51
|
Abstract
Transcription of protein-coding genes by RNA polymerase II is a repetitive, cyclic process that enables synthesis of multiple RNA molecules from the same template. The transcription cycle consists of three main stages, initiation, elongation and termination. Each of these phases is intimately coupled to a specific step in pre-mRNA processing; 5´ capping, splicing and 3´-end formation, respectively. In this article, we discuss the recent concept that cotranscriptional checkpoints operate during mRNA biogenesis to ensure that nonfunctional mRNAs with potentially deleterious effects for the cell are not produced or exported to the cytoplasm for translation.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
52
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
53
|
Export and stability of naturally intronless mRNAs require specific coding region sequences and the TREX mRNA export complex. Proc Natl Acad Sci U S A 2011; 108:17985-90. [PMID: 22010220 DOI: 10.1073/pnas.1113076108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A great deal is known about the export of spliced mRNAs, but little is known about the export of mRNAs encoded by human cellular genes that naturally lack introns. Here, we investigated the requirements for export of three naturally intronless mRNAs (HSPB3, IFN-α1, and IFN-β1). Significantly, we found that all three mRNAs are stable and accumulate in the cytoplasm, whereas size-matched random RNAs are unstable and detected only in the nucleus. A portion of the coding region confers this stability and cytoplasmic localization on the naturally intronless mRNAs and a cDNA transcript, which is normally retained in the nucleus and degraded. A polyadenylation signal, TREX mRNA export components, and the mRNA export receptor TAP are required for accumulation of the naturally intronless mRNAs in the cytoplasm. We conclude that naturally intronless mRNAs contain specific sequences that result in efficient packaging into the TREX mRNA export complex, thereby supplanting the splicing requirement for efficient mRNA export.
Collapse
|
54
|
Abstract
Eukaryotic gene expression relies on several complex molecular machineries that act in a highly coordinated fashion. These machineries govern all the different steps of mRNA maturation, from gene transcription and pre-mRNA processing in the nucleus to the export of the mRNA to the cytoplasm and its translation. In particular, the pre-mRNA splicing process consists in the joining together of sequences (known as “exons”) that have to be differentiated from their intervening sequences commonly referred to as “introns.” The complex required to perform this process is a very dynamic macromolecular ribonucleoprotein assembly that functions as an enzyme, and is called the “spliceosome.” Because of its flexibility, the splicing process represents one of the main mechanisms of qualitative and quantitative regulation of gene expression in eukaryotic genomes. This flexibility is mainly due to the possibility of alternatively recognizing the various exons that are present in a pre-mRNA molecule and therefore enabling the possibility of obtaining multiple transcripts from the same gene. However, regulation of gene expression by the spliceosome is also achieved through its ability to influence many other gene expression steps that include transcription, mRNA export, mRNA stability, and even protein translation. Therefore, from a biotechnological point of view the splicing process can be exploited to improve production strategies and processes of molecules of interest. In this work, we have aimed to provide an overview on how biotechnology applications may benefit from the introduction of introns within a sequence of interest.
Collapse
Affiliation(s)
- Natasa Skoko
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | |
Collapse
|
55
|
Seoighe C, Korir PK. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development. BMC Bioinformatics 2011; 12 Suppl 9:S16. [PMID: 22151910 PMCID: PMC3283306 DOI: 10.1186/1471-2105-12-s9-s16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.
Collapse
Affiliation(s)
- Cathal Seoighe
- National University of Ireland, Galway, University Road, Galway, Republic of Ireland.
| | | |
Collapse
|
56
|
Karve R, Liu W, Willet SG, Torii KU, Shpak ED. The presence of multiple introns is essential for ERECTA expression in Arabidopsis. RNA (NEW YORK, N.Y.) 2011; 17:1907-21. [PMID: 21880780 PMCID: PMC3185922 DOI: 10.1261/rna.2825811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/30/2011] [Indexed: 05/19/2023]
Abstract
Gene expression in eukaryotes is often enhanced by the presence of introns. Depending on the specific gene, this enhancement can be minor or very large and occurs at both the transcriptional and post-transcriptional levels. The Arabidopsis ERECTA gene contains 27 exons encoding a receptor-like kinase that promotes cell proliferation and inhibits cell differentiation in above-ground plant organs. The expression of ERECTA very strongly depends on the presence of introns. The intronless ERECTA gene does not rescue the phenotype of erecta mutant plants and produces about 500-900 times less protein compared with the identical construct containing introns. This result is somewhat surprising as the region upstream of the ERECTA coding sequence effectively promotes the expression of extraneous genes. Here, we demonstrate that introns are essential for ERECTA mRNA accumulation and, to a lesser extent, for mRNA utilization in translation. Since mRNA produced by intronless ERECTA is degraded at the 3' end, we speculate that introns increase mRNA accumulation through increasing its stability at least in part. No individual intron is absolutely necessary for ERECTA expression, but rather multiple introns in specific locations increase ERECTA expression in an additive manner. The ability of introns to promote ERECTA expression might be linked to the process of splicing and not to a particular intron sequence.
Collapse
Affiliation(s)
- Rucha Karve
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Wusheng Liu
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Spencer G. Willet
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Keiko U. Torii
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Elena D. Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Corresponding author.E-mail .
| |
Collapse
|
57
|
Mufarrege EF, Gonzalez DH, Curi GC. Functional interconnections of Arabidopsis exon junction complex proteins and genes at multiple steps of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5025-36. [PMID: 21676911 DOI: 10.1093/jxb/err202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The exon junction complex (EJC) is deposited on mRNA after splicing and participates in several aspects of RNA metabolism, from intracellular transport to translation. In this work, the functional and molecular interactions of Arabidopsis homologues of Mago, Y14, and PYM, three EJC components that participate in intron-mediated enhancement of gene expression in animals, have been analysed. AtMago, AtY14, and AtPYM are encoded by single genes that show similar expression patterns and contain common regulatory elements, known as site II, that are required for expression. AtPYM and AtY14 are phosphorylated by plant extracts and this modification regulates complex formation between both proteins. In addition, overexpression of AtMago and AtY14 in plants produces an increase in AtPYM protein levels, while overexpression of AtPYM results in increased formation of a complex that contains the three proteins. The effect of AtMago and AtY14 on AtPYM expression is most likely to be due to intron-mediated enhacement of AtPYM expression, since the AtPYM gene contains a leader intron that is required for expression. Indeed, transient transformation asssays indicated that the three proteins are able to increase expression from reporter constructs that contain leader introns required for the expression of different genes. The results indicate that the plant homologues of Mago, Y14, and PYM are closely interconnected, not only through their function as EJC components but also at different steps of their own gene expression mechanisms, probably reflecting the importance of their interaction for the correct expression of plant genes.
Collapse
Affiliation(s)
- Eduardo F Mufarrege
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|
58
|
Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3' end of human genes. Nat Struct Mol Biol 2011; 18:1115-23. [PMID: 21892168 DOI: 10.1038/nsmb.2124] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/19/2011] [Indexed: 01/10/2023]
Abstract
In the nucleus of higher eukaryotes, maturation of mRNA precursors involves an orderly sequence of transcription-coupled interdependent steps. Transcription is well known to influence splicing, but how splicing may affect transcription remains unclear. Here we show that a splicing mutation that prevents recruitment of spliceosomal snRNPs to nascent transcripts causes co-transcriptional retention of unprocessed RNAs that remain associated with polymerases stalled predominantly at the 3' end of the gene. In contrast, treatment with spliceostatin A, which allows early spliceosome formation but destabilizes subsequent assembly of the catalytic complex, abolishes 3' end pausing of polymerases and induces leakage of unspliced transcripts to the nucleoplasm. Taken together, the data suggest that recruitment of splicing factors and correct assembly of the spliceosome are coupled to transcription termination, and this might ensure a proofreading mechanism that slows down release of unprocessed transcripts from the transcription site.
