51
|
Kartalou GI, Salgueiro-Pereira AR, Endres T, Lesnikova A, Casarotto P, Pousinha P, Delanoe K, Edelmann E, Castrén E, Gottmann K, Marie H, Lessmann V. Anti-Inflammatory Treatment with FTY720 Starting after Onset of Symptoms Reverses Synaptic Deficits in an AD Mouse Model. Int J Mol Sci 2020; 21:ijms21238957. [PMID: 33255764 PMCID: PMC7734581 DOI: 10.3390/ijms21238957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
Therapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals long before onset of disease symptoms, while a pharmacological treatment that can reverse synaptic and memory deficits in AD mice was thus far not identified. Repurposing food and drug administration (FDA)-approved drugs for treatment of AD is a promising way to reduce the time to bring such medication into clinical practice. The sphingosine-1 phosphate analog fingolimod (FTY720) was approved recently for treatment of multiple sclerosis patients. Here, we addressed whether fingolimod rescues AD-related synaptic deficits and memory dysfunction in an amyloid precursor protein/presenilin-1 (APP/PS1) AD mouse model when medication starts after onset of symptoms (at five months). Male mice received intraperitoneal injections of fingolimod for one to two months starting at five to six months. This treatment rescued spine density as well as long-term potentiation in hippocampal cornu ammonis-1 (CA1) pyramidal neurons, that were both impaired in untreated APP/PS1 animals at six to seven months of age. Immunohistochemical analysis with markers of microgliosis (ionized calcium-binding adapter molecule 1; Iba1) and astrogliosis (glial fibrillary acid protein; GFAP) revealed that our fingolimod treatment regime strongly down regulated neuroinflammation in the hippocampus and neocortex of this AD model. These effects were accompanied by a moderate reduction of Aβ accumulation in hippocampus and neocortex. Our results suggest that fingolimod, when applied after onset of disease symptoms in an APP/PS1 mouse model, rescues synaptic pathology that is believed to underlie memory deficits in AD mice, and that this beneficial effect is mediated via anti-neuroinflammatory actions of the drug on microglia and astrocytes.
Collapse
Affiliation(s)
- Georgia-Ioanna Kartalou
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (G.-I.K.); (T.E.); (E.E.)
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Ana Rita Salgueiro-Pereira
- Université Côte d’Azur, CNRS, IPMC, UMR7275, 06560 Valbonne, France; (A.R.S.-P.); (P.P.); (K.D.); (H.M.)
| | - Thomas Endres
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (G.-I.K.); (T.E.); (E.E.)
| | - Angelina Lesnikova
- Neuroscience Center, HiLIFE, University of Helsinki, 00290 Helsinki, Finland; (A.L.); (P.C.); (E.C.)
| | - Plinio Casarotto
- Neuroscience Center, HiLIFE, University of Helsinki, 00290 Helsinki, Finland; (A.L.); (P.C.); (E.C.)
| | - Paula Pousinha
- Université Côte d’Azur, CNRS, IPMC, UMR7275, 06560 Valbonne, France; (A.R.S.-P.); (P.P.); (K.D.); (H.M.)
| | - Kevin Delanoe
- Université Côte d’Azur, CNRS, IPMC, UMR7275, 06560 Valbonne, France; (A.R.S.-P.); (P.P.); (K.D.); (H.M.)
| | - Elke Edelmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (G.-I.K.); (T.E.); (E.E.)
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, 00290 Helsinki, Finland; (A.L.); (P.C.); (E.C.)
| | - Kurt Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
- Correspondence: (K.G.); (V.L.)
| | - Hélène Marie
- Université Côte d’Azur, CNRS, IPMC, UMR7275, 06560 Valbonne, France; (A.R.S.-P.); (P.P.); (K.D.); (H.M.)
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (G.-I.K.); (T.E.); (E.E.)
- Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
- Correspondence: (K.G.); (V.L.)
| |
Collapse
|
52
|
O'Connor M, Shentu YP, Wang G, Hu WT, Xu ZD, Wang XC, Liu R, Man HY. Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer's Disease. iScience 2020; 23:101465. [PMID: 32861999 PMCID: PMC7476873 DOI: 10.1016/j.isci.2020.101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/21/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
In Alzheimer's disease (AD), decreases in the amount and synaptic localization of AMPA receptors (AMPARs) result in weakened synaptic activity and dysfunction in synaptic plasticity, leading to impairments in cognitive functions. We have previously found that AMPARs are subject to lysine acetylation, resulting in higher AMPAR stability and protein accumulation. Here we report that AMPAR acetylation was significantly reduced in AD and neurons with Aβ incubation. We identified p300 as the acetyltransferase responsible for AMPAR acetylation and found that enhancing GluA1 acetylation ameliorated Aβ-induced reductions in total and cell-surface AMPARs. Importantly, expression of acetylation mimetic GluA1 (GluA1-4KQ) in APP/PS1 mice rescued impairments in synaptic plasticity and memory. These findings indicate that Aβ-induced reduction in AMPAR acetylation and stability contributes to synaptopathy and memory deficiency in AD, suggesting that AMPAR acetylation may be an effective molecular target for AD therapeutics.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Yang-Ping Shentu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guan Wang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Wen-Ting Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen-Dong Xu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 72 East Concord St., L-603, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA, USA
| |
Collapse
|
53
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
54
|
Kumar V, Lee JD, Coulson EJ, Woodruff TM. A validated quantitative method for the assessment of neuroprotective barrier impairment in neurodegenerative disease models. J Neurochem 2020; 158:807-817. [PMID: 32628780 DOI: 10.1111/jnc.15119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) are highly specialized structures that limit molecule entry from the blood and maintain homeostasis within the central nervous system (CNS). BBB and BSCB breakdown are associated with multiple neurodegenerative diseases. Given the key role of neuroprotective barrier impairment in neurodegeneration, it is important to identify an effective quantitative method to assess barrier integrity in animal models. In this study, we developed and validated a quantitative method for assessing BBB and BSCB integrity using sodium fluorescein, a compound that outperformed other fluorescent dyes. We demonstrated using this method that multiple CNS regions progressively increase in permeability in models of Huntington's disease and amyotrophic lateral sclerosis, whereas biphasic disruption occurred in a mouse model of Alzheimer's disease with disease progression. Collectively, we report a quantitative fluorometric marker with validated reproducible experimental methods that allows the effective assessment of BBB and BSCB integrity in animal models. This method could be useful to further the understanding of the contribution of these neuroprotective barriers to neurodegeneration processes.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Qld, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Qld, Australia
| |
Collapse
|
55
|
Kiss E, Groeneweg F, Gorgas K, Schlicksupp A, Kins S, Kirsch J, Kuhse J. Amyloid-β Fosters p35/CDK5 Signaling Contributing to Changes of Inhibitory Synapses in Early Stages of Cerebral Amyloidosis. J Alzheimers Dis 2020; 74:1167-1187. [DOI: 10.3233/jad-190976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- Department of Cellular and Molecular Biology, “Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
56
|
Jin L, Pan Y, Tran NLL, Polychronopoulos LN, Warrier A, Brouwer KLR, Nicolazzo JA. Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer's Disease. Mol Pharm 2020; 17:1527-1537. [PMID: 32212738 DOI: 10.1021/acs.molpharmaceut.9b01227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Compared with the significant number of studies reporting altered abundance and function of drug transporters at the blood-brain barrier (BBB) in Alzheimer's disease (AD), the impact of AD on the abundance of intestinal drug transporters and the subsequent effects on oral drug absorption have received little attention. We have reported the altered abundance of some small intestinal drug transporters in a familial mouse model of AD; however, whether this leads to altered oral drug absorption is unknown. The current study examined plasma concentrations of caffeine and diazepam (markers for transcellular passive transport), digoxin (P-glycoprotein substrate), and valsartan (multidrug resistance-associated protein 2 substrate) following oral administration to 8-10 month old female wild-type (WT) and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a commonly used mouse model of familial AD. The plasma exposure of valsartan and digoxin was significantly (p < 0.05) lower in APP/PS1 animals compared with WT mice, whereas the plasma concentrations of the passive transcellular markers caffeine and diazepam did not significantly differ between the two genotypes. To assess whether the reduced oral absorption of valsartan and digoxin was due to decreased intestinal transport, the ex vivo transport of the previously mentioned drugs and mannitol (a marker of paracellular transport) across the jejunum of WT and APP/PS1 mice was assessed over 120 min. In line with the in vivo absorption studies, the permeability of caffeine and diazepam did not significantly differ between WT and APP/PS1 mice. The permeability of 3H-digoxin through the APP/PS1 mouse jejunum was lower than that measured through the WT jejunum; the average amount (relative to dose applied) permeating the tissue over 120 min was 0.22 ± 0.11% (mean ± SD) for the APP/PS1 jejunum and 0.85 ± 0.3% for the WT jejunum. A 1.9-fold reduction in the average amount of valsartan permeating the jejunum of APP/PS1 mice relative to that of WT mice was also detected. Although no apparent morphological alterations were observed in the jejunal tissue of APP/PS1 mice, the permeability of 14C-mannitol across the jejunum from APP/PS1 mice was lower than that across the WT jejunum (Papp= 10.7 ± 3.7 × 10-6 and 6.0 ± 3.4 × 10-6 cm/s, respectively), suggesting tightened paracellular junctions in APP/PS1 mice. These studies are the first to demonstrate, in APP/PS1 mice, reduced intestinal permeability and the absorption of drugs commonly prescribed to people with AD for their comorbidities. If these findings translate to people with AD, then modified dosing regimens may be necessary for selected drugs to ensure that their plasma concentrations remain in the effective range.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie Lan Linh Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Leon N Polychronopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Aparna Warrier
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
57
|
Vyas Y, Montgomery JM, Cheyne JE. Hippocampal Deficits in Amyloid-β-Related Rodent Models of Alzheimer's Disease. Front Neurosci 2020; 14:266. [PMID: 32317913 PMCID: PMC7154147 DOI: 10.3389/fnins.2020.00266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia. Symptoms of AD include memory loss, disorientation, mood and behavior changes, confusion, unfounded suspicions, and eventually, difficulty speaking, swallowing, and walking. These symptoms are caused by neuronal degeneration and cell loss that begins in the hippocampus, and later in disease progression spreading to the rest of the brain. While there are some medications that alleviate initial symptoms, there are currently no treatments that stop disease progression. Hippocampal deficits in amyloid-β-related rodent models of AD have revealed synaptic, behavioral and circuit-level defects. These changes in synaptic function, plasticity, neuronal excitability, brain connectivity, and excitation/inhibition imbalance all have profound effects on circuit function, which in turn could exacerbate disease progression. Despite, the wealth of studies on AD pathology we don't yet have a complete understanding of hippocampal deficits in AD. With the increasing development of in vivo recording techniques in awake and freely moving animals, future studies will extend our current knowledge of the mechanisms underpinning how hippocampal function is altered in AD, and aid in progression of treatment strategies that prevent and/or delay AD symptoms.
