51
|
Immarigeon C, Frei Y, Delbare SYN, Gligorov D, Machado Almeida P, Grey J, Fabbro L, Nagoshi E, Billeter JC, Wolfner MF, Karch F, Maeda RK. Identification of a micropeptide and multiple secondary cell genes that modulate Drosophila male reproductive success. Proc Natl Acad Sci U S A 2021; 118:e2001897118. [PMID: 33876742 PMCID: PMC8053986 DOI: 10.1073/pnas.2001897118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
Collapse
Affiliation(s)
- Clément Immarigeon
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Yohan Frei
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Dragan Gligorov
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pedro Machado Almeida
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jasmine Grey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Léa Fabbro
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - François Karch
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| |
Collapse
|
52
|
Ahmed-Braimah YH, Wolfner MF, Clark AG. Differences in Postmating Transcriptional Responses between Conspecific and Heterospecific Matings in Drosophila. Mol Biol Evol 2021; 38:986-999. [PMID: 33035303 PMCID: PMC7947788 DOI: 10.1093/molbev/msaa264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many animal species, females undergo physiological and behavioral changes after mating. Some of these changes are driven by male-derived seminal fluid proteins and are critical for fertilization success. Unfortunately, our understanding of the molecular interplay between female and male reproductive proteins remains inadequate. Here, we analyze the postmating response in a Drosophila species that has evolved strong gametic incompatibility with its sister species; Drosophila novamexicana females produce only ∼1% fertilized eggs in crosses with Drosophila americana males, compared to ∼98% produced in within-species crosses. This incompatibility is likely caused by mismatched male and female reproductive molecules. In this study, we use short-read RNA sequencing to examine the evolutionary dynamics of female reproductive genes and the postmating transcriptome response in crosses within and between species. First, we found that most female reproductive tract genes are slow-evolving compared to the genome average. Second, postmating responses in con- and heterospecific matings are largely congruent, but heterospecific matings induce expression of additional stress-response genes. Some of those are immunity genes that are activated by the Imd pathway. We also identify several genes in the JAK/STAT signaling pathway that are induced in heterospecific, but not conspecific mating. While this immune response was most pronounced in the female reproductive tract, we also detect it in the female head and ovaries. These results show that the female's postmating transcriptome-level response is determined in part by the genotype of the male, and that divergence in male reproductive genes and/or traits can have immunogenic effects on females.
Collapse
Affiliation(s)
- Yasir H Ahmed-Braimah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 13850
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 13850
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 13850
| |
Collapse
|
53
|
Wainwright SM, Hopkins BR, Mendes CC, Sekar A, Kroeger B, Hellberg JEEU, Fan SJ, Pavey A, Marie PP, Leiblich A, Sepil I, Charles PD, Thézénas ML, Fischer R, Kessler BM, Gandy C, Corrigan L, Patel R, Wigby S, Morris JF, Goberdhan DCI, Wilson C. Drosophila Sex Peptide controls the assembly of lipid microcarriers in seminal fluid. Proc Natl Acad Sci U S A 2021; 118:e2019622118. [PMID: 33495334 PMCID: PMC7865141 DOI: 10.1073/pnas.2019622118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.
Collapse
Affiliation(s)
- S Mark Wainwright
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Ben R Hopkins
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Cláudia C Mendes
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Aashika Sekar
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Benjamin Kroeger
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Josephine E E U Hellberg
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Abigail Pavey
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Pauline P Marie
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Aaron Leiblich
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Irem Sepil
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
| | - Philip D Charles
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Marie L Thézénas
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Carina Gandy
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Laura Corrigan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Rachel Patel
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Stuart Wigby
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden D-01069, Germany
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom
| | - John F Morris
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX Oxford, United Kingdom;
| |
Collapse
|
54
|
Grewal G, Patlar B, Civetta A. Expression of Mst89B and CG31287 is Needed for Effective Sperm Storage and Egg Fertilization in Drosophila. Cells 2021; 10:cells10020289. [PMID: 33535499 PMCID: PMC7912738 DOI: 10.3390/cells10020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/05/2022] Open
Abstract
In Drosophila, male reproductive fitness can be affected by any number of processes, ranging from development of gametes, transfer to and storage of mature sperm within the female sperm storage organs, and utilization of sperm for fertilization. We have previously identified the 89B cytogenetic map position of D. melanogaster as a hub for genes that effect male paternity success when disturbed. Here, we used RNA interference to test 11 genes that are highly expressed in the testes and located within the 89B region for their role in sperm competition and male fecundity when their expression is perturbed. Testes-specific knockdown (KD) of bor and CSN5 resulted in complete sterility, whereas KD of CG31287, Manf and Mst89B, showed a breakdown in sperm competitive success when second to mate (P2 < 0.5) and reduced fecundity in single matings. The low fecundity of Manf KD is explained by a significant reduction in the amount of mature sperm produced. KD of Mst89B and CG31287 does not affect sperm production, sperm transfer into the female bursa or storage within 30 min after mating. Instead, a significant reduction of sperm in female storage is observed 24 h after mating. Egg hatchability 24 h after mating is also drastically reduced for females mated to Mst89B or CG31287 KD males, and this reduction parallels the decrease in fecundity. We show that normal germ-line expression of Mst89B and CG31287 is needed for effective sperm usage and egg fertilization.
Collapse
|
55
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
56
|
Leigh S, Rostant WG, Taylor MI, Alphey L, Chapman T. Satyrization in Drosophila fruitflies. J Evol Biol 2020; 34:319-330. [PMID: 33159350 PMCID: PMC8246970 DOI: 10.1111/jeb.13733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 12/26/2022]
Abstract
The satyr of Greek mythology was half‐man, half‐goat, with an animal persona signifying immoderate sexual appetites. In biology, satyrization is the disruption of reproduction in matings between closely related species. Interestingly, its effects are often reciprocally asymmetric, manifesting more strongly in one direction of heterospecific mating than the other. Heterospecific matings are well known to result in female fitness costs due to the production of sterile or inviable hybrid offspring and can also occur due to reduced female sexual receptivity, lowering the likelihood of any subsequent conspecific matings. Here we investigated the costs and mechanisms of satyrization in the Drosophila melanogaster species subgroup of fruitflies. The results showed that D. simulans females experienced higher fitness costs from a loss of remating opportunities due to significantly reduced post‐mating sexual receptivity than did D. melanogaster females, as a result of reciprocal heterospecific matings. Reciprocal tests of the effects of male reproductive accessory gland protein (Acp) injections on female receptivity in pairwise comparisons between D. melanogaster and five other species within the melanogaster species subgroup revealed significant post‐mating receptivity asymmetries. This was due to variation in the effects of heterospecific Acps within species with which D. melanogaster can mate, and significant but nonasymmetric Acp effects in species with which it cannot. We conclude that asymmetric satyrization due to post‐mating effects of Acps may be common among diverging and hybridising species. The findings are of interest in understanding the evolution of reproductive isolation and species divergence.
