years, scientists have accumulated a wealth of knowledge on these tumours and developed better prognostic markers and targeted therapies, mostly focused on inhibiting c-kit, a protein that plays a major role in the biopathology of MCTs. Masitinib and toceranib, targeted inhibitors of c-kit and other receptor tyrosine-kinases (RTKs), offer the promise of improving the outcome of patients with aggressive MCTs. Much of the available knowledge on MCTs is dispersed, making it difficult for practitioners to benefit when consulting a pathologist or making therapeutic decisions. This article seeks to bring together current knowledge on the biopathology of MCTs, reviewing prognostic markers and their applications, and the development of c-kit inhibitors in the context of the basic cellular, molecular and pathological features of MCTs. Future perspectives following recent biopathological data and experimental therapeutic approaches are also addressed.
Collapse
Affiliation(s)
- Rui M Gil da Costa
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, Portugal.
| |
Collapse
|
79
|
Interplay between receptor tyrosine kinases and hypoxia signaling in cancer. Int J Biochem Cell Biol 2015; 62:101-14. [DOI: 10.1016/j.biocel.2015.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 02/06/2023]
|
80
|
Profiling invasiveness in head and neck cancer: recent contributions of genomic and transcriptomic approaches. Cancers (Basel) 2015; 7:585-97. [PMID: 25836654 PMCID: PMC4491672 DOI: 10.3390/cancers7020585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 01/17/2023] Open
Abstract
High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.
Collapse
|
81
|
Grant R, Kolb L, Moliterno J. Molecular and genetic pathways in gliomas: the future of personalized therapeutics. CNS Oncol 2015; 3:123-36. [PMID: 25055018 DOI: 10.2217/cns.14.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, we have seen significant advances in brain imaging, which have resulted in more detailed anatomic and functional localization of gliomas in relation to the eloquent cortex, as well as improvements in microsurgical techniques and enhanced delivery of adjuvant stereotactic radiation. While these advancements have led to a relatively modest improvement in clinical outcomes for patients with malignant gliomas, much more work remains to be done. As with other types of cancer, we are now rapidly moving past the era of histopathology dictating treatment for brain tumors and into the realm of molecular diagnostics and associated targeted therapies, specifically based on the genomic architecture of individual gliomas. In this review, we discuss the current era of molecular glioma characterization and how these profiles will allow for individualized, patient-specific targeted treatments.
Collapse
Affiliation(s)
- Ryan Grant
- Department of Neurosurgery, Yale University School of Medicine, Yale-New Haven Hospital, 333 Cedar Street, TMP4, New Haven, CT 06510, USA
| | | | | |
Collapse
|
82
|
Chen TT, Filvaroff E, Peng J, Marsters S, Jubb A, Koeppen H, Merchant M, Ashkenazi A. MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation. EBioMedicine 2015; 2:406-20. [PMID: 26137585 PMCID: PMC4486192 DOI: 10.1016/j.ebiom.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) drive cancer through their respective receptors, MET and VEGF receptor 2 (VEGFR2). VEGFR2 inhibits MET by promoting MET dephosphorylation. However, whether MET conversely regulates VEGFR2 remains unknown. Here we show that MET suppresses VEGFR2 protein by inducing its endoplasmic-reticulum-associated degradation (ERAD), via intracrine VEGF action. HGF-MET signaling in epithelial cancer cells promoted VEGF biosynthesis through PI3-kinase. In turn, VEGF and VEGFR2 associated within the ER, activating inositol-requiring enzyme 1α, and thereby facilitating ERAD-mediated depletion of VEGFR2. MET disruption upregulated VEGFR2, inducing compensatory tumor growth via VEGFR2 and MEK. However, concurrent disruption of MET and either VEGF or MEK circumvented this, enabling more profound tumor inhibition. Our findings uncover unique cross-regulation between MET and VEGFR2-two RTKs that play significant roles in tumor malignancy. Furthermore, these results suggest rational combinatorial strategies for targeting RTK signaling pathways more effectively, which has potentially important implications for cancer therapy.
Collapse
Affiliation(s)
- Tom T Chen
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ellen Filvaroff
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jing Peng
- In Vivo Pharmacology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adrian Jubb
- Research Pathology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hartmut Koeppen
- Research Pathology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- In Vivo Pharmacology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
83
|
Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:538019. [PMID: 25866791 PMCID: PMC4383470 DOI: 10.1155/2015/538019] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies.