Collapse
Affiliation(s)
| | - Johanna M. Montgomery
- Department of Physiology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E. Cheyne
- Department of Physiology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
58
|
Yan ML, Zhang S, Zhao HM, Xia SN, Jin Z, Xu Y, Yang L, Qu Y, Huang SY, Duan MJ, Mao M, An XB, Mishra C, Zhang XY, Sun LH, Ai J. MicroRNA-153 impairs presynaptic plasticity by blocking vesicle release following chronic brain hypoperfusion. Cell Commun Signal 2020; 18:57. [PMID: 32252776 PMCID: PMC7137307 DOI: 10.1186/s12964-020-00551-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic brain hypoperfusion (CBH) is closely related to Alzheimer’s disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. Methods In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1–43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). Results Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1–43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2′-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3′ untranslated region (3’UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. Conclusions Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3’UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mei-Ling Yan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Shuai Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Hong-Mei Zhao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Sheng-Nan Xia
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Zhuo Jin
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yi Xu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Lin Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Yang Qu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Si-Yu Huang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Ming-Jing Duan
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Meng Mao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xiao-Bin An
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Chandan Mishra
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Xin-Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Li-Hua Sun
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jing Ai
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
59
|
Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by suppressing MAPK signaling. J Neuroinflammation 2020; 17:61. [PMID: 32066466 PMCID: PMC7027354 DOI: 10.1186/s12974-020-01744-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a major clinical problem, but there is a distinct lack of effective therapeutic drugs for this disease. We investigated the potential therapeutic effects of zerumbone, a subtropical ginger sesquiterpene, in transgenic APP/PS1 mice, rodent models of AD which exhibit cerebral amyloidosis and neuroinflammation. Methods The N9 microglial cell line and primary microglial cells were cultured to investigate the effects of zerumbone on microglia. APP/PS1 mice were treated with zerumbone, and non-cognitive and cognitive behavioral impairments were assessed and compared between the treatment and control groups. The animals were then sacrificed, and tissues were collected for further analysis. The potential therapeutic mechanism of zerumbone and the signaling pathways involved were also investigated by RT-PCR, western blot, nitric oxide detection, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and flow cytometry analysis. Results Zerumbone suppressed the expression of pro-inflammatory cytokines and induced a switch in microglial phenotype from the classic inflammatory phenotype to the alternative anti-inflammatory phenotype by inhibiting the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B signaling pathway in vitro. After a treatment period of 20 days, zerumbone significantly ameliorated deficits in both non-cognitive and cognitive behaviors in transgenic APP/PS1 mice. Zerumbone significantly reduced β-amyloid deposition and attenuated pro-inflammatory microglial activation in the cortex and hippocampus. Interestingly, zerumbone significantly increased the proportion of anti-inflammatory microglia among all activated microglia, potentially contributing to reduced β-amyloid deposition by enhancing phagocytosis. Meanwhile, zerumbone also reduced the expression of key molecules of the MAPK pathway, such as p38 and extracellular signal-regulated kinase. Conclusions Overall, zerumbone effectively ameliorated behavioral impairments, attenuated neuroinflammation, and reduced β-amyloid deposition in transgenic APP/PS1 mice. Zerumbone exhibited substantial anti-inflammatory activity in microglial cells and induced a phenotypic switch in microglia from the pro-inflammatory phenotype to the anti-inflammatory phenotype by inhibiting the MAPK signaling pathway, which may play an important role in its neuroprotective effects. Our results suggest that zerumbone is a potential therapeutic agent for human neuroinflammatory and neurodegenerative diseases, in particular AD.
Collapse
|
60
|
Dominguez S, Rodriguez G, Fazelinia H, Ding H, Spruce L, Seeholzer SH, Dong H. Sex Differences in the Phosphoproteomic Profiles of APP/PS1 Mice after Chronic Unpredictable Mild Stress. J Alzheimers Dis 2020; 74:1131-1142. [PMID: 32144982 PMCID: PMC9843707 DOI: 10.3233/jad-191009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Approximately two-thirds of those suffering with Alzheimer's disease (AD) are women, however, the biological mechanisms underlying this sex divergence of AD prevalence remain unknown. Previous research has shown sex-specific biochemical differences that bias female mice toward pro-AD signaling on the phosphoproteomic level via corticotropin releasing factor (CRF) receptor 1 activation after CRF overexpression. Here we aimed to determine if chronic stress would induce a similar response in AD mouse models. We stressed 4-month-old APP/PS1 mice using a chronic unpredictable mild stress (CUMS) paradigm for up to 1 month. Following CUMS and behavioral assessments, we quantified whole protein and phosphoprotein levels in the cortex of stressed and non-stressed APP/PS1 mice using mass spectrometry-based proteomics. While there were no statistically significant differences at the total protein and peptide abundance levels, we found 909 and 841 statistically significant phosphopeptides between stressed and unstressed females and males, respectively, using a false discovery rate of 5%. Of these significant phosphopeptides, only 301 were the same in males and females. These results indicate that while both males and females undergo protein phosphorylation changes following stress, the peptides that are phosphorylated differ between sexes. We then used Metacore analysis to determine which biological pathways were affected. We found that several pathways were changed differently between male and female mice including NMDA receptor trafficking, cytoskeleton organization, and tau pathology. The differing biological pathways affected between males and females in response to chronic stress may help us to better understand why women are at a higher risk of AD.
Collapse
Affiliation(s)
- Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hossein Fazelinia
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hua Ding
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn Spruce
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven H. Seeholzer
- Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Correspondence to: Hongxin Dong, MD, PhD, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
61
|
Faldini E, Ahmed T, Bueé L, Blum D, Balschun D. Tau- but not Aß -pathology enhances NMDAR-dependent depotentiation in AD-mouse models. Acta Neuropathol Commun 2019; 7:202. [PMID: 31815648 PMCID: PMC6902514 DOI: 10.1186/s40478-019-0813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/22/2019] [Indexed: 11/10/2022] Open
Abstract
Many mouse models of Alzheimer's disease (AD) exhibit impairments in hippocampal long-term-potentiation (LTP), seemingly corroborating the strong correlation between synaptic loss and cognitive decline reported in human studies. In other AD mouse models LTP is unaffected, but other defects in synaptic plasticity may still be present. We recently reported that THY-Tau22 transgenic mice, that overexpress human Tau protein carrying P301S and G272 V mutations and show normal LTP upon high-frequency-stimulation (HFS), develop severe changes in NMDAR mediated long-term-depression (LTD), the physiological counterpart of LTP. In the present study, we focused on putative effects of AD-related pathologies on depotentiation (DP), another form of synaptic plasticity. Using a novel protocol to induce DP in the CA1-region, we found in 11-15 months old male THY-Tau22 and APPPS1-21 transgenic mice that DP was not deteriorated by Aß pathology while significantly compromised by Tau pathology. Our findings advocate DP as a complementary form of synaptic plasticity that may help in elucidating synaptic pathomechanisms associated with different types of dementia.
