51
|
Xu K, Xia P, Gongye X, Zhang X, Ma S, Chen Z, Zhang H, Liu J, Liu Y, Guo Y, Yao Y, Gao M, Chen Y, Zhang Z, Yuan Y. A novel lncRNA RP11-386G11.10 reprograms lipid metabolism to promote hepatocellular carcinoma progression. Mol Metab 2022; 63:101540. [PMID: 35798238 PMCID: PMC9287641 DOI: 10.1016/j.molmet.2022.101540] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Objective Emerging studies suggest that long non-coding RNAs (lncRNAs) play crucial roles in hepatocellular carcinoma (HCC). A rapidly increasing number of studies have shown that metabolic changes including lipid metabolic reprogramming play a significant role in the progression of HCC. But it remains to be elucidated how lncRNAs affect tumor cell metabolism. Methods Through analysis and screening of The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset, we found a novel lncRNA RP11-386G11.10 was overexpressed, related to prognosis, conserved and non-protein-coding in HCC and related to poor prognosis. Then, CCK-8, colony formation, Transwell invasion, wound healing assays were performed and nude mouse subcutaneous tumour formation and lung metastasis models were established to explore the effect of RP11-386G11.10 on HCC tumour growth and metastasis. Chromatography-mass spectrometry (GC-MS) and Nile red staining detected the effect of RP11-386G11.10 on lipid metabolism in HCC. Mechanistically, we clarified the RP11-386G11.10/miR-345-3p/HNRNPU signalling pathway through dual luciferase reporter, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays and identified ZBTB7A as a transcription factor of RP11-386G11.10. Results RP11-386G11.10 was overexpressed in HCC and positively correlated with tumour size, TNM stage, and poor prognosis in HCC patients. RP11-386G11.10 promoted the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistically, RP11-386G11.10 acted as a competing endogenous RNA (ceRNA) for miR-345-3p to regulate the expression of HNRNPU and its downstream lipogenic enzymes, leading to lipid accumulation in HCC cells and promoting their growth and metastasis. In addition, we identified ZBTB7A as a transcription factor of RP11-386G11.10. Moreover, HNRNPU promoted the expression of ZBTB7A in HCC cells, thereby increasing the transcriptional activity of RP11-386G11.10, and forming a positive feedback loop, ultimately leading continuous lipid accumulation, growth and metastasis in HCC cells. Conclusions Our results indicated that the lncRNA RP11-386G11.10 was a novel oncogenic lncRNA that was strongly correlated with the poor prognosis of HCC. The ZBTB7A-RP11-386G11.10-HNRNPU positive feedback loop promoted the progression of HCC by regulating lipid anabolism. RP11-386G11.10 may become a new diagnostic and prognostic biomarker and therapy target for HCC. LncRNA RP11-386G11.10 was up-regulated in HCC. Overexpression of lncRNA RP11-386G11.10 promoted the proliferation, metastasis of HCC cells in vivo and in vitro. We confirmed that regulation of HNRNPU expression by RP11-286H15.1 resulted in lipid accumulation in HCC cells. HNRNPU forms a ZBTB7A- RP11-386G11.10 -HNRNPU positive feedback loop by promoting mRNA stability of ZBTB7A.
Collapse
|
52
|
Wang C, Kong F, Ma J, Miao J, Su P, Yang H, Li Q, Ma X. IGF2BP3 enhances the mRNA stability of E2F3 by interacting with LINC00958 to promote endometrial carcinoma progression. Cell Death Discov 2022; 8:279. [PMID: 35676262 PMCID: PMC9177600 DOI: 10.1038/s41420-022-01045-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of pathological processes involving cancer. However, the exact molecular mechanisms of lncRNA regulation in endometrial carcinoma (EC) remain poorly defined. The aim of this study was to illustrate the mechanism of LINC00958 in regulating the function of IGF2BP3, an RNA binding protein involved in mRNA stability, and their clinical implications in EC. First, we investigated the clinical role of IGF2BP3 in EC and demonstrated its prognostic value. Loss-of-function and gain-of-function studies showed that IGF2BP3 promoted EC cell proliferation, migration and invasion. Then, we carried out RNA immunoprecipitation sequencing (RIP-seq) analysis, RNA pulldown and immunofluorescence-RNA fluorescence in situ hybridization to identify LINC00958 that interacted with IGF2BP3 in the cytoplasm of EC cells. Rescue experiments indicated that knockdown of LINC00958 partially offset the EC cell progression mediated by IGF2BP3. After that, RNA sequencing was used to screen out the downstream genes of IGF2BP3 and LINC00958. The results revealed that IGF2BP3 upregulated E2F3 expression by interacting with LINC00958. Furthermore, RNA stability assays demonstrated that silencing LINC00958 partially rescued the IGF2BP3-mediated promoting effect on the mRNA stability of E2F3. Collectively, this study suggests that LINC00958, as an oncogene, assists IGF2BP3 in stabilizing E2F3 mRNA and ultimately promotes EC progression, providing a promising therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Peng Su
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
| |
Collapse
|
53
|
Ron M, Ulitsky I. Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs. Nat Commun 2022; 13:2481. [PMID: 35513423 PMCID: PMC9072321 DOI: 10.1038/s41467-022-30183-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Long RNAs vary extensively in their post-transcriptional fates, and this variation is attributed in part to short sequence elements. We used massively parallel RNA assays to study how sequences derived from noncoding RNAs influence the subcellular localization and stability of circular and linear RNAs, including spliced and unspliced forms. We find that the effects of sequence elements strongly depend on the host RNA context, with limited overlap between sequences that drive nuclear enrichment of linear and circular RNAs. Binding of specific RNA binding proteins underpins some of these differences-SRSF1 binding leads to nuclear enrichment of circular RNAs; SAFB binding is associated with nuclear enrichment of predominantly unspliced linear RNAs; and IGF2BP1 promotes export of linear spliced RNA molecules. The post-transcriptional fate of long RNAs is thus dictated by combinatorial contributions of specific sequence elements, of splicing, and of the presence of the terminal features unique to linear RNAs.
Collapse
Affiliation(s)
- Maya Ron
- Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Igor Ulitsky
- Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
54
|
IGF2BP1 Promotes Proliferation of Neuroendocrine Neoplasms by Post-Transcriptional Enhancement of EZH2. Cancers (Basel) 2022; 14:cancers14092121. [PMID: 35565249 PMCID: PMC9131133 DOI: 10.3390/cancers14092121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms (NEN) are very heterogeneous malignancies arising at different sites of the body that show an increasing incidence in recent decades. Here, we show that IGF2 mRNA binding protein 1 (IGF2BP1) is highly expressed in NEN cell lines, leading to enhanced cell proliferation. This oncogenic function relies on post-transcriptional stimulation of EZH2 expression by IGF2BP1, resulting in epigenetic silencing of cell cycle inhibitors via tri-methylation of histone H3 at lysine 27 (H3K27me3). Combinatorial pharmacological targeting of IGF2BP1, EZH2, and the EZH2-activator Myc leads to synergistic antiproliferative and proapoptotic effects in NEN cells, representing a novel therapeutic strategy in neuroendocrine malignancies. Abstract Neuroendocrine neoplasms (NENs) represent a heterogenous class of highly vascularized neoplasms that are increasing in prevalence and are predominantly diagnosed at a metastatic state. The molecular mechanisms leading to tumor initiation, metastasis, and chemoresistance are still under investigation. Hence, identification of novel therapeutic targets is of great interest. Here, we demonstrate that the RNA-binding Protein IGF2BP1 is a post-transcriptional regulator of components of the Polycomb repressive complex 2 (PRC2), an epigenic modifier affecting transcriptional regulation and proliferation: Comprehensive in silico analyses along with in vitro experiments showed that IGF2BP1 promotes neuroendocrine tumor cell proliferation by stabilizing the mRNA of Enhancer of Zeste 2 (EZH2), the catalytic subunit of PRC2, which represses gene expression by tri-methylation of histone H3 at lysine 27 (H3K27me3). The IGF2BP1-driven stabilization and protection of EZH2 mRNA is m6A-dependent and enhances EZH2 protein levels which stimulates cell cycle progression by silencing cell cycle arrest genes through enhanced H3K27 tri-methylation. Therapeutic inhibition of IGF2BP1 destabilizes EZH2 mRNA and results in a reduced cell proliferation, paralleled by an increase in G1 and sub-G1 phases. Combined targeting of IGF2BP1, EZH2, and Myc, a transcriptional activator of EZH2 and well-known target of IGF2BP1 cooperatively induces tumor cell apoptosis. Our data identify IGF2BP1 as an important driver of tumor progression in NEN, and indicate that disruption of the IGF2BP1-Myc-EZH2 axis represents a promising approach for targeted therapy of neuroendocrine neoplasms.
