51
|
Nemati S, Teimourian S. An Overview of Inflammatory Bowel Disease: General Consideration and Genetic Screening Approach in Diagnosis of Early Onset Subsets. Middle East J Dig Dis 2017. [PMID: 28638582 PMCID: PMC5471105 DOI: 10.15171/mejdd.2017.54] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is the consequence of an aberrant hemostasis of the immune cells at the gut mucosal border. Based on clinical manifestation, laboratory tests, radiological studies, endoscopic and histological features, this disease is divided into three main types including Crohn's disease (CD), Ulcerative colitis (UC), and IBDunclassified (IBD-U). IBD is frequently presented in adults, but about 20% of IBD cases are diagnosed during childhood called pediatric IBD (PIBD). Some patients in the latter group emerge the first symptoms during infancy or under 5 years of age named infantile and very early onset IBD (VEO-IBD), respectively. These subtypes make a small fraction of PIBD, but they have exclusive phenotypic and genetic characteristics such that they are accompanied by severe disease course and resistance to conventional therapy. In this context, understanding the underlying molecular pathology opens a promising field for individualized and effective treatment. Here, we describe current hypotheses on IBD pathophysiology then explain the new idea about genetic screening technology as a good potential approach to identify the causal variants early in the disease manifestation, which is especially important for the fast and accurate treatment of VEO-IBD.
Collapse
Affiliation(s)
- Shahram Nemati
- Department of Medical Genetics, Tehran University of Medical Sciences,International Campus (TUMS-IC), Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences,Tehran, Iran
| |
Collapse
|
52
|
Crosstalk between the gut and the liver via susceptibility loci: Novel advances in inflammatory bowel disease and autoimmune liver disease. Clin Immunol 2017; 175:115-123. [DOI: 10.1016/j.clim.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
|
53
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
54
|
Wu RL, Vazquez-Roque M, Carlson P, Burton D, Grover M, Camilleri M, Turner JR. Gluten-induced symptoms in diarrhea-predominant irritable bowel syndrome are associated with increased myosin light chain kinase activity and claudin-15 expression. J Transl Med 2017; 97:14-23. [PMID: 27869798 PMCID: PMC5215009 DOI: 10.1038/labinvest.2016.118] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 02/08/2023] Open
Abstract
The mechanisms underlying diarrhea-predominant irritable bowel syndrome (IBS-D) are poorly understood, but increased intestinal permeability is thought to contribute to symptoms. A recent clinical trial of gluten-free diet (GFD) demonstrated symptomatic improvement, relative to gluten-containing diet (GCD), which was associated with reduced intestinal permeability in non-celiac disease IBS-D patients. The aim of this study was to characterize intestinal epithelial tight junction composition in IBS-D before and after dietary gluten challenge. Biopsies from 27 IBS-D patients (13 GFD and 14 GCD) were examined by H&E staining and semiquantitative immunohistochemistry for phosphorylated myosin II regulatory light chain (MLC), MLC kinase, claudin-2, claudin-8 and claudin-15. Diet-induced changes were assessed and correlated with urinary mannitol excretion (after oral administration). In the small intestine, epithelial MLC phosphorylation was increased or decreased by GCD or GFD, respectively, and this correlated with increased intestinal permeability (P<0.03). Colonocyte expression of the paracellular Na+ channel claudin-15 was also markedly augmented following GCD challenge (P<0.05). Conversely, colonic claudin-2 expression correlated with reduced intestinal permeability (P<0.03). Claudin-8 expression was not affected by dietary challenge. These data show that alterations in MLC phosphorylation and claudin-15 and claudin-2 expression are associated with gluten-induced symptomatology and intestinal permeability changes in IBS-D. The results provide new insight into IBS-D mechanisms and can explain permeability responses to gluten challenge in these patients.
Collapse
Affiliation(s)
- Richard Licheng Wu
- Department of Pathology, The University of Chicago, Chicago, Illinois,Department of Pathology and Laboratory Medicine, Jackson Memorial Hospital, University of Miami, Miami, Florida
| | - Maria Vazquez-Roque
- Division of Gastroenterology & Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Paula Carlson
- Division of Gastroenterology & Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Duane Burton
- Division of Gastroenterology & Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Madhusudan Grover
- Division of Gastroenterology & Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Division of Gastroenterology & Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois,Division of Gastroenterology & Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
55
|
Meddens CA, Harakalova M, van den Dungen NAM, Foroughi Asl H, Hijma HJ, Cuppen EPJG, Björkegren JLM, Asselbergs FW, Nieuwenhuis EES, Mokry M. Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease. Genome Biol 2016; 17:247. [PMID: 27903283 PMCID: PMC5131449 DOI: 10.1186/s13059-016-1100-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have revealed many susceptibility loci for complex genetic diseases. For most loci, the causal genes have not been identified. Currently, the identification of candidate genes is predominantly based on genes that localize close to or within identified loci. We have recently shown that 92 of the 163 inflammatory bowel disease (IBD)-loci co-localize with non-coding DNA regulatory elements (DREs). Mutations in DREs can contribute to IBD pathogenesis through dysregulation of gene expression. Consequently, genes that are regulated by these 92 DREs are to be considered as candidate genes. This study uses circular chromosome conformation capture-sequencing (4C-seq) to systematically analyze chromatin-interactions at IBD susceptibility loci that localize to regulatory DNA. RESULTS Using 4C-seq, we identify genomic regions that physically interact with the 92 DRE that were found at IBD susceptibility loci. Since the activity of regulatory elements is cell-type specific, 4C-seq was performed in monocytes, lymphocytes, and intestinal epithelial cells. Altogether, we identified 902 novel IBD candidate genes. These include genes specific for IBD-subtypes and many noteworthy genes including ATG9A and IL10RA. We show that expression of many novel candidate genes is genotype-dependent and that these genes are upregulated during intestinal inflammation in IBD. Furthermore, we identify HNF4α as a potential key upstream regulator of IBD candidate genes. CONCLUSIONS We reveal many novel and relevant IBD candidate genes, pathways, and regulators. Our approach complements classical candidate gene identification, links novel genes to IBD and can be applied to any existing GWAS data.
Collapse
Affiliation(s)
- Claartje A. Meddens
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hassan Foroughi Asl
- Vascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hemme J. Hijma
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Edwin P. J. G. Cuppen
- Department of Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - Johan L. M. Björkegren
- Vascular Biology Unit, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Durrer Center for Cardiogenetic Research, Utrecht, The Netherlands
- Institute of Cardiovascular Science, University College London, London, UK
| | - Edward E. S. Nieuwenhuis
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Huispostnummer KA.03.019.0, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
56
|
Gata4 is critical to maintain gut barrier function and mucosal integrity following epithelial injury. Sci Rep 2016; 6:36776. [PMID: 27827449 PMCID: PMC5101531 DOI: 10.1038/srep36776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022] Open
Abstract
The intestinal epithelial barrier is critical to limit potential harmful consequences from exposure to deleterious luminal contents on the organism. Although this barrier is functionally important along the entire gut, specific regional regulatory mechanisms involved in the maintenance of this barrier are poorly defined. Herein, we identified Gata4 as a crucial regulator of barrier integrity in the mouse proximal intestinal epithelium. Conditional deletion of Gata4 in the intestine led to a drastic increase in claudin-2 expression that was associated with an important increase of gut barrier permeability without causing overt spontaneous inflammation. Administration of indomethacin, a non-steroidal anti-inflammatory drug (NSAID) that causes enteritis, led to rapid and restricted proximal small intestinal injuries in Gata4 mutant mice as opposed to control mice. Comparative analysis of gene transcript profiles from indomethacin-challenged control and Gata4 mutant mice identified defects in epithelial cell survival, inflammatory cell recruitment and tissue repair mechanisms. Altogether, these observations identify Gata4 as a novel crucial regulator of the intestinal epithelial barrier and as a critical epithelial transcription factor implicated in the maintenance of proximal intestinal mucosal integrity after injury.