Collapse
|
62
|
Cox LM, Schafer MJ, Sohn J, Vincentini J, Weiner HL, Ginsberg SD, Blaser MJ. Calorie restriction slows age-related microbiota changes in an Alzheimer's disease model in female mice. Sci Rep 2019; 9:17904. [PMID: 31784610 PMCID: PMC6884494 DOI: 10.1038/s41598-019-54187-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) affects an estimated 5.8 million Americans, and advanced age is the greatest risk factor. AD patients have altered intestinal microbiota. Accordingly, depleting intestinal microbiota in AD animal models reduces amyloid-beta (Aβ) plaque deposition. Age-related changes in the microbiota contribute to immunologic and physiologic decline. Translationally relevant dietary manipulations may be an effective approach to slow microbiota changes during aging. We previously showed that calorie restriction (CR) reduced brain Aβ deposition in the well-established Tg2576 mouse model of AD. Presently, we investigated whether CR alters the microbiome during aging. We found that female Tg2576 mice have more substantial age-related microbiome changes compared to wildtype (WT) mice, including an increase in Bacteroides, which were normalized by CR. Specific gut microbiota changes were linked to Aβ levels, with greater effects in females than in males. In the gut, Tg2576 female mice had an enhanced intestinal inflammatory transcriptional profile, which was reversed by CR. Furthermore, we demonstrate that Bacteroides colonization exacerbates Aβ deposition, which may be a mechanism whereby the gut impacts AD pathogenesis. These results suggest that long-term CR may alter the gut environment and prevent the expansion of microbes that contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA.
| | - Marissa J Schafer
- Cellular and Molecular Biology Training Program, NYU Langone Medical Center, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, US
| | - Jiho Sohn
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Julia Vincentini
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen D Ginsberg
- Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Martin J Blaser
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
63
|
Joseph DJ, Liu C, Peng J, Liang G, Wei H. Isoflurane mediated neuropathological and cognitive impairments in the triple transgenic Alzheimer's mouse model are associated with hippocampal synaptic deficits in an age-dependent manner. PLoS One 2019; 14:e0223509. [PMID: 31600350 PMCID: PMC6786564 DOI: 10.1371/journal.pone.0223509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022] Open
Abstract
Many in vivo studies suggest that inhalational anesthetics can accelerate or prevent the progression of neuropathology and cognitive impairments in Alzheimer Disease (AD), but the synaptic mechanisms mediating these ambiguous effects are unclear. Here, we show that repeated exposures of neonatal and old triple transgenic AD (3xTg) and non-transgenic (NonTg) mice to isoflurane (Iso) distinctly increased neurodegeneration as measured by S100β levels, intracellular Aβ, Tau oligomerization, and apoptotic markers. Spatial cognition measured by reference and working memory testing in the Morris Water Maze (MWM) were altered in young NonTg and 3xTg. Field recordings in the cornu ammonis 1 (CA1) hippocampus showed that neonatal control 3xTg mice exhibited hypo-excitable synaptic transmission, reduced paired-pulse facilitation (PPF), and normal long-term potentiation (LTP) compared to NonTg controls. By contrast, the old control 3xTg mice exhibited hyper-excitable synaptic transmission, enhanced PPF, and unstable LTP compared to NonTg controls. Repeated Iso exposures reduced synaptic transmission and PPF in neonatal NonTg and old 3xTg mice. LTP was normalized in old 3xTg mice, but reduced in neonates. By contrast, LTP was reduced in old but not neonatal NonTg mice. Our results indicate that Iso-mediated neuropathologic and cognitive defects in AD mice are associated with synaptic pathologies in an age-dependent manner. Based on these findings, the extent of this association with age and, possibly, treatment paradigms warrant further study.
Collapse
Affiliation(s)
- Donald J. Joseph
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chunxia Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Jun Peng
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Anesthesiology, sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
64
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
65
|
Cisternas P, Oliva CA, Torres VI, Barrera DP, Inestrosa NC. Presymptomatic Treatment With Andrographolide Improves Brain Metabolic Markers and Cognitive Behavior in a Model of Early-Onset Alzheimer's Disease. Front Cell Neurosci 2019; 13:295. [PMID: 31379502 PMCID: PMC6657419 DOI: 10.3389/fncel.2019.00295] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/17/2019] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. The onset and progression of this pathology are correlated with several changes in the brain, including the formation of extracellular aggregates of amyloid-beta (Aβ) peptide and the intracellular accumulation of hyperphosphorylated tau protein. In addition, dysregulated neuronal plasticity, synapse loss, and a reduction in cellular energy metabolism have also been described. Canonical Wnt signaling has also been shown to be downregulated in AD. Remarkably, we showed previously that the in vivo inhibition of Wnt signaling accelerates the appearance of AD markers in transgenic (Tg) and wild-type (WT) mice. Additionally, we found that Wnt signaling stimulates energy metabolism, which is critical for the ability of Wnt to promote the recovery of cognitive function in AD. Therefore, we hypothesized that activation of canonical Wnt signaling in a presymptomatic transgenic animal model of AD would improve some symptoms. To explore the latter, we used a transgenic mouse model (J20 Tg) with mild AD phenotype expression (high levels of amyloid aggregates) and studied the effect of andrographolide (ANDRO), an activator of canonical Wnt signaling. We found that presymptomatic administration of ANDRO in J20 Tg mice prevented the reduction in cellular energy metabolism markers. Moreover, treated animals showed improvement in cognitive performance. At the synaptic level, J20 Tg animals showed severe deficiencies in presynaptic function as determined by electrophysiological parameters, all of which were completely restored to normal by ANDRO administration. Finally, an analysis of hippocampal synaptosomes by electron microscopy revealed that the length of synapses was restored with ANDRO treatment. Altogether, these data support the idea that the activation of canonical Wnt signaling during presymptomatic stages could represent an interesting pharmacological strategy to delay the onset of AD.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A. Oliva
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana I. Torres
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela P. Barrera
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
66
|
Chen S, Zhou M, Sun J, Guo A, Fernando RL, Chen Y, Peng P, Zhao G, Deng Y. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology 2019; 157:107668. [PMID: 31199957 DOI: 10.1016/j.neuropharm.2019.107668] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) signaling in the brain plays an important role in the regulation of glucose metabolism, which is impaired in Alzheimer's disease (AD). Here, we detected the GLP-1 and GLP-1 receptor (GLP-1R) in AD human brain and APP/PS1/Tau transgenic (3xTg) mice brain, finding that they were both decreased in AD human and mice brain. Enhanced GLP-1 exerts its protective effects on AD, however, this is rapidly degraded into inactivated metabolites by dipeptidyl peptidase-4 (DPP-4), resulting in its extremely short half-time. DPP-4 inhibitors, thus, was applied to improve the level of GLP-1 and GLP-1R expression in the hippocampus and cortex of AD mice brains. It is also protected learning and memory and synaptic proteins, increased the O-Glycosylation and decreased abnormal phosphorylation of tau and neurofilaments (NFs), degraded intercellular β-amyloid (Aβ) accumulation and alleviated neurodegeneration related to GLP-1 signaling pathway.
Collapse
Affiliation(s)
- Shuyi Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Zhou
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Sun
- Department of Pathology, Tianjin People's Hospital, Tianjin, China
| | - Ai Guo
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Roger Lakmal Fernando
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanlin Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Peng Peng
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Tumor Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqiu Deng
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
67
|
Sri S, Pegasiou CM, Cave CA, Hough K, Wood N, Gomez-Nicola D, Deinhardt K, Bannerman D, Perry VH, Vargas-Caballero M. Emergence of synaptic and cognitive impairment in a mature-onset APP mouse model of Alzheimer's disease. Acta Neuropathol Commun 2019; 7:25. [PMID: 30795807 PMCID: PMC6387506 DOI: 10.1186/s40478-019-0670-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
The synaptic changes underlying the onset of cognitive impairment in Alzheimer’s disease (AD) are poorly understood. In contrast to the well documented inhibition of long-term potentiation (LTP) in CA3-CA1 synapses by acute Aβ application in adult neurons from rodents, young amyloid precursor protein (APP) transgenic mouse models often, surprisingly, show normal LTP. This suggests that there may be important differences between mature-onset and developmental-onset APP expression/ Aβ accumulation and the ensuing synaptic and behavioural phenotype. Here, in agreement with previous studies, we observed that developmental expression of APPSw,Ind (3–4 month old mice from line 102, PLoS Med 2:e355, 2005), resulted in reduced basal synaptic transmission in CA3-CA1 synapses, normal LTP, impaired spatial working memory, but normal spatial reference memory. To analyse early Aβ-mediated synaptic dysfunction and cognitive impairment in a more mature brain, we used controllable mature-onset APPSw,Ind expression in line 102 mice. Within 3 weeks of mature-onset APPSw,Ind expression and Aβ accumulation, we detected the first synaptic dysfunction: an impairment of LTP in hippocampal CA3-CA1 synapses. Cognitively, at this time point, we observed a deficit in short-term memory. A reduction in basal synaptic strength and deficit in long-term associative spatial memory were only evident following 12 weeks of APPSw,Ind expression. Importantly, the plasticity impairment observed after 3 weeks of mature-onset APP expression is reversible. Together, these findings demonstrate important differences between developmental and mature-onset APP expression. Further research targeted at this early stage of synaptic dysfunction could help identify mechanisms to treat cognitive impairment in mild cognitive impairment (MCI) and early AD.
