51
|
Impact of tRNA Modifications and tRNA-Modifying Enzymes on Proteostasis and Human Disease. Int J Mol Sci 2018; 19:ijms19123738. [PMID: 30477220 PMCID: PMC6321623 DOI: 10.3390/ijms19123738] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Transfer RNAs (tRNAs) are key players of protein synthesis, as they decode the genetic information organized in mRNA codons, translating them into the code of 20 amino acids. To be fully active, tRNAs undergo extensive post-transcriptional modifications, catalyzed by different tRNA-modifying enzymes. Lack of these modifications increases the level of missense errors and affects codon decoding rate, contributing to protein aggregation with deleterious consequences to the cell. Recent works show that tRNA hypomodification and tRNA-modifying-enzyme deregulation occur in several diseases where proteostasis is affected, namely, neurodegenerative and metabolic diseases. In this review, we discuss the recent findings that correlate aberrant tRNA modification with proteostasis imbalances, in particular in neurological and metabolic disorders, and highlight the association between tRNAs, their modifying enzymes, translational decoding, and disease onset.
Collapse
|
52
|
Maroney MJ, Hondal RJ. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic Biol Med 2018; 127:228-237. [PMID: 29588180 PMCID: PMC6158117 DOI: 10.1016/j.freeradbiomed.2018.03.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/16/2022]
Abstract
This review highlights the contributions of Jean Chaudière to the field of selenium biochemistry. Chaudière was the first to recognize that one of the main reasons that selenium in the form of selenocysteine is used in proteins is due to the fact that it strongly resists permanent oxidation. The foundations for this important concept was laid down by Al Tappel in the 1960's and even before by others. The concept of oxygen tolerance first recognized in the study of glutathione peroxidase was further advanced and refined by those studying [NiFeSe]-hydrogenases, selenosubtilisin, and thioredoxin reductase. After 200 years of selenium research, work by Marcus Conrad and coworkers studying glutathione peroxidase-4 has provided definitive evidence for Chaudière's original hypothesis (Ingold et al., 2018) [36]. While the reaction of selenium with oxygen is readily reversible, there are many other examples of this phenomenon of reversibility. Many reactions of selenium can be described as "easy in - easy out". This is due to the strong nucleophilic character of selenium to attack electrophiles, but then this reaction can be reversed due to the strong electrophilic character of selenium and the weakness of the selenium-carbon bond. Several examples of this are described.
Collapse
Affiliation(s)
- Michael J Maroney
- Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts, Life Sciences Laboratories, 240 Thatcher Road, Room N373, Amherst, MA 01003-9364, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|
53
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
54
|
Domènech A, Ayté J, Antunes F, Hidalgo E. Using in vivo oxidation status of one- and two-component redox relays to determine H 2O 2 levels linked to signaling and toxicity. BMC Biol 2018; 16:61. [PMID: 29859088 PMCID: PMC5984441 DOI: 10.1186/s12915-018-0523-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hydrogen peroxide (H2O2) is generated as a by-product of metabolic reactions during oxygen use by aerobic organisms, and can be toxic or participate in signaling processes. Cells, therefore, need to be able to sense and respond to H2O2 in an appropriate manner. This is often accomplished through thiol switches: Cysteine residues in proteins that can act as sensors, and which are both scarce and finely tuned. Bacteria and eukaryotes use different types of such sensors—either a one-component (OxyR) or two-component (Pap1-Tpx1) redox relay, respectively. However, the biological significance of these two different signaling modes is not fully understood, and the concentrations and peroxides driving those types of redox cascades have not been determined, nor the intracellular H2O2 levels linked to toxicity. Here we elucidate the characteristics, rates, and dynamic ranges of both systems. Results By comparing the activation of both systems in fission yeast, and applying mathematical equations to the experimental data, we estimate the toxic threshold of intracellular H2O2 able to halt aerobic growth, and the temporal gradients of extracellular to intracellular peroxides. By calculating both the oxidation rates of OxyR and Tpx1 by peroxides, and their reduction rates by the cellular redoxin systems, we propose that, while Tpx1 is a sensor and an efficient H2O2 scavenger because it displays fast oxidation and reduction rates, OxyR is strictly a H2O2 sensor, since its reduction kinetics are significantly slower than its oxidation by peroxides, and therefore, it remains oxidized long enough to execute its transcriptional role. We also show that these two paradigmatic H2O2-sensing models are biologically similar at pre-toxic peroxide levels, but display strikingly different activation behaviors at toxic doses. Conclusions Both Tpx1 and OxyR contain thiol switches, with very high reactivity towards peroxides. Nevertheless, the fast reduction of Tpx1 defines it as a scavenger, and this efficient recycling dramatically changes the Tpx1-Pap1 response to H2O2 and connects H2O2 sensing to the redox state of the cell. In contrast, OxyR is a true H2O2 sensor but not a scavenger, being partially insulated from the cellular electron donor capacity. Electronic supplementary material The online version of this article (10.1186/s12915-018-0523-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Domènech
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José Ayté
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Elena Hidalgo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
55
|
Lentini JM, Ramos J, Fu D. Monitoring the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification in eukaryotic tRNAs via the γ-toxin endonuclease. RNA (NEW YORK, N.Y.) 2018; 24:749-758. [PMID: 29440318 PMCID: PMC5900570 DOI: 10.1261/rna.065581.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The post-transcriptional modification of tRNA at the wobble position is a universal process occurring in all domains of life. In eukaryotes, the wobble uridine of particular tRNAs is transformed to the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification which is critical for proper mRNA decoding and protein translation. However, current methods to detect mcm5s2U are technically challenging and/or require specialized instrumental expertise. Here, we show that γ-toxin endonuclease from the yeast Kluyveromyces lactis can be used as a probe for assaying mcm5s2U status in the tRNA of diverse eukaryotic organisms ranging from protozoans to mammalian cells. The assay couples the mcm5s2U-dependent cleavage of tRNA by γ-toxin with standard molecular biology techniques such as northern blot analysis or quantitative PCR to monitor mcm5s2U levels in multiple tRNA isoacceptors. The results gained from the γ-toxin assay reveals the evolutionary conservation of the mcm5s2U modification across eukaryotic species. Moreover, we have used the γ-toxin assay to verify uncharacterized eukaryotic Trm9 and Trm112 homologs that catalyze the formation of mcm5s2U. These findings demonstrate the use of γ-toxin as a detection method to monitor mcm5s2U status in diverse eukaryotic cell types for cellular, genetic, and biochemical studies.