Collapse
Affiliation(s)
| | - Chinmayi Prasanna
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Hanudatta S. Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
84
|
Augustin E, Skwarska A, Weryszko A, Pelikant I, Sankowska E, Borowa-Mazgaj B. The antitumor compound triazoloacridinone C-1305 inhibits FLT3 kinase activity and potentiates apoptosis in mutant FLT3-ITD leukemia cells. Acta Pharmacol Sin 2015; 36:385-99. [PMID: 25640477 DOI: 10.1038/aps.2014.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/07/2014] [Indexed: 12/20/2022]
Abstract
AIM FMS-like receptor tyrosine kinase (FLT3) is expressed in some normal hematopoietic cell types and plays an important role in the pathogenesis of acute myeloid leukemia (AML). In this study, we examined the effects of triazoloacridinone C-1305, an antitumor compound, on AML cells with different FLT3 status in vitro. METHODS A panel of human leukemic cell lines with different FLT3 status was used, including FLT3 internal tandem duplication mutations (FLT3-ITD, MV-4-11), wild-type FLT3 (RS-4-11) and null-FLT3 (U937) cells. Cell proliferation was estimated using MTT assays, and apoptosis was studied with flow cytometry and fluorescence microscopy. FLT3 kinase activity (phosphorylation of FLT3 at Tyr591) was determined with ELISA and Western blotting. FLT3 downstream signaling proteins involving AKT, MAPK and STAT5 were examined by Western blotting. RNA silencing was used to decrease the endogenous FLT3. RESULTS The mutant FLT3-ITD cells were more sensitive to C-1305 than the wild-type FLT3 and null-FLT3 cells (the IC50 values measured at 24 h were 1.2±0.17, 2.0±09, 7.6±1.6 μmol/L, respectively). C-1305 (1-10 μmol/L) dose-dependently inhibited the kinase activity of FLT3, which was more pronounced in the mutant FLT3-ITD cells than in the wild-type FLT3 cells. Furthermore, C-1305 dose-dependently decreased the phosphorylation of STAT5 and MAPK and the inhibitory phosphorylation of Bad, and induced time- and dose-dependent apoptosis in the 3 cell lines with the null-FLT3 cells being the least susceptible to C-1305-induced apoptosis. Knockdown of FLT3 with siRNA significantly decreased C-1305-induced cytotoxicity in the mutant FLT3-ITD cells. CONCLUSION C-1305 induces apoptosis in FLT3-ITD-expressing human leukemia cells in vitro, suggesting that mutated FLT3 kinase can be a new target for C-1305, and C-1305 may be a drug candidate for the therapeutic intervention in FLT3-associated AML.
Collapse
|
85
|
Ye F, Wang Y, Nian S, Wang Y, Chen D, Yu S, Wang S. Synthesis and evaluation of biological and antitumor activities of 5,7-dimethyl- oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives as novel inhibitors of FGFR1. J Enzyme Inhib Med Chem 2015; 30:961-6. [PMID: 25683078 DOI: 10.3109/14756366.2014.1002401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A series of 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives, N5a-5l, was designed, synthesized and evaluated for their FGFR1-inhibition ability as well as cytotoxicity against three cancer cell lines (H460, B16F10 and A549) in vitro. Several compounds displayed good-to-excellent potency against these cancer cell lines compared to SU5402. Structure-activity relationship analyses indicated that compounds with a rigid structure and more heteroatoms at the side chain of the parent ring were more effective than those without these substitutions. The compound N5g (37.4% FGFR1 inhibition at 1.0 μM) was identified to have the most potent antitumor activities, with IC50 values of 5.472, 4.260 and 5.837 μM against H460, B16F10 and A549 cell lines, respectively. Together, our results suggest that 5,7-dimethyl-oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives may serve as potential agents for the treatment of FGFR1-mediated cancers.