Collapse
|
57
|
König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ. Human Intestinal Barrier Function in Health and Disease. Clin Transl Gastroenterol 2016; 7:e196. [PMID: 27763627 PMCID: PMC5288588 DOI: 10.1038/ctg.2016.54] [Citation(s) in RCA: 584] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed.
Collapse
Affiliation(s)
- Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jerry Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Tom MacDonald
- Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Annick Mercenier
- Nutrition and Health Research, Nestlé Research Center, Lausanne, Switzerland
| | - Jacqueline Whyte
- European Branch, The International Life Sciences Institute, Brussels, Belgium
| | - Freddy Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert-Jan Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
58
|
Moore BD, Khurana SS, Huh WJ, Mills JC. Hepatocyte nuclear factor 4α is required for cell differentiation and homeostasis in the adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2016; 311:G267-75. [PMID: 27340127 PMCID: PMC5007292 DOI: 10.1152/ajpgi.00195.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
Abstract
We have previously shown that the sequential transcription factors Xbp1→Mist1 (Bhlha15) govern the ultrastructural maturation of the secretory apparatus in enzyme-secreting zymogenic chief cells (ZCs) in the gastric unit. Here we sought to identify transcriptional regulators upstream of X-box binding protein 1 (XBP1) and MIST1. We used immunohistochemistry to characterize Hnf4α(flox/flox) adult mouse stomachs after tamoxifen-induced deletion of Hnf4α We used qRT-PCR, Western blotting, and chromatin immunoprecipitation to define the molecular interaction between hepatocyte nuclear factor 4 alpha (HNF4α) and Xbp1 in mouse stomach and human gastric cells. We show that HNF4α protein is expressed in pit (foveolar) cells, mucous neck cells, and zymogenic chief cells (ZCs) of the corpus gastric unit. Loss of HNF4α in adult mouse stomach led to reduced ZC size and ER content, phenocopying previously characterized effects of Xbp1 deletion. However, HNF4α(Δ/Δ) stomachs also exhibited additional phenotypes including increased proliferation in the isthmal stem cell zone and altered mucous neck cell migration, indicating a role of HNF4α in progenitor cells as well as in ZCs. HNF4α directly occupies the Xbp1 promoter locus in mouse stomach, and forced HNF4α expression increased abundance of XBP1 mRNA in human gastric cancer cells. Finally, as expected, loss of HNF4α caused decreased Xbp1 and Mist1 expression in mouse stomachs. We show that HNF4α regulates homeostatic proliferation in the gastric epithelium and is both necessary and sufficient for the upstream regulation of the Xbp1→Mist1 axis in maintenance of ZC secretory architecture.
Collapse
Affiliation(s)
- Benjamin D. Moore
- 1Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St. Louis, Missouri
| | - Shradha S. Khurana
- 1Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St. Louis, Missouri
| | - Won Jae Huh
- 1Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St. Louis, Missouri
| | - Jason C. Mills
- 1Division of Gastroenterology, Departments of Medicine, Pathology and Immunology, and Developmental Biology, Washington University, St. Louis, Missouri
| |
Collapse
|
59
|
Lili LN, Farkas AE, Gerner-Smidt C, Overgaard CE, Moreno CS, Parkos CA, Capaldo CT, Nusrat A. Claudin-based barrier differentiation in the colonic epithelial crypt niche involves Hopx/Klf4 and Tcf7l2/Hnf4-α cascades. Tissue Barriers 2016; 4:e1214038. [PMID: 27583195 PMCID: PMC4993572 DOI: 10.1080/21688370.2016.1214038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
Colonic enterocytes form a rapidly renewing epithelium and barrier to luminal antigens. During renewal, coordinated expression of the claudin family of genes is vital to maintain the epithelial barrier. Disruption of this process contributes to barrier compromise and mucosal inflammatory diseases. However, little is known about the regulation of this critical aspect of epithelial cell differentiation. In order to identify claudin regulatory factors we utilized high-throughput gene microarrays and correlation analyses. We identified complex expression gradients for the transcription factors Hopx, Hnf4a, Klf4 and Tcf7l2, as well as 12 claudins, during differentiation. In vitro confirmatory methods identified 2 pathways that stimulate claudin expression; Hopx/Klf4 activation of Cldn4, 7 and 15, and Tcf7l2/Hnf4a up-regulation of Cldn23. Chromatin immunoprecipitation confirmed a Tcf7l2/Hnf4a/Claudin23 cascade. Furthermore, Hnf4a conditional knockout mice fail to induce Cldn23 during colonocyte differentiation. In conclusion, we report a comprehensive screen of colonic claudin gene expression and discover spatiotemporal Hopx/Klf4 and Tcf7l2/Hnf4a signaling as stimulators of colonic epithelial barrier differentiation.
Collapse
Affiliation(s)
- Loukia N Lili
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA, USA
| | - Attila E Farkas
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Christian Gerner-Smidt
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA, USA
| | - Charles A Parkos
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Asma Nusrat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
60
|
Farkas AE, Hilgarth RS, Capaldo CT, Gerner-Smidt C, Powell DR, Vertino PM, Koval M, Parkos CA, Nusrat A. HNF4α regulates claudin-7 protein expression during intestinal epithelial differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 26216285 DOI: 10.1016/j.ajpath.2015.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intestinal epithelium is a dynamic barrier that maintains the distinct environments of intestinal tissue and lumen. Epithelial barrier function is defined principally by tight junctions, which, in turn, depend on the regulated expression of claudin family proteins. Claudins are expressed differentially during intestinal epithelial cell (IEC) differentiation. However, regulatory mechanisms governing claudin expression during epithelial differentiation are incompletely understood. We investigated the molecular mechanisms regulating claudin-7 during IEC differentiation. Claudin-7 expression is increased as epithelial cells differentiate along the intestinal crypt-luminal axis. By using model IECs we observed increased claudin-7 mRNA and nascent heteronuclear RNA levels during differentiation. A screen for potential regulators of the CLDN7 gene during IEC differentiation was performed using a transcription factor/DNA binding array, CLDN7 luciferase reporters, and in silico promoter analysis. We identified hepatocyte nuclear factor 4α as a regulatory factor that bound endogenous CLDN7 promoter in differentiating IECs and stimulated CLDN7 promoter activity. These findings support a role of hepatocyte nuclear factor 4α in controlling claudin-7 expression during IEC differentiation.