Collapse
Affiliation(s)
- Stewart Leigh
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Wayne G Rostant
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
57
|
Wigby S, Brown NC, Allen SE, Misra S, Sitnik JL, Sepil I, Clark AG, Wolfner MF. The Drosophila seminal proteome and its role in postcopulatory sexual selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200072. [PMID: 33070726 DOI: 10.1098/rstb.2020.0072] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postcopulatory sexual selection (PCSS), comprised of sperm competition and cryptic female choice, has emerged as a widespread evolutionary force among polyandrous animals. There is abundant evidence that PCSS can shape the evolution of sperm. However, sperm are not the whole story: they are accompanied by seminal fluid substances that play many roles, including influencing PCSS. Foremost among seminal fluid models is Drosophila melanogaster, which displays ubiquitous polyandry, and exhibits intraspecific variation in a number of seminal fluid proteins (Sfps) that appear to modulate paternity share. Here, we first consolidate current information on the identities of D. melanogaster Sfps. Comparing between D. melanogaster and human seminal proteomes, we find evidence of similarities between many protein classes and individual proteins, including some D. melanogaster Sfp genes linked to PCSS, suggesting evolutionary conservation of broad-scale functions. We then review experimental evidence for the functions of D. melanogaster Sfps in PCSS and sexual conflict. We identify gaps in our current knowledge and areas for future research, including an enhanced identification of PCSS-related Sfps, their interactions with rival sperm and with females, the role of qualitative changes in Sfps and mechanisms of ejaculate tailoring. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Stuart Wigby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK.,Faculty Biology, Applied Zoology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Nora C Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Sarah E Allen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
58
|
Gasparini C, Pilastro A, Evans JP. The role of female reproductive fluid in sperm competition. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200077. [PMID: 33070736 DOI: 10.1098/rstb.2020.0077] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of non-gametic components of the ejaculate (seminal fluid) in fertility and sperm competitiveness is now well established. Surprisingly, however, we know far less about female reproductive fluid (FRF) in the context of sexual selection, and insights into male-FRF interactions in the context of sperm competition have only recently emerged. Despite this limited knowledge, evidence from taxonomically diverse species has revealed insights into the effects of FRF on sperm traits that have previously been implicated in studies of sperm competition. Specifically, through the differential effects of FRF on a range of sperm traits, including chemoattraction and alterations in sperm velocity, FRF has been shown to exert positive phenotypic effects on the sperm of males that are preferred as mating partners, or those from the most compatible or genetically diverse males. Despite these tantalizing insights into the putative sexually selected functions of FRF, we largely lack a mechanistic understanding of these processes. Taken together, the evidence presented here highlights the likely ubiquity of FRF-regulated biases in fertilization success across a diverse range of taxa, thus potentially elevating the importance of FRF to other non-gametic components that have so far been studied largely in males. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Clelia Gasparini
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 6009 WA, Australia
| |
Collapse
|
59
|
Carlisle JA, Swanson WJ. Molecular mechanisms and evolution of fertilization proteins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:652-665. [PMID: 33015976 DOI: 10.1002/jez.b.23004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Sexual reproduction involves a cascade of molecular interactions between the sperm and the egg culminating in cell-cell fusion. Vital steps mediating fertilization include chemoattraction of the sperm to the egg, induction of the sperm acrosome reaction, dissolution of the egg coat, and sperm-egg plasma membrane binding and fusion. Despite decades of research, only a handful of interacting gamete recognition proteins (GRPs) have been identified across taxa mediating each of these steps, most notably in abalone, sea urchins, and mammals. This review outlines and compares notable GRP pairs mediating sperm-egg recognition in these three significant model systems and discusses the molecular basis of species-specific fertilization driven by GRP function. In addition, we explore the evolutionary theory behind the rapid diversification of GRPs between species. In particular, we focus on how the coevolution between interacting sperm and egg proteins may contribute to the formation of boundaries to hybridization. Finally, we discuss how pairing structural information with evolutionary insights can improve our understanding of mechanisms of fertilization and their origins.
Collapse
Affiliation(s)
- Jolie A Carlisle
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington Medical School, Seattle, Washington, USA
| |
Collapse
|
60
|
Misra S, Wolfner MF. Drosophila seminal sex peptide associates with rival as well as own sperm, providing SP function in polyandrous females. eLife 2020; 9:58322. [PMID: 32672537 PMCID: PMC7398695 DOI: 10.7554/elife.58322] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
When females mate with more than one male, the males’ paternity share is affected by biases in sperm use. These competitive interactions occur while female and male molecules and cells work interdependently to optimize fertility, including modifying the female’s physiology through interactions with male seminal fluid proteins (SFPs). Some modifications persist, indirectly benefiting later males. Indeed, rival males tailor their ejaculates accordingly. Here, we show that SFPs from one male can directly benefit a rival’s sperm. We report that Sex Peptide (SP) that a female Drosophila receives from a male can bind sperm that she had stored from a previous male, and rescue the sperm utilization and fertility defects of an SP-deficient first-male. Other seminal proteins received in the first mating ‘primed’ the sperm (or the female) for this binding. Thus, SP from one male can directly benefit another, making SP a key molecule in inter-ejaculate interaction. When fruit flies and other animals reproduce, a compatible male and a female mate, allowing sperm from the male to swim to and fuse with the female’s egg cells. The males also produce proteins known as seminal proteins that travel with the sperm. These proteins increase the likelihood of sperm meeting an egg and induce changes in the female that increase the number, or quality, of offspring produced. Some seminal proteins help a male to compete against its rivals by decreasing their chances to fertilize eggs. However, since many of the changes seminal proteins induce in females are long-lasting, it is possible that a subsequent male may actually benefit indirectly from the effects of a prior male’s seminal proteins. It remains unclear whether the seminal proteins of one male are also able to directly interact with and help the sperm of another male. Male fruit flies make a seminal protein known as sex peptide. Normally, a sex peptide binds to the sperm it accompanies into the female, increasing the female’s fertility and preventing her from mating again with a different male. To test whether the sex peptide from one male can bind to and help a rival male’s sperm, Misra and Wolfner mated female fruit flies with different combinations of males that did, or did not, produce the sex peptide. The experiments found that female flies that only mated with mutant males lacking the sex peptide produced fewer offspring than if they had mated with a ‘normal’ male. However, in females that mated with a mutant male followed by another male who provided the sex peptide, the second male’s sex peptide was able to bind to the mutant male’s sperm (as well as to his own). This in turn allowed the mutant male’s sperm to be efficiently used to sire offspring, at levels comparable to a normal male providing the sex peptide. These findings demonstrate that the ways individual male fruit flies interact during reproduction are more complex than just simple rivalry. Since humans and other animals also produce seminal proteins comparable to those of fruit flies, this work may aid future advances in human fertility treatments and strategies to control the fertility of livestock and pests, including mosquitoes that transmit diseases.
Collapse
Affiliation(s)
- Snigdha Misra
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| |
Collapse
|
61
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
62
|
McGeary MK, Findlay GD. Molecular evolution of the sex peptide network in Drosophila. J Evol Biol 2020; 33:629-641. [PMID: 31991034 DOI: 10.1111/jeb.13597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Successful reproduction depends on interactions between numerous proteins beyond those involved directly in gamete fusion. Although such reproductive proteins evolve in response to sexual selection pressures, how networks of interacting proteins arise and evolve as reproductive phenotypes change remains an open question. Here, we investigated the molecular evolution of the 'sex peptide network' of Drosophila melanogaster, a functionally well-characterized reproductive protein network. In this species, the peptide hormone sex peptide (SP) and its interacting proteins cause major changes in female physiology and behaviour after mating. In contrast, females of more distantly related Drosophila species do not respond to SP. In spite of these phenotypic differences, we detected orthologs of all network proteins across 22 diverse Drosophila species and found evidence that most orthologs likely function in reproduction throughout the genus. Within SP-responsive species, we detected the recurrent, adaptive evolution of several network proteins, consistent with sexual selection acting to continually refine network function. We also found some evidence for adaptive evolution of several proteins along two specific phylogenetic lineages that correspond with increased expression of the SP receptor in female reproductive tracts or increased sperm length, respectively. Finally, we used gene expression profiling to examine the likely degree of functional conservation of the paralogs of an SP network protein that arose via gene duplication. Our results suggest a dynamic history for the SP network in which network members arose before the onset of robust SP-mediated responses and then were shaped by both purifying and positive selection.