Collapse
Affiliation(s)
- Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
56
|
More than Just an Immunosuppressant: The Emerging Role of FTY720 as a Novel Inducer of ROS and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4397159. [PMID: 29785244 PMCID: PMC5896217 DOI: 10.1155/2018/4397159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023]
Abstract
Fingolimod hydrochloride (FTY720) is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator approved to treat multiple sclerosis by its phosphorylated form (FTY720-P). Recently, a novel role of FTY720 as a potential anticancer drug has emerged. One of the anticancer mechanisms of FTY720 involves the induction of reactive oxygen species (ROS) and subsequent apoptosis, which is largely independent of its property as an S1P modulator. ROS have been considered as a double-edged sword in tumor initiation/progression. Intriguingly, prooxidant therapies have attracted much attention due to its efficacy in cancer treatment. These strategies include diverse chemotherapeutic agents and molecular targeted drugs such as sulfasalazine which inhibits the CD44v-xCT (cystine transporter) axis. In this review, we introduce our recent discoveries using a chemical genomics approach to uncover a signaling network relevant to FTY720-mediated ROS signaling and apoptosis, thereby proposing new potential targets for combination therapy as a means to enhance the antitumor efficacy of FTY720 as a ROS generator. We extend our knowledge by summarizing various measures targeting the vulnerability of cancer cells' defense mechanisms against oxidative stress. Future directions that may lead to the best use of FTY720 and ROS-targeted strategies as a promising cancer treatment are also discussed.
Collapse
|
57
|
Goffena J, Lefcort F, Zhang Y, Lehrmann E, Chaverra M, Felig J, Walters J, Buksch R, Becker KG, George L. Elongator and codon bias regulate protein levels in mammalian peripheral neurons. Nat Commun 2018; 9:889. [PMID: 29497044 PMCID: PMC5832791 DOI: 10.1038/s41467-018-03221-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.
Collapse
Affiliation(s)
- Joy Goffena
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Jehremy Felig
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Joseph Walters
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Richard Buksch
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, 59101, USA.
| |
Collapse
|
58
|
Kapur M, Ackerman SL. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends Genet 2018; 34:218-231. [PMID: 29352613 DOI: 10.1016/j.tig.2017.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
59
|
Padgett LR, Lentini JM, Holmes MJ, Stilger KL, Fu D, Sullivan WJ. Elp3 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in Toxoplasma gondii. PLoS One 2018; 13:e0189688. [PMID: 29293520 PMCID: PMC5749711 DOI: 10.1371/journal.pone.0189688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.
Collapse
Affiliation(s)
- Leah R. Padgett
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jenna M. Lentini
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Michael J. Holmes
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Krista L. Stilger
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
60
|
Sokołowski M, Klassen R, Bruch A, Schaffrath R, Glatt S. Cooperativity between different tRNA modifications and their modification pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:409-418. [PMID: 29222069 DOI: 10.1016/j.bbagrm.2017.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Ribonucleotide modifications perform a wide variety of roles in synthesis, turnover and functionality of tRNA molecules. The presence of particular chemical moieties can refine the internal interaction network within a tRNA molecule, influence its thermodynamic stability, contribute novel chemical properties and affect its decoding behavior during mRNA translation. As the lack of specific modifications in the anticodon stem and loop causes disrupted proteome homeostasis, diminished response to stress conditions, and the onset of human diseases, the underlying modification cascades have recently gained particular scientific and clinical interest. Nowadays, a complicated but conclusive image of the interconnectivity between different enzymatic modification cascades and their resulting tRNA modifications emerges. Here we summarize the current knowledge in the field, focusing on the known instances of cross talk among the enzymatic tRNA modification pathways and the consequences on the dynamic regulation of the tRNA modificome by various factors. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Alexander Bruch
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
61
|
Hagihara K, Kinoshita K, Ishida K, Hojo S, Kameoka Y, Satoh R, Takasaki T, Sugiura R. A genome-wide screen for FTY720-sensitive mutants reveals genes required for ROS homeostasis. MICROBIAL CELL 2017; 4:390-401. [PMID: 29234668 PMCID: PMC5722642 DOI: 10.15698/mic2017.12.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fingolimod hydrochloride (FTY720), a sphingosine-1-phosphate (S1P) analogue, is an approved immune modulator for the treatment of multiple sclerosis (MS). Notably, in addition to its well-known mode of action as an S1P modulator, accumulating evidence suggests that FTY720 induces apoptosis in various cancer cells via reactive oxygen species (ROS) generation. Although the involvement of multiple signaling molecules, such as JNK (Jun N-terminal kinase), Akt (alpha serine/threonine-protein kinase) and Sphk has been reported, the exact mechanisms how FTY720 induces cell growth inhibition and the functional relationship between FTY720 and these signaling pathways remain elusive. Our previous reports using the fission yeast Schizosaccharomyces pombe as a model system to elucidate FTY720-mediated signaling pathways revealed that FTY720 induces an increase in intracellular Ca2+ concentrations and ROS generation, which resulted in the activation of the transcriptional responses downstream of Ca2+/calcineurin signaling and stress-activated MAPK signaling, respectively. Here, we performed a genome-wide screening for genes whose deletion induces FTY720-sensitive growth in S. pombe and identified 49 genes. These gene products are related to the biological processes involved in metabolic processes, transport, transcription, translation, chromatin organization, cytoskeleton organization and intracellular signal transduction. Notably, most of the FTY720-sensitive deletion cells exhibited NAC-remedial FTY720 sensitivities and dysregulated ROS homeostasis. Our results revealed a novel gene network involving ROS homeostasis and the possible mechanisms of the FTY720 toxicity.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kanako Kinoshita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kouki Ishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Shihomi Hojo
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Yoshinori Kameoka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| |
Collapse
|
62
|
Johansson MJO, Xu F, Byström AS. Elongator-a tRNA modifying complex that promotes efficient translational decoding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:401-408. [PMID: 29170010 DOI: 10.1016/j.bbagrm.2017.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Abstract
Naturally occurring modifications of the nucleosides in the anticodon region of tRNAs influence their translational decoding properties. Uridines present at the wobble position in eukaryotic cytoplasmic tRNAs often contain a 5-carbamoylmethyl (ncm(5)) or 5-methoxycarbonylmethyl (mcm(5)) side-chain and sometimes also a 2-thio or 2'-O-methyl group. The first step in the formation of the ncm(5) and mcm(5) side-chains requires the conserved six-subunit Elongator complex. Although Elongator has been implicated in several different cellular processes, accumulating evidence suggests that its primary, and possibly only, cellular function is to promote modification of tRNAs. In this review, we discuss the biosynthesis and function of modified wobble uridines in eukaryotic cytoplasmic tRNAs, focusing on the in vivo role of Elongator-dependent modifications in Saccharomyces cerevisiae. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
| | - Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
63
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
64
|
Dauden MI, Jaciuk M, Müller CW, Glatt S. Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 2017; 592:502-515. [DOI: 10.1002/1873-3468.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Maria I. Dauden
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Christoph W. Müller
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
65
|
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 2017; 19:20-30. [PMID: 29018283 DOI: 10.1038/nrm.2017.91] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of ribosome profiling and other tools to probe mRNA translation has revealed that codon bias - the uneven use of synonymous codons in the transcriptome - serves as a secondary genetic code: a code that guides the efficiency of protein production, the fidelity of translation and the metabolism of mRNAs. Recent advancements in our understanding of mRNA decay have revealed a tight coupling between ribosome dynamics and the stability of mRNA transcripts; this coupling integrates codon bias into the concept of codon optimality, or the effects that specific codons and tRNA concentrations have on the efficiency and fidelity of the translation machinery. In this Review, we first discuss the evidence for codon-dependent effects on translation, beginning with the basic mechanisms through which translation perturbation can affect translation efficiency, protein folding and transcript stability. We then discuss how codon effects are leveraged by the cell to tailor the proteome to maintain homeostasis, execute specific gene expression programmes of growth or differentiation and optimize the efficiency of protein production.