Collapse
Affiliation(s)
- Attila E Farkas
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Roland S Hilgarth
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher T Capaldo
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Christian Gerner-Smidt
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Doris R Powell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Paula M Vertino
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Michael Koval
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Charles A Parkos
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
61
|
Chellappa K, Deol P, Evans JR, Vuong LM, Chen G, Briançon N, Bolotin E, Lytle C, Nair MG, Sladek FM. Opposing roles of nuclear receptor HNF4α isoforms in colitis and colitis-associated colon cancer. eLife 2016; 5. [PMID: 27166517 PMCID: PMC4907689 DOI: 10.7554/elife.10903] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 05/09/2016] [Indexed: 01/13/2023] Open
Abstract
HNF4α has been implicated in colitis and colon cancer in humans but the role of the different HNF4α isoforms expressed from the two different promoters (P1 and P2) active in the colon is not clear. Here, we show that P1-HNF4α is expressed primarily in the differentiated compartment of the mouse colonic crypt and P2-HNF4α in the proliferative compartment. Exon swap mice that express only P1- or only P2-HNF4α have different colonic gene expression profiles, interacting proteins, cellular migration, ion transport and epithelial barrier function. The mice also exhibit altered susceptibilities to experimental colitis (DSS) and colitis-associated colon cancer (AOM+DSS). When P2-HNF4α-only mice (which have elevated levels of the cytokine resistin-like β, RELMβ, and are extremely sensitive to DSS) are crossed with Retnlb(-/-) mice, they are rescued from mortality. Furthermore, P2-HNF4α binds and preferentially activates the RELMβ promoter. In summary, HNF4α isoforms perform non-redundant functions in the colon under conditions of stress, underscoring the importance of tracking them both in colitis and colon cancer.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
| | - Poonamjot Deol
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
| | - Jane R Evans
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
| | - Linh M Vuong
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
| | - Gang Chen
- Division of Biomedical Sciences, University of California, Riverside, Riverside, United States
| | - Nadege Briançon
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Eugene Bolotin
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
| | - Christian Lytle
- Division of Biomedical Sciences, University of California, Riverside, Riverside, United States
| | - Meera G Nair
- Division of Biomedical Sciences, University of California, Riverside, Riverside, United States
| | - Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, United States
| |
Collapse
|
62
|
Liu CH, Ho BC, Chen CL, Chang YH, Hsu YC, Li YC, Yuan SS, Huang YH, Chang CS, Li KC, Chen HY. ePIANNO: ePIgenomics ANNOtation tool. PLoS One 2016; 11:e0148321. [PMID: 26859295 PMCID: PMC4747527 DOI: 10.1371/journal.pone.0148321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/15/2016] [Indexed: 12/04/2022] Open
Abstract
Recently, with the development of next generation sequencing (NGS), the combination of chromatin immunoprecipitation (ChIP) and NGS, namely ChIP-seq, has become a powerful technique to capture potential genomic binding sites of regulatory factors, histone modifications and chromatin accessible regions. For most researchers, additional information including genomic variations on the TF binding site, allele frequency of variation between different populations, variation associated disease, and other neighbour TF binding sites are essential to generate a proper hypothesis or a meaningful conclusion. Many ChIP-seq datasets had been deposited on the public domain to help researchers make new discoveries. However, researches are often intimidated by the complexity of data structure and largeness of data volume. Such information would be more useful if they could be combined or downloaded with ChIP-seq data. To meet such demands, we built a webtool: ePIgenomic ANNOtation tool (ePIANNO, http://epianno.stat.sinica.edu.tw/index.html). ePIANNO is a web server that combines SNP information of populations (1000 Genomes Project) and gene-disease association information of GWAS (NHGRI) with ChIP-seq (hmChIP, ENCODE, and ROADMAP epigenomics) data. ePIANNO has a user-friendly website interface allowing researchers to explore, navigate, and extract data quickly. We use two examples to demonstrate how users could use functions of ePIANNO webserver to explore useful information about TF related genomic variants. Users could use our query functions to search target regions, transcription factors, or annotations. ePIANNO may help users to generate hypothesis or explore potential biological functions for their studies.
Collapse
Affiliation(s)
- Chia-Hsin Liu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ling Chen
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Huan Huang
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Chi-Sheng Chang
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
63
|
Vuong LM, Chellappa K, Dhahbi JM, Deans JR, Fang B, Bolotin E, Titova NV, Hoverter NP, Spindler SR, Waterman ML, Sladek FM. Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells. Mol Cell Biol 2015; 35:3471-90. [PMID: 26240283 PMCID: PMC4573706 DOI: 10.1128/mcb.00030-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/04/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/β-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/β-catenin/TCF4 and AP-1 pathways.
Collapse
Affiliation(s)
- Linh M Vuong
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| | - Karthikeyani Chellappa
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| | - Joseph M Dhahbi
- Department of Biochemistry, University of California, Riverside, Riverside, California, USA
| | - Jonathan R Deans
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| | - Bin Fang
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| | - Eugene Bolotin
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| | - Nina V Titova
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| | - Nate P Hoverter
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, Riverside, California, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
64
|
Prevention of diabetes-promoted colorectal cancer by (n-3) polyunsaturated fatty acids and (n-3) PUFA mimetic. Oncotarget 2015; 5:9851-63. [PMID: 25375205 PMCID: PMC4259442 DOI: 10.18632/oncotarget.2453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/07/2014] [Indexed: 12/13/2022] Open
Abstract
The global obesity / diabetes epidemic has resulted in robust increase in the incidence of colorectal cancer (CRC). Epidemiological, animal and human studies have indicated efficacy of (n-3) PUFA in chemoprevention of sporadic and genetic-driven CRC. However, diabetes-promoted CRC presents a treatment challenge that surpasses that of sporadic CRC. This report analyzes the efficacy of (n-3) PUFA generated by the fat-1 transgene that encodes an (n-6) to (n-3) PUFA desaturase, and of synthetic (n-3) PUFA mimetic (MEDICA analog), to suppress CRC development in carcinogen-induced diabetes-promoted animal model. Carcinogen-induced CRC is shown here to be promoted by the diabetes context, in terms of increased aberrant crypt foci (ACF) load, cell proliferation and epithelial dedifferentiation, being accompanied by increase in the expression of HNF4α, β-catenin, and β-catenin-responsive genes. Incorporating the fat-1 transgene in the diabetes context, or oral MEDICA treatment, resulted in ameliorating the diabetic phenotype and in abrogating CRC, with decrease in ACF load, cell proliferation and the expression of HNF-4α, β-catenin, and β-catenin-responsive genes. The specificity of (n-3) PUFA in abrogating CRC development, as contrasted with enhancing CRC by (n-6) PUFA, was similarly verified in CRC cell lines. These findings may indicate prospective therapeutic potential of (n-3) PUFA or MEDICA in the management of CRC, in particular diabetes-promoted CRC.
Collapse
|
65
|
Zhang JM, Zhu YB, Li HG, Luan SM, Song CY, Deng X, Chen YX. Protection of Sophocarpine on Colonic Barrier in DSS-induced Acute Colitis in Mice by Increasing Expression of HNF4α. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
66
|
Baraille F, Ayari S, Carrière V, Osinski C, Garbin K, Blondeau B, Guillemain G, Serradas P, Rousset M, Lacasa M, Cardot P, Ribeiro A. Glucose Tolerance Is Improved in Mice Invalidated for the Nuclear Receptor HNF-4γ: A Critical Role for Enteroendocrine Cell Lineage. Diabetes 2015; 64:2744-56. [PMID: 25829452 DOI: 10.2337/db14-0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/21/2015] [Indexed: 11/13/2022]
Abstract
Intestine contributes to energy homeostasis through the absorption, metabolism, and transfer of nutrients to the organism. We demonstrated previously that hepatocyte nuclear receptor-4α (HNF-4α) controls intestinal epithelium homeostasis and intestinal absorption of dietary lipids. HNF-4γ, the other HNF-4 form highly expressed in intestine, is much less studied. In HNF-4γ knockout mice, we detect an exaggerated insulin peak and improvement in glucose tolerance during oral but not intraperitoneal glucose tolerance tests, highlighting the involvement of intestine. Moreover, the enteroendocrine L-type cell lineage is modified, as assessed by the increased expression of transcription factors Isl1, Foxa1/2, and Hnf4a, leading to an increase of both GLP-1-positive cell number and basal and stimulated GLP-1 plasma levels potentiating the glucose-stimulated insulin secretion. Using the GLP-1 antagonist exendin (9-39), we demonstrate a direct effect of GLP-1 on improved glucose tolerance. GLP-1 exerts a trophic effect on pancreatic β-cells, and we report an increase of the β-cell fraction correlated with an augmented number of proliferative islet cells and with resistance to streptozotocin-induced diabetes. In conclusion, the loss of HNF-4γ improves glucose homeostasis through a modulation of the enteroendocrine cell lineage.
Collapse
Affiliation(s)
- Floriane Baraille
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Sami Ayari
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Véronique Carrière
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Céline Osinski
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Bertrand Blondeau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Ghislaine Guillemain
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Patricia Serradas
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France UMR_S 1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Agnès Ribeiro
- Sorbonne Universités, Université Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
67
|
Transcriptional regulators of claudins in epithelial tight junctions. Mediators Inflamm 2015; 2015:219843. [PMID: 25948882 PMCID: PMC4407569 DOI: 10.1155/2015/219843] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023] Open
Abstract
Human gastrointestinal tract is covered by a monolayer of specialized epithelial cells that constitute a protective barrier surface to external toxic and infectious agents along with metabolic and digestive functions. Intercellular junctions, among epithelial cells, such as desmosomes, adherens, gap, and tight junctions (TJs), not only provide mechanical integrity but also limit movement of molecules across the monolayer. TJ is a complex structure composed of approximately 35 different proteins that interact with each other at the apical side of two adjacent epithelial cells. Claudin family proteins are important members of TJ with so far 24 known isoforms in different species. Claudins are structural proteins of TJ that help to control the paracellular movement by forming fence and barrier across the epithelial monolayer. Altered function of claudins is implicated in different form of cancers, inflammatory bowel diseases (IBDs), and leaky diarrhea. Based on their significant role in the molecular architecture of TJ, diversity, and disease association, further understanding about claudin family proteins and their genetic/epigenetic regulators is indispensable.