Collapse
|
55
|
Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, Teng K, Chen RX, Deng MH, Yin YX, Zhang N, Xie D, Cai MY. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer 2022; 21:93. [PMID: 35366894 PMCID: PMC8976336 DOI: 10.1186/s12943-022-01537-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) regulate various biological activities and have been shown to play crucial roles in hepatocellular carcinoma (HCC) progression. However, only a few coding circRNAs have been identified in cancers, and their roles in HCC remain elusive. This study aimed to identify coding circRNAs and explore their function in HCC. METHODS CircMAP3K4 was selected from the CIRCpedia database. We performed a series of experiments to determine the characteristics and coding capacity of circMAP3K4. We then used in vivo and in vitro assays to investigate the biological function and mechanism of circMAP3K4 and its protein product, circMAP3K4-455aa, in HCC. RESULTS We found circMAP3K4 to be an upregulated circRNA with coding potential in HCC. IGF2BP1 recognized the circMAP3K4 N6-methyladenosine modification and promoted its translation into circMAP3K4-455aa. Functionally, circMAP3K4-455aa prevented cisplatin-induced apoptosis in HCC cells by interacting with AIF, thus protecting AIF from cleavage and decreasing its nuclear distribution. Moreover, circMAP3K4-455aa was degraded through the ubiquitin-proteasome E3 ligase MIB1 pathway. Clinically, a high level of circMAP3K4 is an independent prognostic factor for adverse overall survival and adverse disease-free survival of HCC patients. CONCLUSIONS CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, circMAP3K4 encoded circMAP3K4-455aa, protected HCC cells from cisplatin exposure, and predicted worse prognosis of HCC patients. Targeting circMAP3K4-455aa may provide a new therapeutic strategy for HCC patients, especially for those with chemoresistance. CircMAP3K4 is a highly expressed circRNA in HCC. Driven by m6A modification, IGF2BP1 facilitates circMAP3K4 peptide translation, then the circMAP3K4 peptide inhibits AIF cleavage and nuclear distribution, preventing HCC cells from cell death under stress and promoting HCC progression.
Collapse
Affiliation(s)
- Jin-Ling Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Wei Chen
- Center of Hepato-Pancreatico-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Juan-Juan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Mao-Lei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China
| | - Run-Cong Nie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jie Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Kai Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhi-Cheng Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Kai Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ri-Xin Chen
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Research Center of Medical Sciences, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Min-Hua Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
- Department of Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yi-Xin Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, 510080, China.
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Mu-Yan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
56
|
Chang Y, Yi M, Wang J, Cao Z, Zhou T, Ge W, Muhammad Z, Zhang Z, Feng Y, Yan Z, Felici MD, Shen W, Cao H. Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Front Cell Dev Biol 2022; 10:819044. [PMID: 35359444 PMCID: PMC8964082 DOI: 10.3389/fcell.2022.819044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.
Collapse
Affiliation(s)
- Yuguang Chang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mingliang Yi
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhikun Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tingting Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zafir Muhammad
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanqin Feng
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zihui Yan
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Massimo De Felici, ; Wei Shen, ; Hongguo Cao,
| |
Collapse
|
57
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
58
|
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022; 11:672. [PMID: 35203320 PMCID: PMC8870565 DOI: 10.3390/cells11040672] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Jack Crouch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Maria Shvedova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Vladimir Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Daniel Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| |
Collapse
|
59
|
Fakhraldeen SA, Berry SM, Beebe DJ, Roopra A, Bisbach CM, Spiegelman VS, Niemi NM, Alexander CM. Enhanced immunoprecipitation techniques for the identification of RNA-binding protein partners: IGF2BP1 interactions in mammary epithelial cells. J Biol Chem 2022; 298:101649. [PMID: 35104504 PMCID: PMC8891971 DOI: 10.1016/j.jbc.2022.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate the expression of large cohorts of RNA species to produce programmatic changes in cellular phenotypes. To describe the function of RBPs within a cell, it is key to identify their mRNA-binding partners. This is often done by crosslinking nucleic acids to RBPs, followed by chemical release of the nucleic acid fragments for analysis. However, this methodology is lengthy, which involves complex processing with attendant sample losses, thus large amounts of starting materials and prone to artifacts. To evaluate potential alternative technologies, we tested “exclusion-based” purification of immunoprecipitates (IFAST or SLIDE) and report here that these methods can efficiently, rapidly, and specifically isolate RBP–RNA complexes. The analysis requires less than 1% of the starting material required for techniques that include crosslinking. Depending on the antibody used, 50% to 100% starting protein can be retrieved, facilitating the assay of endogenous levels of RBPs; the isolated ribonucleoproteins are subsequently analyzed using standard techniques, to provide a comprehensive portrait of RBP complexes. Using exclusion-based techniques, we show that the mRNA-binding partners for RBP IGF2BP1 in cultured mammary epithelial cells are enriched in mRNAs important for detoxifying superoxides (specifically glutathione peroxidase [GPX]-1 and GPX-2) and mRNAs encoding mitochondrial proteins. We show that these interactions are functionally significant, as loss of function of IGF2BP1 leads to destabilization of GPX mRNAs and reduces mitochondrial membrane potential and oxygen consumption. We speculate that this underlies a consistent requirement for IGF2BP1 for the expression of clonogenic activity in vitro.
Collapse
Affiliation(s)
- Saja A Fakhraldeen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Celia M Bisbach
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University in St Louis
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
60
|
Wu J, Wu Y, Guo Q, Wang S, Wu X. RNA-binding proteins in ovarian cancer: a novel avenue of their roles in diagnosis and treatment. J Transl Med 2022; 20:37. [PMID: 35062979 PMCID: PMC8783520 DOI: 10.1186/s12967-022-03245-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC), an important cause of cancer-related death in women worldwide, is one of the most malignant cancers and is characterized by a poor prognosis. RNA-binding proteins (RBPs), a class of endogenous proteins that can bind to mRNAs and modify (or even determine) the amount of protein they can generate, have attracted great attention in the context of various diseases, especially cancers. Compelling studies have suggested that RBPs are aberrantly expressed in different cancer tissues and cell types, including OC tissues and cells. More specifically, RBPs can regulate proliferation, apoptosis, invasion, metastasis, tumorigenesis and chemosensitivity and serve as potential therapeutic targets in OC. Herein, we summarize what is currently known about the biogenesis, molecular functions and potential roles of human RBPs in OC and their prospects for application in the clinical treatment of OC.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
61
|
Riccioni V, Trionfetti F, Montaldo C, Garbo S, Marocco F, Battistelli C, Marchetti A, Strippoli R, Amicone L, Cicchini C, Tripodi M. SYNCRIP Modulates the Epithelial-Mesenchymal Transition in Hepatocytes and HCC Cells. Int J Mol Sci 2022; 23:ijms23020913. [PMID: 35055098 PMCID: PMC8780347 DOI: 10.3390/ijms23020913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) control gene expression by acting at multiple levels and are often deregulated in epithelial tumors; however, their roles in the fine regulation of cellular reprogramming, specifically in epithelial–mesenchymal transition (EMT), remain largely unknown. Here, we focused on the hnRNP-Q (also known as SYNCRIP), showing by molecular analysis that in hepatocytes it acts as a “mesenchymal” gene, being induced by TGFβ and modulating the EMT. SYNCRIP silencing limits the induction of the mesenchymal program and maintains the epithelial phenotype. Notably, in HCC invasive cells, SYNCRIP knockdown induces a mesenchymal–epithelial transition (MET), negatively regulating their mesenchymal phenotype and significantly impairing their migratory capacity. In exploring possible molecular mechanisms underlying these observations, we identified a set of miRNAs (i.e., miR-181-a1-3p, miR-181-b1-3p, miR-122-5p, miR-200a-5p, and miR-let7g-5p), previously shown to exert pro- or anti-EMT activities, significantly impacted by SYNCRIP interference during EMT/MET dynamics and gathered insights, suggesting the possible involvement of this RNA binding protein in their transcriptional regulation.
Collapse
Affiliation(s)
- Veronica Riccioni
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Sabrina Garbo
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Francesco Marocco
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Alessandra Marchetti
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Raffaele Strippoli
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Laura Amicone
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Carla Cicchini
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- Correspondence: (C.C.); (M.T.)
| | - Marco Tripodi
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
- Correspondence: (C.C.); (M.T.)
| |
Collapse
|
62
|
Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, Zhang S, Zhao S, Xu H, Li M, Gao Z, Fan Y, Xu J, Wang H, Wang S, Qiu J, Wang Q, Guo X, Deng L, Zhang P, Xue H, Li G. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer 2022; 21:16. [PMID: 35031058 PMCID: PMC8759291 DOI: 10.1186/s12943-021-01485-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. Methods CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. Results We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. Conclusions This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01485-6.