Collapse
|
68
|
Mirzaei M, Pushpitha K, Deng L, Chitranshi N, Gupta V, Rajput R, Mangani AB, Dheer Y, Godinez A, McKay MJ, Kamath K, Pascovici D, Wu JX, Salekdeh GH, Karl T, Haynes PA, Graham SL, Gupta VK. Upregulation of Proteolytic Pathways and Altered Protein Biosynthesis Underlie Retinal Pathology in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2019; 56:6017-6034. [PMID: 30707393 DOI: 10.1007/s12035-019-1479-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Increased amyloid β (Aβ) aggregation is a hallmark feature of Alzheimer's disease (AD) pathology. The APP/PS1 mouse model of AD exhibits accumulation of Aβ in the retina and demonstrates reduced retinal function and other degenerative changes. The overall molecular effects of AD pathology on the retina remain undetermined. Using a proteomics approach, this study assessed the molecular effects of Aβ accumulation and progression of AD pathology on the retina. Retinal tissues from younger (2.5 months) and older 8-month APP/PS1 mice were analysed for protein expression changes. A multiplexed proteomics approach using chemical isobaric tandem mass tags was applied followed by functional and protein-protein interaction analyses using Ingenuity pathway (IPA) and STRING computational tools. We identified approximately 2000 proteins each in the younger (upregulated 50; downregulated 36) and older set of APP/PS1 (upregulated 85; downregulated 79) mice retinas. Amyloid precursor protein (APP) was consistently upregulated two to threefold in both younger and older retinas (p < 0.0001). Mass spectrometry data further revealed that older APP/PS1 mice retinas had elevated levels of proteolytic enzymes cathepsin D, presenilin 2 and nicastrin that are associated with APP processing. Increased levels of proteasomal proteins Psma5, Psmd3 and Psmb2 were also observed in the older AD retinas. In contrast to the younger animals, significant downregulation of protein synthesis and elongation associated proteins such as Eef1a1, Rpl35a, Mrpl2 and Eef1e1 (p < 0.04) was identified in the older mice retinas. This study reports for the first time that not only old but also young APP/PS1 animals demonstrate increased amyloid protein levels in their retinas. Quantitative proteomics reveals new molecular insights which may represent a cellular response to clear amyloid build-up. Further, downregulation of ribosomal proteins involved in protein biosynthesis was observed which might be considered a toxicity effect.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. .,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Liting Deng
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Abu Bakr Mangani
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Karthik Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Dana Pascovici
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Jemma X Wu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
69
|
Wang SS, Jia J, Wang Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles Suppresses iNOS Expression and Ameliorates Neural Impairment in Alzheimer's Disease Mice. J Alzheimers Dis 2019; 61:1005-1013. [PMID: 29254100 DOI: 10.3233/jad-170848] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been reported to exhibit therapeutic effects in various animal models of neurological diseases, such as stroke and hypoxic-ischemic brain injury. OBJECTIVE The present study investigated the potential beneficial effect of MSC-derived EVs in an animal model of Alzheimer's disease (AD). METHODS APP/PS1 mice and their non-transgenic littermates (WT) received intracerebroventricle injection of MSC-derived EVs once per two days for two weeks. Then novel object recognition and water maze tasks were carried out to measure the cognitive behaviors. Electrophysiological tests were carried out to measure hippocampal synaptic plasticity. Inducible nitric oxide synthase (iNOS) mRNA and protein levels were measured by qRT-PCR and western blotting in primary cultured neurons treated with amyloid-β peptide (Aβ) or prepared from APP/PS1 mice. RESULTS Treatment with MSC-derived EVs alleviates exogenous Aβ-induced iNOS mRNA and protein expression. In cultured primary neurons prepared from APP/PS1 pups, iNOS mRNA and protein levels were significantly reduced when treated with MSC-derived EVs. MSC-derived EVs improved cognitive behavior, rescued impairment of CA1 synaptic transmission, and long-term potentiation in APP/PS1 mice. CONCLUSION MSC-derived EVs possessed beneficial effects in a mouse model of AD, probably by suppressing Aβ induced iNOS expression.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Geriatric Neurology, Nanlou Clinical Division, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jianjun Jia
- Department of Geriatric Neurology, Nanlou Clinical Division, Chinese PLA General Hospital, Beijing, P.R. China
| | - Zhenfu Wang
- Department of Geriatric Neurology, Nanlou Clinical Division, Chinese PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
70
|
Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One 2019; 14:e0209228. [PMID: 30645585 PMCID: PMC6333398 DOI: 10.1371/journal.pone.0209228] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer’s Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.
Collapse
|
71
|
Li J, Chen W, Yi Y, Tong Q. miR‐219‐5p inhibits tau phosphorylation by targeting TTBK1 and GSK‐3β in Alzheimer's disease. J Cell Biochem 2018; 120:9936-9946. [PMID: 30556160 DOI: 10.1002/jcb.28276] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jing Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Yanhong Yi
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Qiuling Tong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| |
Collapse
|
72
|
Pohl F, Kong Thoo Lin P. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials. Molecules 2018; 23:E3283. [PMID: 30544977 PMCID: PMC6321248 DOI: 10.3390/molecules23123283] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease, present a major health issue and financial burden for health care systems around the world. The impact of these diseases will further increase over the next decades due to increasing life expectancies. No cure is currently available for the treatment of these conditions; only drugs, which merely alleviate the symptoms. Oxidative stress has long been associated with neurodegeneration, whether as a cause or as part of the downstream results caused by other factors. Thus, the use of antioxidants to counter cellular oxidative stress within the nervous system has been suggested as a potential treatment option for neurological disorders. Over the last decade, significant research has focused on the potential use of natural antioxidants to target oxidative stress. However, clinical trial results have lacked success for the treatment of patients with neurological disorders. The knowledge that natural extracts show other positive molecular activities in addition to antioxidant activity, however, has led to further research of natural extracts for their potential use as prevention or treatment/management of neurodegenerative diseases. This review will cover several in vitro and in vivo research studies, as well as clinical trials, and highlight the potential of natural antioxidants.
Collapse
Affiliation(s)
- Franziska Pohl
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| |
Collapse
|
73
|
de Diego AMG, García AG. Altered exocytosis in chromaffin cells from mouse models of neurodegenerative diseases. Acta Physiol (Oxf) 2018; 224:e13090. [PMID: 29742321 DOI: 10.1111/apha.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022]
Abstract
Chromaffin cells from the adrenal gland (CCs) have extensively been used to explore the molecular structure and function of the exocytotic machinery, neurotransmitter release and synaptic transmission. The CC is integrated in the sympathoadrenal axis that helps the body maintain homoeostasis during both routine life and in acute stress conditions. This function is exquisitely controlled by the cerebral cortex and the hypothalamus. We propose the hypothesis that damage undergone by the brain during neurodegenerative diseases is also affecting the neurosecretory function of adrenal medullary CCs. In this context, we review here the following themes: (i) How the discharge of catecholamines is centrally and peripherally regulated at the sympathoadrenal axis; (ii) which are the intricacies of the amperometric techniques used to study the quantal release of single-vesicle exocytotic events; (iii) which are the alterations of the exocytotic fusion pore so far reported, in CCs of mouse models of neurodegenerative diseases; (iv) how some proteins linked to neurodegenerative pathologies affect the kinetics of exocytotic events; (v) finally, we try to integrate available data into a hypothesis to explain how the centrally originated neurodegenerative diseases may alter the kinetics of single-vesicle exocytotic events in peripheral adrenal medullary CCs.