Collapse
|
59
|
Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M, Tuschl T, Ohler U, Keene JD. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 2011; 43:327-39. [PMID: 21723170 PMCID: PMC3220597 DOI: 10.1016/j.molcel.2011.06.007] [Citation(s) in RCA: 528] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/23/2011] [Accepted: 06/10/2011] [Indexed: 01/02/2023]
Abstract
RNA-binding proteins coordinate the fates of multiple RNAs, but the principles underlying these global interactions remain poorly understood. We elucidated regulatory mechanisms of the RNA-binding protein HuR, by integrating data from diverse high-throughput targeting technologies, specifically PAR-CLIP, RIP-chip, and whole-transcript expression profiling. The number of binding sites per transcript, degree of HuR association, and degree of HuR-dependent RNA stabilization were positively correlated. Pre-mRNA and mature mRNA containing both intronic and 3' UTR binding sites were more highly stabilized than transcripts with only 3' UTR or only intronic binding sites, suggesting that HuR couples pre-mRNA processing with mature mRNA stability. We also observed HuR-dependent splicing changes and substantial binding of HuR in polypyrimidine tracts of pre-mRNAs. Comparison of the spatial patterns surrounding HuR and miRNA binding sites provided functional evidence for HuR-dependent antagonism of proximal miRNA-mediated repression. We conclude that HuR coordinates gene expression outcomes at multiple interconnected steps of RNA processing.
Collapse
Affiliation(s)
- Neelanjan Mukherjee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Rose AB, Emami S, Bradnam K, Korf I. Evidence for a DNA-Based Mechanism of Intron-Mediated Enhancement. FRONTIERS IN PLANT SCIENCE 2011; 2:98. [PMID: 22645558 PMCID: PMC3355757 DOI: 10.3389/fpls.2011.00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/30/2011] [Indexed: 05/07/2023]
Abstract
Many introns significantly increase gene expression through a process termed intron-mediated enhancement (IME). Introns exist in the transcribed DNA and the nascent RNA, and could affect expression from either location. To determine which is more relevant to IME, hybrid introns were constructed that contain sequences from stimulating Arabidopsis thaliana introns either in their normal orientation or as the reverse complement. Both ends of each intron are from the non-stimulatory COR15a intron in their normal orientation to allow splicing. The inversions create major alterations to the sequence of the transcribed RNA with relatively minor changes to the DNA structure. Introns containing portions of either the UBQ10 or ATPK1 intron increased expression to a similar degree regardless of orientation. Also, computational predictions of IME improve when both intron strands are considered. These findings are more consistent with models of IME that act at the level of DNA rather than RNA.
Collapse
Affiliation(s)
- Alan B. Rose
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
- *Correspondence: Alan B. Rose, Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. e-mail:
| | - Shahram Emami
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
| | - Keith Bradnam
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
| | - Ian Korf
- Molecular and Cellular Biology, University of CaliforniaDavis, CA, USA
| |
Collapse
|
61
|
He Y, Wu Y, Lan Z, Liu Y, Zhang Y. Molecular analysis of the first intron in the bovine myostatin gene. Mol Biol Rep 2010; 38:4643-9. [PMID: 21125331 DOI: 10.1007/s11033-010-0598-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/22/2010] [Indexed: 02/02/2023]
Abstract
To study the mechanism of transcription and expression of the myostatin gene, we cloned and analyzed the sequence of the bovine myostatin gene promoter and first intron from Qinchuan and Red Angus cattle, then constructed eukaryotic expression vectors encoding the GFP vector by replacing the CMV promoter with the bovine myostatin promoter using PCR method, thereby obtaining an expression vector coding GFP report gene with first intron (identified as pEGFP-MSTNPro-intron1). By transfecting C2C12 cells with the vectors, we then compared the effect on GFP gene expression of the promoter and normal first intron of Qinchuan and Red Angus cattle with that from the promoter and a Qinchuan allele with a 16 base pair insertion. After 48 h incubation, fluorescent indices (FIs), which indicate the expression rate and intensity of gene GFP expression, were analyzed by flow cytometry (FCM). Results showed that Qinchuan sequence homology of promoter was 99% with Red Angus, that Qinchuan first intron sequence homology was 99.51% with Red Angus and that first intron homologies of Qinchuan and Red Angus were 99.08 and 99.02%, respectively, with Accession No.AF320998 in GenBank. Expression of the GFP gene did not differ significantly between preparations using the Qinchuan versus Red Angus promoter. Preparations with a construct that included the first intron had higher GFP gene expression in C2C12 cells than those whose construct lacked the first intron (P < 0.05 or P < 0.01). However, there was no significant difference (P > 0.05) in gene expression between normal first intron and 16 bp insertion first intron (+16 bp) preparations.
Collapse
Affiliation(s)
- Yulong He
- Key Laboratory of Animal Reproductive Endocrinology and Embryo Engineering, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | | | | | | | | |
Collapse
|
62
|
Panjaworayan N, Payungporn S, Poovorawan Y, Brown CM. Identification of an effective siRNA target site and functional regulatory elements, within the hepatitis B virus posttranscriptional regulatory element. Virol J 2010; 7:216. [PMID: 20822550 PMCID: PMC2945954 DOI: 10.1186/1743-422x-7-216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/08/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Infection with hepatitis B virus (HBV) is major public health concern. The limitations of available antiviral drugs require development of novel approaches to inhibit HBV replication. This study was conducted to identify functional elements and new siRNA target sites within the highly conserved regions of the 533 base post-transcriptional regulatory element (PRE) of HBV RNAs. RESULTS Computational analysis of the PRE sequence revealed several conserved regulatory elements that are predicted to form local secondary structures some of these within known regulatory regions. A deletion analysis showed that sub-elements of the PRE have different effects on the reporter activity suggesting that the PRE contains multiple regulatory elements. Conserved siRNA targets at nucleotide position 1317-1337 and 1329-1349 were predicted. Although the siRNA at the position 1329-1349 had no effect on the expression of reporter gene, the siRNA target site at the position 1317-1337 was observed to significantly decrease expression of the reporter protein. This siRNA also specifically reduced the level of cccDNA in transiently HBV infected cells. CONCLUSION The HBV PRE is likely to contain multiple regulatory elements. A conserved target within this region at 1317-1337 is an effective siRNA target.
Collapse
Affiliation(s)
- Nattanan Panjaworayan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
63
|
Mor A, Ben-Yishay R, Shav-Tal Y. On the right track: following the nucleo-cytoplasmic path of an mRNA. Nucleus 2010; 1:492-8. [PMID: 21327092 DOI: 10.4161/nucl.1.6.13515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
The transcription machinery in the eukaryotic nucleus generates messenger RNA molecules that translocate through the nucleoplasm, anchor to a nuclear pore, and find their way out into the cytoplasm. The dynamic aspects of these steps in the expression pathway were examined in order to understand the kinetic time-frames of gene activation and message dissemination. Utilizing live-cell imaging and tracking of single mRNPs containing different sized mRNAs and varying numbers of introns and exons, it was possible to quantify the temporal and spatial characteristics of the nucleoplasmic travels of mRNPs as well as the kinetics of translocation through the nuclear pore.
Collapse
Affiliation(s)
- Amir Mor
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
64
|
Allele-specific recognition of the 3' splice site of INS intron 1. Hum Genet 2010; 128:383-400. [PMID: 20628762 PMCID: PMC2939332 DOI: 10.1007/s00439-010-0860-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/27/2022]
Abstract
Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3' splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3' splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3' splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3' splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3' splice sites.