Collapse
Affiliation(s)
- Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shouji Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xu
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ming Li
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.,Department of Neurosurgery, Taian Central Hospital, Taian, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road; Jinan, Shandong 250012, China, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China.
| |
Collapse
|
63
|
Wang RS, Lembo AJ, Kaptchuk TJ, Cheng V, Nee J, Iturrino J, Rao M, Loscalzo J, Silvester JA, Hall KT. Genomic Effects Associated With Response to Placebo Treatment in a Randomized Trial of Irritable Bowel Syndrome. FRONTIERS IN PAIN RESEARCH 2022; 2:775386. [PMID: 35295415 PMCID: PMC8915627 DOI: 10.3389/fpain.2021.775386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Irritable bowel syndrome (IBS), a functional pain disorder of gut-brain interactions, is characterized by a high placebo response in randomized clinical trials (RCTs). Catechol-O-methyltransferase (COMT) rs4680, which encodes high-activity (val) or low-activity (met) enzyme variants, was previously associated with placebo response to sham-acupuncture in an IBS RCT. Examining COMT effects and identifying novel genomic factors that influence response to placebo pills is critical to identifying underlying mechanisms and predicting and managing placebos in RCTs. Methods: Participants with IBS (N = 188) were randomized to three placebo-related interventions, namely, double-blind placebo (DBP), open-label placebo (OLP), or simply trial enrollment without placebo treatment [no placebo (i.e., no pill) treatment control (NPC)], for 6 weeks. COMT rs4680, gene-set, and genome-wide suggestive (p < 10-5) loci effects on irritable bowel symptom severity score (IBS-SSS) across all participants were examined. Results: Participants with IBS homozygous for rs4680 met (met/met) had the greatest improvement across all arms, with significantly greater improvement compared to val/val in DBP (beta (SE), -89.4 (42.3); p = 0.04). Twelve genome-wide suggestive loci formed a gene regulatory network highly connected to EGR1, a transcription factor involved in placebo-related processes of learning, memory, and response to stress and reward. EGR1 gene expression in peripheral blood mononuclear cells (PBMC) was significantly reduced at the endpoint across all treatment arms (log fold-change, -0.15; p = 0.02). Gene-set enrichment analysis returned three genome-wide significant ontology terms (GO:0032968, GO:0070934, and GO:0070937) linked to transcription regulation and GO:0003918 associated with DNA topoisomerase regulation. Conclusion: These results suggest common molecular mechanisms in response to varying forms of placebo that may inform personalized IBS treatment and placebo response prediction. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT0280224.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Anthony J. Lembo
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ted J. Kaptchuk
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of General Medicine Primary Care, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vivian Cheng
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Judy Nee
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Johanna Iturrino
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Joseph Loscalzo
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jocelyn A. Silvester
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Celiac Disease Program, Boston Children's Hospital, Boston, MA, United States
| | - Kathryn T. Hall
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
64
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
65
|
Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res 2022; 32:9-23. [PMID: 34737357 PMCID: PMC8566969 DOI: 10.1038/s41422-021-00581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.
Collapse
|
66
|
An in vitro system to silence mitochondrial gene expression. Cell 2021; 184:5824-5837.e15. [PMID: 34672953 DOI: 10.1016/j.cell.2021.09.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.
Collapse
|
67
|
Grenov AC, Moss L, Edelheit S, Cordiner R, Schmiedel D, Biram A, Hanna JH, Jensen TH, Schwartz S, Shulman Z. The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers. J Exp Med 2021; 218:e20210360. [PMID: 34402854 PMCID: PMC8374864 DOI: 10.1084/jem.20210360] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/02/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022] Open
Abstract
Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation-related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.
Collapse
Affiliation(s)
- Amalie C. Grenov
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihee Moss
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarit Edelheit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ross Cordiner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H. Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
68
|
Zhang L, Wang Z, Li M, Sun P, Bai T, Wang W, Bai H, Gou J, Wang Z. HCG18 Participates in Vascular Invasion of Hepatocellular Carcinoma by Regulating Macrophages and Tumor Stem Cells. Front Cell Dev Biol 2021; 9:707073. [PMID: 34527669 PMCID: PMC8435853 DOI: 10.3389/fcell.2021.707073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives To identify key genes involved in vascular invasion in hepatocellular carcinoma (HCC), to describe their regulatory mechanisms, and to explore the immune microenvironment of HCC. Methodology In this study, the genome, transcriptome, and immune microenvironment of HCC were assessed by using multi-platform data from The Cancer Genome Atlas (n = 373) and GEO data (GSE149614). The key regulatory networks, transcription factors and core genes related to vascular invasion and prognosis were explored based on the CE mechanism. Survival analysis and gene set enrichment were used to explore pathways related to vascular invasion. Combined with single-cell transcriptome data, the distribution of core gene expression in various cells was observed. Cellular communication analysis was used to identify key cells associated with vascular invasion. Pseudo-temporal locus analysis was used to explore the regulation of core genes in key cell phenotypes. The influence of core genes on current immune checkpoint therapy was evaluated and correlations with tumor stem cell scores were explored. Results We obtained a network containing 1,249 pairs of CE regulatory relationships, including 579 differential proteins, 28 non-coding RNAs, and 37 miRNAs. Three key transcription factors, ILF2, YBX1, and HMGA1, were identified, all regulated by HCG18 lncRNA. ScRNAseq showed that HCG18 co-localized with macrophages and stem cells. CIBERSORTx assessed 22 types of immune cells in HCC and found that HCG18 was positively correlated with M0 macrophages, while being negatively correlated with M1 and M2 macrophages, monocytes, and dendritic cells. Cluster analysis based on patient prognosis suggested that regulating phenotypic transformation of macrophages could be an effective intervention for treating HCC. At the same time, higher expression of HCG18, HMGA1, ILF2, and YBX1 was associated with a higher stem cell score and less tumor differentiation. Pan cancer analysis indicated that high expression of HCG18 implies high sensitivity to immune checkpoint therapy. Conclusion HCG18 participates in vascular invasion of HCC by regulating macrophages and tumor stem cells through three key transcription factors, YBX1, ILF2, and HMGA1.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Zhiwei Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxing Li
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Sun
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Bai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Wang
- Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China.,Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, China
| | - Hualong Bai
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Vascular Physiology and Applied Research Laboratory of Zhengzhou City, Zhengzhou, China
| | - Jianjun Gou
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiju Wang
- Department of Physiology, Medical School of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
69
|
Yang Y, Wu J, Liu F, He J, Wu F, Chen J, Jiang Z. IGF2BP1 Promotes the Liver Cancer Stem Cell Phenotype by Regulating MGAT5 mRNA Stability by m6A RNA Methylation. Stem Cells Dev 2021; 30:1115-1125. [PMID: 34514861 DOI: 10.1089/scd.2021.0153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to elucidate the mechanism of action of the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) on the phenotype of the liver cancer stem cells (LCSCs). To gain insight into the mechanism of action of the IGF2BP1 on LCSCs, the IGF2BP1 shRNA sequences were transfected into hepatocellular carcinoma (HCC) cells. The LCSC phenotypes were measured by stemness gene expressions, spheroid formations, percentages of the CD133+ cells, colony formations, and tumorigenesis in vivo. Next, we screened for possible molecular mechanisms from the Cancer Genome Atlas (TCGA) database, and a methylated RNA immunoprecipitation-quantitative polymerase chain reaction (MeRIP-qPCR) was used to adjust the binding of IGF2BP1 to the target gene, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase (MGAT5). The MeRIP-qPCR was used to detect the binding of IGF2BP1 and MGAT5 through N6 methyladenosine (m6A) modification. Furthermore, we adjusted the attenuation of the mRNA of the MGAT5 using quantitative real-time PCR (qRT-PCR). The IGF2BP1 was upregulated in the LCSCs. Furthermore, the IGF2BP1 promoted self-renewal and chemoresistance in human LCSCs and tumorigenesis in mice and it enhanced the expression of stemness genes in the LCSCs compared with the HCC cells. Further exploration indicated that the IGF2BP1 binds directly to the MGAT5 and inhibits its mRNA attenuation, suggesting that the IGF2BP1 impacts MGAT5 mRNA stability through m6A modification. Thus, it can be concluded that the IGF2BP1 facilitated the LCSC phenotypes by promoting the MGAT5 mRNA stability through the upregulation of m6A modification of the MGAT5 mRNA.