Collapse
Affiliation(s)
- A. M. García de Diego
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
| | - A. García García
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Instituto de Investigación Sanitaria; Hospital Universitario de la Princesa; Universidad Autónoma de Madrid; Madrid Spain
- DNS Neuroscience; Parque Científico de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
74
|
Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, Peter J, Plescher M, Hansen JN, Blank N, Keller A, Fuhrmann M, Henneberger C, Halle A, Petzold GC. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med 2018; 215:1649-1663. [PMID: 29724785 PMCID: PMC5987918 DOI: 10.1084/jem.20171487] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/12/2018] [Accepted: 04/12/2018] [Indexed: 11/04/2022] Open
Abstract
Astrocytic hyperactivity is an important contributor to neuronal-glial network dysfunction in Alzheimer's disease (AD). We have previously shown that astrocyte hyperactivity is mediated by signaling through the P2Y1 purinoreceptor (P2Y1R) pathway. Using the APPPS1 mouse model of AD, we here find that chronic intracerebroventricular infusion of P2Y1R inhibitors normalizes astroglial and neuronal network dysfunction, as measured by in vivo two-photon microscopy, augments structural synaptic integrity, and preserves hippocampal long-term potentiation. These effects occur independently from β-amyloid metabolism or plaque burden but are associated with a higher morphological complexity of periplaque reactive astrocytes, as well as reduced dystrophic neurite burden and greater plaque compaction. Importantly, APPPS1 mice chronically treated with P2Y1R antagonists, as well as APPPS1 mice carrying an astrocyte-specific genetic deletion (Ip3r2-/-) of signaling pathways downstream of P2Y1R activation, are protected from the decline of spatial learning and memory. In summary, our study establishes the restoration of network homoeostasis by P2Y1R inhibition as a novel treatment target in AD.
Collapse
Affiliation(s)
| | | | - Björn Breithausen
- Institute of Cellular Neurosciences, University Hospital Bonn, Bonn, Germany
| | - Kevin Keppler
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Stefanie Poll
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Jan Peter
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Jan N Hansen
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Nelli Blank
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Armin Keller
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Christian Henneberger
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute of Cellular Neurosciences, University Hospital Bonn, Bonn, Germany.,Institute of Neurology, University College London, London, England, UK
| | - Annett Halle
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases, Bonn, Germany .,Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
75
|
Yao ZH, Yao XL, Zhang Y, Zhang SF, Hu JC. Luteolin Could Improve Cognitive Dysfunction by Inhibiting Neuroinflammation. Neurochem Res 2018; 43:806-820. [DOI: 10.1007/s11064-018-2482-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/20/2018] [Indexed: 12/14/2022]
|
76
|
Mainardi M, Spinelli M, Scala F, Mattera A, Fusco S, D'Ascenzo M, Grassi C. Loss of Leptin-Induced Modulation of Hippocampal Synaptic Trasmission and Signal Transduction in High-Fat Diet-Fed Mice. Front Cell Neurosci 2017; 11:225. [PMID: 28804449 PMCID: PMC5532388 DOI: 10.3389/fncel.2017.00225] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Hippocampal plasticity is triggered by a variety of stimuli including sensory inputs, neurotrophins and inflammation. Leptin, whose primary function is to regulate food intake and energy expenditure, has been recently shown to affect hippocampal neurogenesis and plasticity. Interestingly, mice fed a high-fat diet (HFD) exhibit impaired hippocampal function, but the underlying mechanisms are poorly understood. To address this issue, we compared leptin responsiveness of hippocampal neurons in control and HFD-fed mice by combining single-cell electrophysiology and biochemical assays. We found that leptin modulated spontaneous and evoked synaptic transmission in control, but not HFD, mice. This functional impairment was paralleled by blunted activation of STAT-3, one of the key signal transduction pathways controlled by the fully functional isoform of the leptin receptor, ObRb. In addition, SOCS-3 expression was non-responsive to leptin, indicating that modulation of negative feedback impinging on ObRb was also altered. Our results advance the understanding of leptin action on hippocampal plasticity and, more importantly, suggest that leptin resistance is a key determinant of hippocampal dysfunction associated with hypercaloric diet.
Collapse
Affiliation(s)
- Marco Mainardi
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Matteo Spinelli
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Federico Scala
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Andrea Mattera
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Universita Cattolica del Sacro CuoreRome, Italy
| |
Collapse
|
77
|
New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18051057. [PMID: 28505105 PMCID: PMC5454969 DOI: 10.3390/ijms18051057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer’s disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD.
Collapse
|
78
|
Liu Z, Zhang Y, Liu J, Yin F. Geniposide attenuates the level of Aβ 1-42 via enhancing leptin signaling in cellular and APP/PS1 transgenic mice. Arch Pharm Res 2017; 40:571-578. [PMID: 28160136 DOI: 10.1007/s12272-016-0875-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/17/2016] [Indexed: 01/29/2023]
Abstract
An large body of evidence indicates that leptin has protective role against Alzheimer's disease, where it reduces β-amyloid (Aβ) production in both cell culture and animal models. Our previous studies revealed that geniposide could attenuate the production of Aβ1-42 and antagonize the neurotoxicity of Aβ1-42 in neurons. However, the mechanism that underlies these effects remains to be clarified. To investigate whether leptin signaling is involved in regulating the production of Aβ1-42 by geniposide, we treated primary neurons with leptin antagonist (LA), and determined the influence of LA on the activities of leptin signaling molecules and the expressions of secretases associated with the production of Aβ1-42. The finding showed that, accompanied with the inhibition on the level of Aβ1-42 in primary neurons and APP/PS1 transgenic mice, geniposide induced the phosphorylation of JAK2 and STAT3, regulated the expression level of α- and β-secretase, and all of these could be prevented by the pre-incubation with LA. The results of this study suggest that geniposide may regulate the production of Aβ1-42 via leptin signaling.
Collapse
Affiliation(s)
- Zixuan Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yonglan Zhang
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jianhui Liu
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Fei Yin
- School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
79
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
80
|
Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2279-91. [DOI: 10.1016/j.ajpath.2016.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
|
81
|
Fuchsberger T, Martínez-Bellver S, Giraldo E, Teruel-Martí V, Lloret A, Viña J. Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival. Sci Rep 2016; 6:31158. [PMID: 27514492 PMCID: PMC4981891 DOI: 10.1038/srep31158] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxicity and apoptosis in Aβ treated neurons. Furthermore, glutamate also decreases cdh1 and leads to accumulation of glutaminase, suggesting that there may be a positive feedback loop of cdh1 inactivation. We confirmed the main findings in vivo using microinjection of either Aβ or glutamate in the CA1 region of the rat hippocampus. We show here for the first time in vivo that both Aβ and glutamate cause nuclear exclusion of cdh1 and an increase in glutaminase. These results show that maintaining normal APC/C-Cdh1 activity may be a useful target in Alzheimer’s disease treatment.
Collapse
Affiliation(s)
- T Fuchsberger
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - S Martínez-Bellver
- Department of Anatomy and Human Embriology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010 Valencia, Spain.,Department of Cellular Biology and Parasitology, Faculty of Biology, University of Valencia, Avda. Doctor Moliner 50, 46100 Valencia, Spain
| | - E Giraldo
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - V Teruel-Martí
- Department of Anatomy and Human Embriology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - A Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| | - J Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, INCLIVA Avda. Blasco Ibañez 15, 46010 Valencia, Spain
| |
Collapse
|
82
|
Borralleras C, Mato S, Amédée T, Matute C, Mulle C, Pérez-Jurado LA, Campuzano V. Synaptic plasticity and spatial working memory are impaired in the CD mouse model of Williams-Beuren syndrome. Mol Brain 2016; 9:76. [PMID: 27485321 PMCID: PMC4971717 DOI: 10.1186/s13041-016-0258-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023] Open
Abstract
Mice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function. We have found that long-term potentiation (LTP) elicited by theta burst stimulation (TBS) was significantly impaired in hippocampal field CA1 of CD animals. This deficit might be associated with the observed alterations in spatial working memory. However, we did not detect changes in presynaptic function, LTP induction mechanisms or AMPA and NMDA receptor function. Reduced levels of Brain-derived neurotrophic factor (BDNF) were present in the CA1-CA3 hippocampal region of CD mice, which could account for LTP deficits in these mice. Taken together, these results suggest a defect of CA1 synapses in CD mice to sustain synaptic strength after stimulation. These data represent the first description of synaptic functional deficits in CD mice and further highlights the utility of the CD model to study the mechanisms underlying the WBS neurocognitive profile.
Collapse
Affiliation(s)
- Cristina Borralleras
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Susana Mato
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Thierry Amédée
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Carlos Matute
- Department of Neuroscience, Neurotek-University of the Basque Country, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Zamudio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297 - University of Bordeaux, F-33000, Bordeaux, France
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Victoria Campuzano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. .,Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
83
|
Khanna MR, Fortini ME. Transcriptomic Analysis of Drosophila Mushroom Body Neurons Lacking Amyloid-β Precursor-Like Protein Activity. J Alzheimers Dis 2016; 46:913-28. [PMID: 26402626 DOI: 10.3233/jad-141491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amyloid-β protein precursor (AβPP) is subjected to sequential intramembrane proteolysis by α-, β-, andγ-secretases, producing secreted amyloid-β (Aβ) peptides and a cytoplasmically released AβPP Intracellular Domain (AICD). AICD complexes with transcription factors in the nucleus, suggesting that this AβPP fragment serves as an active signaling effector that regulates downstream genes, although its nuclear targets are poorly defined. To further understand this potential signaling mechanism mediated by AβPP, we performed a transcriptomic identification of the Drosophila genome that is regulated by the fly AβPP orthologue in fly mushroom body neurons, which control learning- and memory-based behaviors. We find significant changes in expression of 245 genes, representing approximately 1.6% of the Drosophila genome, with the changes ranging from +6 fold to -40 fold. The largest class of responsive targets corresponds to non-protein coding genes and includes microRNAs that have been previously implicated in Alzheimer's disease pathophysiology. Several genes were identified in our Drosophila microarray analyses that have also emerged as putative AβPP targets in similar mammalian transcriptomic studies. Our results also indicate a role for AβPP in cellular pathways involving the regulation of Drosophila Casein Kinase II, mitochondrial oxidative phosphorylation, RNA processing, and innate immunity. Our findings provide insights into the intracellular events that are regulated by AβPP activity in healthy neurons and that might become dysregulated as a result of abnormal AβPP proteolysis in AD.