Collapse
Affiliation(s)
- Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
66
|
Elp3 and Dph3 of Schizosaccharomyces pombe mediate cellular stress responses through tRNA LysUUU modifications. Sci Rep 2017; 7:7225. [PMID: 28775286 PMCID: PMC5543170 DOI: 10.1038/s41598-017-07647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/30/2017] [Indexed: 01/31/2023] Open
Abstract
Efficient protein synthesis in eukaryotes requires diphthamide modification of translation elongation factor eEF2 and wobble uridine modifications of tRNAs. In higher eukaryotes, these processes are important for preventing neurological and developmental defects and cancer. In this study, we used Schizosaccharomyces pombe as a model to analyse mutants defective in eEF2 modification (dph1Δ), in tRNA modifications (elp3Δ), or both (dph3Δ) for sensitivity to cytotoxic agents and thermal stress. The dph3Δ and elp3Δ mutants were sensitive to a range of drugs and had growth defects at low temperature. dph3Δ was epistatic with dph1Δ for sensitivity to hydroxyurea and methyl methanesulfonate, and with elp3Δ for methyl methanesulfonate and growth at 16 °C. The dph1Δ and dph3Δ deletions rescued growth defects of elp3Δ in response to thiabendazole and at 37 °C. Elevated tRNALysUUU levels suppressed the elp3Δ phenotypes and some of the dph3Δ phenotypes, indicating that lack of tRNALysUUU modifications were responsible. Furthermore, we found positive genetic interactions of elp3Δ and dph3Δ with sty1Δ and atf1Δ, indicating that Elp3/Dph3-dependent tRNA modifications are important for efficient biosynthesis of key factors required for accurate responses to cytotoxic stress conditions.
Collapse
|
67
|
Chen J, Xuan J, Gu YT, Shi KS, Xie JJ, Chen JX, Zheng ZM, Chen Y, Chen XB, Wu YS, Zhang XL, Wang XY. Celastrol reduces IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo. Biomed Pharmacother 2017; 91:208-219. [PMID: 28458159 DOI: 10.1016/j.biopha.2017.04.093] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Celastrol has been reported to exert therapeutic potential on pro-inflammatory diseases including asthma, Crohn's disease, arthritis and neurodegenerative disorders via inhibiting NF-κB pathway. While the effect of celastrol on intervertebral disc degeneration (IDD), which is also a pro-inflammatory disease, remains unknown. In this study, we evaluated the effect of celastrol on IDD in IL-1β treated human nucleus pulposus cells in vitro as well as in puncture induced rat IDD model in vivo. Our results showed that celastrol reduced the expression of catabolic genes (MMP-3, 9, 13, ADAMTS-4, 5), oxidative stress factors (COX-2, iNOS) and pro-inflammatory factors (IL-6, TNF-a) induced by IL-1β in nucleus pulposus cells, also phosphorylation of IκBα and p65 were attenuated by celastrol, indicating NF-κB pathway was inhibited by celastrol in nucleus pulposus cells. In vivo study showed that celastrol treated rats had stronger T2-weighted signal than vehicle-treated rats at 2 weeks and 6 weeks' time point, suggesting celastrol could attenuate intervertebral disc degeneration in vivo. Together, our study demonstrates that celastrol could reduce IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo, which shows its potential to be a therapeutic drug for IDD.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jun Xuan
- Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, People's Republic of China
| | - Yun-Tao Gu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ke-Si Shi
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jun-Jun Xie
- Department of Postgraduate Education, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jiao-Xiang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zeng-Ming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xi-Bang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiao-Lei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| | - Xiang-Yang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
68
|
Salat-Canela C, Paulo E, Sánchez-Mir L, Carmona M, Ayté J, Oliva B, Hidalgo E. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. J Biol Chem 2017; 292:13635-13644. [PMID: 28652406 DOI: 10.1074/jbc.m117.794339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptation to stress triggers the most dramatic shift in gene expression in fission yeast (Schizosaccharomyces pombe), and this response is driven by signaling via the MAPK Sty1. Upon activation, Sty1 accumulates in the nucleus and stimulates expression of hundreds of genes via the nuclear transcription factor Atf1, including expression of atf1 itself. However, the role of stress-induced, Sty1-mediated Atf1 phosphorylation in transcriptional activation is unclear. To this end, we expressed Atf1 phosphorylation mutants from a constitutive promoter to uncouple Atf1 activity from endogenous, stress-activated Atf1 expression. We found that cells expressing a nonphosphorylatable Atf1 variant are sensitive to oxidative stress because of impaired transcription of a subset of stress genes whose expression is also controlled by another transcription factor, Pap1. Furthermore, cells expressing a phospho-mimicking Atf1 mutant display enhanced stress resistance, and although expression of the Pap1-dependent genes still relied on stress induction, another subset of stress-responsive genes was constitutively expressed in these cells. We also observed that, in cells expressing the phospho-mimicking Atf1 mutant, the presence of Sty1 was completely dispensable, with all stress defects of Sty1-deficient cells being suppressed by expression of the Atf1 mutant. We further demonstrated that Sty1-mediated Atf1 phosphorylation does not stimulate binding of Atf1 to DNA but, rather, establishes a platform of interactions with the basal transcriptional machinery to facilitate transcription initiation. In summary, our results provide evidence that Atf1 phosphorylation by the MAPK Sty1 is required for oxidative stress responses in fission yeast cells by promoting transcription initiation.
Collapse
Affiliation(s)
| | - Esther Paulo
- From the Oxidative Stress and Cell Cycle Group and
| | | | | | - José Ayté
- From the Oxidative Stress and Cell Cycle Group and
| | - Baldo Oliva
- Structural Bioinformatics Laboratory (GRIB), Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | |
Collapse
|
69
|
van Delft P, Akay A, Huber SM, Bueschl C, Rudolph KLM, Di Domenico T, Schuhmacher R, Miska EA, Balasubramanian S. The Profile and Dynamics of RNA Modifications in Animals. Chembiochem 2017; 18:979-984. [PMID: 28449301 PMCID: PMC5784800 DOI: 10.1002/cbic.201700093] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/28/2022]
Abstract
More than a hundred distinct modified nucleosides have been identified in RNA, but little is known about their distribution across different organisms, their dynamic nature and their response to cellular and environmental stress. Mass-spectrometry-based methods have been at the forefront of identifying and quantifying modified nucleosides. However, they often require synthetic reference standards, which do not exist in the case of many modified nucleosides, and this therefore impedes their analysis. Here we use a metabolic labelling approach to achieve rapid generation of bio-isotopologues of the complete Caenorhabditis elegans transcriptome and its modifications and use them as reference standards to characterise the RNA modification profile in this multicellular organism through an untargeted liquid-chromatography tandem high-resolution mass spectrometry (LC-HRMS) approach. We furthermore show that several of these RNA modifications have a dynamic response to environmental stress and that, in particular, changes in the tRNA wobble base modification 5-methoxycarbonylmethyl-2-thiouridine (mcm5 s2 U) lead to codon-biased gene-expression changes in starved animals.