Collapse
Affiliation(s)
- Meaghan K McGeary
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts
| |
Collapse
|
63
|
BMP signaling inhibition in Drosophila secondary cells remodels the seminal proteome and self and rival ejaculate functions. Proc Natl Acad Sci U S A 2019; 116:24719-24728. [PMID: 31740617 PMCID: PMC6900634 DOI: 10.1073/pnas.1914491116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Seminal fluid proteins (SFPs) exert potent effects on male and female fitness. Rapidly evolving and molecularly diverse, they derive from multiple male secretory cells and tissues. In Drosophila melanogaster, most SFPs are produced in the accessory glands, which are composed of ∼1,000 fertility-enhancing "main cells" and ∼40 more functionally cryptic "secondary cells." Inhibition of bone morphogenetic protein (BMP) signaling in secondary cells suppresses secretion, leading to a unique uncoupling of normal female postmating responses to the ejaculate: refractoriness stimulation is impaired, but offspring production is not. Secondary-cell secretions might therefore make highly specific contributions to the seminal proteome and ejaculate function; alternatively, they might regulate more global-but hitherto undiscovered-SFP functions and proteome composition. Here, we present data that support the latter model. We show that in addition to previously reported phenotypes, secondary-cell-specific BMP signaling inhibition compromises sperm storage and increases female sperm use efficiency. It also impacts second male sperm, tending to slow entry into storage and delay ejection. First male paternity is enhanced, which suggests a constraint on ejaculate evolution whereby high female refractoriness and sperm competitiveness are mutually exclusive. Using quantitative proteomics, we reveal changes to the seminal proteome that surprisingly encompass alterations to main-cell-derived proteins, indicating important cross-talk between classes of SFP-secreting cells. Our results demonstrate that ejaculate composition and function emerge from the integrated action of multiple secretory cell types, suggesting that modification to the cellular make-up of seminal-fluid-producing tissues is an important factor in ejaculate evolution.
Collapse
|
64
|
Plakke MS, Walker JL, Lombardo JB, Goetz BJ, Pacella GN, Durrant JD, Clark NL, Morehouse NI. Characterization of Female Reproductive Proteases in a Butterfly from Functional and Evolutionary Perspectives. Physiol Biochem Zool 2019; 92:579-590. [DOI: 10.1086/705722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
65
|
Allan CW, Matzkin LM. Genomic analysis of the four ecologically distinct cactus host populations of Drosophila mojavensis. BMC Genomics 2019; 20:732. [PMID: 31606030 PMCID: PMC6790045 DOI: 10.1186/s12864-019-6097-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Relationships between an organism and its environment can be fundamental in the understanding how populations change over time and species arise. Local ecological conditions can shape variation at multiple levels, among these are the evolutionary history and trajectories of coding genes. This study examines the rate of molecular evolution at protein-coding genes throughout the genome in response to host adaptation in the cactophilic Drosophila mojavensis. These insects are intimately associated with cactus necroses, developing as larvae and feeding as adults in these necrotic tissues. Drosophila mojavensis is composed of four isolated populations across the deserts of western North America and each population has adapted to utilize different cacti that are chemically, nutritionally, and structurally distinct. RESULTS High coverage Illumina sequencing was performed on three previously unsequenced populations of D. mojavensis. Genomes were assembled using the previously sequenced genome of D. mojavensis from Santa Catalina Island (USA) as a template. Protein coding genes were aligned across all four populations and rates of protein evolution were determined for all loci using a several approaches. CONCLUSIONS Loci that exhibited elevated rates of molecular evolution tend to be shorter, have fewer exons, low expression, be transcriptionally responsive to cactus host use and have fixed expression differences across the four cactus host populations. Fast evolving genes were involved with metabolism, detoxification, chemosensory reception, reproduction and behavior. Results of this study give insight into the process and the genomic consequences of local ecological adaptation.
Collapse
Affiliation(s)
- Carson W Allan
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA
| | - Luciano M Matzkin
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA.
- Department of Entomology, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ, 85721, USA.
- BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ, 85721, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ, 85721, USA.
| |
Collapse
|
66
|
Sirot LK. Modulation of seminal fluid molecules by males and females. CURRENT OPINION IN INSECT SCIENCE 2019; 35:109-116. [PMID: 31472462 DOI: 10.1016/j.cois.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
In insects, seminal fluid molecules (SFMs) influence female post-mating phenotypes that affect reproductive success including egg development, sperm use, mating behavior, attractiveness, and lifespan. Yet, the magnitude of these effects can be quite variable, even within inbred strains. This variation is important because it could impact post-copulatory reproductive success of both males and females. One likely cause of this variation is modulation by males or females of the quantities or qualities (e.g. stability or activity state) of SFMs, or, in the case of females, of their sensitivity to SFMs. Here, I review opportunities for SFM modulation by males and females and propose that these processes could provide mechanisms by which information received before and during copulation influences post-copulatory reproductive success.
Collapse
Affiliation(s)
- Laura King Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, United States.
| |
Collapse
|
67
|
Civetta A, Ranz JM. Genetic Factors Influencing Sperm Competition. Front Genet 2019; 10:820. [PMID: 31572439 PMCID: PMC6753916 DOI: 10.3389/fgene.2019.00820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Females of many different species often mate with multiple males, creating opportunities for competition among their sperm. Although originally unappreciated, sperm competition is now considered a central form of post-copulatory male–male competition that biases fertilization. Assays of differences in sperm competitive ability between males, and interactions between females and males, have made it possible to infer some of the main mechanisms of sperm competition. Nevertheless, classical genetic approaches have encountered difficulties in identifying loci influencing sperm competitiveness while functional and comparative genomic methodologies, as well as genetic variant association studies, have uncovered some interesting candidate genes. We highlight how the systematic implementation of approaches that incorporate gene perturbation assays in experimental competitive settings, together with the monitoring of progeny output or sperm features and behavior, has allowed the identification of genes unambiguously linked to sperm competitiveness. The emerging portrait from 45 genes (33 from fruit flies, 8 from rodents, 2 from nematodes, and 2 from ants) is their remarkable breadth of biological roles exerted through males and females, the non-preponderance of sperm genes, and their overall pleiotropic nature.
Collapse
Affiliation(s)
- Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| |
Collapse
|
68
|
Evolution-based screening enables genome-wide prioritization and discovery of DNA repair genes. Proc Natl Acad Sci U S A 2019; 116:19593-19599. [PMID: 31501324 DOI: 10.1073/pnas.1906559116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
DNA repair is critical for genome stability and is maintained through conserved pathways. Traditional genome-wide mammalian screens are both expensive and laborious. However, computational approaches circumvent these limitations and are a powerful tool to identify new DNA repair factors. By analyzing the evolutionary relationships between genes in the major DNA repair pathways, we uncovered functional relationships between individual genes and identified partners. Here we ranked 17,487 mammalian genes for coevolution with 6 distinct DNA repair pathways. Direct comparison to genetic screens for homologous recombination or Fanconi anemia factors indicates that our evolution-based screen is comparable, if not superior, to traditional screening approaches. Demonstrating the utility of our strategy, we identify a role for the DNA damage-induced apoptosis suppressor (DDIAS) gene in double-strand break repair based on its coevolution with homologous recombination. DDIAS knockdown results in DNA double-strand breaks, indicated by ATM kinase activation and 53BP1 foci induction. Additionally, DDIAS-depleted cells are deficient for homologous recombination. Our results reveal that evolutionary analysis is a powerful tool to uncover novel factors and functional relationships in DNA repair.
Collapse
|
69
|
Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:17925-17933. [PMID: 31431535 PMCID: PMC6731677 DOI: 10.1073/pnas.1906149116] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ejaculate quality plays an essential role in fertility, sperm competition, and offspring health. A key modulator of ejaculate quality is the social environment. Although males across taxa are known to strategically allocate sperm in response to rivals, how this applies to myriad other ejaculate components is poorly resolved. Here, we take a multilevel approach, from protein to fitness, to show that Drosophila melanogaster males divergently allocate sperm and seminal fluid proteins along a competition gradient. Using a combination of fluorescence-labeled sperm, quantitative proteomics, and multimating assays, we demonstrate that males are remarkably sensitive to the intensity of competition they perceive, show compositional change across and within portions of the ejaculate, and that this compositional change carries distinct costs and benefits. Sperm competition favors large, costly ejaculates, and theory predicts the evolution of allocation strategies that enable males to plastically tailor ejaculate expenditure to sperm competition threat. While greater sperm transfer in response to a perceived increase in the risk of sperm competition is well-supported, we have a poor understanding of whether males (i) respond to changes in perceived intensity of sperm competition, (ii) use the same allocation rules for sperm and seminal fluid, and (iii) experience changes in current and future reproductive performance as a result of ejaculate compositional changes. Combining quantitative proteomics with fluorescent sperm labeling, we show that Drosophila melanogaster males exercise independent control over the transfer of sperm and seminal fluid proteins (SFPs) under different levels of male–male competition. While sperm transfer peaks at low competition, consistent with some theoretical predictions based on sperm competition intensity, the abundance of transferred SFPs generally increases at high competition levels. However, we find that clusters of SFPs vary in the directionality and sensitivity of their response to competition, promoting compositional change in seminal fluid. By tracking the degree of decline in male mating probability and offspring production across successive matings, we provide evidence that ejaculate compositional change represents an adaptive response to current sperm competition, but one that comes at a cost to future mating performance. Our work reveals a previously unknown divergence in ejaculate component allocation rules, exposes downstream costs of elevated ejaculate investment, and ultimately suggests a central role for ejaculate compositional plasticity in sexual selection.