Collapse
|
68
|
Yao HS, Wang J, Zhang XP, Wang LZ, Wang Y, Li XX, Jin KZ, Hu ZQ, Wang WJ. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma. Mol Carcinog 2015; 55:458-72. [PMID: 25808746 DOI: 10.1002/mc.22294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Hou Shan Yao
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Juan Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xiao Ping Zhang
- Medical Intervention Engineering; Tongji University; North Zhongshan Road; Shanghai China
| | - Liang Zhe Wang
- Department of pathology; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Yi Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xin Xing Li
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Kai Zhou Jin
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Zhi Qian Hu
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Wei Jun Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| |
Collapse
|
69
|
Raine T, Liu JZ, Anderson CA, Parkes M, Kaser A. Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut 2015; 64:250-9. [PMID: 24799394 PMCID: PMC4316924 DOI: 10.1136/gutjnl-2013-306657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/25/2014] [Accepted: 04/06/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified genetic variants within multiple risk loci as predisposing to intestinal inflammatory diseases, including Crohn's disease, ulcerative colitis and coeliac disease. Most risk variants affect regulation of transcription, but a critical challenge is to identify which genes and which cell types these variants affect. We aimed to characterise whole transcriptomes for each common T lymphocyte subset resident within the gut mucosa, and use these to infer biological insights and highlight candidate genes of interest within GWAS risk loci. DESIGN We isolated the four major intestinal T cell populations from pinch biopsies from healthy subjects and generated transcriptomes for each. We computationally integrated these transcriptomes with GWAS data from immune-related diseases. RESULTS Robust, high quality transcriptomic data were generated from 1 ng of RNA from precisely sorted cell subsets. Gene expression patterns clearly differentiated intestinal T cells from counterparts in peripheral blood and revealed distinct signalling pathways for each intestinal T cell subset. Intestinal-specific T cell transcripts were enriched in GWAS risk loci for Crohn's disease, ulcerative colitis and coeliac disease, but also specific extraintestinal immune-mediated diseases, allowing prediction of novel candidate genes. CONCLUSIONS This is the first report of transcriptomes for minimally manipulated intestinal T lymphocyte subsets in humans. We have demonstrated that careful processing of mucosal biopsies allows the generation of transcriptomes from as few as 1000 highly purified cells with minimal interindividual variation. Bioinformatic integration of transcriptomic data with recent GWAS data identified specific candidate genes and cell types for inflammatory pathologies.
Collapse
Affiliation(s)
- Tim Raine
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jimmy Z Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Carl A Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Miles Parkes
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Arthur Kaser
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
70
|
|
71
|
Abstract
Technological advances in the large scale analysis of human genetics have generated profound insights into possible genetic contributions to chronic diseases including the inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis. To date, 163 distinct genetic risk loci have been associated with either Crohn's disease or ulcerative colitis, with a substantial degree of genetic overlap between these 2 conditions. Although many risk variants show a reproducible correlation with disease, individual gene associations only affect a subset of patients, and the functional contribution(s) of these risk variants to the onset of IBD is largely undetermined. Although studies in twins have demonstrated that the development of IBD is not mediated solely by genetic risk, it is nevertheless important to elucidate the functional consequences of risk variants for gene function in relevant cell types known to regulate key physiological processes that are compromised in IBD. This article will discuss IBD candidate genes that are known to be, or are suspected of being, involved in regulating the intestinal epithelial barrier and several of the physiological processes presided over by this dynamic and versatile layer of cells. This will include assembly and regulation of tight junctions, cell adhesion and polarity, mucus and glycoprotein regulation, bacterial sensing, membrane transport, epithelial differentiation, and restitution.
Collapse
|
72
|
Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, Baldassano RN, Noe JD, Rosh J, Markowitz J, Heyman MB, Griffiths AM, Crandall WV, Mack DR, Baker SS, Huttenhower C, Keljo DJ, Hyams JS, Kugathasan S, Walters TD, Aronow B, Xavier RJ, Gevers D, Denson LA. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest 2014; 124:3617-33. [PMID: 25003194 DOI: 10.1172/jci75436] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
Interactions between the host and gut microbial community likely contribute to Crohn disease (CD) pathogenesis; however, direct evidence for these interactions at the onset of disease is lacking. Here, we characterized the global pattern of ileal gene expression and the ileal microbial community in 359 treatment-naive pediatric patients with CD, patients with ulcerative colitis (UC), and control individuals. We identified core gene expression profiles and microbial communities in the affected CD ilea that are preserved in the unaffected ilea of patients with colon-only CD but not present in those with UC or control individuals; therefore, this signature is specific to CD and independent of clinical inflammation. An abnormal increase of antimicrobial dual oxidase (DUOX2) expression was detected in association with an expansion of Proteobacteria in both UC and CD, while expression of lipoprotein APOA1 gene was downregulated and associated with CD-specific alterations in Firmicutes. The increased DUOX2 and decreased APOA1 gene expression signature favored oxidative stress and Th1 polarization and was maximally altered in patients with more severe mucosal injury. A regression model that included APOA1 gene expression and microbial abundance more accurately predicted month 6 steroid-free remission than a model using clinical factors alone. These CD-specific host and microbe profiles identify the ileum as the primary inductive site for all forms of CD and may direct prognostic and therapeutic approaches.
Collapse
|
73
|
Chromatin profiling reveals regulatory network shifts and a protective role for hepatocyte nuclear factor 4α during colitis. Mol Cell Biol 2014; 34:3291-304. [PMID: 24980432 DOI: 10.1128/mcb.00349-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transcriptional regulatory mechanisms likely contribute to the etiology of inflammatory bowel disease (IBD), as genetic variants associated with the disease are disproportionately found at regulatory elements. However, the transcription factors regulating colonic inflammation are unclear. To identify these transcription factors, we mapped epigenomic changes in the colonic epithelium upon inflammation. Epigenetic marks at transcriptional regulatory elements responded dynamically to inflammation and indicated a shift in epithelial transcriptional factor networks. Active enhancer chromatin structure at regulatory regions bound by the transcription factor hepatocyte nuclear factor 4α (HNF4A) was reduced during colitis. In agreement, upon an inflammatory stimulus, HNF4A was downregulated and showed a reduced ability to bind chromatin. Genetic variants that confer a predisposition to IBD map to HNF4A binding sites in the human colon cell line CaCo2, suggesting impaired HNF4A binding could underlie genetic susceptibility to IBD. Despite reduced HNF4A binding during inflammation, a temporal knockout model revealed HNF4A still actively protects against inflammatory phenotypes and promotes immune regulatory gene expression in the inflamed colonic epithelium. These findings highlight the potential for HNF4A agonists as IBD therapeutics.