Collapse
Affiliation(s)
- Pieter van Delft
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Alper Akay
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
| | - Sabrina M. Huber
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Christoph Bueschl
- Center for Analytical ChemistryDepartment of AgrobiotechnologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz-Strasse 203430Tulln an der DonauAustria
| | - Konrad L. M. Rudolph
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeCB10 1SAUK
| | - Tomás Di Domenico
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeCB10 1SAUK
| | - Rainer Schuhmacher
- Center for Analytical ChemistryDepartment of AgrobiotechnologyUniversity of Natural Resources and Life SciencesViennaKonrad-Lorenz-Strasse 203430Tulln an der DonauAustria
| | - Eric A. Miska
- Gurdon InstituteUniversity of CambridgeTennis Court RoadCambridgeCB2 1QNUK
- Department of GeneticsUniversity of CambridgeDowning StreetCambridgeCB2 3EHUK
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusCambridgeCB10 1SAUK
| | - Shankar Balasubramanian
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| |
Collapse
|
70
|
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents. Curr Genet 2017; 63:1081-1091. [PMID: 28555368 PMCID: PMC5668335 DOI: 10.1007/s00294-017-0711-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3-ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress.
Collapse
|
71
|
Agris PF, Narendran A, Sarachan K, Väre VYP, Eruysal E. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity. Enzymes 2017; 41:1-50. [PMID: 28601219 DOI: 10.1016/bs.enz.2017.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The posttranscriptional modifications of tRNA's anticodon stem and loop (ASL) domain represent a third level, a third code, to the accuracy and efficiency of translating mRNA codons into the correct amino acid sequence of proteins. Modifications of tRNA's ASL domain are enzymatically synthesized and site specifically located at the anticodon wobble position-34 and 3'-adjacent to the anticodon at position-37. Degeneracy of the 64 Universal Genetic Codes and the limitation in the number of tRNA species require some tRNAs to decode more than one codon. The specific modification chemistries and their impact on the tRNA's ASL structure and dynamics enable one tRNA to decode cognate and "wobble codons" or to expand recognition to synonymous codons, all the while maintaining the translational reading frame. Some modified nucleosides' chemistries prestructure tRNA to read the two codons of a specific amino acid that shares a twofold degenerate codon box, and other chemistries allow a different tRNA to respond to all four codons of a fourfold degenerate codon box. Thus, tRNA ASL modifications are critical and mutations in genes for the modification enzymes and tRNA, the consequences of which is a lack of modification, lead to mistranslation and human disease. By optimizing tRNA anticodon chemistries, structure, and dynamics in all organisms, modifications ensure translational fidelity of mRNA transcripts.
Collapse
Affiliation(s)
- Paul F Agris
- The RNA Institute, State University of New York, Albany, NY, United States.
| | - Amithi Narendran
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Kathryn Sarachan
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Ville Y P Väre
- The RNA Institute, State University of New York, Albany, NY, United States
| | - Emily Eruysal
- The RNA Institute, State University of New York, Albany, NY, United States
| |
Collapse
|
72
|
Maraia RJ, Arimbasseri AG. Factors That Shape Eukaryotic tRNAomes: Processing, Modification and Anticodon-Codon Use. Biomolecules 2017; 7:biom7010026. [PMID: 28282871 PMCID: PMC5372738 DOI: 10.3390/biom7010026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- Commissioned Corps, U.S. Public Health Service, Rockville, MD, 20016, USA.
| | - Aneeshkumar G Arimbasseri
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
73
|
Payne NC, Geissler A, Button A, Sasuclark AR, Schroll AL, Ruggles EL, Gladyshev VN, Hondal RJ. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic Biol Med 2017; 104:249-261. [PMID: 28108278 PMCID: PMC5328918 DOI: 10.1016/j.freeradbiomed.2017.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/16/2022]
Abstract
Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.
Collapse
Affiliation(s)
- N Connor Payne
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Andrew Geissler
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Aileen Button
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Alexandru R Sasuclark
- Department of Chemistry, St. Michael's College, 1 Winooski Park, Colchester, VT 05439, United States
| | - Alayne L Schroll
- Department of Chemistry, St. Michael's College, 1 Winooski Park, Colchester, VT 05439, United States
| | - Erik L Ruggles
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, United States.
| |
Collapse
|
74
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
75
|
Matsuo Y, Kawamukai M. cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2017; 81:231-241. [DOI: 10.1080/09168451.2016.1246171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, meiosis, and stress responses in Schizosaccharomyces pombe. We demonstrated that Pka1 is responsible for calcium tolerance. Loss of functional components of the PKA pathway such as Git3, Gpa2, Cyr1, and Pka1 yields a CaCl2-sensitive phenotype, while loss of Cgs1, a regulatory subunit of PKA, results in CaCl2 tolerance. Cytoplasmic distribution of Cgs1 and Pka1 is increased by the addition of CaCl2, suggesting that CaCl2 induces dissociation of Cgs1 and Pka1. The expression of Prz1, a transcriptional regulator in calcium homeostasis, is elevated in a pka1∆ strain and in a wild type strain under glucose-limited conditions. Accordingly, higher expression of Prz1 in the wild type strain results in a CaCl2-sensitive phenotype. These findings suggest that Pka1 is essential for tolerance to exogenous CaCl2, probably because the expression level of Prz1 needs to be properly regulated by Pka1.