Collapse
|
84
|
Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: Sex, age and methodological considerations. Neurosci Biobehav Rev 2016; 64:12-34. [PMID: 26906760 DOI: 10.1016/j.neubiorev.2016.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system (CNS). The severity of structural and functional brain alterations associated with alcohol intake depends on many factors including the timing and duration of alcohol consumption. The hippocampal formation, a brain region implicated in learning and memory, is highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on learning and memory may be due to changes at the synaptic level, as this teratogen has been repeatedly shown to interfere with hippocampal synaptic plasticity. At the molecular level alcohol interferes with receptor proteins and can disrupt hormones that are important for neuronal signaling and synaptic plasticity. In this review we examine the consequences of prenatal and early postnatal alcohol exposure on hippocampal synaptic plasticity and highlight the numerous factors that can modulate the effects of alcohol. We also discuss some potential mechanisms responsible for these changes as well as emerging therapeutic avenues that are beginning to be explored.
Collapse
|
85
|
Waldron AM, Wintmolders C, Bottelbergs A, Kelley JB, Schmidt ME, Stroobants S, Langlois X, Staelens S. In vivo molecular neuroimaging of glucose utilization and its association with fibrillar amyloid-β load in aged APPPS1-21 mice. ALZHEIMERS RESEARCH & THERAPY 2015; 7:76. [PMID: 26666747 PMCID: PMC4678474 DOI: 10.1186/s13195-015-0158-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/21/2015] [Indexed: 11/10/2022]
Abstract
Introduction Radioligand imaging is a powerful in vivo method to assess the molecular basis of Alzheimer’s Disease. We therefore aimed to visualize the pathological deposition of fibrillar amyloid-β and neuronal dysfunction in aged double transgenic mice. Methods Using non-invasive positron emission tomography (PET) we assessed brain glucose utilization with [18F]FDG and fibrillar amyloidosis with [11C]PiB and [18F]AV45 in 12 month old APPPS1-21 (n = 10) mice and their age-matched wild-type controls (n = 15). PET scans were analyzed with statistical parametric mapping (SPM) to detect significant differences in tracer uptake between genotypes. After imaging, mice were sacrificed and ex vivo measures of amyloid-β burden with immunohistochemistry as well as glucose utilization with [14C]-2DG autoradiography were obtained as gold standards. Results Voxel-wise SPM analysis revealed significantly decreased [18F]FDG uptake in aged APPPS1-21 mice in comparison to WT with the thalamus (96.96 %, maxT = 3.35) and striatum (61.21 %, maxT = 3.29) demonstrating the most widespread reductions at the threshold of p < 0.01. [11C]PiB binding was significantly increased in APPPS1-21 mice, most notably in the hippocampus (87.84 %, maxT = 7.15) and cortex (69.08 %, maxT = 7.95), as detected by SPM voxel-wise analysis at the threshold of p < 0.01. Using the same threshold [18F]AV45 uptake was comparably lower with less significant differences. Compared to their respective ex vivo equivalents [18F]FDG demonstrated significant positive correlation to [14C]2-DG autoradiography (r = 0.67, p <0.0001) while [11C]PiB and [18F]AV45 binding did not correlate to ex vivo immunohistochemistry for amyloid-β (r = 0.25, p = 0.07 and r = 0.17, p = 0.26 respectively). Lastly no correlation was observed between regions of high amyloid burden and those with decreased glucose utilization (r = 0.001, p = 0.99). Conclusions Our findings support that fibrillar amyloid-β deposition and reduced glucose utilization can be visualized and quantified with in vivo μPET imaging in aged APPPS1-21 mice. Therefore, the combined use of [18F]FDG and amyloid μPET imaging can shed light on the underlying relationship between fibrillar amyloid-β pathology and neuronal dysfunction.
Collapse
Affiliation(s)
- Ann-Marie Waldron
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - Cindy Wintmolders
- Neuroscience Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Astrid Bottelbergs
- Neuroscience Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Jonathan B Kelley
- Neuroscience Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Mark E Schmidt
- Neuroscience Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium. .,Nuclear Medicine Department, University Hospital Antwerp, Antwerp, Belgium.
| | - Xavier Langlois
- Neuroscience Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
86
|
Zhang Y, Yin F, Liu J, Liu Z. Geniposide Attenuates the Phosphorylation of Tau Protein in Cellular and Insulin-deficient APP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Chem Biol Drug Des 2015; 87:409-18. [PMID: 26475430 DOI: 10.1111/cbdd.12673] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/23/2015] [Accepted: 09/21/2015] [Indexed: 12/24/2022]
Abstract
Our previous studies have shown that geniposide plays an essential role in glucose-stimulated insulin secretion from pancreatic β cells and also regulates the metabolism of Aβ and its deposition in neurons. In this study, we reported that insulin deficiency induced significant increase of tau phosphorylation. Administration of geniposide for 4 weeks significantly decreased the phosphorylated level of tau and the acceleration of GSK-3β phosphorylation in the brain of APP/PS1 transgenic mice induced by insulin deficiency. We also observed that geniposide decreased the phosphorylation of tau protein directly and increased the phosphorylation of Akt in primary cultured cortical neurons. Furthermore, geniposide enhanced the role of insulin on the phosphorylation of Akt, GSK-3β, and tau in primary cultured cortical neurons. And these effects of geniposide in cortical neurons could be prevented by preincubation with LY294002, an inhibitor of PI3K. Taken together, our findings provide a mechanistic and perhaps a foundational link between diabetes and Alzheimer's disease and are consistent with the notion that geniposide might play an essential role on the phosphorylation of tau protein via enhancing insulin signaling and may convey a therapeutic benefit in Alzheimer's disease.
Collapse
Affiliation(s)
- Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fei Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.,Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.,Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zixuan Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| |
Collapse
|
87
|
Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res 2015. [PMID: 26205827 DOI: 10.1016/j.bbr.2015.07.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes is a risk factor for Alzheimer's disease (AD). Previously, we have shown that the diabetes drug liraglutide is protective in middle aged and in old APP/PS1 mice. Here, we show that liraglutide has prophylactic properties. When injecting liraglutide once-daily ip. in two months old mice for 8 months, the main hallmarks of AD were much reduced. Memory formation in object recognition and Morris water maze were normalised and synapse loss and the loss of synaptic plasticity was prevented. In addition, amyloid plaque load, including dense core congophilic plaques, was much reduced. Chronic inflammation (activated microglia) was also reduced in the cortex, and neurogenesis was enhanced in the dentate gyrus. The results demonstrate that liraglutide may protect from progressive neurodegeneration that develops in AD. The drug is currently in clinical trials in patients with AD.
Collapse
|
88
|
Wang D, Zheng W. Dietary cholesterol concentration affects synaptic plasticity and dendrite spine morphology of rabbit hippocampal neurons. Brain Res 2015; 1622:350-60. [PMID: 26188241 DOI: 10.1016/j.brainres.2015.06.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022]
Abstract
Previous studies have shown dietary cholesterol can enhance learning but retard memory which may be partly due to increased cholesterol levels in hippocampus and reduced afterhyperpolarization (AHP) amplitude of hippocampal CA1 neurons. This study explored the dose-dependent effect of dietary cholesterol on synaptic plasticity of rabbit hippocampal CA1 neurons and spine morphology, the postsynaptic structures responsible for synaptic plasticity. Field potential recordings revealed a low concentration of dietary cholesterol increased long-term potentiation (LTP) expression while high concentrations produced a pronounced reduction in LTP expression. Dietary cholesterol facilitated basal synaptic transmission but did not influence presynaptic function. DiI staining showed dietary cholesterol induced alterations in dendrite spine morphology characterized by increased mushroom spine density and decreased thin spine density, two kinds of dendritic spines that may be linked to memory consolidation and learning acquisition. Dietary cholesterol also modulated the geometric measures of mushroom spines. Therefore, dietary cholesterol dose-dependently modulated both synaptic plasticity and dendrite spine morphologies of hippocampal CA1 neurons that could mediate learning and memory changes previously seen to result from feeding a cholesterol diet.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America; Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26505, United States of America.