Collapse
|
70
|
Sirot LK. On the evolutionary origins of insect seminal fluid proteins. Gen Comp Endocrinol 2019; 278:104-111. [PMID: 30682344 DOI: 10.1016/j.ygcen.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
In most cases, proteins affect the phenotype of the individual in which they are produced. However, in some cases, proteins have evolved in such a way that they are able to influence the phenotype of another individual of the same or of a different species ("influential proteins"). Examples of interspecific influential proteins include venom proteins and proteins produced by parasites that influence their hosts' physiology or behavior. Examples of intraspecific influential proteins include those produced by both mothers and fetuses that mitigate maternal resource allocation and proteins transferred to females in the seminal fluid during mating that change female physiology and behavior. Although there has been much interest in the functions and evolutionary dynamics of these influential proteins, less is known about the origin of these proteins. Where does the DNA that encodes the proteins that can impact another individual's phenotype come from and how do the proteins acquire their influential abilities? In this mini-review, I use insect seminal fluid proteins as a case study to consider the origin of intraspecific influential proteins. The existing data suggest that influential insect seminal fluid proteins arise both through co-option of existing genes (both single copy genes and gene duplicates) and de novo evolution. Other mechanisms for the origin of new insect seminal fluid proteins (e.g., retrotransoposition and horizontal gene transfer) are plausible but have not yet been demonstrated. Additional gaps in our understanding of the origin of insect seminal fluid proteins include an understanding of the cis-regulatory elements that designate expression in the male reproductive tract and of the evolutionary steps by which individual proteins come to depend on other seminal fluid proteins for their activity within the mated female.
Collapse
Affiliation(s)
- Laura King Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, United States.
| |
Collapse
|
71
|
Yan Z, Ye G, Werren JH. Evolutionary Rate Correlation between Mitochondrial-Encoded and Mitochondria-Associated Nuclear-Encoded Proteins in Insects. Mol Biol Evol 2019; 36:1022-1036. [PMID: 30785203 DOI: 10.1093/molbev/msz036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mitochondrion is a pivotal organelle for energy production, and includes components encoded by both the mitochondrial and nuclear genomes. Functional and evolutionary interactions are expected between the nuclear- and mitochondrial-encoded components. The topic is of broad interest in biology, with implications to genetics, evolution, and medicine. Here, we compare the evolutionary rates of mitochondrial proteins and ribosomal RNAs to rates of mitochondria-associated nuclear-encoded proteins, across the major orders of holometabolous insects. There are significant evolutionary rate correlations (ERCs) between mitochondrial-encoded and mitochondria-associated nuclear-encoded proteins, which are likely driven by different rates of mitochondrial sequence evolution and correlated changes in the interacting nuclear-encoded proteins. The pattern holds after correction for phylogenetic relationships and considering protein conservation levels. Correlations are stronger for both nuclear-encoded OXPHOS proteins that are in contact with mitochondrial OXPHOS proteins and for nuclear-encoded mitochondrial ribosomal amino acids directly contacting the mitochondrial rRNAs. We find that ERC between mitochondrial- and nuclear-encoded proteins is a strong predictor of nuclear-encoded proteins known to interact with mitochondria, and ERC shows promise for identifying new candidate proteins with mitochondrial function. Twenty-three additional candidate nuclear-encoded proteins warrant further study for mitochondrial function based on this approach, including proteins in the minichromosome maintenance helicase complex.
Collapse
Affiliation(s)
- Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Department of Biology, University of Rochester, Rochester, NY
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
72
|
Baião GC, Schneider DI, Miller WJ, Klasson L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genomics 2019; 20:465. [PMID: 31174466 PMCID: PMC6555960 DOI: 10.1186/s12864-019-5816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D. paulistorum and investigate the hypothesis that the symbiont may play a role in host speciation. For that goal, we analyze samples of heads and abdomens of both sexes of the Amazonian, Centro American and Orinocan semispecies of D. paulistorum. Results We identify between 175 and 1192 differentially expressed genes associated with a variety of biological processes that respond either globally or according to tissue, sex or condition in the three semispecies. Some of the functions associated with differentially expressed genes are known to be affected by Wolbachia in other species, such as metabolism and immunity, whereas others represent putative novel phenotypes involving muscular functions, pheromone signaling, and visual perception. Conclusions Our results show that Wolbachia affect a large number of biological functions in D. paulistorum, particularly when present in high titer. We suggest that the significant metabolic impact of the infection on the host may cause several of the other putative and observed phenotypes. We also speculate that the observed differential expression of genes associated with chemical communication and reproduction may be associated with the emergence of pre- and postmating barriers between semispecies, which supports a role for Wolbachia in the speciation of D. paulistorum. Electronic supplementary material The online version of this article (10.1186/s12864-019-5816-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden
| | - Daniela I Schneider
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.,Present address: Department of Epidemiology of Microbial Diseases, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Wolfgang J Miller
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Lisa Klasson
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
73
|
Patlar B, Weber M, Ramm SA. Genetic and environmental variation in transcriptional expression of seminal fluid proteins. Heredity (Edinb) 2019; 122:595-611. [PMID: 30356222 PMCID: PMC6461930 DOI: 10.1038/s41437-018-0160-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Seminal fluid proteins (SFPs) are crucial mediators of sexual selection and sexual conflict. Recent studies have chiefly focused on environmentally induced plasticity as one source of variation in SFP expression, particularly in response to differing sperm competition levels. However, understanding the evolution of a trait in heterogenous environments requires estimates of both environmental and genetic sources of variation, as well as their interaction. Therefore, we investigated how environment (specifically mating group size, a good predictor of sperm competition intensity), genotype and genotype-by-environment interactions affect seminal fluid expression. To do so, we reared 12 inbred lines of a simultaneously hermaphroditic flatworm Macrostomum lignano in groups of either two or eight worms and measured the expression levels of 58 putative SFP transcripts. We then examined the source of variation in the expression of each transcript individually and for multivariate axes extracted from a principal component analysis. We found that mating group size did not affect expression levels according to the single transcript analyses, nor did it affect the first principal component (presumably representing overall investment in seminal fluid production). However, mating group size did affect the relative expression of different transcripts captured by the second principal component (presumably reflecting variation in seminal fluid composition). Most transcripts were genetically variable in their expression level and several exhibited genotype-by-environment interactions; relative composition also showed high genetic variation. Collectively, our results reveal the tightly integrated nature of the seminal fluid transcriptome and provide new insights into the quantitative genetic basis of seminal fluid investment and composition.
Collapse
Affiliation(s)
- Bahar Patlar
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.
| | - Michael Weber
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
74
|
Castillo DM, Moyle LC. Conspecific sperm precedence is reinforced, but postcopulatory sexual selection weakened, in sympatric populations of Drosophila. Proc Biol Sci 2019; 286:20182535. [PMID: 30900533 PMCID: PMC6452082 DOI: 10.1098/rspb.2018.2535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
Sexual selection can accelerate speciation by driving the evolution of reproductive isolation, but forces driving speciation could also reciprocally feedback on sexual selection. This might be particularly important in the context of 'reinforcement', where selection acts directly to increase prezygotic barriers to reduce the cost of heterospecific matings. Using assays of sperm competition within and between two sister species, we show a signature of reinforcement where these species interact: populations of Drosophila pseudoobscura that co-occur with sister species D. persimilis have an elevated ability to outcompete heterospecific sperm, consistent with selection for increased postcopulatory isolation. We also find these D. pseudoobscura populations have decreased sperm competitive ability against conspecifics, reducing the opportunity for sexual selection within these populations. Our findings demonstrate that direct selection to increase reproductive isolation against other species can compromise the efficacy of sexual selection within species, a collateral effect of reproductive traits responding to heterospecific interactions.