Collapse
|
74
|
Luissint AC, Nusrat A, Parkos CA. JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol 2014; 36:211-26. [PMID: 24667924 DOI: 10.1007/s00281-014-0421-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include junctional adhesion molecules (JAMs) that belong to the cortical thymocyte marker for Xenopus family of proteins. JAM family encompasses three classical members (JAM-A, JAM-B, and JAM-C) and related molecules including JAM4, JAM-like protein, Coxsackie and adenovirus receptor (CAR), CAR-like membrane protein and endothelial cell-selective adhesion molecule. JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration, and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Epithelial pathobiology and mucosal inflammation research unit, Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, 30306, Atlanta, GA, USA
| | | | | |
Collapse
|
75
|
Babeu JP, Boudreau F. Hepatocyte nuclear factor 4-alpha involvement in liver and intestinal inflammatory networks. World J Gastroenterol 2014; 20:22-30. [PMID: 24415854 PMCID: PMC3886012 DOI: 10.3748/wjg.v20.i1.22] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4A gene are associated with human diseases such as maturity-onset diabetes of the young. Recently, HNF4A has also been described as a susceptibility gene for ulcerative colitis in genome-wide association studies. In addition, specific HNF4A genetic variants have been identified in pediatric cohorts of Crohn’s disease. Results obtained from knockout mice supported that HNF4-α can protect the intestinal mucosae against inflammation. However, the exact molecular links behind HNF4-α and inflammatory bowel diseases remains elusive. In this review, we will summarize the current knowledge about the role of HNF4-α and its isoforms in inflammation. Specific nature of HNF4-α P1 and P2 classes of isoforms will be summarized. HNF4-α role as a hepatocyte mediator for cytokines relays during liver inflammation will be integrated based on documented examples of the literature. Conclusions that can be made from these earlier liver studies will serve as a basis to extrapolate correlations and divergences applicable to intestinal inflammation. Finally, potential functional roles for HNF4-α isoforms in protecting the intestinal mucosae from chronic and pathological inflammation will be presented.
Collapse
|
76
|
Martovetsky G, Tee JB, Nigam SK. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol Pharmacol 2013; 84:808-23. [PMID: 24038112 PMCID: PMC3834141 DOI: 10.1124/mol.113.088229] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/13/2013] [Indexed: 02/03/2023] Open
Abstract
The transcriptional regulation of drug-metabolizing enzymes and transporters (here collectively referred to as DMEs) in the developing proximal tubule (PT) is not well understood. As in the liver, DME regulation in the PT may be mediated through nuclear receptors, which are thought to "sense" deviations from homeostasis by being activated by ligands, some of which are handled by DMEs, including drug transporters. Systems analysis of transcriptomic data during kidney development predicted a set of upstream transcription factors, including hepatocyte nuclear factor 4α (Hnf4a) and Hnf1a, as well as Nr3c1 (Gr), Nfe2l2 (Nrf2), peroxisome proliferator-activated receptor α (Pparα), and Tp53. Motif analysis of cis-regulatory enhancers further suggested that Hnf4a and Hnf1a are the main transcriptional regulators of DMEs in the PT. Available expression data from tissue-specific Hnf4a knockout tissues revealed that distinct subsets of DMEs were regulated by Hnf4a in a tissue-specific manner. Chromatin immunoprecipitation combined with massively parallel DNA sequencing was performed to characterize the PT-specific binding sites of Hnf4a in rat kidneys at three developmental stages (prenatal, immature, adult), which further supported a major role for Hnf4a in regulating PT gene expression, including DMEs. In ex vivo kidney organ culture, an antagonist of Hnf4a (but not a similar inactive compound) led to predicted changes in DME expression, including among others Fmo1, Cyp2d2, Cyp2d4, Nqo2, as well as organic cation transporters and organic anion transporters Slc22a1 (Oct1), Slc22a2 (Oct2), Slc22a6 (Oat1), Slc22a8 (Oat3), and Slc47a1 (Mate1). Conversely, overexpression of Hnf1a and Hnf4a in primary mouse embryonic fibroblasts, sometimes considered a surrogate for mesenchymal stem cells, induced expression of several of these proximal tubule DMEs, as well as epithelial markers and a PT-enriched brush border marker Ggt1. These cells had organic anion transporter function. Taken together, the data strongly supports a critical role for HNF4a and Hnf1a in the tissue-specific regulation of drug handling and differentiation toward a PT-like cellular identity. We discuss our data in the context of the "remote sensing and signaling hypothesis" (Ahn and Nigam, 2009; Wu et al., 2011).
Collapse
Affiliation(s)
- Gleb Martovetsky
- Department of Pediatrics (G.M., S.K.N.), Department of Biomedical Sciences (G.M.), Department of Medicine (S.K.N.), and Department of Cellular and Molecular Medicine (S.K.N.), University of California at San Diego, La Jolla, California; and Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada (J.B.T.)
| | | | | |
Collapse
|
77
|
Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, Stevens C, Alikashani A, Ladouceur M, Ellinghaus D, Törkvist L, Goel G, Lagacé C, Annese V, Bitton A, Begun J, Brant SR, Bresso F, Cho JH, Duerr RH, Halfvarson J, McGovern DPB, Radford-Smith G, Schreiber S, Schumm PL, Sharma Y, Silverberg MS, Weersma RK, Quebec IBD Genetics Consortium, NIDDK IBD Genetics Consortium, International IBD Genetics Consortium, D'Amato M, Vermeire S, Franke A, Lettre G, Xavier RJ, Daly MJ, Rioux JD. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet 2013; 9:e1003723. [PMID: 24068945 PMCID: PMC3772057 DOI: 10.1371/journal.pgen.1003723] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies and follow-up meta-analyses in Crohn's disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (~14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.
Collapse
Affiliation(s)
- Mélissa Beaudoin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Ken Sin Lo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Manuel A. Rivas
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Christine Stevens
- Center for the Study of IBD (CSIBD) Genetics, The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Martin Ladouceur
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Leif Törkvist
- Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Gautam Goel
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Caroline Lagacé
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Vito Annese
- Unit of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Royal Victoria Hospital, Montréal, Québec, Canada
| | - Jakob Begun
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
| | - Steve R. Brant
- Meyerhoff Inflammatory Bowel Diseases Center, Department of Medicine, Johns Hopkins University School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Francesca Bresso
- Department of Medicine of the Karolinska University Hospital, Solna, Sweden
| | - Judy H. Cho
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Richard H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, and Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Jonas Halfvarson
- Department of Internal Medicine, Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Dermot P. B. McGovern
- Cedars-Sinai F.Widjaja Inflammatory Bowel and Immunobiology Research Institute, and Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Graham Radford-Smith
- Inflammatory Bowel Diseases, Genetic and Computational Biology, Queensland Institute of Medical Research, and Department of Gastroenterology, Royal Brisbane and Womens Hospital, and School of Medicine, University of Queensland, Brisbane, Australia
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Philip L. Schumm
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Yashoda Sharma
- Departments of Medicine and Genetics, Yale University, New Haven, Connecticut, United States of America
| | - Mark S. Silverberg
- Mount Sinai Hospital Inflammatory Bowel Disease Centre, University of Toronto, Toronto, Ontario, Canada
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Severine Vermeire
- Division of Gastroenterology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Andre Franke
- Department for General Internal Medicine, Christian-Albrechts-University, Kiel, Germany
| | - Guillaume Lettre
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Rioux
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculté de Médecine, Montréal, Québec, Canada
| |
Collapse
|
78
|
Chen SY, Zhang WX, Zhang GW, Peng J, Zhao XB, Lai SJ. Case-control study and mRNA expression analysis reveal the MyD88 gene is associated with digestive disorders in rabbit. Anim Genet 2013; 44:703-10. [PMID: 23647105 DOI: 10.1111/age.12052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 02/02/2023]
Abstract
As in humans, significant associations between Toll-like receptor 4 (TLR4) and digestive disorders have been identified in rabbit and dog. However, as an essential adaptor downstream of TLR4, the genetic variation of myeloid differentiating factor 88 (MyD88) and its association with digestive disorders have remained unknown. In this study, we detected 10 single nucleotide polymorphisms (SNPs) in the entire genomic region of rabbit MyD88. The genetic variation in susceptibility to digestive disorders for the only coding SNP (synonymous c.699T>C) was studied in Yaan (183 cases and 142 controls) and Chengdu populations (145 cases and 140 controls). A case-control association study revealed that individuals with the C allele had significant protection against digestive disorders in the Yaan population (OR = 0.71; 95% CI, 0.51-0.99; P < 0.05), the Chengdu population (OR = 0.55; 95% CI, 0.39-0.78; P < 0.01) and for joint analysis (OR = 0.62; 95% CI, 0.49-0.79; P < 0.01). We also experimentally induced digestive disorders by feeding a fiber-deficient diet and found that increased susceptibility was significantly associated with higher MyD88 mRNA expression (P < 0.05). The lowest MyD88 mRNA expression was observed in individuals carrying the protective CC genotype. These results suggest that MyD88 is one of the most plausible candidate genes in relation to digestive disorders in rabbit. Further studies are required to explore the biological implications of MyD88 in the pathogenesis of digestive disorders.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | | | | | | | | | | |
Collapse
|
79
|
Ranjha R, Paul J. Micro-RNAs in inflammatory diseases and as a link between inflammation and cancer. Inflamm Res 2013; 62:343-55. [PMID: 23417288 DOI: 10.1007/s00011-013-0600-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The objective of this review is to examine the role of miRNA in various inflammatory diseases and in inflammatory diseases progressing to cancer. INTRODUCTION MicroRNAs are small, conserved, non-coding RNA molecules which are present in most of the eukaryotes. miRNA have been reported to play a major role in the physiological control of gene expression and in the pathogenesis of various diseases. They regulate the gene expression mainly at the post-transcriptional level. miRNA expression profile is reported to be altered in various inflammatory diseases and subsequently affects the expression of genes, which is important in disease pathogenesis. METHODS A Pubmed database search was performed for studies related to miRNA studies in inflammatory disease, cancer and in inflammatory diseases progressing to cancer. CONCLUSION The evidence shows very important role of miRNA in inflammatory diseases. Few miRNAs involved in common inflammatory process and suggest miRNA as a link between inflammation and cancer. Future research should be directed to use miRNA therapeutically to target common inflammatory pathway and to develop miRNA as biomarker to detect development of cancer at early stages.