Collapse
|
65
|
Boyne JR, Jackson BR, Taylor A, Macnab SA, Whitehouse A. Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J 2010; 29:1851-64. [PMID: 20436455 PMCID: PMC2885933 DOI: 10.1038/emboj.2010.77] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 03/26/2010] [Indexed: 12/29/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) expresses numerous intronless mRNAs that are unable to access splicing-dependent cellular mRNA nuclear export pathways. To circumvent this problem, KSHV encodes the open reading frame 57 (ORF57) protein, which orchestrates the formation of an export-competent virus ribonucleoprotein particle comprising the nuclear export complex hTREX, but not the exon-junction complex (EJC). Interestingly, EJCs stimulate mRNA translation, which raises the intriguing question of how intronless KSHV transcripts are efficiently translated. Herein, we show that ORF57 associates with components of the 48S pre-initiation complex and co-sediments with the 40S ribosomal subunits. Strikingly, we observed a direct interaction between ORF57 and PYM, a cellular protein that enhances translation by recruiting the 48S pre-initiation complex to newly exported mRNAs, through an interaction with the EJC. Moreover, detailed biochemical analysis suggests that ORF57 recruits PYM to intronless KSHV mRNA and PYM then facilitates the association of ORF57 and the cellular translation machinery. We, therefore, propose a model whereby ORF57 interacts directly with PYM to enhance translation of intronless KSHV transcripts.
Collapse
Affiliation(s)
- James R Boyne
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | |
Collapse
|
66
|
Kaposi's sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear noncoding RNA from cellular RNA decay pathways. PLoS Pathog 2010; 6:e1000799. [PMID: 20221435 PMCID: PMC2832700 DOI: 10.1371/journal.ppat.1000799] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/28/2010] [Indexed: 02/07/2023] Open
Abstract
The control of RNA stability is a key determinant in cellular gene expression. The stability of any transcript is modulated through the activity of cis- or trans-acting regulatory factors as well as cellular quality control systems that ensure the integrity of a transcript. As a result, invading viral pathogens must be able to subvert cellular RNA decay pathways capable of destroying viral transcripts. Here we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein binds to a unique KSHV polyadenylated nuclear RNA, called PAN RNA, and protects it from degradation by cellular factors. ORF57 increases PAN RNA levels and its effects are greatest on unstable alleles of PAN RNA. Kinetic analysis of transcription pulse assays shows that ORF57 protects PAN RNA from a rapid cellular RNA decay process, but ORF57 has little effect on transcription or PAN RNA localization based on chromatin immunoprecipitation and in situ hybridization experiments, respectively. Using a UV cross-linking technique, we further demonstrate that ORF57 binds PAN RNA directly in living cells and we show that binding correlates with function. In addition, we define an ORF57-responsive element (ORE) that is necessary for ORF57 binding to PAN RNA and sufficient to confer ORF57-response to a heterologous intronless beta-globin mRNA, but not its spliced counterparts. We conclude that ORF57 binds to viral transcripts in the nucleus and protects them from a cellular RNA decay pathway. We propose that KSHV ORF57 protein functions to enhance the nuclear stability of intronless viral transcripts by protecting them from a cellular RNA quality control pathway.
Collapse
|
67
|
Haddad-Mashadrizeh A, Zomorodipour A, Izadpanah M, Sam MR, Ataei F, Sabouni F, Hosseini SJ. A systematic study of the function of the human beta-globin introns on the expression of the human coagulation factor IX in cultured Chinese hamster ovary cells. J Gene Med 2009; 11:941-50. [PMID: 19565465 DOI: 10.1002/jgm.1367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intronic sequences have the potential to improve gene expression in eukaryotes by a variety of mechanisms. In this context, human beta-globin (hBG) introns were inserted into the human factor IX (hFIX) cDNA in cytomegalovirus (CMV)-regulated plasmids. The resulting construct was then used for further expression analysis in vitro. METHODS Seven hFIX-expressing plasmids with different combinations of the two hBG introns and the Kozak element were constructed and used for a systematic expression analysis in cultured Chinese hamster ovary (CHO) cells. In parallel, the hBG intronic sequences were analysed for the presence of possible regulatory elements. RESULTS All the constructed plasmids resulted in transient expression of the hFIX. However, the coagulation activities varied according to the particular constructs used. Based on the hFIX antigenic assay, a wide range of variation was observed during persistent expression. The second hBG intron appears to be more effective than the first one. The expression level was further increased upon the inclusion of the Kozak element. Sequence analysis has detected several transcription factor binding (TFB) motifs in both of the introns, but with a higher frequency in the second one. CONCLUSIONS Potentials of hBG introns as enhancer-like elements for the expression of the hFIX in cultured CHO cells and a higher activity with respect to the second hBG intron compared to the first one were demonstrated. The larger number of TFBs in the second hBG intron reflects its stronger effect. The results obtained suggest possible synergistic functions of the hBG introns and Kozak on the expression level of hFIX in vitro.
Collapse
|
68
|
Chen L. A global comparison between nuclear and cytosolic transcriptomes reveals differential compartmentalization of alternative transcript isoforms. Nucleic Acids Res 2009; 38:1086-97. [PMID: 19969546 PMCID: PMC2831334 DOI: 10.1093/nar/gkp1136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses have typically disregarded nucleocytoplasmic differences. This approach has ignored some post-transcriptional regulations and their effect on the ultimate protein expression levels. Despite a longstanding interest in the differences between the nuclear and cytosolic transcriptomes, it is only recently that data have become available to study such differences and their associated features on a genome-wide scale. Here, we compared the nuclear and cytosolic transcriptomes of HepG2 and HeLa cells. HepG2 and HeLa cells vary significantly in the differential compartmentalization of their transcript isoforms, indicating that nucleocytoplasmic compartmentalization is a cell-specific characteristic. The differential compartmentalization is manifested at the transcript isoform level instead of the gene level because alternative isoforms of one gene can display different nucleocytoplasmic distributions. The isoforms enriched in the cytosol tend to have more introns and longer introns in their pre-mRNAs. They have more functional RNA folds and unique exons in the 3′ regions. These isoforms are more conserved than the isoforms enriched in the nucleus. Surprisingly, the presence of microRNAs does not have a significant impact on the nucleocytoplasmic distribution of their target isoforms. In contrast, nonsense-mediated decay is significantly more associated with the isoforms enriched in the nucleus than those enriched in the cytosol.
Collapse
Affiliation(s)
- Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
69
|
Ricci EP, Mure F, Gruffat H, Decimo D, Medina-Palazon C, Ohlmann T, Manet E. Translation of intronless RNAs is strongly stimulated by the Epstein-Barr virus mRNA export factor EB2. Nucleic Acids Res 2009; 37:4932-43. [PMID: 19528074 PMCID: PMC2731895 DOI: 10.1093/nar/gkp497] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Epstein–Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different.
Collapse
Affiliation(s)
- Emiliano P Ricci
- INSERM U758, Unité de Virologie Humaine, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | | | | | | | | | | | | |
Collapse
|
70
|
Berman P, Collins M, Baumgarten I, Seoighe C, Jennings CL, Joffe Y, Lambert EV, Levitt NS, Faulenbach MV, Kahn SE, Goedecke JH. Association between the 4 bp proinsulin gene insertion polymorphism (IVS-69) and body composition in black South African women. Obesity (Silver Spring) 2009; 17:1298-300. [PMID: 19247282 DOI: 10.1038/oby.2009.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of the study was to examine the association between a functional 4 bp proinsulin gene insertion polymorphism (IVS-69), fasting insulin concentrations, and body composition in black South African women. Body composition, body fat distribution, fasting glucose and insulin concentrations, and IVS-69 genotype were measured in 115 normal-weight (BMI<25 kg/m2) and 138 obese (BMI>or=30 kg/m2) premenopausal women. The frequency of the insertion allele was significantly higher in the class 2 obese (BMI>or=35 kg/m2) compared with the normal-weight group (P=0.029). Obese subjects with the insertion allele had greater fat mass (42.3+/-0.9 vs. 38.9+/-0.9 kg, P=0.034) and fat-free soft tissue mass (47.4+/-0.6 vs. 45.1+/-0.6 kg, P=0.014), and more abdominal subcutaneous adipose tissue (SAT, 595+/-17 vs. 531+/-17 cm2, P=0.025) but not visceral fat (P=0.739), than obese homozygotes for the wild-type allele. Only SAT was greater in normal-weight subjects with the insertion allele (P=0.048). There were no differences in fasting insulin or glucose levels between subjects with the insertion allele or homozygotes for the wild-type allele in the normal-weight or obese groups. In conclusion, the 4 bp proinsulin gene insertion allele is associated with extreme obesity, reflected by greater fat-free soft tissue mass and fat mass, particularly SAT, in obese black South African women.