Collapse
Affiliation(s)
- Faqing Ye
- a School of Pharmacy, Health Science Center Xi'an Jiaotong University , Xi'an , China and.,b School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou , China
| | - Yuewu Wang
- b School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou , China
| | - Siyun Nian
- b School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou , China
| | - Yu Wang
- b School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou , China
| | - Di Chen
- b School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou , China
| | - Shufang Yu
- b School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou , China
| | - Sicen Wang
- a School of Pharmacy, Health Science Center Xi'an Jiaotong University , Xi'an , China and
| |
Collapse
|
86
|
Wang Z, Lu P, Liang Z, Zhang Z, Shi W, Cai X, Chen C. Increased insulin-like growth factor 1 receptor (IGF1R) expression in small cell lung cancer and the effect of inhibition of IGF1R expression by RNAi on growth of human small cell lung cancer NCI-H446 cell. Growth Factors 2015; 33:337-46. [PMID: 26430715 DOI: 10.3109/08977194.2015.1088533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R) is a tyrosine kinase receptor implicated in tumourigenesis that may be an attractive target for anti-cancer treatment. In this study, the expression and clinical significance of IGF1R were investigated in serum and lung cancer tissues from small cell lung cancinoma (SCLC). We also compared the effect of IGF1R up-regulation and IGF1R inhibition on viability and apoptosis of NCI-H446 cells. We found the concentration of IGF1R in blood serum was significantly increased and positive IGF1R protein in cancer tissue was more prevalent in SCLC. A statistically significant correlation among IGF1R-positve tumors, lymph node metastasis and local invasion was discussed. Furthermore, IGF1R overexpression lead to an increase of cell survival and suppressed cell apoptosis, IGF1R silencing mediated by RNAi abrogate this response of NCI-H446 cells. Our results further demonstrated that the effects of these treatments may be assigned to the effective inhibition of lung cancer cells from Akt/P27(Kip1) pathway in IGF-1R signaling. These features may have important implications for future anti-IGF1R therapeutic approaches.
Collapse
Affiliation(s)
- Zhigang Wang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Pingfang Lu
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhu Liang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhanfei Zhang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Weicheng Shi
- b Guangdong General Hospital of Armed Police Forces , Guangzhou , Guangdong , China
| | - Xiaobi Cai
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Chunyuan Chen
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| |
Collapse
|
87
|
Recent advances in cell membrane chromatography for traditional Chinese medicines analysis. J Pharm Biomed Anal 2014; 101:141-50. [DOI: 10.1016/j.jpba.2014.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 11/21/2022]
|
88
|
Hojjat-Farsangi M, Moshfegh A, Daneshmanesh AH, Khan AS, Mikaelsson E, Osterborg A, Mellstedt H. The receptor tyrosine kinase ROR1--an oncofetal antigen for targeted cancer therapy. Semin Cancer Biol 2014; 29:21-31. [PMID: 25068995 DOI: 10.1016/j.semcancer.2014.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022]
Abstract
Targeted cancer therapies have emerged as new treatment options for various cancer types. Among targets, receptor tyrosine kinases (RTKs) are among the most promising. ROR1 is a transmembrane RTK of importance during the normal embryogenesis for the central nervous system, heart, lung and skeletal systems, but is not expressed in normal adult tissues. However, ROR1 is overexpressed in several human malignancies and may act as a survival factor for tumor cells. Its unique expression by malignant cells may provide a target for novel therapeutics including monoclonal antibodies (mAbs) and small molecule inhibitors of tyrosine kinases (TKI) for the treatment of cancer. Promising preclinical results have been reported in e.g. chronic lymphocytic leukemia, pancreatic carcinoma, lung and breast cancer. ROR1 might also be an interesting oncofetal antigen for active immunotherapy. In this review, we provide an overview of the ROR1 structure and functions in cancer and highlight emerging therapeutic options of interest for targeting ROR1 in tumor therapy.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Abdul Salam Khan
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Eva Mikaelsson
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Anders Osterborg
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden; Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
89
|
Zhang X, Raghavan S, Ihnat M, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Dybdal-Hargreaves NF, Rohena CC, Hamel E, Mooberry SL, Gangjee A. The design and discovery of water soluble 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multitargeted receptor tyrosine kinase inhibitors and microtubule targeting antitumor agents. Bioorg Med Chem 2014; 22:3753-72. [PMID: 24890652 PMCID: PMC4089508 DOI: 10.1016/j.bmc.2014.04.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022]
Abstract