Collapse
Affiliation(s)
- R Ranjha
- School of Life Sciences, Jawharlal Nehru University, New Delhi, India
| | | |
Collapse
|
80
|
Schulzke JD, Günzel D, John LJ, Fromm M. Perspectives on tight junction research. Ann N Y Acad Sci 2012; 1257:1-19. [PMID: 22671584 DOI: 10.1111/j.1749-6632.2012.06485.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tight junction connects neighboring epithelial or endothelial cells. As a general function, it seals the paracellular pathway and thus prevents back-leakage of just transported solutes and water. However, not all tight junctions are merely tight: some tight junction proteins build their own transport pathways by forming channels selective for small cations, anions, or water. Two families of tight junction proteins have been identified, claudins (27 members in mammals) and tight junction-associated MARVEL proteins ((TAMPs) occludin, tricellulin, and MarvelD3); an additional, structurally different, junction protein is junction adhesion molecule (JAM). Besides classification by genetic or molecular kinship, classification of tight junction proteins has been suggested according to permeability attributes. Recent studies describe specific cis and trans interactions and manifold physiologic regulations of claudins and TAMPs. In many inflammatory and infectious diseases they are found to be altered, for example, causing adversely increased permeability. Currently, attempts are being made to alter the paracellular barrier for therapeutic interventions or for transiently facilitating drug uptake. This overview concludes with a list of open questions and future topics in tight junction research.
Collapse
Affiliation(s)
- Jörg-Dieter Schulzke
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Division of Nutritional Medicine, Charité, Universitätsmedizin Berlin, Germany.
| | | | | | | |
Collapse
|
81
|
Chellappa K, Robertson GR, Sladek FM. HNF4α: a new biomarker in colon cancer? Biomark Med 2012; 6:297-300. [PMID: 22731903 DOI: 10.2217/bmm.12.23] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
82
|
Abstract
Hepatocyte nuclear 4 alpha (HNF4α), involved in glucose and lipid metabolism, has been linked to intestinal inflammation and abnormal mucosal permeability. Moreover, in a genome-wide association study, the HNF4A locus has been associated with ulcerative colitis. The objective of our study was to evaluate the association between HNF4α genetic variants and Crohn's disease (CD) in two distinct Canadian pediatric cohorts. The sequencing of the HNF4A gene in 40 French Canadian patients led to the identification of 27 single nucleotide polymorphism (SNP)s with a minor allele frequency >5%. To assess the impact of these SNPs on disease susceptibility, we first conducted a case-control discovery study on 358 subjects with CD and 542 controls. We then carried out a replication study in a separate cohort of 416 cases and 1208 controls. In the discovery cohort, the genotyping of the identified SNPs revealed that six were significantly associated with CD. Among them, rs1884613 was replicated in the second CD cohort (odds ratio (OR): 1.33; P<0.012) and this association remained significant when both cohorts were combined and after correction for multiple testing (OR: 1.39; P<0.004). An 8-marker P2 promoter haplotype containing rs1884613 was also found associated with CD (P<2.09 × 10(-4) for combined cohorts). This is the first report showing that the HNF4A locus may be a common genetic determinant of childhood-onset CD. These findings highlight the importance of the intestinal epithelium and oxidative protection in the pathogenesis of CD.
Collapse
|
83
|
Grbic DM, Degagné É, Larrivée JF, Bilodeau MS, Vinette V, Arguin G, Stankova J, Gendron FP. P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm Bowel Dis 2012; 18:1456-69. [PMID: 22095787 DOI: 10.1002/ibd.21931] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inflammatory bowel diseases are characterized by the presence of CXCL8 at the site of lesions resulting in neutrophil recruitment and loss of tissue functions. We report that P2Y(6) receptor activation stimulates CXCL8 expression and release by intestinal epithelial cells (IECs). In this context, we investigated if uridine 5'-diphosphate (UDP) enemas stimulate neutrophil recruitment to the mucosa of mice suffering from colitis-like disease and we characterized the signaling events linking P2Y(6) to CXCL8 expression in IEC. METHODS Neutrophil recruitment was monitored by immunofluorescence and FACS analysis. Expression of Cxcl1, a mouse functional homolog of CXCL8, was determined by quantitative real-time polymerase chain reaction (qPCR). Pharmacological inhibitors and interfering RNAs were used to characterize the signaling pathway. The outcomes of these treatments on protein phosphorylation and on CXCL8 expression were characterized by western blots, qPCR, luciferase, and chromatin immunoprecipitation (ChIP) assays. RESULTS Mutation of the AP-1 site in the CXCL8 core promoter abolished the UDP-stimulating effect. The c-fos/c-jun dimer was identified as the AP-1 complex regulating CXCL8 in response to UDP stimulation. Regulation of CXCL8 expression by P2Y(6) required PKCδ activation upstream of the signaling pathway composed of MEK1/2-ERK1/2 and c-fos. UDP administration to mice suffering from colitis-like disease increased the number of neutrophil infiltrating the mucosa, correlating with Cxcl1 increased expression in IEC and the severity of inflammation. CONCLUSIONS This study not only describes the P2Y(6) signaling mechanism regulating CXCL8 expression in IEC, but it also illustrates the potential of targeting P2Y(6) to reduce intestinal inflammation.
Collapse
Affiliation(s)
- Djordje M Grbic
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Gallegos TF, Martovetsky G, Kouznetsova V, Bush KT, Nigam SK. Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule. PLoS One 2012; 7:e40796. [PMID: 22808265 PMCID: PMC3396597 DOI: 10.1371/journal.pone.0040796] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022] Open
Abstract
Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT) and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron) Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons) allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways). Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.