Collapse
Affiliation(s)
- Dean M. Castillo
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, USA
| | - Leonie C. Moyle
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
75
|
Nakadera Y, Giannakara A, Ramm SA. Plastic expression of seminal fluid protein genes in a simultaneously hermaphroditic snail. Behav Ecol 2019. [DOI: 10.1093/beheco/arz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yumi Nakadera
- Evolutionary Biology Department, Bielefeld University, Germany Morgenbreede 45, 33615 Bielefeld, Germany
| | - Athina Giannakara
- Evolutionary Biology Department, Bielefeld University, Germany Morgenbreede 45, 33615 Bielefeld, Germany
| | - Steven A Ramm
- Evolutionary Biology Department, Bielefeld University, Germany Morgenbreede 45, 33615 Bielefeld, Germany
| |
Collapse
|
76
|
Dosselli R, Grassl J, den Boer SPA, Kratz M, Moran JM, Boomsma JJ, Baer B. Protein-Level Interactions as Mediators of Sexual Conflict in Ants. Mol Cell Proteomics 2019; 18:S34-S45. [PMID: 30598476 PMCID: PMC6427229 DOI: 10.1074/mcp.ra118.000941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
All social insects with obligate reproductive division of labor evolved from strictly monogamous ancestors, but multiple queen-mating (polyandry) arose de novo, in several evolutionarily derived lineages. Polyandrous ant queens are inseminated soon after hatching and store sperm mixtures for a potential reproductive life of decades. However, they cannot re-mate later in life and are thus expected to control the loss of viable sperm because their lifetime reproductive success is ultimately sperm limited. In the leaf-cutting ant Atta colombica,, the survival of newly inseminated sperm is known to be compromised by seminal fluid of rival males and to be protected by secretions of the queen sperm storage organ (spermatheca). Here we investigate the main protein-level interactions that appear to mediate sperm competition dynamics and sperm preservation. We conducted an artificial insemination experiment and DIGE-based proteomics to identify proteomic changes when seminal fluid is exposed to spermathecal fluid followed by a mass spectrometry analysis of both secretions that allowed us to identify the sex-specific origins of the proteins that had changed in abundance. We found that spermathecal fluid targets only seven (2%) of the identified seminal fluid proteins for degradation, including two proteolytic serine proteases, a SERPIN inhibitor, and a semen-liquefying acid phosphatase. In vitro, and in vivo, experiments provided further confirmation that these proteins are key molecules mediating sexual conflict over sperm competition and viability preservation during sperm storage. In vitro, exposure to spermathecal fluid reduced the capacity of seminal fluid to compromise survival of rival sperm in a matter of hours and biochemical inhibition of these seminal fluid proteins largely eliminated that adverse effect. Our findings indicate that A. colombica, queens are in control of sperm competition and sperm storage, a capacity that has not been documented in other animals but is predicted to have independently evolved in other polyandrous social insects.
Collapse
Affiliation(s)
- Ryan Dosselli
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Julia Grassl
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Susanne P A den Boer
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Madlen Kratz
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Jessica M Moran
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;.
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, The University of California, Riverside CA 92506.
| |
Collapse
|
77
|
Zhang Z, Ahmed-Braimah YH, Goldberg ML, Wolfner MF. Calcineurin-dependent Protein Phosphorylation Changes During Egg Activation in Drosophila melanogaster. Mol Cell Proteomics 2019; 18:S145-S158. [PMID: 30478224 PMCID: PMC6427240 DOI: 10.1074/mcp.ra118.001076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/19/2018] [Indexed: 01/26/2023] Open
Abstract
In almost all animals studied to date, the crucial process of egg activation, by which an arrested mature oocyte transitions into an actively developing embryo, initiates with an increase in Ca2+ in the oocyte's cytoplasm. This Ca2+ rise sets off a series of downstream events, including the completion of meiosis and the dynamic remodeling of the oocyte transcriptome and proteome, which prepares the oocyte for embryogenesis. Calcineurin is a highly conserved phosphatase that is activated by Ca2+ upon egg activation and that is required for the resumption of meiosis in Xenopus,, ascidians, and Drosophila. The molecular mechanisms by which calcineurin transduces the calcium signal to regulate meiosis and other downstream events are still unclear. In this study, we investigate the regulatory role of calcineurin during egg activation in Drosophila melanogaster,. Using mass spectrometry, we quantify the phosphoproteomic and proteomic changes that occur during egg activation, and we examine how these events are affected when calcineurin function is perturbed in female germ cells. Our results show that calcineurin regulates hundreds of phosphosites and also influences the abundance of numerous proteins during egg activation. We find calcineurin-dependent changes in cell cycle regulators including Fizzy (Fzy), Greatwall (Gwl) and Endosulfine (Endos); in protein translation modulators including PNG, NAT, eIF4G, and eIF4B; and in important components of signaling pathways including GSK3β and Akt1. Our results help elucidate the events that occur during the transition from oocyte to embryo.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| |
Collapse
|
78
|
Karr TL, Southern H, Rosenow MA, Gossmann TI, Snook RR. The Old and the New: Discovery Proteomics Identifies Putative Novel Seminal Fluid Proteins in Drosophila. Mol Cell Proteomics 2019; 18:S23-S33. [PMID: 30760537 PMCID: PMC6427231 DOI: 10.1074/mcp.ra118.001098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Seminal fluid proteins (SFPs), the nonsperm component of male ejaculates produced by male accessory glands, are viewed as central mediators of reproductive fitness. SFPs effect both male and female post-mating functions and show molecular signatures of rapid adaptive evolution. Although Drosophila melanogaster, is the dominant insect model for understanding SFP evolution, understanding of SFP evolutionary causes and consequences require additional comparative analyses of close and distantly related taxa. Although SFP identification was historically challenging, advances in label-free quantitative proteomics expands the scope of studying other systems to further advance the field. Focused studies of SFPs has so far overlooked the proteomes of male reproductive glands and their inherent complex protein networks for which there is little information on the overall signals of molecular evolution. Here we applied label-free quantitative proteomics to identify the accessory gland proteome and secretome in Drosophila pseudoobscura,, a close relative of D. melanogaster,, and use the dataset to identify both known and putative novel SFPs. Using this approach, we identified 163 putative SFPs, 32% of which overlapped with previously identified D. melanogaster, SFPs and show that SFPs with known extracellular annotation evolve more rapidly than other proteins produced by or contained within the accessory gland. Our results will further the understanding of the evolution of SFPs and the underlying male accessory gland proteins that mediate reproductive fitness of the sexes.
Collapse
Affiliation(s)
- Timothy L Karr
- From the ‡Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, Arizona;.