Collapse
Affiliation(s)
- Yasuhiro Matsuo
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
76
|
Delaunay S, Rapino F, Tharun L, Zhou Z, Heukamp L, Termathe M, Shostak K, Klevernic I, Florin A, Desmecht H, Desmet CJ, Nguyen L, Leidel SA, Willis AE, Büttner R, Chariot A, Close P. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. J Exp Med 2016; 213:2503-2523. [PMID: 27811057 PMCID: PMC5068235 DOI: 10.1084/jem.20160397] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Quantitative and qualitative changes in mRNA translation occur in tumor cells and support cancer progression and metastasis. Posttranscriptional modifications of transfer RNAs (tRNAs) at the wobble uridine 34 (U34) base are highly conserved and contribute to translation fidelity. Here, we show that ELP3 and CTU1/2, partner enzymes in U34 mcm5s2-tRNA modification, are up-regulated in human breast cancers and sustain metastasis. Elp3 genetic ablation strongly impaired invasion and metastasis formation in the PyMT model of invasive breast cancer. Mechanistically, ELP3 and CTU1/2 support cellular invasion through the translation of the oncoprotein DEK. As a result, DEK promotes the IRES-dependent translation of the proinvasive transcription factor LEF1. Consistently, a DEK mutant, whose codon composition is independent of U34 mcm5s2-tRNA modification, escapes the ELP3- and CTU1-dependent regulation and restores the IRES-dependent LEF1 expression. Our results demonstrate that the key role of U34 tRNA modification is to support specific translation during breast cancer progression and highlight a functional link between tRNA modification- and IRES-dependent translation during tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Lars Tharun
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Zhaoli Zhou
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Lukas Heukamp
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Martin Termathe
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster
- Faculty of Medicine, University of Muenster, 48129 Muenster, Germany
| | - Kateryna Shostak
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Iva Klevernic
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Alexandra Florin
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Hadrien Desmecht
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Christophe J Desmet
- GIGA-Infection, Immunity and Inflammation, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosiences, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster
- Faculty of Medicine, University of Muenster, 48129 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48129 Muenster, Germany
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, England, UK
| | - Reinhard Büttner
- Institute for Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Alain Chariot
- Laboratory of Medical Chemistry, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, University of Liège, 4000 Liège, Belgium
- GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
- GIGA-Research, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
77
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
78
|
Yoo H, Son D, Jang YJ, Hong K. Indispensable role for mouse ELP3 in embryonic stem cell maintenance and early development. Biochem Biophys Res Commun 2016; 478:631-6. [PMID: 27476491 DOI: 10.1016/j.bbrc.2016.07.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022]
Abstract
ELP3, a core component of Elongator, has been implicated in translational regulation via modification of tRNA at the wobble position. However, the precise biological function of ELP3 in early mouse development has not yet been defined. We here provide evidence that ELP3 plays crucial roles in mouse embryonic stem cell (ESC) maintenance and early development. ELP3 was detected ubiquitously in blastocysts and E10.5 embryos and shown to be increased during ESC differentiation. Depletion of ELP3 in ESC led to aberrant cell cycle progression, along with reduced expression of genes for pluripotency. Interestingly, our analyses revealed that, although the mRNA levels of the genes related to cell cycle were increased, protein levels were diminished in knockdown (KD) ESCs. The data, therefore, suggest that ELP3 function is critical for translational efficiency of the genes. Consistent with a proliferation defect in KD cells, Elp3 knockout (KO) embryos suffered from severe growth retardation and failed to develop beyond E12.5. In conclusion, we have demonstrated that ELP3 plays an indispensable role in ESC survival, differentiation and embryonic development in mouse.
Collapse
Affiliation(s)
- Hyunjin Yoo
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Dabin Son
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea
| | - Kwonho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 330-714, Republic of Korea.
| |
Collapse
|
79
|
Woloszynska M, Le Gall S, Van Lijsebettens M. Plant Elongator-mediated transcriptional control in a chromatin and epigenetic context. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1025-33. [PMID: 27354117 DOI: 10.1016/j.bbagrm.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Elongator (Elp) genes were identified in plants by the leaf growth-altering elo mutations in the yeast (Saccharomyces cerevisiae) gene homologs. Protein purification of the Elongator complex from Arabidopsis thaliana cell cultures confirmed its conserved structure and composition. The Elongator function in plant growth, development, and immune response is well-documented in the elp/elo mutants and correlated with the histone acetyl transferase activity of the ELP3/ELO3 subunit at the coding part of key regulatory genes of developmental and immune response pathways. Here we will focus on additional roles in transcription, such as the cytosine demethylation activity of ELP3/ELO3 at gene promoter regions and primary microRNA transcription and processing through the ELP2 subunit interaction with components of the small interference RNA machinery. Furthermore, specific interactions and upstream regulators support a role for Elongator in transcription and might reveal mechanistic insights into the specificity of the histone acetyl transferase and cytosine demethylation activities for target genes.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Sabine Le Gall
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
80
|
Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, Maraia RJ. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA (NEW YORK, N.Y.) 2016; 22:583-96. [PMID: 26857223 PMCID: PMC4793213 DOI: 10.1261/rna.054064.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/28/2015] [Indexed: 05/17/2023]
Abstract
tRNA-isopentenyl transferases (IPTases) are highly conserved enzymes that form isopentenyl-N(6)-A37 (i6A37) on subsets of tRNAs, enhancing their translation activity. Nuclear-encoded IPTases modify select cytosolic (cy-) and mitochondrial (mt-) tRNAs. Mutation in human IPTase, TRIT1, causes disease phenotypes characteristic of mitochondrial translation deficiency due to mt-tRNA dysfunction. Deletion of the Schizosaccharomyces pombe IPTase (tit1-Δ) causes slow growth in glycerol, as well as in rapamycin, an inhibitor of TOR kinase that maintains metabolic homeostasis. Schizosaccharomyces pombe IPTase modifies three different cy-tRNAs(Ser) as well as cy-tRNA(Tyr), cy-tRNA(Trp), and mt-tRNA(Trp). We show that lower ATP levels in tit1-Δ relative to tit1(+) cells are also more decreased by an inhibitor of oxidative phosphorylation, indicative of mitochondrial dysfunction. Here we asked if the tit1-Δ phenotypes are due to hypomodification of cy-tRNA or mt-tRNA. A cytosol-specific IPTase that modifies cy-tRNA, but not mt-tRNA, fully rescues the tit1-Δ phenotypes. Moreover, overexpression of cy-tRNAs also rescues the phenotypes, and cy-tRNA(Tyr) alone substantially does so. Bioinformatics indicate that cy-tRNA(Tyr) is most limiting for codon demand in tit1-Δ cells and that the cytosolic mRNAs most loaded with Tyr codons encode carbon metabolilizing enzymes, many of which are known to localize to mitochondria. Thus, S. pombe i6A37 hypomodification-associated metabolic deficiency results from hypoactivity of cy-tRNA, mostly tRNA(Tyr), and unlike human TRIT1-deficiency does not impair mitochondrial translation due to mt-tRNA hypomodification. We discuss species-specific aspects of i6A37. Specifically relevant to mitochondria, we show that its hypermodified version, ms2i6A37 (2-methylthiolated), which occurs on certain mammalian mt-tRNAs (but not cy-tRNAs), is not found in yeast.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aneeshkumar G Arimbasseri
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Keshab Rijal
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James R Iben
- Molecular Genetics Laboratory, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Richard J Maraia
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Commissioned Corps, US Public Health Service, Rockville, Maryland 20016, USA
| |
Collapse
|
81
|
Gaspa L, González-Medina A, Hidalgo E, Ayté J. A functional genome-wide genetic screening identifies new pathways controlling the G1/S transcriptional wave. Cell Cycle 2016; 15:720-9. [PMID: 26890608 DOI: 10.1080/15384101.2016.1148839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The Schizosaccharomyces pombe MBF complex activates the transcription of genes required for DNA synthesis and S phase. The MBF complex contains several proteins, including the core components Cdc10, Res1 and Res2, the co-repressor proteins Yox1 and Nrm1 and the co-activator Rep2. It has recently been shown how MBF is regulated when either the DNA damage or the DNA synthesis checkpoints are activated. However, how MBF is regulated in a normal unperturbed cell cycle is still not well understood. We have set up a genome-wide genomic screen searching for global regulators of MBF. We have crossed our knock-out collection library with a reporter strain that allows the measurement of MBF activity in live cells by flow cytometry. We confirm previously known regulators of MBF and show that COP9/signalosome and tRNA methyltransferases also regulate MBF activity.