Collapse
Affiliation(s)
- Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fuqiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
70
|
Mateu-Regué À, Christiansen J, Bagger FO, Hellriegel C, Nielsen FC. Unveiling mRNP composition by fluorescence correlation and cross-correlation spectroscopy using cell lysates. Nucleic Acids Res 2021; 49:e119. [PMID: 34478550 PMCID: PMC8599746 DOI: 10.1093/nar/gkab751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/29/2023] Open
Abstract
Understanding the mRNA life cycle requires information about the dynamics and macromolecular composition and stoichiometry of mRNPs. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are appealing technologies to study these macromolecular structures because they have single molecule sensitivity and readily provide information about their molecular composition and dynamics. Here, we demonstrate how FCS can be exploited to study cytoplasmic mRNPs with high accuracy and reproducibility in cell lysates. Cellular lysates not only recapitulate data from live cells but provide improved readings and allow investigation of single mRNP analysis under particular conditions or following enzymatic treatments. Moreover, FCCS employing minute amounts of cells closely corroborated previously reported RNA dependent interactions and provided estimates of the relative overlap between factors in the mRNPs, thus depicting their heterogeneity. The described lysate-based FCS and FCCS analysis may not only complement current biochemical approaches but also provide novel opportunities for the quantitative analysis of the molecular composition and dynamics of single mRNPs.
Collapse
Affiliation(s)
- Àngels Mateu-Regué
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jan Christiansen
- Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian Hellriegel
- Carl Zeiss RMS / Harvard Center for Biological Imaging, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
71
|
Wilmore S, Rogers-Broadway KR, Taylor J, Lemm E, Fell R, Stevenson FK, Forconi F, Steele AJ, Coldwell M, Packham G, Yeomans A. Targeted inhibition of eIF4A suppresses B-cell receptor-induced translation and expression of MYC and MCL1 in chronic lymphocytic leukemia cells. Cell Mol Life Sci 2021; 78:6337-6349. [PMID: 34398253 PMCID: PMC8429177 DOI: 10.1007/s00018-021-03910-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022]
Abstract
Signaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- Benzofurans/pharmacology
- Cells, Cultured
- Eukaryotic Initiation Factor-4A/antagonists & inhibitors
- Eukaryotic Initiation Factor-4A/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA Stability/drug effects
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Sarah Wilmore
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Karly-Rai Rogers-Broadway
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Joe Taylor
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Elizabeth Lemm
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Rachel Fell
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Freda K Stevenson
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Francesco Forconi
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Andrew J Steele
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| | - Mark Coldwell
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK.
| | - Alison Yeomans
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Somers Building, Southampton, SO16 6YD, UK
| |
Collapse
|
72
|
Zhang C, Ou S, Zhou Y, Liu P, Zhang P, Li Z, Xu R, Li Y. m 6A Methyltransferase METTL14-Mediated Upregulation of Cytidine Deaminase Promoting Gemcitabine Resistance in Pancreatic Cancer. Front Oncol 2021; 11:696371. [PMID: 34458141 PMCID: PMC8385558 DOI: 10.3389/fonc.2021.696371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Objective Pancreatic cancer is one of the most lethal human malignancies. Gemcitabine is widely used to treat pancreatic cancer, and the resistance to chemotherapy is the major difficulty in treating the disease. N6-methyladenosine (m6A) modification, which regulates RNA splicing, stability, translocation, and translation, plays critical roles in cancer physiological and pathological processes. METTL14, an m6A Lmethyltransferase, was found deregulated in multiple cancer types. However, its role in gemcitabine resistance in pancreatic cancer remains elusive. Methods The mRNA and protein level of m6A modification associated genes were assessed by QRT-PCR and western blotting. Then, gemcitabine‐resistant pancreatic cancer cells were established. The growth of pancreatic cancer cells were analyzed using CCK8 assay and colony formation assay. METTL14 was depleted by using shRNA. The binding of p65 on METTL14 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Protein level of deoxycytidine kinase (DCK) and cytidine deaminase (CDA) was evaluated by western blotting. In vivo experiments were conducted to further confirm the critical role of METTL14 in gemcitabine resistance. Results We found that gemcitabine treatment significantly increased the expression of m6A methyltransferase METTL14, and METTL14 was up-regulated in gemcitabine-resistance human pancreatic cancer cells. Suppression of METTL14 obviously increased the sensitivity of gemcitabine in resistant cells. Moreover, we identified that transcriptional factor p65 targeted the promoter region of METTL14 and up-regulated its expression, which then increased the expression of cytidine deaminase (CDA), an enzyme inactivates gemcitabine. Furthermore, in vivo experiment showed that depletion of METTL14 rescue the response of resistance cell to gemcitabine in a xenograft model. Conclusion Our study suggested that METTL14 is a potential target for chemotherapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Congjun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuangyan Ou
- Department of Digestion and Urology, Hunan Tumor Hospital, Changsha, China
| | - Yuan Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Pei Liu
- Tumor Center, Hunan Chest Hospital, Changsha, China
| | | | - Ziqian Li
- Tumor Center, Hunan Chest Hospital, Changsha, China
| | - Ruocai Xu
- Tumor Center, Hunan Chest Hospital, Changsha, China
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
73
|
Sanderson MR, Fahlman RP, Wevrick R. The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem 2021; 297:100959. [PMID: 34265304 PMCID: PMC8350409 DOI: 10.1016/j.jbc.2021.100959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader-Willi syndrome, which overlaps clinically and mechanistically with Schaaf-Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid-liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography-tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf-Yang syndrome and related disorders.
Collapse
Affiliation(s)
- Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
74
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
75
|
Yuan W, Al-Hadid Q, Wang Z, Shen L, Cho H, Wu X, Yang Y. TDRD3 promotes DHX9 chromatin recruitment and R-loop resolution. Nucleic Acids Res 2021; 49:8573-8591. [PMID: 34329467 PMCID: PMC8421139 DOI: 10.1093/nar/gkab642] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
R-loops, which consist of a DNA/RNA hybrid and a displaced single-stranded DNA (ssDNA), are increasingly recognized as critical regulators of chromatin biology. R-loops are particularly enriched at gene promoters, where they play important roles in regulating gene expression. However, the molecular mechanisms that control promoter-associated R-loops remain unclear. The epigenetic ‘reader’ Tudor domain-containing protein 3 (TDRD3), which recognizes methylarginine marks on histones and on the C-terminal domain of RNA polymerase II, was previously shown to recruit DNA topoisomerase 3B (TOP3B) to relax negatively supercoiled DNA and prevent R-loop formation. Here, we further characterize the function of TDRD3 in R-loop metabolism and introduce the DExH-box helicase 9 (DHX9) as a novel interaction partner of the TDRD3/TOP3B complex. TDRD3 directly interacts with DHX9 via its Tudor domain. This interaction is important for recruiting DHX9 to target gene promoters, where it resolves R-loops in a helicase activity-dependent manner to facilitate gene expression. Additionally, TDRD3 also stimulates the helicase activity of DHX9. This stimulation relies on the OB-fold of TDRD3, which likely binds the ssDNA in the R-loop structure. Thus, DHX9 functions together with TOP3B to suppress promoter-associated R-loops. Collectively, these findings reveal new functions of TDRD3 and provide important mechanistic insights into the regulation of R-loop metabolism.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Qais Al-Hadid
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Zhihao Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Hyejin Cho
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
76
|
Zhou L, Li J, Liu J, Wang A, Liu Y, Yu H, Ouyang H, Pang D. Investigation of the lncRNA THOR in Mice Highlights the Importance of Noncoding RNAs in Mammalian Male Reproduction. Biomedicines 2021; 9:biomedicines9080859. [PMID: 34440063 PMCID: PMC8389704 DOI: 10.3390/biomedicines9080859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
THOR is a highly conserved testis-specific long noncoding RNA (lncRNA). The interaction between THOR and the development of the male reproductive system remains unclear. Herein, CRISPR/Cas9 technology was used to establish a stable THOR-deficient mouse model, and the relationship between THOR and the fertility of adult male mice was investigated. The male mice in which THOR was deleted were smaller than the WT male mice. Moreover, their survival rate was reduced by 60%, their fertility was reduced by 50%, their testicular size and sperm motility were reduced by 50%, their testicular cell apoptosis was increased by 7-fold, and their ratio of female-to-male offspring was imbalanced (approximately 1:3). Furthermore, to elucidate the mechanisms of male reproductive system development, the mRNA levels of THOR targets were measured by qRT-PCR. Compared with WT mice, the THOR-deficient mice exhibited significantly decreased mRNA levels of IGF2BP1, c-MYC, IGF1, and IGF2. MEK-ERK signaling pathway expression was downregulated as determined by Western blot. We found that THOR targeted the MER-ERK signaling pathway downstream of IGF2 by binding to IGF2BP1 and affected testicular and sperm development in male mice. These results may also provide perspectives for exploring the roles of lncRNAs in human reproductive development and the pathogenesis and potential therapeutic targets of infertility.
Collapse
Affiliation(s)
- Lin Zhou
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Jinsong Liu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Anbei Wang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Ying Liu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Hao Yu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Correspondence: (H.O.); (D.P.)