Collapse
Affiliation(s)
- Peter Berman
- Division of Chemical Pathology, UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Sun J, Li D, Hao Y, Zhang Y, Fan W, Fu J, Hu Y, Liu Y, Shao Y. Posttranscriptional regulatory elements enhance antigen expression and DNA vaccine efficacy. DNA Cell Biol 2009; 28:233-40. [PMID: 19388846 DOI: 10.1089/dna.2009.0862] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In higher eukaryotes, introns are usually required for efficient pre-mRNA processing. However, some viruses have alternative approaches involving posttranscriptional regulatory elements (PREs) to enhance intronless heterologous gene expression through enabling stability and 3' end formation, and to facilitate the nucleocytoplasmic export of unspliced mRNAs. In the current study, we compared the human cytomegalovirus (hCMV) immediate/early (IE) intronA, as well as virus-derived PREs-the PRE of Hepatitis B virus (HPRE) and Woodchuck Hepatitis virus (WPRE) on their ability to enhance antigen gene expression in vitro and immune responses induced by DNA vaccination in animal. Among all the constructs, the plasmids carrying the HPRE element showed the highest gene expression level in both in vivo and in vitro models. During immunization of mice with low doses (10 microg) of HIV-1 DNA vaccine, only -intronA/+HPRE and +intronA/+HPRE vaccine constructs induced anti-Gag antibodies, although the -intronA/+WPRE construct also elicited antigen-specific cellular immune responses. In addition, pInHGag (+intronA/+HPRE) at a 10 mug dose could induce higher anti-Gag antibody level than that induced by pGag (-intronA/-HPRE) or pInGag (+intronA/-HPRE) at 40 microg dose (p < 0.05). Our data are useful for the optimization of heterologous expression and immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Kereszturi É, Király O, Sahin-Tóth M. Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut 2009; 58:545-9. [PMID: 18978175 PMCID: PMC2677899 DOI: 10.1136/gut.2008.164947] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Two common haplotypes of the serine protease inhibitor Kazal type 1 (SPINK1) gene have been shown to increase the risk for chronic pancreatitis. A haplotype comprising the c.101A>G (p.N34S) missense variant and four intronic alterations has been found worldwide, whereas a second haplotype consisting of the c.-215G>A promoter variant and the c.194+2T>C intronic alteration has been observed frequently in Japan. METHODS In the present study, the functional significance of the intronic variants in the pathogenic SPINK1 haplotypes was examined by utilising minigenes, which harbour individual introns placed in the appropriate context of the full-length SPINK1 cDNA. Cells transfected with the SPINK1 minigenes secrete active trypsin inhibitor, thereby allowing evaluation of mutational effects simultaneously on transcription, splicing, translation and secretion. RESULTS It was found that the c.194+2T>C intronic alteration abolished SPINK1 expression at the mRNA level, with consequent loss of inhibitor secretion, whereas the p.N34S-associated intronic variants had no detectable functional effect. CONCLUSIONS Taken together with previous studies, the results indicate that all known variants within the p.N34S-associated haplotype are functionally innocuous, suggesting that an as yet unidentified variant within this haplotype is responsible for the pathogenic effect. The marked negative impact of the c.194+2T>C variant on SPINK1 expression supports the notion that SPINK1 variants increase the risk of chronic pancreatitis by diminishing protective trypsin inhibitor levels.
Collapse
Affiliation(s)
| | | | - Miklós Sahin-Tóth
- Correspondence to Miklós Sahin-Tóth, 72 East Concord Street, Evans-433; Boston, MA 02118; Tel: (617) 414-1070; Fax: (617) 414-1041; E-mail:
| |
Collapse
|
73
|
Yamamoto N, Takase-Yoden S. Friend murine leukemia virus A8 regulates Env protein expression through an intron sequence. Virology 2009; 385:115-25. [DOI: 10.1016/j.virol.2008.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/23/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
74
|
Johnson SA, Cubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3' end processing factor Pcf11. Mol Cell 2008; 33:215-26. [PMID: 19110458 DOI: 10.1016/j.molcel.2008.12.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/05/2008] [Accepted: 12/05/2008] [Indexed: 01/21/2023]
Abstract
We investigated recruitment of the yeast mRNA export factor Yra1 to the transcription elongation complex (TEC). Previously, the Sub2 helicase subunit of TREX was proposed to recruit Yra1. We report that Sub2 is dispensable for Yra1 recruitment, but the cleavage/polyadenylation factor, CF1A, is required. Yra1 binds directly to the Zn finger/Clp1 region of Pcf11, the pol II CTD-binding subunit of CF1A, and this interaction is conserved between their human homologs. Tethering of Pcf11 to nascent mRNA is sufficient to enhance Yra1 recruitment. Interaction with Pcf11 can therefore explain Yra1 binding to the TEC independently of Sub2. We propose that after initially binding to Pcf11, Yra1 is transferred to Sub2. Consistent with this idea, Pcf11 binds the same regions of Yra1 that also contact Sub2, indicating a mutually exclusive interaction. These results suggest a mechanism for cotranscriptional assembly of the export competent mRNP and for coordinating export with 3' end processing.
Collapse
Affiliation(s)
- Sara Ann Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
75
|
SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008; 133:303-13. [PMID: 18423201 DOI: 10.1016/j.cell.2008.02.031] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 10/26/2007] [Accepted: 02/04/2008] [Indexed: 11/20/2022]
Abstract
Different protein complexes form on newly spliced mRNA to ensure the accuracy and efficiency of eukaryotic gene expression. For example, the exon junction complex (EJC) plays an important role in mRNA surveillance. The EJC also influences the first, or pioneer round of protein synthesis through a mechanism that is poorly understood. We show that the nutrient-, stress-, and energy-sensing checkpoint kinase, mTOR, contributes to the observed enhanced translation efficiency of spliced over nonspliced mRNAs. We demonstrate that, when activated, S6K1 is recruited to the newly synthesized mRNA by SKAR, which is deposited at the EJC during splicing, and that SKAR and S6K1 increase the translation efficiency of spliced mRNA. Thus, SKAR-mediated recruitment of activated S6K1 to newly processed mRNPs serves as a conduit between mTOR checkpoint signaling and the pioneer round of translation when cells exist in conditions supportive of protein synthesis.
Collapse
|
76
|
Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci U S A 2008; 105:3386-91. [PMID: 18287003 DOI: 10.1073/pnas.0800250105] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The numerous steps in protein gene expression are extensively coupled to one another through complex networks of physical and functional interactions. Indeed, >25 coupled reactions, often reciprocal, have been documented among such steps as transcription, capping, splicing, and polyadenylation. Coupling is usually not essential for gene expression, but instead enhances the rate and/or efficiency of reactions and, physiologically, may serve to increase the fidelity of gene expression. Despite numerous examples of coupling in gene expression, whether splicing enhances mRNA export still remains controversial. Although splicing was originally reported to promote export in both mammalian cells and Xenopus oocytes, it was subsequently concluded that this was not the case. These newer conclusions were surprising in light of the observations that the mRNA export machinery colocalizes with splicing factors in the nucleus and that splicing promotes recruitment of the export machinery to mRNA. We therefore reexamined the relationship between splicing and mRNA export in mammalian cells by using FISH, in combination with either transfection or nuclear microinjection of plasmid DNA. Together, these analyses indicate that both the kinetics and efficiency of mRNA export are enhanced 6- to 10-fold (depending on the construct) for spliced mRNAs relative to their cDNA counterparts. We conclude that splicing promotes mRNA export in mammalian cells and that the functional coupling between splicing and mRNA export is a conserved and general feature of gene expression in higher eukaryotes.