The design, synthesis and biological evaluations of fourteen 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines are reported. Four compounds (11-13, 15) inhibit vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor β (PDGFR-β), and target tubulin leading to cytotoxicity. Compound 11 has nanomolar potency, comparable to sunitinib and semaxinib, against tumor cell lines overexpressing VEGFR-2 and PDGFR-β. Further, 11 binds at the colchicine site on tubulin, depolymerizes cellular microtubules and inhibits purified tubulin assembly and overcomes both βIII-tubulin and P-glycoprotein-mediated drug resistance, and initiates mitotic arrest leading to apoptosis. In vivo, its HCl salt, 21, reduced tumor size and vascularity in xenograft and allograft murine models and was superior to docetaxel and sunitinib, without overt toxicity. Thus 21 affords potential combination chemotherapy in a single agent.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Sudhir Raghavan
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Michael Ihnat
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Jessica E Thorpe
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Bryan C Disch
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Anja Bastian
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Lora C Bailey-Downs
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Nicholas F Dybdal-Hargreaves
- Department of Pharmacology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Cristina C Rohena
- Department of Pharmacology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, United States
| | - Susan L Mooberry
- Department of Pharmacology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
90
|
Zhang L, Han Y, Jiang Q, Wang C, Chen X, Li X, Xu F, Jiang Y, Wang Q, Xu W. Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med Res Rev 2014; 35:63-84. [PMID: 24782318 DOI: 10.1002/med.21320] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmacological inhibition of histone deacetylases (HDACs) has been successfully applied in the treatment of a wide range of disorders, including Parkinson's disease, infection, cardiac diseases, inflammation, and especially cancer. HDAC inhibitors (HDACIs) have been proved to be effective antitumor agents by various stages of investigation. At present, there are two opposite focuses of HDACI design in the cancer therapy, highly selective inhibitor strategy and dual- or multitargeted inhibitors. The former method, which is supposed to elucidate the function of individual HDAC and provide candidate inhibitors with fewer side effects, has been widely accepted by the inhibitor developer. The latter approach, though less practiced, has promising potential for the antitumor therapy based on HDACIs. Effective HDACIs, some of which are in clinic anticancer research, have been developed by both methods. In order to gain insight into HDACI design, the strategies and achievements of the two diverse methods are reviewed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Fang WB, Yao M, Cheng N. Priming cancer cells for drug resistance: role of the fibroblast niche. ACTA ACUST UNITED AC 2014; 9:114-126. [PMID: 25045348 DOI: 10.1007/s11515-014-1300-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Min Yao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
92
|
Reiser J, Sever S, Faul C. Signal transduction in podocytes--spotlight on receptor tyrosine kinases. Nat Rev Nephrol 2014; 10:104-15. [PMID: 24394191 PMCID: PMC4109315 DOI: 10.1038/nrneph.2013.274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian kidney filtration barrier is a complex multicellular, multicomponent structure that maintains homeostasis by regulating electrolytes, acid-base balance, and blood pressure (via maintenance of salt and water balance). To perform these multiple functions, podocytes--an important component of the filtration apparatus--must process a series of intercellular signals. Integrating these signals with diverse cellular responses enables a coordinated response to various conditions. Although mature podocytes are terminally differentiated and cannot proliferate, they are able to respond to growth factors. It is possible that the initial response of podocytes to growth factors is beneficial and protective, and might include the induction of hypertrophic cell growth. However, extended and/or uncontrolled growth factor signalling might be maladaptive and could result in the induction of apoptosis and podocyte loss. Growth factors signal via the activation of receptor tyrosine kinases (RTKs) on their target cells and around a quarter of the 58 RTK family members that are encoded in the human genome have been identified in podocytes. Pharmacological inhibitors of many RTKs exist and are currently used in experimental and clinical cancer therapy. The identification of pathological RTK-mediated signal transduction pathways in podocytes could provide a starting point for the development of novel therapies for glomerular disorders.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, 1735 West Harrison Street, Cohn Building, Suite 724, Chicago, IL 60612, USA
| | - Sanja Sever
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Christian Faul
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue (R-762), Batchelor Building 626, Miami, FL 33136, USA
| |
Collapse
|
93
|
Lombaert IMA, Abrams SR, Li L, Eswarakumar VP, Sethi AJ, Witt RL, Hoffman MP. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Reports 2013; 1:604-19. [PMID: 24371813 PMCID: PMC3871401 DOI: 10.1016/j.stemcr.2013.10.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 11/14/2022] Open
Abstract
Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via separate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotrophic factors that support gland innervation, which maintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+ cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our findings provide a framework to direct regeneration of branched epithelial organs. Combined KIT and FGFR2b signaling amplifies FGFR2b-dependent transcription KIT/FGFR2b signaling during organogenesis expands distal KIT+ epithelial progenitors Distal progenitors communicate with proximal progenitors via the neuronal niche KIT+ progenitors maintain epithelial-neuronal communication during adult homeostasis
Collapse
Affiliation(s)
- Isabelle M A Lombaert
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaun R Abrams
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Li
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Veraragavan P Eswarakumar
- Department of Orthopedics & Rehabilitation, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aditya J Sethi
- Developmental Mechanisms Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert L Witt
- Head & Neck Multidisciplinary Clinic, Helen F. Graham Cancer Center of Christiana Care, Newark, DE 19713, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
94
|
Jung M, Bu SY, Tak KH, Park JE, Kim E. Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract 2013; 7:439-45. [PMID: 24353828 PMCID: PMC3865265 DOI: 10.4162/nrp.2013.7.6.439] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
It has been shown that dysregulation of IGF-1 signaling is associated with tumor incidence and progression, whereas blockade of the signaling can effectively inhibit carcinogenesis. Although several mechanisms of anticancer activity of quercetin were proposed, molecular targets of quercetin have not been identified yet. Hence, we assessed the effect of quercetin on IGF-1 signaling inhibition in BK5.IGF-1 transgenic (Tg) mice, which over-expresses IGF-1 in the skin epidermis. A quercetin diet (0.02% wt/wt) for 20 weeks remarkably delayed the incidence of skin tumor by 2 weeks and reduced tumor multiplicity by 35% in a 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two stage mouse skin carcinogenesis protocol. Moreover, skin hyperplasia in Tg mice was significantly inhibited by a quercetin supplementation. Further analysis of the MT1/2 skin papilloma cell line showed that a quercetin treatment dose dependently suppressed IGF-1 induced phosphorylation of the IGF-1 receptor (IGF-1R), insulin receptor substrate (IRS)-1, Akt and S6K; however, had no effect on the phosphorylation of PTEN. Additionally, the quercetin treatment inhibited IGF-1 stimulated cell proliferation in a dose dependent manner. Taken together, these data suggest that quercetin has a potent anticancer activity through the inhibition of IGF-1 signaling.
Collapse
Affiliation(s)
- Minjeong Jung
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea
| | - So Young Bu
- Department of Food and Nutrition, Daegu University, Gyeongbuk 712-714, Korea
| | - Ka-Hee Tak
- Department of Food Science and Nutrition, Catholic University of Daegu, 13-13 Hayangro, Hayangeup, Gyeongsan, Gyeongbuk 712-702, Korea
| | - Jeong-Eun Park
- Department of Food Science and Nutrition, Catholic University of Daegu, 13-13 Hayangro, Hayangeup, Gyeongsan, Gyeongbuk 712-702, Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Catholic University of Daegu, 13-13 Hayangro, Hayangeup, Gyeongsan, Gyeongbuk 712-702, Korea
| |
Collapse
|
95
|
Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Anti-cancer Therapies in High Grade Gliomas. CURR PROTEOMICS 2013; 10:246-260. [PMID: 24228024 PMCID: PMC3821381 DOI: 10.2174/1570164611310030007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022]
Abstract
High grade gliomas represent one of the most aggressive and treatment-resistant types of human cancer, with only 1–2 years median survival rate for patients with grade IV glioma. The treatment of glioblastoma is a considerable therapeutic challenge; combination therapy targeting multiple pathways is becoming a fast growing area of research. This review offers an up-to-date perspective of the literature about current molecular therapy targets in high grade glioma, that include angiogenic signals, tyrosine kinase receptors, nodal signaling proteins and cancer stem cells related approaches. Simultaneous identification of proteomic signatures could provide biomarker panels for diagnostic and personalized treatment of different subsets of glioblastoma. Personalized medicine is starting to gain importance in clinical care, already having recorded a series of successes in several types of cancer; nonetheless, in brain tumors it is still at an early stage.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, Department of Biochemistry-Proteomics, no 99-101 Splaiul Inde-pendentei, 050096 sect 5 Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
96
|
Jacobson O, Chen X. Interrogating tumor metabolism and tumor microenvironments using molecular positron emission tomography imaging. Theranostic approaches to improve therapeutics. Pharmacol Rev 2013; 65:1214-56. [PMID: 24064460 PMCID: PMC3799232 DOI: 10.1124/pr.113.007625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [(18)F]fluorodeoxyglucose ([(18)F]FDG), which measures glucose metabolism. However, [(18)F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[(18)F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications.