| | - Helen Southern
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
79
|
Affiliation(s)
- Jeffrey Colgren
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Scott A. Nichols
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
80
|
Raza Q, Choi JY, Li Y, O’Dowd RM, Watkins SC, Chikina M, Hong Y, Clark NL, Kwiatkowski AV. Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genet 2019; 15:e1007720. [PMID: 30763317 PMCID: PMC6375579 DOI: 10.1371/journal.pgen.1007720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The adherens junction couples the actin cytoskeletons of neighboring cells to provide the foundation for multicellular organization. The core of the adherens junction is the cadherin-catenin complex that arose early in the evolution of multicellularity to link actin to intercellular adhesions. Over time, evolutionary pressures have shaped the signaling and mechanical functions of the adherens junction to meet specific developmental and physiological demands. Evolutionary rate covariation (ERC) identifies proteins with correlated fluctuations in evolutionary rate that can reflect shared selective pressures and functions. Here we use ERC to identify proteins with evolutionary histories similar to the Drosophila E-cadherin (DE-cad) ortholog. Core adherens junction components α-catenin and p120-catenin displayed positive ERC correlations with DE-cad, indicating that they evolved under similar selective pressures during evolution between Drosophila species. Further analysis of the DE-cad ERC profile revealed a collection of proteins not previously associated with DE-cad function or cadherin-mediated adhesion. We then analyzed the function of a subset of ERC-identified candidates by RNAi during border cell (BC) migration and identified novel genes that function to regulate DE-cad. Among these, we found that the gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates BC migration and adhesion. We named CG42684 raskol (“to split” in Russian) and show that it regulates DE-cad levels and actin protrusions in BCs. We propose that Raskol functions with DE-cad to restrict Ras/Rho signaling and help guide BC migration. Our results demonstrate that a coordinated selective pressure has shaped the adherens junction and this can be leveraged to identify novel components of the complexes and signaling pathways that regulate cadherin-mediated adhesion. The establishment of intercellular adhesions facilitated the genesis of multicellular organisms. The adherens junction, which links the actin cytoskeletons of neighboring cells, arose early in the evolution of multicellularity and selective pressures have shaped its function and molecular composition over time. In this study, we used evolutionary rate covariation (ERC) analysis to examine the evolutionary history of the adherens junction and to identify proteins that coevolved with the core adherens junction protein Drosophila E-cadherin (DE-cad). ERC analysis of DE-cad revealed a collection of proteins with similar evolutionary histories. We then tested the role of ERC-identified candidates in border cell migration in the fly egg chamber, a process that requires the coordinated regulation of cell-cell adhesion and cell motility. Among these, we found that a previously uncharacterized gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates the collective cell migration of border cells, stabilizes cell-cell adhesions and regulates the actin dynamics. Our results demonstrate that components of the adherens junction share an evolutionary history and that ERC analysis is a powerful method to identify novel components of cell adhesion complexes in Drosophila.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roisin M. O’Dowd
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan L. Clark
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
81
|
Haloupek N. Mariana Wolfner: 2018 Genetics Society of America Medal. Genetics 2018; 210:1139-1141. [PMID: 30523164 PMCID: PMC6283159 DOI: 10.1534/genetics.118.301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Genetics Society of America (GSA) Medal recognizes researchers who have made outstanding contributions to the field of genetics in the past 15 years. The 2018 GSA Medal has been awarded to Mariana Wolfner of Cornell University for her work on reproductive processes that occur around the time of fertilization. This includes characterization of seminal proteins in Drosophila melanogaster, which has uncovered a wealth of information about sexual conflict in evolution.
Collapse
|
82
|
Cao X, Jiang H. Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:53-69. [PMID: 30367934 PMCID: PMC6358214 DOI: 10.1016/j.ibmb.2018.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 05/15/2023]
Abstract
Serine proteases (SPs) and serine protease homologs (SPHs) play essential roles in insect physiological processes including digestion, defense and development. Studies of insect genomes, transcriptomes and proteomes have generated a vast amount of information on these proteins, dwarfing the biological data acquired from a few model species. The large number and high diversity of homologous sequences makes it a challenge to use the limited functional information for making predictions across a broad taxonomic group of insects. In this work, we have extensively updated the framework of knowledge on the SP-related proteins in Drosophila melanogaster by identifying 52 new SPs/SPHs, classifying the 257 proteins into four groups (CLIP, gut, single- and multi-domain SPs/SPHs), and detecting inherent connections among phylogenetic relationships, genomic locations and expression profiles for 99 of the genes. Information on the existence of specific proteins in eggs, larvae, pupae and adults is presented to facilitate future research. More importantly, we have developed an approach to reveal close homologous or orthologous relationships among SPs/SPHs from D. melanogaster, Anopheles gambiae, Apis mellifera, Manduca sexta, and Tribolium castaneum thus inspiring functional studies in these and other holometabolous insects. This approach is useful for tackling similar problems on large and diverse protein families in other groups of organisms.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
83
|
Singh A, Buehner NA, Lin H, Baranowski KJ, Findlay GD, Wolfner MF. Long-term interaction between Drosophila sperm and sex peptide is mediated by other seminal proteins that bind only transiently to sperm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:43-51. [PMID: 30217614 PMCID: PMC6249070 DOI: 10.1016/j.ibmb.2018.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Seminal fluid proteins elicit several post-mating physiological changes in mated Drosophila melanogaster females. Some of these changes persist for over a week after mating because the seminal protein that causes these changes, the Sex Peptide (SP), binds to sperm that are stored in the female reproductive tract. SP's sperm binding is mediated by a network of at least eight seminal proteins. We show here that some of these network proteins (CG1656, CG1652, CG9997 and Antares) bind to sperm within 2 h of mating, like SP. However, while SP remains bound to sperm at 4 days post-mating, none of the other network proteins are detectable at this time. We also observed that the same network proteins are detectable at 2 h post-mating in seminal receptacle tissue from which sperm have been removed, but are no longer detectable there by 4 days post-mating, suggesting short-term retention of these proteins in this female sperm storage organ. Our results suggest that these network proteins act transiently to facilitate the conditions for SP's binding to sperm, perhaps by modifying SP or the sperm surface, but are not part of a long-acting complex that stably attaches SP to sperm.
Collapse
Affiliation(s)
- Akanksha Singh
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Norene A Buehner
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - He Lin
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA; East China Normal University, Shanghai, China
| | | | - Geoffrey D Findlay
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA; Dept. of Biology, College of the Holy Cross, Worcester, MA, 01610, USA
| | - Mariana F Wolfner
- Dept. of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
84
|
Wensing KU, Fricke C. Divergence in sex peptide-mediated female post-mating responses in Drosophila melanogaster. Proc Biol Sci 2018; 285:rspb.2018.1563. [PMID: 30209231 PMCID: PMC6158525 DOI: 10.1098/rspb.2018.1563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
Transfer and receipt of seminal fluid proteins crucially affect reproductive processes in animals. Evolution in these male ejaculatory proteins is explained with post-mating sexual selection, but we lack a good understanding of the evolution of female post-mating responses (PMRs) to these proteins. Some of these proteins are expected to mediate sexually antagonistic coevolution generating the expectation that females evolve resistance. One candidate in Drosophila melanogaster is the sex peptide (SP) which confers cost of mating in females. In this paper, we compared female SP-induced PMRs across three D. melanogaster wild-type populations after mating with SP-lacking versus control males including fitness measures. Surprisingly, we did not find any evidence for SP-mediated fitness costs in any of the populations. However, female lifetime reproductive success and lifespan were differently affected by SP receipt indicating that female PMRs diverged among populations. Injection of synthetic SP into virgin females further supported these findings and suggests that females from different populations require different amounts of SP to effectively initiate PMRs. Molecular analyses of the SP receptor suggest that genetic differences might explain the observed phenotypical divergence. We discuss the evolutionary processes that might have caused this divergence in female PMRs.
Collapse
Affiliation(s)
- Kristina U Wensing
- Institute for Evolution and Biodiversity, University of Muenster, Muenster 48149, Germany .,Muenster Graduate School of Evolution, University of Muenster, Muenster 48149, Germany
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Muenster 48149, Germany
| |
Collapse
|
85
|
Maternal Proteins That Are Phosphoregulated upon Egg Activation Include Crucial Factors for Oogenesis, Egg Activation and Embryogenesis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:3005-3018. [PMID: 30012668 PMCID: PMC6118307 DOI: 10.1534/g3.118.200578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Egg activation is essential for the successful transition from a mature oocyte to a developmentally competent egg. It consists of a series of events including the resumption and completion of meiosis, initiation of translation of some maternal mRNAs and destruction of others, and changes to the vitelline envelope. This major change of cell state is accompanied by large scale alteration in the oocyte’s phosphoproteome. We hypothesize that the cohort of proteins that are subject to phosphoregulation during egg activation are functionally important for processes before, during, or soon after this transition, potentially uniquely or as proteins carrying out essential cellular functions like those they do in other (somatic) cells. In this study, we used germline-specific RNAi to examine the function of 189 maternal proteins that are phosphoregulated during egg activation in Drosophila melanogaster. We identified 53 genes whose knockdown reduced or abolished egg production and caused a range of defects in ovarian morphology, as well as 51 genes whose knockdown led to significant impairment or abolishment of the egg hatchability. We observed different stages of developmental arrest in the embryos and various defects in spindle morphology and aberrant centrosome activities in the early arrested embryos. Our results, validated by the detection of multiple genes with previously-documented maternal effect phenotypes among the proteins we tested, revealed 15 genes with newly discovered roles in egg activation and early embryogenesis in Drosophila. Given that protein phosphoregulation is a conserved characteristic of this developmental transition, we suggest that the phosphoregulated proteins may provide a rich pool of candidates for the identification of important players in the egg-to-embryo transition.