Collapse
|
77
|
Transcriptional and post-transcriptional enhancement of gene expression by the 5' UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 2008; 279:429-39. [PMID: 18236078 DOI: 10.1007/s00438-008-0323-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 01/13/2008] [Indexed: 01/01/2023]
Abstract
Introns play a very important role in regulating gene expression in eukaryotes. In plants, many introns enhance gene expression, and the effect of intron-mediated enhancement (IME) of gene expression is reportedly often more profound in monocots than in dicots. To further gain insight of IME in monocot plants, we quantitatively dissected the effect of the 5' UTR intron of the rice rubi3 gene at various gene expression levels in stably transformed suspension cell lines. The intron enhanced the GUS reporter gene activity in these lines by about 29-fold. Nuclear run-on experiments demonstrated a nearly twofold enhancement by the 5' UTR intron at the transcriptional level. RNA analysis by RealTime quantitative RT-PCR assays indicated the intron enhanced the steady state RNA level of the GUS reporter gene by nearly 20-fold, implying a strong role of the intron in RNA processing and/or export. The results also implicated a moderate role of the intron in enhancement at the translational level ( approximately 45%). Moreover, results from a transient assay experiment using a shortened exon 1 sequence revealed an important role of exon 1 of rubi3 in gene expression. It may also hint a divergence in IME mechanisms between plant and animal cells. These results demonstrated transcriptional enhancement by a plant intron, but suggested that post-transcriptional event(s) be the major source of IME.
Collapse
|
78
|
|
79
|
Egloff S, O'Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 2007; 318:1777-9. [PMID: 18079403 DOI: 10.1126/science.1145989] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene-specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type-specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.
Collapse
Affiliation(s)
- Sylvain Egloff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
80
|
PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat Struct Mol Biol 2007; 14:1173-9. [PMID: 18026120 DOI: 10.1038/nsmb1321] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/21/2007] [Indexed: 11/08/2022]
Abstract
Messenger RNAs produced by splicing are translated more efficiently than those produced from similar intronless precursor mRNAs (pre-mRNAs). The exon-junction complex (EJC) probably mediates this enhancement; however, the specific link between the EJC and the translation machinery has not been identified. The EJC proteins Y14 and magoh remain bound to spliced mRNAs after their export from the nucleus to the cytoplasm and are removed only when these mRNAs are translated. Here we show that PYM, a 29-kDa protein that binds the Y14-magoh complex in the cytoplasm, also binds, via a separate domain, to the small (40S) ribosomal subunit and the 48S preinitiation complex. Furthermore, PYM knockdown reduces the translation efficiency of a reporter protein produced from intron-containing, but not intronless, pre-mRNA. We suggest that PYM functions as a bridge between EJC-bearing spliced mRNAs and the translation machinery to enhance translation of the mRNAs.
Collapse
|
81
|
Araud T, Genolet R, Jaquier-Gubler P, Curran J. Alternatively spliced isoforms of the human elk-1 mRNA within the 5' UTR: implications for ELK-1 expression. Nucleic Acids Res 2007; 35:4649-63. [PMID: 17591614 PMCID: PMC1950554 DOI: 10.1093/nar/gkm482] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The expression of cellular proteins that play central roles in the regulation of cell growth and differentiation is frequently tightly controlled at the level of translation initiation. In this article, we provide evidence that the ETS domain transcription factor ELK-1 forms part of this class of genes. Its mRNA 5′ UTR is composed of a complexed mosaic of elements, including uAUGs, uORFs and RNA structure, that interplay to modulate ribosomal access to the ELK-1 AUG start codon. Superimposed upon this is the generation of two different 5′ UTRs via alternative splicing. The two spliced isoforms show altered cellular and tissue distributions and behave differently in polysomal recruitment assays in the presence of the drug rapamycin. We propose that repression is therefore the sum of a series of interplaying negative elements within the 5′ UTRs, a situation which may reflect the need for tight translational control of ELK-1 in different tissues and under changing physiological conditions.
Collapse
Affiliation(s)
| | | | | | - Joseph Curran
- *To whom correspondence should be addressed.+0041 22 3795799+0041 22 3795702
| |
Collapse
|
82
|
Cheng G, Cohen L, Mikhli C, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Davis RE. In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Mol Biochem Parasitol 2007; 153:95-106. [PMID: 17391777 PMCID: PMC3650844 DOI: 10.1016/j.molbiopara.2007.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/23/2022]
Abstract
Spliced leader trans-splicing adds a short exon, the spliced leader (SL), to pre-mRNAs to generate 5' ends of mRNAs. Addition of the SL in metazoa also adds a new cap to the mRNA, a trimethylguanosine (m(3)(2,2,7)GpppN) (TMG) that replaces the typical eukaryotic monomethylguanosine (m7GpppN)(m7G) cap. Both trans-spliced (m3(2,2,7)GpppN-SL-RNA) and not trans-spliced (m7GpppN-RNA) mRNAs are present in the same cells. Previous studies using cell-free systems to compare the overall translation of trans-spliced versus non-trans-spliced RNAs led to different conclusions. Here, we examine the contribution of m3(2,2,7)GpppG-cap and SL sequence and other RNA elements to in vivo mRNA translation and stability in nematode embryos. Although 70-90% of all nematode mRNAs have a TMG-cap, the TMG cap does not support translation as well as an m7G-cap. However, when the TMG cap and SL are present together, they synergistically interact and translation is enhanced, indicating both trans-spliced elements are necessary to promote efficient translation. The SL by itself does not act as a cap-independent enhancer of translation. The poly(A)-tail synergistically interacts with the mRNA cap enhancing translation and plays a greater role in facilitating translation of TMG-SL mRNAs. In general, recipient mRNA sequences between the SL and AUG and the 3' UTR do not significantly contribute to the translation of trans-spliced mRNAs. Overall, the combination of TMG cap and SL contribute to mRNA translation and stability in a manner typical of a eukaryotic m7G-cap and 5' UTRs, but they do not differentially enhance mRNA translation or stability compared to RNAs without the trans-spliced elements.
Collapse
Affiliation(s)
- Guofeng Cheng
- Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Leah Cohen
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| | - Claudette Mikhli
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| | | | - Janusz Stepinski
- Departments of Biophysics, University of Warsaw, 02-089 Warsaw, Poland
| | | | - Richard E. Davis
- Departments of Pediatrics and Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Biology, City University of New York Graduate Center, CSI, 2800 Victory Boulevard, Staten Island, NY, 10314 and
| |
Collapse
|
83
|
Swartz JE, Bor YC, Misawa Y, Rekosh D, Hammarskjold ML. The shuttling SR protein 9G8 plays a role in translation of unspliced mRNA containing a constitutive transport element. J Biol Chem 2007; 282:19844-53. [PMID: 17513303 DOI: 10.1074/jbc.m701660200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The splicing regulatory SR protein, 9G8, has recently been proposed to function in mRNA export in conjunction with the export protein, Tap/NXF1. Tap interacts directly with the Mason-Pfizer monkey virus constitutive transport element (CTE), an element that enables export of unspliced, intron-containing mRNA. Based on our previous finding that Tap can promote polysome association and translation of CTE-RNA, we investigated the effect of 9G8 on cytoplasmic RNA fate. 9G8 was shown to enhance expression of unspliced RNA containing either the Mason-Pfizer monkey virus-CTE or the recently discovered Tap-CTE. 9G8 also enhanced polyribosome association of unspliced RNA containing a CTE. Hyperphosphorylated 9G8 was present in monosomes and small polyribosomes, whereas soluble fractions contained only hypophosphorylated protein. Our results are consistent with a model in which hypophosphorylated SR proteins remain stably associated with messenger ribonucleoprotein (mRNP) complexes during export and are released during translation initiation concomitant with increased phosphorylation. These results provide further evidence for crucial links between RNA splicing, export and translation.