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
- Correspondence: (H.O.); (D.P.)
| |
Collapse
|
77
|
Liu H, Xu H, Lan X, Cao X, Pan C. The InDel variants of sheep IGF2BP1 gene are associated with growth traits. Anim Biotechnol 2021; 34:134-142. [PMID: 34255980 DOI: 10.1080/10495398.2021.1942029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) plays positive roles in the growth, proliferation of cells and early embryos development by binding mRNA targets. Recently, it had been shown that some polymorphic loci within IGF2BP1 gene were associated with growth traits in animals, especially in goats. Therefore, it has been hypothesized that some variants within IGF2BP1 gene may be also involved in growth traits of sheep. Nine insertion/deletion (InDel) mutations within IGF2BP1 were identified and three loci were polymorphic. Meanwhile, the association analyses between three InDels and growth traits were carried out in 745 sheep. The results showed that all InDels included 5 bp InDel in downstream region, 9 bp InDel in intron 4 and 15 bp InDel in intron 2 within IGF2BP1 were significantly associated with growth traits (p<.05). Furthermore, at 5 and 9 bp InDel loci, the individuals of heterozygous genotype (ID) had superior growing performance especially at body weight (BW). In all, three InDels were crucial variants correlated with growth traits and could be applied in marker-assisted selection (MAS) in sheep.
Collapse
Affiliation(s)
- Hongfei Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China.,College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, P. R. China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
78
|
Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, Yin R, Wang Q, Zhang T, Wang P, Hu J, Cheng Y, Gao Z, Wang J, Chang J, Cui M, Gao K, Chai J, Liu W, Guo C, Li S, Liu L, Zhou F, Chen J, Zhang H. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood 2021; 138:71-85. [PMID: 33763698 PMCID: PMC8667054 DOI: 10.1182/blood.2020009676] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
RNA-binding proteins (RBPs) are critical regulators of transcription and translation that are often dysregulated in cancer. Although RBPs are increasingly recognized as being important for normal hematopoiesis and for hematologic malignancies as oncogenes or tumor suppressors, RBPs that are essential for the maintenance and survival of leukemia remain elusive. Here we show that YBX1 is specifically required for maintaining myeloid leukemia cell survival in an N6-methyladenosine (m6A)-dependent manner. We found that expression of YBX1 is significantly upregulated in myeloid leukemia cells, and deletion of YBX1 dramatically induces apoptosis and promotes differentiation coupled with reduced proliferation and impaired leukemic capacity of primary human and mouse acute myeloid leukemia cells in vitro and in vivo. Loss of YBX1 has no obvious effect on normal hematopoiesis. Mechanistically, YBX1 interacts with insulin-like growth factor 2 messenger RNA (mRNA)-binding proteins (IGF2BPs) and stabilizes m6A-tagged RNA. Moreover, YBX1 deficiency dysregulates the expression of apoptosis-related genes and promotes mRNA decay of MYC and BCL2 in an m6A-dependent manner, which contributes to the defective survival that results from deletion of YBX1. Thus, our findings have uncovered a selective and critical role of YBX1 in maintaining myeloid leukemia survival, which might provide a rationale for the therapeutic targeting of YBX1 in myeloid leukemia.
Collapse
Affiliation(s)
- Mengdie Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xueqin Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Guoqiang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yashu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yicun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Rong Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Tong Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Peipei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jin Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ying Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhuying Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Jiwei Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Manman Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Kexin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jihua Chai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Chengli Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology-Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, and
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
79
|
Son SW, Yun BD, Song MG, Lee JK, Choi SY, Kuh HJ, Park JK. The Hypoxia-Long Noncoding RNA Interaction in Solid Cancers. Int J Mol Sci 2021; 22:ijms22147261. [PMID: 34298879 PMCID: PMC8307739 DOI: 10.3390/ijms22147261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs. In this review, we focus attention on the relationship between hypoxia/HIFs and lncRNAs, in company with the possibility of lncRNAs as candidate molecules for controlling cancer.
Collapse
Affiliation(s)
- Seung Wan Son
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Ba Da Yun
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Mun Gyu Song
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Jin Kyeong Lee
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.W.S.); (B.D.Y.); (M.G.S.); (J.K.L.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
80
|
Vong YH, Sivashanmugam L, Leech R, Zaucker A, Jones A, Sampath K. The RNA-binding protein Igf2bp3 is critical for embryonic and germline development in zebrafish. PLoS Genet 2021; 17:e1009667. [PMID: 34214072 PMCID: PMC8282044 DOI: 10.1371/journal.pgen.1009667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/15/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. We show that loss of maternal Igf2bp3 function results in translational de-regulation of a Nodal reporter during the mid-blastula transition. Furthermore, maternal igf2bp3 mutants exhibit reduced expression of germplasm transcripts, defects in chemokine guidance, abnormal PGC behavior and germ cell death. Consistently, adult igf2bp3 mutants show a strong male bias. Our findings suggest that Igf2bp3 is essential for normal embryonic and germline development, and acts as a key regulator of sexual development.
Collapse
Affiliation(s)
- Yin Ho Vong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Lavanya Sivashanmugam
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Leech
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andreas Zaucker
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alex Jones
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, University of Warwick, Coventry, United Kingdom
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
81
|
Huang GW, Chen QQ, Ma CC, Xie LH, Gu J. linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA. Int J Biochem Cell Biol 2021; 136:106015. [PMID: 34022433 DOI: 10.1016/j.biocel.2021.106015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Evidence shows that long noncoding RNAs (lncRNAs) modulate mRNAs of multiple genes by post-transcriptional regulation. However, in esophageal squamous cell carcinoma, lncRNAs involvement in post-transcriptional regulation of mRNAs have been rarely reported. In this study, we investigated a novel mechanism of linc01305 promoting metastasis and proliferation of ESCC. The results for real-time quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization showed that linc01305 was highly expressed and predominantly located in cytoplasm of human esophageal cancer cells. Transwell and colony formation assays confirmed that linc01305 promoted migration and proliferation of esophageal cancer cells. RNA-seq, linc01305 pulldown, mass spectrometry, RNA immunoprecipitation and mRNA stability assays demonstrated that linc01305 stabilized mRNA of target gene HTR3A through interacting with IGF2BP2 and IGF2BP3. Taken together, our data unveils a novel mechanism in which cytoplasmic linc01305 stabilizes HTR3A mRNA through interacting with IGF2BP2 and IGF2BP3 and thereby promotes metastasis and proliferation of ESCC.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Movement
- Cell Proliferation
- Epithelial-Mesenchymal Transition
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma/genetics
- Esophageal Squamous Cell Carcinoma/metabolism
- Esophageal Squamous Cell Carcinoma/secondary
- Gene Expression Regulation, Neoplastic
- Humans
- Prognosis
- RNA, Long Noncoding/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Serotonin, 5-HT3/chemistry
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Guo-Wei Huang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China
| | - Qian-Qian Chen
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China
| | - Chang-Chun Ma
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515031, Guangdong Province, PR China
| | - Ling-Hui Xie
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China
| | - Jiang Gu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China; Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, 515041, PR China.
| |
Collapse
|
82
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
83
|
Li C, Jiang Z, Hao J, Liu D, Hu H, Gao Y, Wang D. Role of N6-methyl-adenosine modification in mammalian embryonic development. Genet Mol Biol 2021; 44:e20200253. [PMID: 33999093 PMCID: PMC8127566 DOI: 10.1590/1678-4685-gmb-2020-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
N6-methyl-adenosine (m6A) methylation is one of the most common and abundant modifications of RNA molecules in eukaryotes. Although various biological roles of m6A methylation have been elucidated, its role in embryonic development is still unclear. In this review, we focused on the function and expression patterns of m6A-related genes in mammalian embryonic development and the role of m6A modification in the embryonic epigenetic reprogramming process. The modification of m6A is regulated by the combined activities of methyltransferases, demethylases, and m6A-binding proteins. m6A-related genes act synergistically to form a dynamic, reversible m6A pattern, which exists in several physiological processes in various stages of embryonic development. The lack of one of these enzymes affects embryonic m6A levels, leading to abnormal embryonic development and even death. Moreover, m6A is a positive regulator of reprogramming to pluripotency and can affect embryo reprogramming by affecting activation of the maternal-to-zygotic transition. In conclusion, m6A is involved in the regulation of gene expression during embryonic development and the metabolic processes of RNA and plays an important role in the epigenetic modification of embryos.