| | - Wen Zheng
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV 26505, United States of America
| |
Collapse
|
89
|
Jones RS, Minogue AM, Fitzpatrick O, Lynch MA. Inhibition of JAK2 attenuates the increase in inflammatory markers in microglia from APP/PS1 mice. Neurobiol Aging 2015; 36:2716-24. [PMID: 26227742 DOI: 10.1016/j.neurobiolaging.2015.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022]
Abstract
There is a wealth of evidence indicating that macrophages adopt distinct phenotypes when exposed to specific stimuli and, in the past few years, accumulating data suggest that microglia behave somewhat similarly. Therefore, microglia can adopt the so-called M1 or M2 phenotypes in response to interferon-γ (IFNγ) and interleukin-4, respectively. Although it has yet to be unequivocally proven in the context of microglia, acutely activated M1 cells are probably protective, although a persistent M1 state is likely to be damaging, whereas M2 cells may be reparative and restorative. In this case, particularly because the current evidence suggests the development of a predominantly M1 state with age and in neurodegenerative diseases, it is important to identify mechanisms by which polarization of microglia can be modulated. The present findings indicate that exposure of cultured microglia to IFNγ increased expressions of the archetypal markers of the M1 phenotype, tumour necrosis factor-α, and inducible nitric oxide synthase, and preexposure of cells to amyloid-β (Aβ) sensitized microglia to subsequent stimulation with IFNγ. Importantly, this synergy was also evident in microglia prepared from the brains of transgenic mice that overexpress amyloid precursor protein (APP) and presenilin 1 (PS1, APP/PS1 mice) and are exposed to a combination of increasing concentrations of endogenous Aβ from 4 or 5 months of age and an age-related increase in IFNγ. Significantly, the JAK2 inhibitor, TG101209, attenuated the IFNγ-induced changes in cultured microglia and in isolated microglia prepared from APP/PS1 mice. These findings suggest that targeting JAK2 may be a potential strategy for reducing neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Raasay S Jones
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aedín M Minogue
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Orla Fitzpatrick
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland.
| |
Collapse
|
90
|
Glio-vascular changes during ageing in wild-type and Alzheimer's disease-like APP/PS1 mice. Brain Res 2015; 1620:153-68. [PMID: 25966615 DOI: 10.1016/j.brainres.2015.04.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 12/14/2022]
Abstract
Vascular and glial involvement in the development of neurodegenerative disorders, such as Alzheimer's disease (AD), and age-related brain vulnerabilities have been suggested. Therefore, we sought to: (i) investigate which vascular and glial events are evident in ageing and/or AD, (ii) to establish the temporal evolution of vascular and glial changes in AD-like and wild-type (WT) mice and (iii) to relate them to amyloid-β (Aβ) peptide accumulation. We examined immunohistochemically hippocampi and cortex from APP/PS1dE9 and WT C57BL/6 mice along ageing and disease progression (young-adulthood, middle- and old-age). Ageing resulted in the increase in receptor for advanced glycation endproducts expression, as well as the entrance of thrombin and albumin in hippocampal parenchyma. In contrast, the loss of platelet-derived growth factor receptor-β (PDGFR-β) positive cells, in both regions, was only related to AD pathogenesis. Hypovascularization was affected by both ageing and AD in the hippocampus, but resulted from the interaction between both factors in the cortex. Astrogliosis was a result of AD in hippocampus and of both factors in cortex, while microgliosis was associated with fibrillar amyloid plaques in AD-like mice and with the interaction between both factors in each of the studied regions. In sum, these data show that senile plaques precede vascular and glial alterations only in hippocampus, whereas in cortex, vascular and glial alterations, namely the loss of PDGFR-β-positive cells and astrogliosis, accompanied the first senile plaques. Hence, this study points to vascular and glial events that co-exist in AD pathogenesis and age-related brain vulnerabilities.
Collapse
|
91
|
Treadmill exercise enhances synaptic plasticity, but does not alter β-amyloid deposition in hippocampi of aged APP/PS1 transgenic mice. Neuroscience 2015; 298:357-66. [PMID: 25917310 DOI: 10.1016/j.neuroscience.2015.04.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 01/21/2023]
Abstract
Several studies reveal that the beneficial effects of exercise interventions are dependent on the progression of Alzheimer's disease (AD). We have previously shown that long-term treadmill exercise begun before the onset of β-amyloid (Aβ) pathology prevents the deficits of cognition and long-term potentiation (LTP) in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice (8 months of age) paralleled by the reduction of soluble Aβ levels and Aβ deposition in the hippocampus. In the present study, treadmill exercise was initiated at a developed Aβ deposition stage in order to further investigate whether or not treadmill exercise in this phase can delay the progression of AD in aged APP/PS1 mice (17 months of age). Our results show that 5-month treadmill exercise ameliorates the impairment of spatial learning and memory with age paralleled by synaptic plasticity enhancement in aged APP/PS1 mice. In addition, exercise-induced enhancement of synaptic plasticity was accompanied by a significant reduction of soluble Aβ levels rather than Aβ plaque deposition. Therefore, the investigation demonstrates that long-term treadmill exercise has beneficial effects on cognition and synaptic plasticity even when the brain has developed Aβ deposition, and changes in soluble Aβ levels rather than Aβ plaque deposition may contribute to exercise-induced benefits.
Collapse
|
92
|
Zhang Y, Yin F, Liu J, Liu Z, Guo L, Xia Z, Zidichouski J. Geniposide attenuates insulin-deficiency-induced acceleration of β-amyloidosis in an APP/PS1 transgenic model of Alzheimer's disease. Neurochem Int 2015; 89:7-16. [PMID: 25882165 DOI: 10.1016/j.neuint.2015.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 01/26/2023]
Abstract
Our previous studies have shown that geniposide plays an essential role in glucose-stimulated insulin secretion from pancreatic β cells and also antagonizesAβ1-42-induced cytotoxicity examined using a primary cortical neuron assay. However, the mechanism by which geniposide appears to regulate insulin signaling in the brain is presently not well understood. In this study, we administered streptozotocin (STZ) to induce insulin-deficiency in an AD transgenic mouse model, and investigated the effects of geniposide on the β-amyloidogenic processing of amyloid precursor protein (APP) using in vitro and in vivo models. Our results indicate that treatment with STZ (90 mg/kg, i.p., once daily for two consecutive days) induced significant reduction in peripheral and brain insulin levels in both wild-type and APP/PS1 transgenic mice. Administration of geniposide for 4 weeks significantly decreased the concentrations of cerebral β-amyloid peptides (Aβ1-40 and Aβ1-42) in STZ-treated AD mice. Further experiments showed that geniposide up-regulated the protein levels of β-site APP cleaving enzyme (BACE1) and insulin-degrading enzyme (IDE), and decreased the protein levels of ADAM10 when examined using a primary cultured cortical neuron assay and in STZ-induced AD mice. Meanwhile, geniposide also directly enhanced the effects of insulin by reducing Aβ1-42 levels in primary cultured cortical neurons. Taken together, our findings provide a mechanistic link between diabetes and AD, and is consistent with the notion that geniposide might play an important role on APP processing via enhancing insulin signaling and may convey a therapeutic benefit in AD.
Collapse
Affiliation(s)
- Yonglan Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fei Yin
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Jianhui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zixuan Liu
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Lixia Guo
- Chongqing Key Lab of Catalysis & Functional Organic Molecules, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zhining Xia
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Jeffrey Zidichouski
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
93
|
Psotta L, Rockahr C, Gruss M, Kirches E, Braun K, Lessmann V, Bock J, Endres T. Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model. Front Behav Neurosci 2015; 9:58. [PMID: 25852506 PMCID: PMC4367180 DOI: 10.3389/fnbeh.2015.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/18/2015] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that brain-derived neurotrophic factor (BDNF) plays a crucial role in Alzheimer’s disease (AD) pathology. A number of studies demonstrated that AD patients exhibit reduced BDNF levels in the brain and the blood serum, and in addition, several animal-based studies indicated a potential protective effect of BDNF against Aβ-induced neurotoxicity. In order to further investigate the role of BDNF in the etiology of AD, we created a novel mouse model by crossing a well-established AD mouse model (APP/PS1) with a mouse exhibiting a chronic BDNF deficiency (BDNF+/−). This new triple transgenic mouse model enabled us to further analyze the role of BDNF in AD in vivo. We reasoned that in case BDNF has a protective effect against AD pathology, an AD-like phenotype in our new mouse model should occur earlier and/or in more severity than in the APP/PS1-mice. Indeed, the behavioral analysis revealed that the APP/PS1-BDNF+/−-mice show an earlier onset of learning impairments in a two-way active avoidance task in comparison to APP/PS1- and BDNF+/−-mice. However in the Morris water maze (MWM) test, we could not observe an overall aggrevated impairment in spatial learning and also short-term memory in an object recognition task remained intact in all tested mouse lines. In addition to the behavioral experiments, we analyzed the amyloid plaque pathology in the APP/PS1 and APP/PS1-BDNF+/−-mice and observed a comparable plaque density in the two genotypes. Moreover, our results revealed a higher plaque density in prefrontal cortical compared to hippocampal brain regions. Our data reveal that higher cognitive tasks requiring the recruitment of cortical networks appear to be more severely affected in our new mouse model than learning tasks requiring mainly sub-cortical networks. Furthermore, our observations of an accelerated impairment in active avoidance learning in APP/PS1-BDNF+/−-mice further supports the hypothesis that BDNF deficiency amplifies AD-related cognitive dysfunctions.