Collapse
Affiliation(s)
- Jennifer E Swartz
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
84
|
Jeong YM, Mun JH, Kim H, Lee SY, Kim SG. An upstream region in the first intron of petunia actin-depolymerizing factor 1 affects tissue-specific expression in transgenic Arabidopsis (Arabidopsis thaliana). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:230-9. [PMID: 17376165 DOI: 10.1111/j.1365-313x.2007.03053.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The first intron of the petunia actin-depolymerizing factor 1 (PhADF1) gene was previously shown to induce strong and constitutive expression of that gene in vegetative tissues of transgenic Arabidopsis. To examine intron-mediated enhancement of PhADF1 gene expression in detail, the effects of splicing, deletion and promoter alteration on gene expression were analyzed in this study. Deletion of the 5' upstream region of the intron significantly reduced the level of enhancement, under the control of both the PhADF1 and the PhADF2 promoters. The ratio of pre-mRNA and mRNA does not correlate with the level of enhancement. To determine whether there is a promoter-intron interaction, the role of the intron was examined under the control of a heterogeneous promoter. The intron of PhADF1 induced GUS expression in vegetative tissues under the control of the reproductive tissue-specific Arabidopsis profilin 5 (PRF5) promoter. In transient assays, the presence of the intron increased GUS expression under control of the 35S minimal promoter. Our results suggest that the first intron of the PhADF1 gene alters tissue-specific expression by a post-transcriptional mechanism. In addition, we have also shown that intron-mediated enhancement is a conserved mechanism, which regulates the expression of the petunia and Arabidopsis ADF genes that are expressed in vegetative tissues.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
85
|
Callendret B, Lorin V, Charneau P, Marianneau P, Contamin H, Betton JM, van der Werf S, Escriou N. Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology 2007; 363:288-302. [PMID: 17331558 PMCID: PMC7103356 DOI: 10.1016/j.virol.2007.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/19/2006] [Accepted: 01/15/2007] [Indexed: 01/19/2023]
Abstract
The SARS-CoV spike glycoprotein (S) is the main target of the protective immune response in humans and animal models of SARS. Here, we demonstrated that efficient expression of S from the wild-type spike gene in cultured cells required the use of improved plasmid vectors containing donor and acceptor splice sites, as well as heterologous viral RNA export elements, such as the CTE of Mazon-Pfizer monkey virus or the PRE of Woodchuck hepatitis virus (WPRE). The presence of both splice sites and WPRE markedly improved the immunogenicity of S-based DNA vaccines against SARS. Upon immunization of mice with low doses (2 microg) of naked DNA, only intron and WPRE-containing vectors could induce neutralizing anti-S antibodies and provide protection against challenge with SARS-CoV. Our observations are likely to be useful for the construction of plasmid and viral vectors designed for optimal expression of intronless genes derived from cytoplasmic RNA viruses.
Collapse
Affiliation(s)
- Benoît Callendret
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Valérie Lorin
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Pierre Charneau
- Groupe à 5 ans de Virologie Moléculaire et de Vectorologie, France
| | - Philippe Marianneau
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Hugues Contamin
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Jean-Michel Betton
- Unité de Biochimie Structurale, URA CNRS 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 PARIS Cedex 15, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
| | - Nicolas Escriou
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris 7, France
- Corresponding author. Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France. Fax: +33 140613241.
| |
Collapse
|
86
|
Abstract
From yeast to mammals, evidence has emerged in recent years highlighting the essential role played by the nuclear "history" of a messenger RNA in determining its cytoplasmic fate. mRNA localization, translation and stability in the cytoplasm are often pre-destined in the nucleus, and directed by the composition and architecture of nuclear assembled mRNA-protein complexes. In this review we focus on nuclear-acquired RNA-binding proteins and complexes that participate in determining the journey of localized mRNAs.
Collapse
Affiliation(s)
- Corinna Giorgi
- Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
87
|
Charron M, Chern JY, Wright WW. The cathepsin L first intron stimulates gene expression in rat sertoli cells. Biol Reprod 2007; 76:813-24. [PMID: 17229931 DOI: 10.1095/biolreprod.106.057851] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Large amounts of cathepsin L (CTSL), a cysteine protease required for quantitatively normal spermatogenesis, are synthesized by mouse and rat Sertoli cells during stages VI to VII of the cycle of the seminiferous epithelium. We previously demonstrated that all of the regulatory elements required in vivo for both Sertoli cell- and stage-specific expression of the Ctsl gene are present within a ~3-kb genomic fragment that contains 2065 nucleotides upstream of the transcription start site and 977 nucleotides of downstream sequence. Most of the downstream region encodes the first intron. In this study, transient transfection assays using primary Sertoli cell cultures and the TM4 Sertoli cell line established that the Ctsl first intron increased reporter gene activity by ~5-fold. While the intron-mediated enhancement in reporter gene activity was not restricted to the Ctsl promoter, positioning the first intron upstream of the Ctsl promoter in either orientation abolished its stimulatory activity, suggesting that it does not contain a typical enhancer. Mutating the 5'-splice site of the Ctsl first intron or replacing the first intron by the Ctsl fourth intron abolished the stimulatory effect. Finally, the intron-dependent increase in reporter gene activity could be explained in part by an increase in the amounts of total RNA and transcript polyadenylation. Results from this study suggest that the stimulatory effect mediated by the Ctsl first intron may explain in part why Sertoli cells in seminiferous tubules at stages VI to VII produce high levels of CTSL.
Collapse
Affiliation(s)
- Martin Charron
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
88
|
Wang HF, Feng L, Niu DK. Relationship between mRNA stability and intron presence. Biochem Biophys Res Commun 2007; 354:203-8. [PMID: 17207776 PMCID: PMC7092898 DOI: 10.1016/j.bbrc.2006.12.184] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 12/26/2006] [Indexed: 12/02/2022]
Abstract
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.
Collapse
|
89
|
Golovanov AP, Hautbergue GM, Tintaru AM, Lian LY, Wilson SA. The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA. RNA (NEW YORK, N.Y.) 2006; 12:1933-48. [PMID: 17000901 PMCID: PMC1624900 DOI: 10.1261/rna.212106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The RNA binding and export factor (REF) family of mRNA export adaptors are found in several nuclear protein complexes including the spliceosome, TREX, and exon junction complexes. They bind RNA, interact with the helicase UAP56/DDX39, and are thought to bridge the interaction between the export factor TAP/NXF1 and mRNA. REF2-I consists of three domains, with the RNA recognition motif (RRM) domain positioned in the middle. Here we dissect the interdomain interactions of REF2-I and present the solution structure of a functionally competent double domain (NM; residues 1-155). The N-terminal domain comprises a transient helix (N-helix) linked to the RRM by a flexible arm that includes an Arg-rich region. The N-helix, which is required for REF2-I function in vivo, overlaps the highly conserved REF-N motif and, together with the adjacent Arg-rich region, interacts transiently with the RRM. RNA interacts with REF2-I through arginine-rich regions in its N- and C-terminal domains, but we show that it also interacts weakly with the RRM. The mode of interaction is unusual for an RRM since it involves loops L1 and L5. NMR signal mapping and biochemical analysis with NM indicate that DDX39 and TAP interact with both the N and RRM domains of REF2-I and show that binding of these proteins and RNA will favor an open conformation for the two domains. The proximity of the RNA, TAP, and DDX39 binding sites on REF2-I suggests their binding may be mutually exclusive, which would lead to successive ligand binding events in the course of mRNA export.
Collapse
Affiliation(s)
- Alexander P Golovanov
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| | | | | | | | | |
Collapse
|
90
|
Bono F, Ebert J, Lorentzen E, Conti E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 2006; 126:713-25. [PMID: 16923391 DOI: 10.1016/j.cell.2006.08.006] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 07/31/2006] [Accepted: 08/09/2006] [Indexed: 11/30/2022]
Abstract
The exon junction complex (EJC) plays a major role in posttranscriptional regulation of mRNA in metazoa. The EJC is deposited onto mRNA during splicing and is transported to the cytoplasm where it influences translation, surveillance, and localization of the spliced mRNA. The complex is formed by the association of four proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP. The 2.2 A resolution structure of the EJC reveals how it stably locks onto mRNA. The DEAD-box protein eIF4AIII encloses an ATP molecule and provides the binding sites for six ribonucleotides. Btz wraps around eIF4AIII and stacks against the 5' nucleotide. An intertwined network of interactions anchors Mago-Y14 and Btz at the interface between the two domains of eIF4AIII, effectively stabilizing the ATP bound state. Comparison with the structure of the eIF4AIII-Btz subcomplex that we have also determined reveals that large conformational changes are required upon EJC assembly and disassembly.