Collapse
Affiliation(s)
- Thomas F. Gallegos
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Gleb Martovetsky
- Department of Biomedical Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Valentina Kouznetsova
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin T. Bush
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California at San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
85
|
Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci 2012; 33:323-30. [PMID: 22609277 PMCID: PMC3368991 DOI: 10.1016/j.tips.2012.03.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
Pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, has a major role in the induction of genes involved in drug transport and metabolism. Recent studies in mice have provided insight into a novel function for PXR in inflammatory bowel disease (IBD). The mechanism of the protective effect of PXR activation on IBD is not fully established, but is due in part to the attenuation of nuclear factor (NF)-κB signaling that results in lower expression of proinflammatory cytokines. Recent clinical trials with the antibiotic rifaximin, a PXR agonist in the gastrointestinal system, have revealed its potential therapeutic value in the treatment of intestinal inflammation in humans. Thus, PXR may be a novel target for IBD therapy.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
86
|
Nnadi SC, Watson R, Innocent J, Gonye GE, Buchberg AM, Siracusa LD. Identification of five novel modifier loci of Apc(Min) harbored in the BXH14 recombinant inbred strain. Carcinogenesis 2012; 33:1589-97. [PMID: 22637734 DOI: 10.1093/carcin/bgs185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc ( Min ) mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc ( Min ) mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc ( Min ) mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc ( Min ) males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene-gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies.
Collapse
Affiliation(s)
- Stephanie C Nnadi
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | | | | | |
Collapse
|
87
|
Overend G, Cabrero P, Guo AX, Sebastian S, Cundall M, Armstrong H, Mertens I, Schoofs L, Dow JAT, Davies SA. The receptor guanylate cyclase Gyc76C and a peptide ligand, NPLP1-VQQ, modulate the innate immune IMD pathway in response to salt stress. Peptides 2012; 34:209-18. [PMID: 21893139 DOI: 10.1016/j.peptides.2011.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 11/16/2022]
Abstract
Receptorguanylate cyclases (rGCs) modulate diverse physiological processes including mammalian cardiovascular function and insect eclosion. The Drosophila genome encodes several receptor and receptor-like GCs, but no ligand for any Drosophila rGC has yet been identified. By screening peptide libraries in Drosophila S2 cells, the Drosophila peptide NPLP1-VQQ (NLGALKSSPVHGVQQ) was shown to be a ligand for the rGC, Gyc76C (CG42636, previously CG8742, l(3)76BDl, DrGC-1). In the adult fly, expression of Gyc76C is highest in immune and stress-sensing epithelial tissues, including Malpighian tubules and midgut; and NPLP1-VQQ stimulates fluid transport and increases cGMP content in tubules. cGMP signaling is known to modulate the activity of the IMD innate immune pathway in tubules via activation and nuclear translocation of the NF-kB orthologue, Relish, resulting in increased anti-microbial peptide (AMP) gene expression; and so NPLP1-VQQ might act in immune/stress responses. Indeed, NPLP1-VQQ induces nuclear translocation of Relish in intact tubules and increases expression of the anti-microbial peptide gene, diptericin. Targeted Gyc76C RNAi to tubule principal cells inhibited both NPLP1-VQQ-induced Relish translocation and diptericin expression. Relish translocation and increased AMP gene expression also occurs in tubules in response to dietary salt stress. Gyc76C also modulates organismal survival to salt stress - ablation of Gyc76C expression in only tubule principal cells prevents Relish translocation, reduces diptericin expression, and reduces organismal survival in response to salt stress. Thus, the principal-cell localized NPLP1-VQQ/Gyc76C cGMP pathway acts to signal environmental (salt) stress to the whole organism.
Collapse
Affiliation(s)
- Gayle Overend
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Algamas-Dimantov A, Davidovsky D, Ben-Ari J, Kang JX, Peri I, Hertz R, Bar-Tana J, Schwartz B. Amelioration of diabesity-induced colorectal ontogenesis by omega-3 fatty acids in mice. J Lipid Res 2012; 53:1056-70. [PMID: 22357704 DOI: 10.1194/jlr.m021949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Postnatal intestinal ontogenesis in an animal model of diabesity may recapitulate morphological and transduction features of diabesity-induced intestinal dysplasia and its amelioration by endogenous (n-3) polyunsaturated fatty acids (PUFA). Proliferation, differentiation, and transduction aspects of intestinal ontogenesis have been studied here in obese, insulin-resistant db/db mice, in fat-1 transgene coding for desaturation of (n-6) PUFA into (n-3) PUFA, in db/db crossed with fat-1 mice, and in control mice. Diabesity resulted in increased colonic proliferation and dedifferentiation of epithelial colonocytes and goblet cells, with increased colonic β-catenin and hepatocyte nuclear factor (HNF)-4α transcriptional activities accompanied by enrichment in HNF-4α-bound (n-6) PUFA. In contrast, in fat-1 mice, colonic proliferation was restrained, accompanied by differentiation of crypt stem cells into epithelial colonocytes and goblet cells and by decrease in colonic β-catenin and HNF-4α transcriptional activities, with concomitant enrichment in HNF-4α-bound (n-3) PUFA at the expense of (n-6) PUFA. Colonic proliferation and differentiation, the profile of β-catenin and HNF-4α-responsive genes, and the composition of HNF-4α-bound PUFA of db/db mice reverted to wild-type by introducing the fat-1 gene into the db/db context. Suppression of intestinal HNF-4α activity by (n-3) PUFA may ameliorate diabesity-induced intestinal ontogenesis and offer an effective preventive modality for colorectal cancer.
Collapse
Affiliation(s)
- Anna Algamas-Dimantov
- Institute of Biochemistry, Food Science, and Nutrition and Interdepartmental Equipment Facility, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Prevention of chronic experimental colitis induced by dextran sulphate sodium (DSS) in mice treated with FR91. J Biomed Biotechnol 2012; 2012:826178. [PMID: 22619498 PMCID: PMC3348609 DOI: 10.1155/2012/826178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/16/2011] [Accepted: 10/20/2011] [Indexed: 12/27/2022] Open
Abstract
One of the main treatments currently used in humans to fight cancer is chemotherapy. A huge number of compounds with antitumor activity are present in nature, and many of their derivatives are produced by microorganisms. However, the search for new drugs still represents a main objective for cancer therapy, due to drug toxicity and resistance to multiple chemotherapeutic drugs. In animal models, a short-time oral administration of dextran sulfate sodium (DSS) induces colitis, which exhibits several clinical and histological features similar to ulcerative colitis (UC). However, the pathogenic factors responsible for DSS-induced colitis and the subsequent colon cancer also remain unclear. We investigated the effect of FR91, a standardized lysate of microbial cells belonging to the Bacillus genus which has been previously shown to have significant immunomodulatory effects, against intestinal inflammation. Colitis was induced in mice during 5 weeks by oral administration 2% (DSS). Morphological changes in the colonic mucosa were evaluated by hematoxylin-eosin staining and immunohistochemistry methods. Adenocarcinoma and cryptal cells of the dysplastic epithelium showed cathenin-β, MLH1, APC, and p53 expression, together with increased production of IFN-γ. In our model, the optimal dose response was the 20% FR91 concentration, where no histological alterations or mild DSS-induced lesions were observed. These results indicate that FR91 may act as a chemopreventive agent against inflammation in mice DSS-induced colitis.