Collapse
Affiliation(s)
- Chengshun Li
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Ziping Jiang
- The First Hospital of Jilin University, Department of hand surgery, Changchun, China
| | - Jindong Hao
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Da Liu
- Changchun University of Chinese Medicine, Department of Pharmacy, Changchun, China
| | - Haobo Hu
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Yan Gao
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| | - Dongxu Wang
- Jilin University, College of Animal Science, Laboratory Animal Center, Changchun, China
| |
Collapse
|
84
|
Du M, Hu X, Jiang X, Yin L, Chen J, Wen J, Fan Y, Peng F, Qian L, Wu J, He X. LncRNA EPB41L4A-AS2 represses Nasopharyngeal Carcinoma Metastasis by binding to YBX1 in the Nucleus and Sponging MiR-107 in the Cytoplasm. Int J Biol Sci 2021; 17:1963-1978. [PMID: 34131399 PMCID: PMC8193272 DOI: 10.7150/ijbs.55557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is known for its potential to progress to the lymph nodes and distant metastases at an early stage. As an important regulator in tumorigenesis biological processes, the functions of lncRNA in NPC tumor development remain largely unclear. In this research, the expression of EPB41L4A-AS2 in NPC tissues and cells was analyzed via real-time quantitative polymerase chain reaction (qRT-PCR). CCK8, colony formation, and EDU experiments were used to determine the viability of NPC cells. Transwell and wound healing assays were performed to test NPC cell migration and invasion. RNA pull-down and mass spectrometry analysis were used to identify potential binding proteins. Then, a popliteal lymph node metastasis model was established to test NPC metastasis. EPB41L4A-AS2 is repressed by transforming growth factor-beta, which is downregulated in NPC cells and tissue. It is associated with the presence of distant metastasis and adverse outcomes. The univariate and multivariate survival assays confirmed that EPB41L4A-AS2 expression was an independent predictor of progression-free survival (PFS) in patients with NPC. Biological analyses showed that overexpression of EPB41L4A-AS2 reduced the metastasis and invasion of NPC in vitro and in vivo, but had no significant effect on cell proliferation. Mechanistically, in the nucleus we identified that EPB41L4A-AS2 relies on binding to YBX1 to reduce the stability of Snail mRNA to enhance the expression of E-cadherin and reverse the progression of epithelial-to-mesenchymal transition (EMT). In the cytoplasm, we found that EPB41L4A-AS2 blocked the invasion and migration of NPC cells by promoting LATS2 expression via sponging miR-107. In a whole, the findings of this study help to further understand the metastasis mechanism of NPC and could help in the prevention and treatment of NPC metastasis.
Collapse
Affiliation(s)
- Mingyu Du
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Xinyu Hu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Xuesong Jiang
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Li Yin
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Jie Chen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Jing Wen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Yanxin Fan
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Fanyu Peng
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Luxi Qian
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China.,The Fourth Clinical School of Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| | - Xia He
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institue of Cancer Research, Nanjing, China
| |
Collapse
|
85
|
Xie F, Huang C, Liu F, Zhang H, Xiao X, Sun J, Zhang X, Jiang G. CircPTPRA blocks the recognition of RNA N 6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer 2021; 20:68. [PMID: 33853613 PMCID: PMC8045402 DOI: 10.1186/s12943-021-01359-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been found to have significant impacts on bladder cancer (BC) progression through various mechanisms. In this study, we aimed to identify novel circRNAs that regulate the function of IGF2BP1, a key m6A reader, and explore the regulatory mechanisms and clinical significances in BC. Methods Firstly, the clinical role of IGF2BP1 in BC was studied. Then, RNA immunoprecipitation sequencing (RIP-seq) analysis was performed to identify the circRNAs interacted with IGF2BP1 in BC cells. The overall biological roles of IGF2BP1 and the candidate circPTPRA were investigated in both BC cell lines and animal xenograft studies. Subsequently, we evaluated the regulation effects of circPTPRA on IGF2BP1 and screened out its target genes through RNA sequencing. Finally, we explored the underlying molecular mechanisms that circPTPRA might act as a blocker in recognition of m6A. Results We demonstrated that IGF2BP1 was predominantly binded with circPTPRA in the cytoplasm in BC cells. Ectopic expression of circPTPRA abolished the promotion of cell proliferation, migration and invasion of BC cells induced by IGF2BP1. Importantly, circPTPRA downregulated IGF2BP1-regulation of MYC and FSCN1 expression via interacting with IGF2BP1. Moreover, the recognition of m6A-modified RNAs mediated by IGF2BP1 was partly disturbed by circPTPRA through its interaction with KH domains of IGF2BP1. Conclusions This study identifies exonic circular circPTPRA as a new tumor suppressor that inhibits cancer progression through endogenous blocking the recognition of IGF2BP1 to m6A-modified RNAs, indicating that circPTPRA may serve as an exploitable therapeutic target for patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01359-x.
Collapse
Affiliation(s)
- Fei Xie
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266013, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyuan Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
86
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
87
|
Glaß M, Misiak D, Bley N, Müller S, Hagemann S, Busch B, Rausch A, Hüttelmaier S. IGF2BP1, a Conserved Regulator of RNA Turnover in Cancer. Front Mol Biosci 2021; 8:632219. [PMID: 33829040 PMCID: PMC8019740 DOI: 10.3389/fmolb.2021.632219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
The oncofetal IGF2 mRNA-binding protein 1 (IGF2BP1) promotes tumor progression in a variety of solid tumors and its expression is associated with adverse prognosis. The main role proposed for IGF2BP1 in cancer cells is the stabilization of mRNAs encoding pro-oncogenic factors. Several IGF2BP1-RNA association studies, however, revealed a plethora of putative IGF2BP1-RNA targets. Thus, at present the main conserved target RNAs and pathways controlled by IGF2BP1 in cancer remain elusive. In this study, we present a set of genes and cancer hallmark pathways showing a conserved pattern of deregulation in dependence of IGF2BP1 expression in cancer cell lines. By the integrative analysis of these findings with publicly available cancer transcriptome and IGF2BP1-RNA association data, we compiled a set of prime candidate target mRNAs. These analyses confirm a pivotal role of IGF2BP1 in controlling cancer cell cycle progression and reveal novel cancer hallmark pathways influenced by IGF2BP1. For three novel target mRNAs identified by these studies, namely AURKA, HDLBP and YWHAZ, we confirm IGF2BP1 mRNA stabilization. In sum our findings confirm and expand previous findings on the pivotal role of IGF2BP1 in promoting oncogenic gene expression by stabilizing target mRNAs in a mainly 3'UTR, m6A-, miRNA-, and potentially AU-rich element dependent manner.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sven Hagemann
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Rausch
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
88
|
Cheng Y, Wang M, Zhou J, Dong H, Wang S, Xu H. The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer. Genes (Basel) 2021; 12:genes12030440. [PMID: 33808751 PMCID: PMC8003501 DOI: 10.3390/genes12030440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent epigenetic modifications of eukaryotic RNA. The m6A modification is a dynamic and reversible process, regulated by three kinds of regulator, including m6A methyltransferases, demethylases and m6A-binding proteins, and this modification plays a vital role in many diseases, especially in cancers. Accumulated evidence has proven that this modification has a significant effect on cellular biological functions and cancer progression; however, little is known about the effects of the m6A modification in non-small cell lung cancer (NSCLC). In this review, we summarized how various m6A regulators modulate m6A RNA metabolism and demonstrated the effect of m6A modification on the progression and cellular biological functions of NSCLC. We also discussed how m6A modification affects the treatment, drug resistance, diagnosis and prognosis of NSCLC patients.
Collapse
|
89
|
Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, Huang W. Alternative approaches to target Myc for cancer treatment. Signal Transduct Target Ther 2021; 6:117. [PMID: 33692331 PMCID: PMC7946937 DOI: 10.1038/s41392-021-00500-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Myc proto-oncogene family consists of three members, C-MYC, MYCN, and MYCL, which encodes the transcription factor c-Myc (hereafter Myc), N-Myc, and L-Myc, respectively. Myc protein orchestrates diverse physiological processes, including cell proliferation, differentiation, survival, and apoptosis. Myc modulates about 15% of the global transcriptome, and its deregulation rewires the cellular signaling modules inside tumor cells, thereby acquiring selective advantages. The deregulation of Myc occurs in >70% of human cancers, and is related to poor prognosis; hence, hyperactivated Myc oncoprotein has been proposed as an ideal drug target for decades. Nevertheless, no specific drug is currently available to directly target Myc, mainly because of its "undruggable" properties: lack of enzymatic pocket for conventional small molecules to bind; inaccessibility for antibody due to the predominant nucleus localization of Myc. Although the topic of targeting Myc has actively been reviewed in the past decades, exciting new progresses in this field keep emerging. In this review, after a comprehensive summarization of valuable sources for potential druggable targets of Myc-driven cancer, we also peer into the promising future of utilizing macropinocytosis to deliver peptides like Omomyc or antibody agents to intracellular compartment for cancer treatment.