Collapse
|
86
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
87
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
88
|
Delbare SYN, Chow CY, Wolfner MF, Clark AG. Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster. J Hered 2018; 108:740-753. [PMID: 29036644 DOI: 10.1093/jhered/esx081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
Mating induces a multitude of changes in female behavior, physiology, and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Here, we used Drosophila melanogaster from 5 geographically dispersed populations to investigate such female × male genotypic interactions at the female transcriptomic and phenotypic levels. Females from each line were singly-mated to males from the same 5 lines, for a total of 25 combinations. Reproductive output and refractoriness to re-mating were assayed in females from the 25 mating combinations. Female × male genotypic interactions resulted in significant differences in these post-mating phenotypes. To assess whether female × male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 h post-mating. Seventy-seven genes showed strong variation in mating-induced expression changes in a female × male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Strikingly, variation in post-mating transcript levels of a gene encoding a spermathecal endopeptidase was correlated with short-term egg production. The transcriptional variation found in specific functional classes of genes might be a read-out of female × male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Collapse
Affiliation(s)
- Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Clement Y Chow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| |
Collapse
|
89
|
Billeter JC, Wolfner MF. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol 2018; 44:750-769. [PMID: 29557077 DOI: 10.1007/s10886-018-0947-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
Abstract
Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female's chemical profile. These molecules make the female less attractive to other males, thus protecting her mate's sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female's attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female's propensity to re-mate, thus continuing to protect the male's investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual's response to the chemical cues in its environment.
Collapse
Affiliation(s)
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
90
|
Ruhmann H, Koppik M, Wolfner MF, Fricke C. The impact of ageing on male reproductive success in Drosophila melanogaster. Exp Gerontol 2018; 103:1-10. [PMID: 29258876 PMCID: PMC5803378 DOI: 10.1016/j.exger.2017.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/21/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
Male reproductive ageing has been mainly explained by a reduction in sperm quality with negative effects on offspring development and quality. In addition to sperm, males transfer seminal fluid proteins (Sfps) at mating; Sfps are important determinants of male reproductive success. Receipt of Sfps leads to female post-mating changes including physiological changes, and affects sperm competition dynamics. Using the fruit fly Drosophila melanogaster we studied ageing males' ability to induce female post-mating responses and determined the consequences of male ageing on their reproductive success. We aged males for up to 7weeks and assayed their ability to: i) gain a mating, ii) induce egg-laying and produce offspring, iii) prevent females from remating and iv) transfer sperm and elicit storage after a single mating. We found that with increasing age, males were less able to induce post-mating responses in their mates; moreover ageing had negative consequences for male success in competitive situations. Our findings indicate that with advancing age male flies transferred less effective ejaculates and that Sfp composition might change over a male's lifetime in quantity and/or quality, significantly affecting his reproductive success.
Collapse
Affiliation(s)
- Hanna Ruhmann
- Institute for Evolution and Biodiversity, University of Muenster, Germany; Muenster Graduate School of Evolution, University of Muenster, Germany
| | - Mareike Koppik
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, USA
| | - Claudia Fricke
- Institute for Evolution and Biodiversity, University of Muenster, Germany.
| |
Collapse
|
91
|
Cooper JC, Phadnis N. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels. Genome Biol Evol 2017; 9:1938-1949. [PMID: 28810709 PMCID: PMC5553355 DOI: 10.1093/gbe/evx131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior.
Collapse
|
92
|
Kasimatis KR, Nelson TC, Phillips PC. Genomic Signatures of Sexual Conflict. J Hered 2017; 108:780-790. [PMID: 29036624 PMCID: PMC5892400 DOI: 10.1093/jhered/esx080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
Sexual conflict is a specific class of intergenomic conflict that describes the reciprocal sex-specific fitness costs generated by antagonistic reproductive interactions. The potential for sexual conflict is an inherent property of having a shared genome between the sexes and, therefore, is an extreme form of an environment-dependent fitness effect. In this way, many of the predictions from environment-dependent selection can be used to formulate expected patterns of genome evolution under sexual conflict. However, the pleiotropic and transmission constraints inherent to having alleles move across sex-specific backgrounds from generation to generation further modulate the anticipated signatures of selection. We outline methods for detecting candidate sexual conflict loci both across and within populations. Additionally, we consider the ability of genome scans to identify sexually antagonistic loci by modeling allele frequency changes within males and females due to a single generation of selection. In particular, we highlight the need to integrate genotype, phenotype, and functional information to truly distinguish sexual conflict from other forms of sexual differentiation.
Collapse
Affiliation(s)
- Katja R Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Thomas C Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
93
|
Gubala AM, Schmitz JF, Kearns MJ, Vinh TT, Bornberg-Bauer E, Wolfner MF, Findlay GD. The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo. Mol Biol Evol 2017; 34:1066-1082. [PMID: 28104747 DOI: 10.1093/molbev/msx057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction.
Collapse
Affiliation(s)
- Anna M Gubala
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Jonathan F Schmitz
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Tery T Vinh
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, MA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
94
|
Calvo-Martín JM, Papaceit M, Segarra C. Molecular population genetics of the Polycomb genes in Drosophila subobscura. PLoS One 2017; 12:e0185005. [PMID: 28910411 PMCID: PMC5599051 DOI: 10.1371/journal.pone.0185005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Polycomb group (PcG) proteins are important regulatory factors that modulate the chromatin state. They form protein complexes that repress gene expression by the introduction of posttranslational histone modifications. The study of PcG proteins divergence in Drosophila revealed signals of coevolution among them and an acceleration of the nonsynonymous evolutionary rate in the lineage ancestral to the obscura group species, mainly in subunits of the Pcl-PRC2 complex. Herein, we have studied the nucleotide polymorphism of PcG genes in a natural population of D. subobscura to detect whether natural selection has also modulated the evolution of these important regulatory genes in a more recent time scale. Results show that most genes are under the action of purifying selection and present a level and pattern of polymorphism consistent with predictions of the neutral model, the exceptions being Su(z)12 and Pho. MK tests indicate an accumulation of adaptive changes in the SU(Z)12 protein during the divergence of D. subobscura and D. guanche. In contrast, the HKA test shows a deficit of polymorphism at Pho. The most likely explanation for this reduced variation is the location of this gene in the dot-like chromosome and would indicate that this chromosome also has null or very low recombination in D. subobscura, as reported in D. melanogaster.
Collapse
Affiliation(s)
- Juan M. Calvo-Martín
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Papaceit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Carmen Segarra
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
95
|
Evolutionary Dynamics of Male Reproductive Genes in the Drosophila virilis Subgroup. G3-GENES GENOMES GENETICS 2017; 7:3145-3155. [PMID: 28739599 PMCID: PMC5592939 DOI: 10.1534/g3.117.1136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Postcopulatory sexual selection (PCSS) is a potent evolutionary force that can drive rapid changes of reproductive genes within species, and thus has the potential to generate reproductive incompatibilities between species. Male seminal fluid proteins (SFPs) are major players in postmating interactions, and are important targets of PCSS in males. The virilis subgroup of Drosophila exhibits strong interspecific gametic incompatibilities, and can serve as a model to study the genetic basis of PCSS and gametic isolation. However, reproductive genes in this group have not been characterized. Here we utilize short-read RNA sequencing of male reproductive organs to examine the evolutionary dynamics of reproductive genes in members of the virilis subgroup: D. americana, D. lummei, D. novamexicana, and D. virilis. We find that the majority of male reproductive transcripts are testes-biased, accounting for ∼15% of all annotated genes. Ejaculatory bulb (EB)-biased transcripts largely code for lipid metabolic enzymes, and contain orthologs of the D. melanogaster EB protein, Peb-me, which is involved in mating-plug formation. In addition, we identify 71 candidate SFPs, and show that this gene set has the highest rate of nonsynonymous codon substitution relative to testes- and EB-biased genes. Furthermore, we identify orthologs of 35 D. melanogaster SFPs that have conserved accessory gland expression in the virilis group. Finally, we show that several of the SFPs that have the highest rate of nonsynonymous codon substitution reside on chromosomal regions, which contributes to paternal gametic incompatibility between species. Our results show that SFPs rapidly diversify in the virilis group, and suggest that they likely play a role in PCSS and/or gametic isolation.