Collapse
Affiliation(s)
- Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD.
| | | |
Collapse
|
97
|
|
98
|
Abstract
It was first posited in the 1970s that angiogenesis may prove to be a useful target for anticancer therapies. Since then, a number of agents have been developed and tested across a range of tumor types; however, to date, there have unfortunately been more failures than successes. Prostate cancer (PCa) is no exception in this regard, and despite a strong preclinical rationale for targeting angiogenesis in men with PCa, there has yet to be an antiangiogenic therapy proven to prolong survival in this group of patients. Drugs have been developed to target a host of angiogenesis mediators. These include vascular endothelial growth factor (VEGF), the VEGF receptors, antiangiogenic factors (e.g., thrombospondin-1), and downstream mediators of angiogenesis (e.g., hypoxia-inducible factor-1α and MET). At present, there are 2 drugs being tested in the phase III setting for men with PCa: cabozantinib and tasquinimod. Cabozantinib, a dual VEGF receptor-2/MET inhibitor, has shown dramatic beneficial effects on radiographically evident bone metastases and pain in the phase II setting. There are currently 2 large phase III trials underway to further investigate cabozantinib's role in treating men with PCa. Both trials randomize subjects to cabozantinib versus mitoxantrone: one is designed to evaluate overall survival, and the other, pain response durability. The other drug, tasquinimod, has a somewhat poorly understood mechanism of action. It is thought to exert an antiangiogenic effect through the inhibition of myeloid-derived suppressor cells, key to the support of an angiogenic environment, and down-regulation of hypoxia-inducible factor-1α. A phase II trial randomizing men to tasquinimod versus placebo revealed a median progression-free survival advantage in the experimental arm (7.6 vs. 3.3 months with placebo; P = 0.0042). Based on these encouraging phase II results, a randomized, double-blind, placebo-controlled trial in men with metastatic castration-resistant PCa was launched. That trial is powered for a primary endpoint of progression-free survival and is expected to enroll 1200 men.
Collapse
|
99
|
Abstract
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo, 104-0045, Japan
| | | |
Collapse
|
100
|
Hohensee I, Lamszus K, Riethdorf S, Meyer-Staeckling S, Glatzel M, Matschke J, Witzel I, Westphal M, Brandt B, Müller V, Pantel K, Wikman H. Frequent genetic alterations in EGFR- and HER2-driven pathways in breast cancer brain metastases. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:83-95. [PMID: 23665199 DOI: 10.1016/j.ajpath.2013.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
Abstract
Current standard systemic therapies for treating breast cancer patients with brain metastases are inefficient. Targeted therapies against human epidermal growth factor receptors are of clinical interest because of their alteration in a subset of breast cancers (BCs). We analyzed copy number, mutation status, and protein expression of epidermal growth factor receptor (EGFR), human epidermal growth factor 2 (HER2), phosphatase and tensin homologue (PTEN), and PI3K catalytic subunit (PIK3CA) in 110 ductal carcinoma in situ, primary tumor, and metastatic BC samples. Alterations in EGFR, HER2, and PTEN, alone or in combination, were found in a significantly larger fraction of breast cancer brain metastases tumor tissue compared with samples from primary tumors with good prognosis, bone relapse, or other distant metastases (all P < 0.05). Primary tumor patients with a subsequent brain relapse showed almost equally high frequencies of especially EGFR and PTEN alteration as the breast cancer brain metastases patients. PIK3CA was not associated with an increased risk of brain metastases. Genetic alterations in both EGFR and PTEN were especially common in triple-negative breast cancer patients and rarely were seen among HER2-positive patients. In conclusion, we identified two independent high-risk primary BC subgroups for developing brain metastases, represented by genetic alterations in either HER2 or EGFR/PTEN-driven pathways. In contrast, none of these pathways was associated with an increased risk of bone metastasis. These findings highlight the importance of both pathways as possible targets in the treatment of brain metastases in breast cancer.
Collapse
Affiliation(s)
- Ina Hohensee
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|