Collapse
|
90
|
Coskun M, Olsen AK, Holm TL, Kvist PH, Nielsen OH, Riis LB, Olsen J, Troelsen JT. TNF-α-induced down-regulation of CDX2 suppresses MEP1A expression in colitis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:843-51. [PMID: 22326557 DOI: 10.1016/j.bbadis.2012.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS High levels of pro-inflammatory cytokines are linked to inflammatory bowel disease (IBD). The transcription factor Caudal-related homeobox transcription factor 2 (CDX2) plays a crucial role in differentiation of intestinal epithelium and regulates IBD-susceptibility genes, including meprin 1A (MEP1A). The aim was to investigate the expression of CDX2 and MEP1A in colitis; to assess if they are regulated by tumor necrosis factor-α (TNF-α), and finally to reveal if CDX2 is involved in a TNF-α-induced down-regulation of MEP1A. METHODS Expression of CDX2 and MEP1A was investigated in colonic biopsies of ulcerative colitis (UC) patients and in dextran sodium sulfate (DSS)-induced colitis. CDX2 protein expression was investigated by immunoblotting and immunohistochemical procedures. CDX2 and MEP1A regulation was examined in TNF-α-treated Caco-2 cells by reverse transcription-polymerase chain reaction and with reporter gene assays, and the effect of anti-TNF-α treatment was assessed using infliximab. Finally, in vivo CDX2-DNA interactions were investigated by chromatin immunoprecipitation. RESULTS The CDX2 and MEP1A mRNA expression was significantly decreased in active UC patients and in DSS-colitis. Colonic biopsy specimens from active UC showed markedly decreased CDX2 staining. TNF-α treatment diminished the CDX2 and MEP1A mRNA levels, a decrease which, was counteracted by infliximab treatment. Reporter gene assays showed significantly reduced CDX2 and MEP1A activity upon TNF-α stimulation. Finally, TNF-α impaired the ability of CDX2 to interact and activate its own, as well as the MEP1A expression. CONCLUSIONS The present results indicate that a TNF-α-mediated down-regulation of CDX2 can be related to suppressed expression of MEP1A during intestinal inflammation.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Src tyrosine kinase phosphorylation of nuclear receptor HNF4α correlates with isoform-specific loss of HNF4α in human colon cancer. Proc Natl Acad Sci U S A 2012; 109:2302-7. [PMID: 22308320 DOI: 10.1073/pnas.1106799109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Src tyrosine kinase has long been implicated in colon cancer but much remains to be learned about its substrates. The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) has just recently been implicated in colon cancer but its role is poorly defined. Here we show that c-Src phosphorylates human HNF4α on three tyrosines in an interdependent and isoform-specific fashion. The initial phosphorylation site is a Tyr residue (Y14) present in the N-terminal A/B domain of P1- but not P2-driven HNF4α. Phospho-Y14 interacts with the Src SH2 domain, leading to the phosphorylation of two additional tyrosines in the ligand binding domain (LBD) in P1-HNF4α. Phosphomimetic mutants in the LBD decrease P1-HNF4α protein stability, nuclear localization and transactivation function. Immunohistochemical analysis of approximately 450 human colon cancer specimens (Stage III) reveals that P1-HNF4α is either lost or localized in the cytoplasm in approximately 80% of tumors, and that staining for active Src correlates with those events in a subset of samples. Finally, three SNPs in the human HNF4α protein, two of which are in the HNF4α F domain that interacts with the Src SH3 domain, increase phosphorylation by Src and decrease HNF4α protein stability and function, suggesting that individuals with those variants may be more susceptible to Src-mediated effects. This newly identified interaction between Src kinase and HNF4α has important implications for colon and other cancers.
Collapse
|
92
|
Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol 2012; 590:1035-44. [PMID: 22219336 DOI: 10.1113/jphysiol.2011.224568] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intestinal barrier dysfunction is a main feature of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Leak flux diarrhoea and a facilitated uptake of noxious antigens are the two consequences resulting from an impaired epithelial barrier. Barrier perturbations in IBD comprise alterations in epithelial tight junctions (TJ), i.e. a reduced number of horizontal TJ strands and an altered TJ protein expression and subcellular distribution. Moreover, increased incidence of apoptotic events as well as erosions and ulcerations can add to that leakiness. These barrier defects are attributed to enhanced activity of pro-inflammatory cytokines like TNFα, INFγ, IL-1β and IL-13, which are highly expressed in the chronically inflamed intestine. Although the aetiology of IBD is far from being clear, chronic inflammation is believed to result from an inadequate immune response as a consequence of genetic predisposition as well as changes in, and altered responses to, the intestinal microbiota. On the other hand, an insufficient mucosal response to bacterial stimuli results in an insufficient immune response towards intestinal pathogens. However, detailed characterization of barrier defects offers the opportunity to consider and test therapeutic interventions. Beside cytokine antagonists, different plant compounds and probiotics have been shown to stabilize the barrier function by affecting TJ protein expression and distribution.
Collapse
Affiliation(s)
- Nina A Hering
- Department of Gastroenterology, Division of Nutritional Medicine, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | |
Collapse
|
93
|
Nuclear receptor HNF4α binding sequences are widespread in Alu repeats. BMC Genomics 2011; 12:560. [PMID: 22085832 PMCID: PMC3252374 DOI: 10.1186/1471-2164-12-560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 11/15/2011] [Indexed: 12/04/2022] Open
Abstract
Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.
Collapse
|
94
|
van Sommeren S, Visschedijk MC, Festen EAM, de Jong DJ, Ponsioen CY, Wijmenga C, Weersma RK. HNF4α and CDH1 are associated with ulcerative colitis in a Dutch cohort. Inflamm Bowel Dis 2011; 17:1714-8. [PMID: 21744425 DOI: 10.1002/ibd.21541] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/26/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs), consisting of ulcerative colitis (UC) and Crohn's disease (CD), are complex disorders with multiple genes contributing to disease pathogenesis. A recent genome-wide association scan identified three novel susceptibility loci for UC: HNF4α, CDH1, and LAMB1. We performed an analysis of these three loci in an independent cohort. METHODS In all, 821 UC patients and 1260 healthy controls of central European Caucasian descent were genotyped for single nucleotide polymorphisms (SNPs): rs6017342 (HNF4α), rs1728785 (CDH1), and rs6949033 (LAMB1). Differences in allele and genotype distribution in cases and controls were tested for significance with the χ² test. RESULTS Allelic association analysis showed that SNP rs6017342 in the HNF4α locus was strongly associated with UC (P = 1,04 × 10(-11) , odds ratio [OR] = 1.56, 95% confidence interval [CI] = 1.37-1.77) and SNP rs1728785 (CDH1) was associated with P = 0.01 (OR = 1.23, 95% CI = 1.05-1.44). SNP rs6949033 in LAMB1 was not associated in our cohort (P = 0.12, OR = 1.11, 95% CI = 0.97-1.26). We found an association for SNP rs6949033 (LAMB1) for disease limited to the rectum (P = 0.02). However, this association was lost after correcting for multiple testing. No further specific subphenotype associations were identified. CONCLUSIONS This is the first independent study to replicate the HNF4α and CDH1 loci as susceptibility loci for UC. The main candidate genes in these risk loci play important roles in the maintenance of the integrity of the epithelial barrier, highlighting the importance of the mucosal barrier function for UC pathogenesis.
Collapse
|
95
|
Solanas G, Batlle E. Control of cell adhesion and compartmentalization in the intestinal epithelium. Exp Cell Res 2011; 317:2695-701. [PMID: 21820431 DOI: 10.1016/j.yexcr.2011.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/18/2023]
Abstract
Continuous cell renewal in the intestinal mucosa occurs without disrupting the integrity of the epithelial layer. Despite the restrictions imposed by strong cell-to-cell adhesions, epithelial intestinal cells migrate constantly between tissue compartments. Alterations in cell adhesion and compartmentalization play key roles in diseases of the intestine. In particular, decreased E-cadherin-mediated adhesion during inflammatory bowel disease and loss of EphB/ephrin-B-mediated compartmentalization in colorectal cancer have recently emerged as key players of these prevalent pathologies. Here we will review our current knowledge on how cell-to-cell adhesion, migration and cell positioning are coordinated in the intestinal epithelium. We will highlight what the in vivo genetic analysis of intestinal epithelium has taught us about the complex regulation of cell adhesion and migration in homeostasis and disease.
Collapse
Affiliation(s)
- Guiomar Solanas
- Oncology Program, Institute for Research in Biomedicine, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | |
Collapse
|
96
|
Khor B, Gardet A, Xavier RJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [PMID: 21677747 DOI: 10.1038/nature] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host-commensal relationship.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Recent advances have provided substantial insight into the maintenance of mucosal immunity and the pathogenesis of inflammatory bowel disease. Cellular programs responsible for intestinal homeostasis use diverse intracellular and intercellular networks to promote immune tolerance, inflammation or epithelial restitution. Complex interfaces integrate local host and microbial signals to activate appropriate effector programs selectively and even drive plasticity between these programs. In addition, genetic studies and mouse models have emphasized the role of genetic predispositions and how they affect interactions with microbial and environmental factors, leading to pro-colitogenic perturbations of the host-commensal relationship.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
98
|
Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
99
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
100
|
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011. [DOI: 10.1038/nature10209 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|