Collapse
Affiliation(s)
- Fulvia Bono
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
91
|
Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA (NEW YORK, N.Y.) 2006; 12:1015-22. [PMID: 16601204 PMCID: PMC1464862 DOI: 10.1261/rna.12506] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The exon-junction complex (EJC) components hUpf3a and hUpf3b serve a dual function: They promote nonsense-mediated mRNA decay (NMD), and they also regulate translation efficiency. Whether these two functions are interdependent or independent of each other is unknown. We characterized the function of the hUpf3 proteins in a lambdaN/boxB-based tethering system. Despite the high degree of sequence similarity between hUpf3b and hUpf3a, hUpf3a is much less active than hUpf3b to induce NMD and to stimulate translation. We show that induction of NMD by hUpf3 proteins requires interaction with Y14, Magoh, BTZ, and eIF4AIII. The protein region that mediates this interaction and discriminates between hUpf3a and hUpf3b in NMD function is located in the C-terminal domain and fully contained within a small sequence that is highly conserved in Upf3b but not Upf3a proteins. Stimulation of translation is independent of this interaction and is determined by other regions of the hUpf3 protein, indicating the presence of different downstream pathways of hUpf3 proteins either in NMD or in translation.
Collapse
Affiliation(s)
- Joachim B Kunz
- Department for Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
92
|
Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K. RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 2006; 13:509-16. [PMID: 16680162 DOI: 10.1038/nsmb1092] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 04/10/2006] [Indexed: 01/12/2023]
Abstract
RNA helicase A (RHA) is a highly conserved DEAD-box protein that activates transcription, modulates RNA splicing and binds the nuclear pore complex. The life cycle of typical mRNA involves RNA processing and translation after ribosome scanning of a relatively unstructured 5' untranslated region (UTR). The precursor RNAs of retroviruses and selected cellular genes harbor a complex 5' UTR and use a yet-to-be-identified host post-transcriptional effector to stimulate efficient translation. Here we show that RHA recognizes a structured 5'-terminal post-transcriptional control element (PCE) of a retrovirus and the JUND growth-control gene. RHA interacts with PCE RNA in the nucleus and cytoplasm, facilitates polyribosome association and is necessary for its efficient translation. Our results reveal a previously unidentified role for RHA in translation and implicate RHA as an integrative effector in the continuum of gene expression from transcription to translation.
Collapse
Affiliation(s)
- Tiffiney Roberts Hartman
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210 USA
| | | | | | | | | | | |
Collapse
|
93
|
Colwill K, Wells CD, Elder K, Goudreault M, Hersi K, Kulkarni S, Hardy WR, Pawson T, Morin GB. Modification of the Creator recombination system for proteomics applications--improved expression by addition of splice sites. BMC Biotechnol 2006; 6:13. [PMID: 16519801 PMCID: PMC1421398 DOI: 10.1186/1472-6750-6-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 03/06/2006] [Indexed: 11/26/2022] Open
Abstract
Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely useful tool for proteomics.
Collapse
Affiliation(s)
- Karen Colwill
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Clark D Wells
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kelly Elder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marilyn Goudreault
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kadija Hersi
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sarang Kulkarni
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - W Rod Hardy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Tony Pawson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
| | - Gregg B Morin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
94
|
Yilmaz A, Fernandez S, Lairmore MD, Boris-Lawrie K. Coordinate enhancement of transgene transcription and translation in a lentiviral vector. Retrovirology 2006; 3:13. [PMID: 16480517 PMCID: PMC1388234 DOI: 10.1186/1742-4690-3-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 02/15/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coordinate enhancement of transgene transcription and translation would be a potent approach to significantly improve protein output in a broad array of viral vectors and nonviral expression systems. Many vector transgenes are complementary DNA (cDNA). The lack of splicing can significantly reduce the efficiency of their translation. Some retroviruses contain a 5' terminal post-transcriptional control element (PCE) that facilitates translation of unspliced mRNA. Here we evaluated the potential for spleen necrosis virus PCE to stimulate protein production from HIV-1 based lentiviral vector by: 1) improving translation of the internal transgene transcript; and 2) functionally synergizing with a transcriptional enhancer to achieve coordinate increases in RNA synthesis and translation. RESULTS Derivatives of HIV-1 SIN self-inactivating lentiviral vector were created that contain PCE and cytomegalovirus immediate early enhancer (CMV IE). Results from transfected cells and four different transduced cell types indicate that: 1) PCE enhanced transgene protein synthesis; 2) transcription from the internal promoter is enhanced by CMV IE; 3) PCE and CMV IE functioned synergistically to significantly increase transgene protein yield; 4) the magnitude of translation enhancement by PCE was similar in transfected and transduced cells; 5) differences were observed in steady state level of PCE vector RNA in transfected and transduced cells; 6) the lower steady state was not attributable to reduced RNA stability, but to lower cytoplasmic accumulation in transduced cells. CONCLUSION PCE is a useful tool to improve post-transcriptional expression of lentiviral vector transgene. Coordinate enhancement of transcription and translation is conferred by the combination of PCE with CMV IE transcriptional enhancer and increased protein yield up to 11 to 17-fold in transfected cells. The incorporation of the vector provirus into chromatin correlated with reduced cytoplasmic accumulation of PCE transgene RNA. We speculate that epigenetic modulation of promoter activity altered cotranscriptional recruitment of RNA processing factors and reduced the availability of fully processed transcript or the efficiency of export from the nucleus. Our results provide an example of the dynamic interplay between the transcription and post-transcription steps of gene expression and document that introduction of heterologous gene expression signals can yield disparate effects in transfected versus transduced cells.
Collapse
Affiliation(s)
- Alper Yilmaz
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Soledad Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathleen Boris-Lawrie
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
95
|
Curry BJ, Holt JE, McLaughlin EA, Aitken RJ. Characterization of structure and expression of the Dzip1 gene in the rat and mouse. Genomics 2006; 87:275-85. [PMID: 16368222 DOI: 10.1016/j.ygeno.2005.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 10/12/2005] [Accepted: 10/21/2005] [Indexed: 11/28/2022]
Abstract
A transcript encoding a rat homologue of DZIP1 (DAZ-interacting protein) was isolated from testis RNA. Like human DZIP1, it contains a C(2)H(2) zinc finger domain. A predicted mouse homologue of DZIP1 was found in the GenBank database. Genome analysis indicated that while DZIP1 and mouse Dzip1 contain 22 and 20 exons, respectively, the rat sequence was intronless, confirmed by PCR on genomic DNA. This rat Dzip1 sequence is homologous to mouse Dzip1 exons 1-6 and DZIP1 exons 5-9. As this rat sequence was shorter than DZIP1 it was designated rat Dzip1S. The rat genome also contained a further predicted homologue of DZIP1 displaying conserved linkage homology with mouse Dzip1 and DZIP1. This sequence, if expressed, is the true rat homologue of DZIP1, designated rat Dzip1. Rat Dzip1S mRNA was present in all tissues examined by qualitative RT-RCR, and in situ hybridization of rat testis confirmed that expression of rat Dzip1S mRNA was confined to the spermatogenic lineage, specifically premeiotic spermatogonia.