Collapse
Affiliation(s)
- Laura Gaspa
- a Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona , Spain
| | | | - Elena Hidalgo
- a Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona , Spain
| | - José Ayté
- a Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
82
|
Ranjan N, Rodnina MV. tRNA wobble modifications and protein homeostasis. ACTA ACUST UNITED AC 2016; 4:e1143076. [PMID: 27335723 DOI: 10.1080/21690731.2016.1143076] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
tRNA is a central component of the protein synthesis machinery in the cell. In living cells, tRNAs undergo numerous post-transcriptional modifications. In particular, modifications at the anticodon loop play an important role in ensuring efficient protein synthesis, maintaining protein homeostasis, and helping cell adaptation and survival. Hypo-modification of the wobble position of the tRNA anticodon loop is of particular relevance for translation regulation and is implicated in various human diseases. In this review we summarize recent evidence of how methyl and thiol modifications in eukaryotic tRNA at position 34 affect cellular fitness and modulate regulatory circuits at normal conditions and under stress.
Collapse
Affiliation(s)
- Namit Ranjan
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry , Göttingen, Germany
| |
Collapse
|
83
|
García P, Encinar Del Dedo J, Ayté J, Hidalgo E. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS. J Biol Chem 2016; 291:790-9. [PMID: 26567340 DOI: 10.1074/jbc.m115.696658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.
Collapse
Affiliation(s)
- Patricia García
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Javier Encinar Del Dedo
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José Ayté
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- From the Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
84
|
Shigi N. Sulfur Modifications in tRNA: Function and Implications for Human Disease. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
85
|
Karlsborn T, Mahmud AKMF, Tükenmez H, Byström AS. Loss of ncm 5 and mcm 5 wobble uridine side chains results in an altered metabolic profile. Metabolomics 2016; 12:177. [PMID: 27738410 PMCID: PMC5037161 DOI: 10.1007/s11306-016-1120-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Elongator complex, comprising six subunits (Elp1p-Elp6p), is required for formation of 5-carbamoylmethyl (ncm5) and 5-methoxycarbonylmethyl (mcm5) side chains on wobble uridines in 11 out of 42 tRNA species in Saccharomyces cerevisiae. Loss of these side chains reduces the efficiency of tRNA decoding during translation, resulting in pleiotropic phenotypes. Overexpression of hypomodified [Formula: see text], which in wild-type strains are modified with mcm5s2U, partially suppress phenotypes of an elp3Δ strain. OBJECTIVES To identify metabolic alterations in an elp3Δ strain and elucidate whether these metabolic alterations are suppressed by overexpression of hypomodified [Formula: see text]. METHOD Metabolic profiles were obtained using untargeted GC-TOF-MS of a temperature-sensitive elp3Δ strain carrying either an empty low-copy vector, an empty high-copy vector, a low-copy vector harboring the wild-type ELP3 gene, or a high-copy vector overexpressing [Formula: see text]. The temperature sensitive elp3Δ strain derivatives were cultivated at permissive (30 °C) or semi-permissive (34 °C) growth conditions. RESULTS Culturing an elp3Δ strain at 30 or 34 °C resulted in altered metabolism of 36 and 46 %, respectively, of all metabolites detected when compared to an elp3Δ strain carrying the wild-type ELP3 gene. Overexpression of hypomodified [Formula: see text] suppressed a subset of the metabolic alterations observed in the elp3Δ strain. CONCLUSION Our results suggest that the presence of ncm5- and mcm5-side chains on wobble uridines in tRNA are important for metabolic homeostasis.
Collapse
Affiliation(s)
- Tony Karlsborn
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | - Hasan Tükenmez
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S. Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
86
|
Boguta M. Why Are tRNAs Overproduced in the Absence of Maf1, a Negative Regulator of RNAP III, Not Fully Functional? PLoS Genet 2015; 11:e1005743. [PMID: 26720418 PMCID: PMC4699899 DOI: 10.1371/journal.pgen.1005743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Warsaw, Poland
- * E-mail:
| |
Collapse
|
87
|
Tran TTT, Belahbib H, Bonnefoy V, Talla E. A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes. Genome Biol Evol 2015; 8:282-95. [PMID: 26710853 PMCID: PMC4758250 DOI: 10.1093/gbe/evv254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 01/12/2023] Open
Abstract
Considering the importance of tRNAs in the translation machinery, scant attention has been paid to tRNA array units defined as genomic regions containing at least 20 tRNA genes with a minimal tRNA gene density of two tRNA genes per kilobase. Our analysis of Acidithiobacillus ferrivorans CF27 and Acidithiobacillus ferrooxidans ATCC 23270(T) genomes showed that both display a tRNA array unit with syntenic conservation which mainly contributed to the tRNA gene redundancy in these two organisms. Our investigations into the occurrence and distribution of tRNA array units revealed that 1) this tRNA organization is limited to few phyla and mainly found in Gram-positive bacteria; and 2) the presence of tRNA arrays favors the redundancy of tRNA genes, in particular those encoding the core tRNA isoacceptors. Finally, comparative array organization revealed that tRNA arrays were acquired through horizontal gene transfer (from Firmicutes or unknown donor), before being subjected to tRNA rearrangements, deletions, and duplications. In Bacilli, the most parsimonious evolutionary history involved two common ancestors and the acquisition of their arrays arose late in evolution, in the genera branches. Functional roles of the array units in organism lifestyle, selective genetic advantage and translation efficiency, as well as the evolutionary advantages of organisms harboring them were proposed. Our study offers new insight into the structural organization and evolution of tRNA arrays in prokaryotic organisms.
Collapse
Affiliation(s)
- Tam T T Tran
- Aix Marseille Université, CNRS, IGS, UMR 7256, IMM, France
| | | | | | - Emmanuel Talla
- Aix Marseille Université, CNRS, IGS, UMR 7256, IMM, France
| |
Collapse
|
88
|
Armengod ME, Meseguer S, Villarroya M, Prado S, Moukadiri I, Ruiz-Partida R, Garzón MJ, Navarro-González C, Martínez-Zamora A. Modification of the wobble uridine in bacterial and mitochondrial tRNAs reading NNA/NNG triplets of 2-codon boxes. RNA Biol 2015; 11:1495-507. [PMID: 25607529 DOI: 10.4161/15476286.2014.992269] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.