Collapse
Affiliation(s)
- Chen Wang
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Jiawei Zhang
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Yin
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Yichao Gan
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ying Gu
- Division of Medical Genomics and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Institute of Genetics, Zhejiang University and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
90
|
Xue T, Liu X, Zhang M, E Q, Liu S, Zou M, Li Y, Ma Z, Han Y, Thompson P, Zhang X. PADI2-Catalyzed MEK1 Citrullination Activates ERK1/2 and Promotes IGF2BP1-Mediated SOX2 mRNA Stability in Endometrial Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002831. [PMID: 33747724 PMCID: PMC7967072 DOI: 10.1002/advs.202002831] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Indexed: 05/04/2023]
Abstract
Peptidylarginine deiminase II (PADI2) converts positively charged arginine residues to neutrally charged citrulline, and this activity has been associated with the onset and progression of multiple cancers. However, a role for PADI2 in endometrial cancer (EC) has not been previously explored. This study demonstrates that PADI2 is positively associated with EC proregression. Mechanistically, PADI2 interacting and catalyzing MEK1 citrullination at arginine 113/189 facilitates MEK1 on extracellular signal-regulated protein kinases 1/2 (ERK1/2) phosphorylation, which activates insulin-like growth factor-II binding protein 1 (IGF2BP1) expression. Furthermore, RNA immunoprecipitation (RIP) and RNA stability analyses reveal that IGF2BP1 binds to the m6A sites in SOX2-3'UTR to prevent SOX2 mRNA degradation. Dysregulation of IGF2BP1 by PADI2/MEK1/ERK signaling results in abnormal accumulation of oncogenic SOX2 expression, therefore supporting the malignant state of EC. Finally, PADI2 gene silencing, inhibiting MEK1 citrullination by PADI2 inhibitor, or mutation of MEK1 R113/189 equally inhibits EC progression. These data demonstrate that PADI2-catalyzed MEK1 R113/189 citrullination is a critical diver for EC malignancies and suggest that targeting PADI2/MEK1 can be a potential therapeutic approach in patients with EC.
Collapse
Affiliation(s)
- Teng Xue
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu ProvinceDepartment of MicrobiologyNanjing Medical UniversityNanjingJiangsu211166China
| | - Mei Zhang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Qiukai E
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Shuting Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Maosheng Zou
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Ying Li
- Department of ObstetricsDalian Municipal Maternal and Infant Health Care HospitalDalianLiaoning116000China
| | - Zhinan Ma
- Department of Obstetrics and GynecologyYangzhou Maternal and Child Health HospitalYangzhou UniversityYangzhouJiangsu225009China
| | - Yun Han
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nantong UniversityNantongJiangsu226001China
| | - Paul Thompson
- Department of Biochemistry and Molecular PharmacologyUniversity of Massachusetts Medical SchoolWorcesterMA01655USA
| | - Xuesen Zhang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
91
|
Sharma G, Boby E, Nidhi T, Jain A, Singh J, Singh A, Chattopadhyay P, Bakhshi S, Chopra A, Palanichamy JK. Diagnostic Utility of IGF2BP1 and Its Targets as Potential Biomarkers in ETV6-RUNX1 Positive B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:588101. [PMID: 33708624 PMCID: PMC7940665 DOI: 10.3389/fonc.2021.588101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
Around 85% of childhood Acute Lymphoblastic Leukemia (ALL) are of B-cell origin and characterized by the presence of different translocations including BCR-ABL1, ETV6-RUNX1, E2A-PBX1, and MLL fusion proteins. The current clinical investigations used to identify ETV6-RUNX1 translocation include FISH and fusion transcript specific PCR. In the current study we assessed the utility of IGF2BP1, an oncofetal RNA binding protein, that is over expressed specifically in ETV6-RUNX1 translocation positive B-ALL to be used as a diagnostic marker in the clinic. Further, public transcriptomic and Crosslinked Immunoprecipitation (CLIP) datasets were analyzed to identify the putative targets of IGF2BP1. We also studied the utility of using the mRNA expression of two such targets, MYC and EGFL7 as potential diagnostic markers separately or in conjunction with IGF2BP1. We observed that the expression of IGF2BP1 alone measured by RT-qPCR is highly sensitive and specific to be used as a potential biomarker for the presence of ETV6-RUNX1 translocation in future.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Elza Boby
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Thakur Nidhi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
92
|
Dong Z, Yeo KS, Lopez G, Zhang C, Dankert Eggum EN, Rokita JL, Ung CY, Levee TM, Her ZP, Howe CJ, Hou X, van Ree JH, Li S, He S, Tao T, Fritchie K, Torres-Mora J, Lehman JS, Meves A, Razidlo GL, Rathi KS, Weroha SJ, Look AT, van Deursen JM, Li H, Westendorf JJ, Maris JM, Zhu S. GAS7 Deficiency Promotes Metastasis in MYCN-Driven Neuroblastoma. Cancer Res 2021; 81:2995-3007. [PMID: 33602789 DOI: 10.1158/0008-5472.can-20-1890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/04/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the MYCN oncogene. However, only a limited number of regulatory proteins that contribute to this complex MYCN-mediated process have been elucidated. Here we show that the growth arrest-specific 7 (GAS7) gene, located at chromosome band 17p13.1, is preferentially deleted in high-risk MYCN-driven neuroblastoma. GAS7 expression was also suppressed in MYCN-amplified neuroblastoma lacking 17p deletion. GAS7 deficiency led to accelerated metastasis in both zebrafish and mammalian models of neuroblastoma with overexpression or amplification of MYCN. Analysis of expression profiles and the ultrastructure of zebrafish neuroblastoma tumors with MYCN overexpression identified that GAS7 deficiency led to (i) downregulation of genes involved in cell-cell interaction, (ii) loss of contact among tumor cells as critical determinants of accelerated metastasis, and (iii) increased levels of MYCN protein. These results provide the first genetic evidence that GAS7 depletion is a critical early step in the cascade of events culminating in neuroblastoma metastasis in the context of MYCN overexpression. SIGNIFICANCE: Heterozygous deletion or MYCN-mediated repression of GAS7 in neuroblastoma releases an important brake on tumor cell dispersion and migration to distant sites, providing a novel mechanism underlying tumor metastasis in MYCN-driven neuroblastoma.See related commentary by Menard, p. 2815.
Collapse
Affiliation(s)
- Zhiwei Dong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Erin N Dankert Eggum
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Choong Yong Ung
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Taylor M Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Cassie J Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Xiaonan Hou
- Departments of Oncology, Radiation Oncology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Janine H van Ree
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ting Tao
- Children's Hospital, Zhejiang University School of Medicine; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Julia S Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - S John Weroha
- Departments of Oncology, Radiation Oncology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - John M Maris
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota. .,Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
93
|
Lago S, Nadai M, Ruggiero E, Tassinari M, Marušič M, Tosoni B, Frasson I, Cernilogar FM, Pirota V, Doria F, Plavec J, Schotta G, Richter SN. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res 2021; 49:847-863. [PMID: 33410915 PMCID: PMC7826256 DOI: 10.1093/nar/gkaa1273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Well-differentiated liposarcoma (WDLPS) is a malignant neoplasia hard to diagnose and treat. Its main molecular signature is amplification of the MDM2-containing genomic region. The MDM2 oncogene is the master regulator of p53: its overexpression enhances p53 degradation and inhibits apoptosis, leading to the tumoral phenotype. Here, we show that the MDM2 inducible promoter G-rich region folds into stable G-quadruplexes both in vitro and in vivo and it is specifically recognized by cellular helicases. Cell treatment with G-quadruplex-ligands reduces MDM2 expression and p53 degradation, thus stimulating cancer cell cycle arrest and apoptosis. Structural characterization of the MDM2 G-quadruplex revealed an extraordinarily stable, unique four-tetrad antiparallel dynamic conformation, amenable to selective targeting. These data indicate the feasibility of an out-of-the-box G-quadruplex-targeting approach to defeat WDLPS and all tumours where restoration of wild-type p53 is sought. They also point to G-quadruplex-dependent genomic instability as possible cause of MDM2 expansion and WDLPS tumorigenesis.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Maja Marušič
- Slovenian NMR center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Beatrice Tosoni
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, V. le Taramelli 10, 27100, Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V. le Taramelli 10, 27100, Pavia, Italy
| | - Janez Plavec
- Slovenian NMR center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
94
|
Identification of RNA-binding proteins that partner with Lin28a to regulate Dnmt3a expression. Sci Rep 2021; 11:2345. [PMID: 33504840 PMCID: PMC7841167 DOI: 10.1038/s41598-021-81429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Lin28 is an evolutionary conserved RNA-binding protein that plays important roles during embryonic development and tumorigenesis. It regulates gene expression through two different post-transcriptional mechanisms. The first one is based on the regulation of miRNA biogenesis, in particular that of the let-7 family, whose expression is suppressed by Lin28. Thus, loss of Lin28 leads to the upregulation of mRNAs that are targets of let-7 species. The second mechanism is based on the direct interaction of Lin28 with a large number of mRNAs, which results in the regulation of their translation. This second mechanism remains poorly understood. To address this issue, we purified high molecular weight complexes containing Lin28a in mouse embryonic stem cells (ESCs). Numerous proteins, co-purified with Lin28a, were identified by proteomic procedures and tested for their possible role in Lin28a-dependent regulation of the mRNA encoding DNA methyltransferase 3a (Dnmt3a). The results show that Lin28a activity is dependent on many proteins, including three helicases and four RNA-binding proteins. The suppression of four of these proteins, namely Ddx3x, Hnrnph1, Hnrnpu or Syncrip, interferes with the binding of Lin28a to the Dnmt3a mRNA, thus suggesting that they are part of an oligomeric ribonucleoprotein complex that is necessary for Lin28a activity.