Collapse
|
96
|
González-Morales N, Holenka TK, Schöck F. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion. PLoS Genet 2017; 13:e1006880. [PMID: 28732005 PMCID: PMC5521747 DOI: 10.1371/journal.pgen.1006880] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/21/2017] [Indexed: 01/03/2023] Open
Abstract
Many proteins contribute to the contractile properties of muscles, most notably myosin thick filaments, which are anchored at the M-line, and actin thin filaments, which are anchored at the Z-discs that border each sarcomere. In humans, mutations in the actin-binding protein Filamin-C result in myopathies, but the underlying molecular function is not well understood. Here we show using Drosophila indirect flight muscle that the filamin ortholog Cheerio in conjunction with the giant elastic protein titin plays a crucial role in keeping thin filaments stably anchored at the Z-disc. We identify the filamin domains required for interaction with the titin ortholog Sallimus, and we demonstrate a genetic interaction of filamin with titin and actin. Filamin mutants disrupting the actin- or the titin-binding domain display distinct phenotypes, with Z-discs breaking up in parallel or perpendicularly to the myofibril, respectively. Thus, Z-discs require filamin to withstand the strong contractile forces acting on them. The Z-disc is a macromolecular complex required to attach and stabilize actin thin filaments in the sarcomere, the smallest contractile unit of striated muscles. Mutations in Z-disc-associated proteins typically result in muscle disorders. Dimeric filamin organizes actin filaments, localizes at the Z-disc in vertebrates and causes muscle disorders in humans when mutated. Despite its clinical relevance, the molecular function of filamin in the sarcomere is not well understood. Here we use Drosophila muscles and an array of filamin mutations to address the molecular and cell biological function of filamin in the sarcomere. We show that filamin mainly serves as a Z-disc cohesive element, binding both thin filaments and titin. This configuration enables filamin to act as a bridge between thin filaments and the elastic scaffold protein titin from the adjacent sarcomere, maintaining sarcomere stability during muscle contraction.
Collapse
Affiliation(s)
| | | | - Frieder Schöck
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
97
|
Denis B, Claisse G, Le Rouzic A, Wicker-Thomas C, Lepennetier G, Joly D. Male accessory gland proteins affect differentially female sexual receptivity and remating in closely related Drosophila species. JOURNAL OF INSECT PHYSIOLOGY 2017; 99:67-77. [PMID: 28342762 DOI: 10.1016/j.jinsphys.2017.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
In sexual species, mating success depends on the male's capacity to find sexual partners and on female receptivity to mating. Mating is under evolutionary constraints to prevent interspecific mating and to maximize the reproductive success of both sexes. In Drosophila melanogaster, female receptivity to mating is mainly controlled by Sex peptide (SP, i.e. Acp70A) produced by the male accessory glands with other proteins (Acps). The transfer of SP during copulation dramatically reduces female receptivity to mating and prevents remating with other males. To date, female postmating responses are well-known in D. melanogaster but have been barely investigated in closely-related species or strains exhibiting different mating systems (monoandrous versus polyandrous). Here, we describe the diversity of mating systems in two strains of D. melanogaster and the three species of the yakuba complex. Remating delay and sexual receptivity were measured in cross-experiments following SP orthologs or Acp injections within females. Interestingly, we discovered strong differences between the two strains of D. melanogaster as well as among the three species of the yakuba complex. These results suggest that reproductive behavior is under the control of complex sexual interactions between the sexes and evolves rapidly, even among closely-related species.
Collapse
Affiliation(s)
- Béatrice Denis
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Gaëlle Claisse
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Gildas Lepennetier
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| | - Dominique Joly
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS, IRD, Univ Paris-Sud and Université Paris-Saclay, F-91198 Gif-sur-Yvette, France.
| |
Collapse
|
98
|
Mifepristone/RU486 acts in Drosophila melanogaster females to counteract the life span-shortening and pro-inflammatory effects of male Sex Peptide. Biogerontology 2017; 18:413-427. [PMID: 28451923 DOI: 10.1007/s10522-017-9703-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Males with null mutation of Sex Peptide (SP) gene were compared to wild-type males for the ability to cause physiological changes in females that could be reversed by mifepristone. Males from wild-type strains decreased median female life span by average -51%. Feeding mifepristone increased life span of these females by average +106%. In contrast, SP-null males did not decrease female life span, and mifepristone increased median life span of these females by average +14%, which was equivalent to the effect of mifepristone in virgin females (average +16%). Expression of innate immune response transgenic reporter (Drosocin-GFP) was increased in females mated to wild-type males, and this expression was reduced by mifepristone. In contrast, SP-null males did not increase Drosocin-GFP reporter expression in the female. Similarly, mating increased endogenous microbial load, and this effect was reduced or absent in females fed mifepristone and in females mated to SP-null males; no loss of intestinal barrier integrity was detected using dye-leakage assay. Reduction of microbial load by treating adult flies with doxycycline reduced the effects of both mating and mifepristone on life span. Finally, mifepristone blocked the negative effect on life span caused by transgenic expression of SP in virgin females. The data support the conclusion that the majority of the life span-shortening, immune-suppressive and pro-inflammatory effects of mating are due to male SP, and demonstrate that mifepristone acts in females to counteract these effects of male SP.
Collapse
|
99
|
Michalak P, Kang L, Sarup PM, Schou MF, Loeschcke V. Nucleotide diversity inflation as a genome-wide response to experimental lifespan extension in Drosophila melanogaster. BMC Genomics 2017; 18:84. [PMID: 28088192 PMCID: PMC5237518 DOI: 10.1186/s12864-017-3485-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background Evolutionary theory predicts that antagonistically selected alleles, such as those with divergent pleiotropic effects in early and late life, may often reach intermediate population frequencies due to balancing selection, an elusive process when sought out empirically. Alternatively, genetic diversity may increase as a result of positive frequency-dependent selection and genetic purging in bottlenecked populations. Results While experimental evolution systems with directional phenotypic selection typically result in at least local heterozygosity loss, we report that selection for increased lifespan in Drosophila melanogaster leads to an extensive genome-wide increase of nucleotide diversity in the selected lines compared to replicate control lines, pronounced in regions with no or low recombination, such as chromosome 4 and centromere neighborhoods. These changes, particularly in coding sequences, are most consistent with the operation of balancing selection and the antagonistic pleiotropy theory of aging and life history traits that tend to be intercorrelated. Genes involved in antioxidant defenses, along with multiple lncRNAs, were among those most affected by balancing selection. Despite the overwhelming genetic diversification and the paucity of selective sweep regions, two genes with functions important for central nervous system and memory, Ptp10D and Ank2, evolved under positive selection in the longevity lines. Conclusions Overall, the ‘evolve-and-resequence’ experimental approach proves successful in providing unique insights into the complex evolutionary dynamics of genomic regions responsible for longevity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3485-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pawel Michalak
- Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA.
| | - Lin Kang
- Biocomplexity Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA
| | - Pernille M Sarup
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, Aarhus, DK-8000, Denmark
| | - Mads F Schou
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, Aarhus, DK-8000, Denmark
| | - Volker Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 114-116, Aarhus, DK-8000, Denmark.
| |
Collapse
|
100
|
Al-Wathiqui N, Fallon TR, South A, Weng JK, Lewis SM. Molecular characterization of firefly nuptial gifts: a multi-omics approach sheds light on postcopulatory sexual selection. Sci Rep 2016; 6:38556. [PMID: 28004739 PMCID: PMC5177949 DOI: 10.1038/srep38556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/09/2016] [Indexed: 11/23/2022] Open
Abstract
Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.
Collapse
Affiliation(s)
| | - Timothy R Fallon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adam South
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|