Collapse
Affiliation(s)
- M Eugenia Armengod
- a Laboratory of RNA Modification and Mitochondrial Diseases ; Centro de Investigación Príncipe Felipe ; Valencia , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Karlsborn T, Tükenmez H, Mahmud AKMF, Xu F, Xu H, Byström AS. Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 2015; 11:1519-28. [PMID: 25607684 DOI: 10.4161/15476286.2014.992276] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm(5)) and 5-carbamoylmethyl (ncm(5)) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm(5) and mcm(5) side chains at U34 and their influence on Elongator activity.
Collapse
Affiliation(s)
- Tony Karlsborn
- a Department of Molecular Biology ; Umeå University; Umeå , Sweden
| | | | | | | | | | | |
Collapse
|
90
|
Horáková E, Changmai P, Paris Z, Salmon D, Lukeš J. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion ofTrypanosoma brucei. FEBS J 2015; 282:4157-75. [DOI: 10.1111/febs.13411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Horáková
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Piya Changmai
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
| | - Zdeněk Paris
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis; Centro de Ciências e da Saude; Federal University of Rio de Janeiro; Brazil
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
- Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
91
|
Guy MP, Shaw M, Weiner CL, Hobson L, Stark Z, Rose K, Kalscheuer VM, Gecz J, Phizicky EM. Defects in tRNA Anticodon Loop 2'-O-Methylation Are Implicated in Nonsyndromic X-Linked Intellectual Disability due to Mutations in FTSJ1. Hum Mutat 2015; 36:1176-87. [PMID: 26310293 DOI: 10.1002/humu.22897] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023]
Abstract
tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .
Collapse
Affiliation(s)
- Michael P Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Marie Shaw
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Catherine L Weiner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| | - Lynne Hobson
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| | - Katherine Rose
- Monash Health, Special Medicine Centre, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Vera M Kalscheuer
- Department Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin D14195, Germany
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5000, Australia.,School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York, 14642
| |
Collapse
|
92
|
García R, Botet J, Rodríguez-Peña JM, Bermejo C, Ribas JC, Revuelta JL, Nombela C, Arroyo J. Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics 2015; 16:683. [PMID: 26341223 PMCID: PMC4560923 DOI: 10.1186/s12864-015-1879-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background The fungal cell wall forms a compact network whose integrity is essential for cell morphology and viability. Thus, fungal cells have evolved mechanisms to elicit adequate adaptive responses when cell wall integrity (CWI) is compromised. Functional genomic approaches provide a unique opportunity to globally characterize these adaptive mechanisms. To provide a global perspective on these CWI regulatory mechanisms, we developed chemical-genomic profiling of haploid mutant budding yeast cells to systematically identify in parallel those genes required to cope with stresses interfering the cell wall by different modes of action: β-1,3 glucanase and chitinase activities (zymolyase), inhibition of β-1,3 glucan synthase (caspofungin) and binding to chitin (Congo red). Results Measurement of the relative fitness of the whole collection of 4786 haploid budding yeast knock-out mutants identified 222 mutants hypersensitive to caspofungin, 154 mutants hypersensitive to zymolyase, and 446 mutants hypersensitive to Congo red. Functional profiling uncovered both common and specific requirements to cope with different cell wall damages. We identified a cluster of 43 genes highly important for the integrity of the cell wall as the common “signature of cell wall maintenance (CWM)”. This cluster was enriched in genes related to vesicular trafficking and transport, cell wall remodeling and morphogenesis, transcription and chromatin remodeling, signal transduction and RNA metabolism. Although the CWI pathway is the main MAPK pathway regulating cell wall integrity, the collaboration with other signal transduction pathways like the HOG pathway and the invasive growth pathway is also required to cope with the cell wall damage depending on the nature of the stress. Finally, 25 mutant strains showed enhanced caspofungin resistance, including 13 that had not been previously identified. Only three of them, wsc1Δ, elo2Δ and elo3Δ, showed a significant decrease in β-1,3-glucan synthase activity. Conclusions This work provides a global perspective about the mechanisms involved in cell wall stress adaptive responses and the cellular functions required for cell wall integrity. The results may be useful to uncover new potential antifungal targets and develop efficient antifungal strategies by combination of two drugs, one targeting the cell wall and the other interfering with the adaptive mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1879-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Botet
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Clara Bermejo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Juan Carlos Ribas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) / Universidad de Salamanca, 37007, Salamanca, Spain.
| | - José Luis Revuelta
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| | - Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, 28040, Madrid, Spain.
| |
Collapse
|
93
|
Tigano M, Ruotolo R, Dallabona C, Fontanesi F, Barrientos A, Donnini C, Ottonello S. Elongator-dependent modification of cytoplasmic tRNALysUUU is required for mitochondrial function under stress conditions. Nucleic Acids Res 2015; 43:8368-80. [PMID: 26240381 PMCID: PMC4787798 DOI: 10.1093/nar/gkv765] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 07/15/2015] [Indexed: 11/12/2022] Open
Abstract
To gain a wider view of the pathways that regulate mitochondrial function, we combined the effect of heat stress on respiratory capacity with the discovery potential of a genome-wide screen in Saccharomyces cerevisiae. We identified 105 new genes whose deletion impairs respiratory growth at 37°C by interfering with processes such as transcriptional regulation, ubiquitination and cytosolic tRNA wobble uridine modification via 5-methoxycarbonylmethyl-2-thiouridine formation. The latter process, specifically required for efficient decoding of AA-ending codons under stress conditions, was covered by multiple genes belonging to the Elongator (e.g. ELP3) and urmylation (e.g., NCS6) pathways. ELP3 or NCS6 deletants had impaired mitochondrial protein synthesis. Their respiratory deficiency was selectively rescued by overexpression of tRNA(Lys) UUU as well by overexpression of genes (BCK1 and HFM1) with a strong bias for the AAA codon read by this tRNA. These data extend the mitochondrial regulome, demonstrate that heat stress can impair respiration by disturbing cytoplasmic translation of proteins critically involved in mitochondrial function and document, for the first time, the involvement in such process of the Elongator and urmylation pathways. Given the conservation of these pathways, the present findings may pave the way to a better understanding of the human mitochondrial regulome in health and disease.
Collapse
Affiliation(s)
- Marco Tigano
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Roberta Ruotolo
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | | | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Claudia Donnini
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Simone Ottonello
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| |
Collapse
|
94
|
Distribution of ADAT-Dependent Codons in the Human Transcriptome. Int J Mol Sci 2015; 16:17303-14. [PMID: 26230688 PMCID: PMC4581194 DOI: 10.3390/ijms160817303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Nucleotide modifications in the anticodons of transfer RNAs (tRNA) play a central role in translation efficiency, fidelity, and regulation of translation, but, for most of these modifications, the details of their function remain unknown. The heterodimeric adenosine deaminases acting on tRNAs (ADAT2-ADAT3, or ADAT) are enzymes present in eukaryotes that convert adenine (A) to inosine (I) in the first anticodon base (position 34) by hydrolytic deamination. To explore the influence of ADAT activity on mammalian translation, we have characterized the human transcriptome and proteome in terms of frequency and distribution of ADAT-related codons. Eight different tRNAs can be modified by ADAT and, once modified, these tRNAs will recognize NNC, NNU and NNA codons, but not NNG codons. We find that transcripts coding for proteins highly enriched in these eight amino acids (ADAT-aa) are specifically enriched in NNC, NNU and NNA codons. We also show that the proteins most enriched in ADAT-aa are composed preferentially of threonine, alanine, proline, and serine (TAPS). We propose that the enrichment in ADAT-codons in these proteins is due to the similarities in the codons that correspond to TAPS.