Collapse
|
95
|
Tian S, Lai J, Yu T, Li Q, Chen Q. Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Front Oncol 2021; 10:623634. [PMID: 33552994 PMCID: PMC7859513 DOI: 10.3389/fonc.2020.623634] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 01/19/2023] Open
Abstract
N6-methyladenosine (m6A), an important RNA modification, is a reversible behavior catalyzed by methyltransferase complexes (m6A "writers"), demethylated transferases (m6A "erasers"), and binding proteins (m6A "readers"). It plays a vital regulatory role in biological functions, involving in a variety of physiological and pathological processes. The level of m6A will affect the RNA metabolism including the degradation of mRNA, and processing or translation of the modified RNA. Its abnormal changes will lead to disrupting the regulation of gene expression and promoting the occurrence of aberrant cell behavior. The abnormal expression of m6A enzyme system can be a crucial impact disturbing the abundance of m6A, thus affecting the expression of oncogenes or tumor suppressor genes in various types of cancer. In this review, we elucidate the special role of m6A "writers", "erasers", and "readers" in normal physiology, and how their altered expression affects the cell metabolism and promotes the occurrence of tumors. We also discuss the potential to target these enzymes for cancer diagnosis, prognosis, and the development of new therapies.
Collapse
Affiliation(s)
- Shuoran Tian
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Tingting Yu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
96
|
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, Qiu Y, Teng Y, Liu M. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene 2021; 40:1609-1627. [PMID: 33469161 PMCID: PMC7932928 DOI: 10.1038/s41388-020-01638-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023]
Abstract
The hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.
Collapse
Affiliation(s)
- Pengpeng Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Fang He
- Department of pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiao Li
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Jin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Teng
- Department of Oral Biology and Dx Sciences, Dental College of Georgia; Georgia Cancer Center, Augusta University, Augusta, GA, 30907, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
97
|
Zorn P, Misiak D, Gekle M, Köhn M. Identification and initial characterization of POLIII-driven transcripts by msRNA-sequencing. RNA Biol 2021; 18:1807-1817. [PMID: 33404286 PMCID: PMC8583065 DOI: 10.1080/15476286.2020.1871216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are powerful regulators of gene expression but medium-sized (50–300 nts in length) ncRNAs (msRNAs) are barely picked-up precisely by RNA-sequencing. Here we describe msRNA-sequencing (msRNAseq), a modified protocol that associated with a computational analyses pipeline identified about ~1800 msRNA loci, including over 300 putatively novel msRNAs, in human and murine cells. We focused on the identification and initial characterization of three POLIII-derived transcripts. The validation of these uncharacterized msRNAs identified an ncRNA in antisense orientation from the POLR3E locus transcribed by POLIII. This msRNA, termed POLAR (POLR3E Antisense RNA), has a strikingly short half-life, localizes to paraspeckles (PSPs) and associates with PSP-associated proteins indicating that msRNAseq identifies functional msRNAs. Thus, our analyses will pave the way for analysing the roles of msRNAs in cells, development and diseases.
Collapse
Affiliation(s)
| | - Danny Misiak
- Institute of Molecular Medicine, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Germany
| | | |
Collapse
|
98
|
Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, Ma X, Cheng Z, Yu C, Wang S, Zuo Q, Zhou Y, Wang J, Yang C, Lv Y, Jiang L, Qin W. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun 2021; 12:295. [PMID: 33436560 PMCID: PMC7804955 DOI: 10.1038/s41467-020-20527-z] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNA) are a class of covalently closed single-stranded RNAs that have been implicated in cancer progression. Here we identify circNDUFB2 to be downregulated in non-small cell lung cancer (NSCLC) tissues, and to negatively correlate with NSCLC malignant features. Elevated circNDUFB2 inhibits growth and metastasis of NSCLC cells. Mechanistically, circNDUFB2 functions as a scaffold to enhance the interaction between TRIM25 and IGF2BPs, a positive regulator of tumor progression and metastasis. This TRIM25/circNDUFB2/IGF2BPs ternary complex facilitates ubiquitination and degradation of IGF2BPs, with this effect enhanced by N6-methyladenosine (m6A) modification of circNDUFB2. Moreover, circNDUFB2 is also recognized by RIG-I to activate RIG-I-MAVS signaling cascades and recruit immune cells into the tumor microenvironment (TME). Our data thus provide evidences that circNDUFB2 participates in the degradation of IGF2BPs and activation of anti-tumor immunity during NSCLC progression via the modulation of both protein ubiquitination and degradation, as well as cellular immune responses.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- DEAD Box Protein 58/metabolism
- Disease Progression
- Down-Regulation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- Models, Biological
- Neoplasm Metastasis
- Proteasome Endopeptidase Complex/metabolism
- Protein Binding
- Protein Stability
- Proteolysis
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Receptors, Immunologic
- Transcription Factors/metabolism
- Tripartite Motif Proteins/metabolism
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitination
- Mice
Collapse
Affiliation(s)
- Botai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Biomedical Engineering, 200032, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Biomedical Engineering, 200032, Shanghai, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Cun Wang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Hui Wang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Haojie Jin
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Xuhui Ma
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Zhuoan Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Biomedical Engineering, 200032, Shanghai, China
| | - Chengtao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Biomedical Engineering, 200032, Shanghai, China
| | - Siying Wang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Qiaozhu Zuo
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Yangyang Zhou
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Jun Wang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Chen Yang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Yuanyuan Lv
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Biomedical Engineering, 200032, Shanghai, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China.
| |
Collapse
|
99
|
Tran JR, Paulson DI, Moresco JJ, Adam SA, Yates JR, Goldman RD, Zheng Y. An APEX2 proximity ligation method for mapping interactions with the nuclear lamina. J Cell Biol 2021; 220:e202002129. [PMID: 33306092 PMCID: PMC7737704 DOI: 10.1083/jcb.202002129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The nuclear lamina (NL) is a meshwork found beneath the inner nuclear membrane. The study of the NL is hindered by the insolubility of the meshwork and has driven the development of proximity ligation methods to identify the NL-associated/proximal proteins, RNA, and DNA. To simplify and improve temporal labeling, we fused APEX2 to the NL protein lamin-B1 to map proteins, RNA, and DNA. The identified NL-interacting/proximal RNAs show a long 3' UTR bias, a finding consistent with an observed bias toward longer 3' UTRs in genes deregulated in lamin-null cells. A C-rich motif was identified in these 3' UTR. Our APEX2-based proteomics identifies a C-rich motif binding regulatory protein that exhibits altered localization in lamin-null cells. Finally, we use APEX2 to map lamina-associated domains (LADs) during the cell cycle and uncover short, H3K27me3-rich variable LADs. Thus, the APEX2-based tools presented here permit identification of proteomes, transcriptomes, and genome elements associated with or proximal to the NL.
Collapse
Affiliation(s)
- Joseph R. Tran
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD
| | - Danielle I. Paulson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD
- Horace Mann School, The Bronx, NY
| | - James J. Moresco
- The Scripps Research Institution, Department of Molecular Medicine, La Jolla, CA
| | - Stephen A. Adam
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL
| | - John R. Yates
- The Scripps Research Institution, Department of Molecular Medicine, La Jolla, CA
| | - Robert D. Goldman
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL
| | - Yixian Zheng
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD
| |
Collapse
|
100
|
Zhang B, Wang HY, Zhao DX, Wang DX, Zeng Q, Xi JF, Nan X, He LJ, Zhou JN, Pei XT, Yue W. The splicing regulatory factor hnRNPU is a novel transcriptional target of c-Myc in hepatocellular carcinoma. FEBS Lett 2021; 595:68-84. [PMID: 33040326 DOI: 10.1002/1873-3468.13943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer with high mortality. Here, we found that hnRNPU is overexpressed in HCC tissues and is correlated with the poor prognosis of HCC patients. Besides, hnRNPU is of high significance in regulating the proliferation, apoptosis, self-renewal, and tumorigenic potential of HCC cells. Mechanismly, c-Myc regulates hnRNPU expression at the transcriptional level, and meanwhile, hnRNPU stabilizes the mRNA of c-MYC. We found that the hnRNPU and c-Myc regulatory loop exerts a synergistic effect on the proliferation and self-renewal of HCC, and promotes the HCC progression. Taken together, hnRNPU functions as a novel transcriptional target of c-Myc and promotes HCC progression, which may become a promising target for the treatment of c-Myc-driven HCC.
Collapse
Affiliation(s)
- Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - De-Xi Zhao
- Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| |
Collapse
|