Collapse
Affiliation(s)
- Benjamin J Curry
- Reproductive Science Group, Discipline of Biological Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
96
|
Bird G, Fong N, Gatlin JC, Farabaugh S, Bentley DL. Ribozyme cleavage reveals connections between mRNA release from the site of transcription and pre-mRNA processing. Mol Cell 2006; 20:747-58. [PMID: 16337598 DOI: 10.1016/j.molcel.2005.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/21/2005] [Accepted: 11/09/2005] [Indexed: 11/23/2022]
Abstract
We report a functional connection between splicing and transcript release from the DNA. A Pol II CTD mutant inhibited not only splicing but also RNA release from the site of transcription. A ribozyme situated downstream of the gene restored accurate splicing inhibited by the CTD mutant or a mutant poly(A) site, suggesting that cleavage liberates RNA from a niche that is inaccessible to splicing factors. Although ribozyme cleavage enhanced splicing, 3' end processing was impaired, indicating that an intact RNA chain linking the poly(A) site to Pol II is required for optimal processing. Surprisingly, poly(A)(-) beta-globin mRNA with a ribozyme-generated 3' end was exported to the cytoplasm. Ribozyme cleavage can therefore substitute for normal 3' end processing in stimulating splicing and mRNA export. We propose that mRNA biogenesis is coordinated by preventing splicing near the 3' end until the transcript is released by poly(A) site cleavage.
Collapse
Affiliation(s)
- Gregory Bird
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, 80045, USA
| | | | | | | | | |
Collapse
|
97
|
Heise T, Sommer G, Reumann K, Meyer I, Will H, Schaal H. The hepatitis B virus PRE contains a splicing regulatory element. Nucleic Acids Res 2006; 34:353-63. [PMID: 16410615 PMCID: PMC1331995 DOI: 10.1093/nar/gkj440] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/12/2005] [Accepted: 12/23/2005] [Indexed: 12/12/2022] Open
Abstract
The posttranscriptional regulatory element (PRE) is considered to enhance hepatitis B virus (HBV) gene expression by facilitating the nuclear export of intronless viral subgenomic RNAs. Its role in the RNA metabolism of the viral pregenomic RNA (pgRNA) is currently unknown. We identified a positively cis-acting splicing regulatory element (SRE-1) and present two lines of evidence for its functionality. Firstly, in a heterologous context SRE-1 functionally substitutes for a retroviral bidirectional exonic splicing enhancer (ESE). As expected, SRE-1 is a splicing enhancer also in its natural viral sequence context, since deletion of SRE-1 reduces splicing of pgRNA in cell culture experiments. Secondly, we show that stimulation of HBV RNA splicing by the splicing factor PSF was repressed by the PRE. Analysis of a variety of PSF mutants indicated that RNA-binding and protein-protein interaction were required to enhance splicing. In addition, we show that the PRE contributed to pgRNA stability, but has little influence on its nuclear export. Herein, we report for the first time that the PRE harbors splicing stimulating and inhibiting regulatory elements controlling processing of the viral pregenome. We discuss a model in which the regulation of pgRNA splicing depends on cellular factors interacting with the PRE.
Collapse
Affiliation(s)
- Tilman Heise
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
98
|
Královicová J, Gaunt TR, Rodriguez S, Wood PJ, Day INM, Vorechovsky I. Variants in the human insulin gene that affect pre-mRNA splicing: is -23HphI a functional single nucleotide polymorphism at IDDM2? Diabetes 2006; 55:260-4. [PMID: 16380501 DOI: 10.2337/diabetes.55.01.06.db05-0773] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Predisposition to type 1 diabetes and juvenile obesity is influenced by the susceptibility locus IDDM2 that includes the insulin gene (INS). Although the risk conferred by IDDM2 has been attributed to a minisatellite upstream of INS, intragenic variants have not been ruled out. We examined whether INS polymorphisms affect pre-mRNA splicing and proinsulin secretion using minigene reporter assays. We show that IVS1-6A/T (-23HphI+/-) is a key INS variant that influences alternative splicing of intron 1 through differential recognition of its 3' splice site. The A allele resulted in an increased production of mature transcripts with a long 5' leader in several cell lines, and the extended mRNAs generated more proinsulin in culture supernatants than natural transcripts. The longer mRNAs were significantly overrepresented among beta-cell-expressed sequenced tags containing the A allele as compared with those with T alleles. In addition, we show that a rare insertion/deletion polymorphism IVS1+5insTTGC (IVS-69), which is exclusively present in Africans, activated a downstream cryptic 5' splice site, extending the 5' leader by 30 bp. These results indicate that -23HphI and IVS-69 are the most important INS variants affecting pre-mRNA splicing and suggest that -23HphI+/- is a common functional single nucleotide polymorphism at IDDM2.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton School of Medicine, Human Genetics Division, Duthie Building, MP808, Tremona Road, Southampton SO16 6YD, U.K
| | | | | | | | | | | |
Collapse
|
99
|
Zhang MX, Ou H, Shen YH, Wang J, Wang J, Coselli J, Wang XL. Regulation of endothelial nitric oxide synthase by small RNA. Proc Natl Acad Sci U S A 2005; 102:16967-72. [PMID: 16284254 PMCID: PMC1287968 DOI: 10.1073/pnas.0503853102] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeats (27-nt) in intron 4 have been shown to play a cis-acting role in endothelial nitric oxide synthase (eNOS) promoter activity. We hypothesize that the 27-nt repeats could be the source of small nuclear RNA specifically regulating eNOS expression. In this study, we used synthesized 27-nt RNA duplex and found that the eNOS gene transcriptional efficiency was reduced 63% (0.047 +/- 0.009 vs. 0.126 +/- 0.015, P < 0.01) by nuclear run-on assay. In endothelial cells transfected with the 27-nt small RNA duplex, we found that the eNOS mRNA and protein levels were decreased by >64% (P < 0.01). Conversely, a randomly selected 27-nt from luciferase gene had no effect on the eNOS expression. Furthermore, this eNOS silencing effect appeared to be reversible under the stimulation of vascular endothelial growth factor (10 ng/ml), which is known to up-regulate eNOS expression. Using in situ hybridization and Northern blotting, we observed the presence of endogenous eNOS intron 4-derived 27-nt small RNA, which was confined to the nucleus. In summary, we demonstrated that intron-based microRNAs in eNOS can induce significant gene specific transcriptional suppression, which could be an effective negative feedback regulator for gene expression.
Collapse
Affiliation(s)
- Ming-Xiang Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Chang CY, Hong WWL, Chong P, Wu SC. Influence of intron and exon splicing enhancers on mammalian cell expression of a truncated spike protein of SARS-CoV and its implication for subunit vaccine development. Vaccine 2005; 24:1132-41. [PMID: 16194584 PMCID: PMC7115599 DOI: 10.1016/j.vaccine.2005.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 09/03/2005] [Accepted: 09/05/2005] [Indexed: 12/04/2022]
Abstract
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is important for vaccine development. A truncated S protein of the TW1 strain, STR2 (88 kDa), carrying three S fragments (S74–253, S294–739, and S1129–1255) was investigated to study the influences of intron and exon splicing enhancers to improve STR2 protein expression in mammalian cells. Our results showed that STR2 protein expression with the use of an 138 base-pair intron addition increased by 1.9-, 2.5-, and 4.1-fold in Vero E6, QBI-293A cells, and CHO/dhFr− cells (dihydrofolate reductase [dhfr] gene deficient CHO cells), respectively. Using the exon splicing enhancers, including a bidirectional splicing enhancer (BSE) or an exon splicing enhancer derived from the EDA alternative exon of the fibronectin gene (EDA ESE), were also found to increase STR2 protein expression in CHO/dhFr− cells by 1.7- and 2.6-fold. Nevertheless, combination of the intron and the exon splicing enhancers resulted in suppressing the intron-enhancing e STR2 protein expression in in CHO/dhFr− cells. Our studies also demonstrated the STR2 protein was mainly as the Endo H-sensitive glycoprotein (115 kDa) expressed in Vero E6, QBI-293A, and CHO/dhFr− cells. However, only a minor form of the Endo H-resistant glycoproteins (∼130 kDa) was detected in CHO/dhFr− cells. Taken together, our results indicated that intron had a better enhancing effect on STR2 protein expression than exon splicing enhancers, and the expression of ∼130 kDa STR2 glycoprotein was enhanced by the intron addition into the expression vector construct. Results of the present study can provide an optimal strategy to enhance SARS-CoV S protein expression in mammalian cells and may contribute to the development of SARS-CoV subunit vaccine.
Collapse
Affiliation(s)
- Chia-Yin Chang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|