Collapse
|
95
|
The Elp2 subunit is essential for elongator complex assembly and functional regulation. Structure 2015; 23:1078-86. [PMID: 25960406 DOI: 10.1016/j.str.2015.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 01/24/2023]
Abstract
Elongator is a highly conserved multiprotein complex composed of six subunits (Elp1-6). Elongator has been associated with various cellular activities and has attracted clinical attention because of its role in certain neurodegenerative diseases. Here, we present the crystal structure of the Elp2 subunit revealing two seven-bladed WD40 β propellers, and show by structure-guided mutational analyses that the WD40 fold integrity of Elp2 is necessary for its binding to Elp1 and Elp3 subunits in multiple species. The detailed biochemical experiments indicate that Elp2 binds microtubules through its conserved alkaline residues in vitro and in vivo. We find that both the mutually independent Elp2-mediated Elongator assembly and the cytoskeleton association are important for yeast viability. In addition, mutation of Elp2 greatly affects the histone H3 acetylation activity of Elongator in vivo. Our results indicate that Elp2 is a necessary component for functional Elongator and acts as a hub in the formation of various complexes.
Collapse
|
96
|
Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DLJ. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res 2015; 43:2242-58. [PMID: 25653167 PMCID: PMC4344512 DOI: 10.1093/nar/gkv075] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/05/2023] Open
Abstract
The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function.
Collapse
MESH Headings
- Acetylation
- Acetyltransferases/chemistry
- Acetyltransferases/metabolism
- Amino Acid Sequence
- Cell Line
- Conserved Sequence
- Cytosine/metabolism
- Humans
- N-Terminal Acetyltransferase E/chemistry
- N-Terminal Acetyltransferase E/metabolism
- N-Terminal Acetyltransferases
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/metabolism
- RNA, Transfer/metabolism
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sunny Sharma
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Jean-Louis Langhendries
- RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium
| | - Peter Watzinger
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Peter Kötter
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Denis L J Lafontaine
- RNA Molecular Biology, F.R.S./FNRS, Université Libre de Bruxelles, B-6041 Charleroi-Gosselies, Belgium Center for Microscopy and Molecular Imaging, B-6041 Charleroi-Gosselies, Belgium
| |
Collapse
|
97
|
Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci U S A 2015; 112:2764-9. [PMID: 25675486 DOI: 10.1073/pnas.1415525112] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by missplicing of exon 20, resulting from an intronic mutation in the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) gene encoding IKK complex-associated protein (IKAP)/elongator protein 1 (ELP1). A newly established splicing reporter assay allowed us to visualize pathogenic splicing in cells and to screen small chemicals for the ability to correct the aberrant splicing of IKBKAP. Using this splicing reporter, we screened our chemical libraries and identified a compound, rectifier of aberrant splicing (RECTAS), that rectifies the aberrant IKBKAP splicing in cells from patients with FD. Here, we found that the levels of modified uridine at the wobble position in cytoplasmic tRNAs are reduced in cells from patients with FD and that treatment with RECTAS increases the expression of IKAP and recovers the tRNA modifications. These findings suggest that the missplicing of IKBKAP results in reduced tRNA modifications in patients with FD and that RECTAS is a promising therapeutic drug candidate for FD.
Collapse
|
98
|
Doi A, Fujimoto A, Sato S, Uno T, Kanda Y, Asami K, Tanaka Y, Kita A, Satoh R, Sugiura R. Chemical genomics approach to identify genes associated with sensitivity to rapamycin in the fission yeastSchizosaccharomyces pombe. Genes Cells 2015; 20:292-309. [DOI: 10.1111/gtc.12223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/13/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Akira Doi
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
- Japan Society for the Promotion of Science; 1-8 Chiyoda-ku Tokyo 102-8472 Japan
| | - Ayumi Fujimoto
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Shun Sato
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Takaya Uno
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Yuki Kanda
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Keita Asami
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Yuriko Tanaka
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| |
Collapse
|
99
|
Alings F, Sarin LP, Fufezan C, Drexler HCA, Leidel SA. An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA (NEW YORK, N.Y.) 2015; 21:202-12. [PMID: 25505025 PMCID: PMC4338348 DOI: 10.1261/rna.048199.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s(2)U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s(2)U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s(2)U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms.
Collapse
Affiliation(s)
- Fiona Alings
- RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - L Peter Sarin
- RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Christian Fufezan
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Hannes C A Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Sebastian A Leidel
- RNA Biology Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany Faculty of Medicine, University of Münster, 48149 Münster, Germany
| |
Collapse
|
100
|
Thiaville PC, de Crécy-Lagard V. The emerging role of complex modifications of tRNA LysUUU in signaling pathways. MICROBIAL CELL 2015; 2:1-4. [PMID: 25821779 PMCID: PMC4374736 DOI: 10.15698/mic2015.01.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Coordination of cell growth with nutrient availability, in particular amino acids, is a central problem that has been solved by the implementation of complex regulatory cascades. Although the specific regulatory mechanisms differ between kingdoms and species, a common theme is the use of tRNA molecules as sensors and transducers of amino acid starvation. In many bacteria, amino acid starvation leads to high levels of uncharged tRNAs, a signal for the synthesis of the stringent response’s alarmones, halting transcription of stable RNAs and inducing the synthesis of amino acid synthesis pathways 1. In gram-positive Bacteria (as well as the Deinococcus-Thermus clade), uncharged tRNAs bind structures (T-boxes) in the leader sequences of mRNA encoding gene, activating the expression of genes involved in amino acid metabolism 2. In eukaryotes, the conserved General Amino Acid Control (GAAC) response is triggered by shortage of amino acids that leads to the binding of uncharged tRNAs to Gcn2 kinase and, through a cascade of events, to the activation of the central activator of amino acid synthesis genes, Gcn4 3. As the study by Scheidt et al. 4 and several other recent studies in this field reveal, variations in charging levels are not the only mechanism by which tRNAs play a role in amino acid starvation responses; levels of post-transcriptional modifications also seem to play major roles.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, Florida, USA. ; University of Florida Genetics Institute, Gainesville, Florida, USA. ; Institut de Génétique et Microbiologie, Université of Paris-Sud, Orsay, France. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- University of Florida Genetics Institute, Gainesville, Florida, USA. ; Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|