Collapse
Affiliation(s)
- Laura Psotta
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany
| | - Carolin Rockahr
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Michael Gruss
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Elmar Kirches
- Institute of Neuropathology, Faculty of Medicine, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | - Thomas Endres
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg Magdeburg, Germany
| |
Collapse
|
94
|
Hu WY, He ZY, Yang LJ, Zhang M, Xing D, Xiao ZC. The Ca(2+) channel inhibitor 2-APB reverses β-amyloid-induced LTP deficit in hippocampus by blocking BAX and caspase-3 hyperactivation. Br J Pharmacol 2015; 172:2273-85. [PMID: 25521332 DOI: 10.1111/bph.13048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/30/2014] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE At the early stage of Alzheimer's disease (AD), the accumulation of β-amyloid (Aβ) oligomers disturbs intracellular Ca(2+) homeostasis and disrupts synaptic plasticity of brain neurons. Prevention of Aβ-induced synaptic failure remains an unsolved problem for the treatment of AD. Here, the effects of 2-aminoethoxydiphenyl borate (2-APB), a non-specific, but moderately potent Ca(2+) channel inhibitor, on Aβ-induced deficit of synaptic long-term potentiation (LTP) and the underlying molecular mechanisms were explored. EXPERIMENTAL APPROACH We used hippocampal slices and primary cultures of hippocampal neurons from C57BL/6 mice. Methods applied in our study included electrophysiological recording, membrane protein extraction, Western blot assay and Ca(2+) imaging. KEY RESULTS 2-APB at 10 μM effectively reversed suppression by oligomeric Aβ1-42 (500 nM) of LTP in hippocampal slices. 2-APB also restored phosphorylation and trafficking of the glutamate receptor subunit GluA1 in Aβ-treated hippocampal slices, supporting its protective action on synaptic function. Aβ-mediated abnormal neuronal [Ca(2+) ]i elevation and hyperactivation of the mitochondrial apoptotic proteins BAX, caspase-3, and glycogen synthase kinase-3β, were blocked by 2-APB pretreatment. Moreover, the defict in long term potentiation deficit in hippocampal slices from APPswe /PS1ΔE 9 gene mutant mice was rescued by 2-APB at 10 μM. CONCLUSIONS AND IMPLICATION These data demonstrate that 2-APB is a potentially useful chemical to protect synaptic plasticity against neurotoxic effects of Aβ in AD.
Collapse
Affiliation(s)
- Wei-Yan Hu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China; Shunxi-Monash Immune Regeneration and Neuroscience Laboratories, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia; School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | | | | | | | | | | |
Collapse
|
95
|
Pooters T, Van der Jeugd A, Callaerts-Vegh Z, D'Hooge R. Telencephalic neurocircuitry and synaptic plasticity in rodent spatial learning and memory. Brain Res 2015; 1621:294-308. [PMID: 25619550 DOI: 10.1016/j.brainres.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/14/2023]
Abstract
Spatial learning and memory in rodents represent close equivalents of human episodic declarative memory, which is especially sensitive to cerebral aging, neurodegeneration, and various neuropsychiatric disorders. Many tests and protocols are available for use in laboratory rodents, but Morris water maze and radial-arm maze remain the most widely used as well as the most valid and reliable spatial tests. Telencephalic neurocircuitry that plays functional roles in spatial learning and memory includes hippocampus, dorsal striatum and medial prefrontal cortex. Prefrontal-hippocampal circuitry comprises the major associative system in the rodent brain, and is critical for navigation in physical space, whereas interconnections between prefrontal cortex and dorsal striatum are probably more important for motivational or goal-directed aspects of spatial learning. Two major forms of synaptic plasticity, namely long-term potentiation, a lasting increase in synaptic strength between simultaneously activated neurons, and long-term depression, a decrease in synaptic strength, have been found to occur in hippocampus, dorsal striatum and medial prefrontal cortex. These and other phenomena of synaptic plasticity are probably crucial for the involvement of telencephalic neurocircuitry in spatial learning and memory. They also seem to play a role in the pathophysiology of two brain pathologies with episodic declarative memory impairments as core symptoms, namely Alzheimer's disease and schizophrenia. Further research emphasis on rodent telencephalic neurocircuitry could be relevant to more valid and reliable preclinical research on these most devastating brain disorders. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Tine Pooters
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium.
| |
Collapse
|
96
|
Wang B, Tanaka K, Ji B, Ono M, Fang Y, Ninomiya Y, Maruyama K, Izumi-Nakajima N, Begum N, Higuchi M, Fujimori A, Uehara Y, Nakajima T, Suhara T, Nenoi M. Low-dose total-body carbon-ion irradiations induce early transcriptional alteration without late Alzheimer's disease-like pathogenesis and memory impairment in mice. J Neurosci Res 2015; 92:915-26. [PMID: 24936619 DOI: 10.1002/jnr.23363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cause and risk factors of Alzheimer's disease (AD) are largely unknown. Studies on possible radiation-induced AD-like pathogenesis and behavioral consequences are important because humans are exposed to ionizing radiation (IR) from various sources. It was reported that total-body irradiations (TBI) at 10 cGy of low linear energy transfer (LET) X-rays to mice triggered acute transcriptional alterations in genes associated with cognitive dysfunctions. However, it was unknown whether low doses of IR could induce AD-like changes late after exposure. We reported previously that 10 cGy X-rays induced early transcriptional response of several AD-related genes in hippocampi without late AD-like pathogenesis and memory impairment in mice. Here, further studies on two low doses (5 or 10 cGy) of high LET carbonion irradiations are reported. On expression of 84 AD-related genes in hippocampi, at 4 hr after TBI, 5 cGy induced a significant upregulation of three genes (Abca1, Casp3, and Chat) and 10 cGy led to a marked upregulation of one gene (Chat) and a downregulation of three genes (Apoe, Ctsd, and Il1α), and, at 1 year after TBI, one gene (Il1α) was significantly downregulated in 10 cGy-irradiated animals. Changes in spatial learning ability and memory and induction of AD-like pathogenesis were not detected by in vivo brain imaging for amyloid-β peptide accumulation and by immunohistochemical staining of amyloid precursor protein, amyloid-β protein, tau, and phosphorylated tau protein. These findings indicate that low doses of carbon-ion irradiations did not cause behavioral impairment or AD-like pathological change in mice.
Collapse
|
97
|
Cifuentes D, Poittevin M, Dere E, Broquères-You D, Bonnin P, Benessiano J, Pocard M, Mariani J, Kubis N, Merkulova-Rainon T, Lévy BI. Hypertension Accelerates the Progression of Alzheimer-Like Pathology in a Mouse Model of the Disease. Hypertension 2015; 65:218-24. [DOI: 10.1161/hypertensionaha.114.04139] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm
2
;
P
<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice;
P
<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease–related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production.
Collapse
Affiliation(s)
- Diana Cifuentes
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Marine Poittevin
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Ekrem Dere
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Dong Broquères-You
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Philippe Bonnin
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Joëlle Benessiano
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Marc Pocard
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Jean Mariani
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Nathalie Kubis
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Tatyana Merkulova-Rainon
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| | - Bernard I. Lévy
- From the Institut des Vaisseaux et du Sang, Paris, France (D.C., M.P., D.B.-Y., T.M.-R., B.I.L.); INSERM, U965, Paris, France (D.C., M.P., D.B.-Y., P.B., M.P., N.K., T.M.-R.); Max Planck Institute of Experimental Medicine, Göttingen, Germany (E.D.); Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.B., M.P., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); AP-HP, Hôpital Bichat—Claude-Bernard, Paris, France (J.B.); CNRS UMR 8256, Paris, France (J.M.); and INSERM,
| |
Collapse
|
98
|
McClean PL, Hölscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease. Neuropharmacology 2014; 86:241-58. [PMID: 25107586 DOI: 10.1016/j.neuropharm.2014.07.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes is a risk factor for developing Alzheimer's disease (AD). In the brains of AD patients, insulin signalling is desensitised. The incretin hormone Glucagon-like peptide-1 (GLP-1) facilitates insulin signalling, and analogues such as liraglutide are on the market as treatments for type 2 diabetes. We have previously shown that liraglutide showed neuroprotective effects in the APPswe/PS1ΔE9 mouse model of AD. Here, we test the GLP-1 receptor agonist lixisenatide in the same mouse model and compare the effects to liraglutide. After ten weeks of daily i.p. injections with liraglutide (2.5 or 25 nmol/kg) or lixisenatide (1 or 10 nmol/kg) or saline of APP/PS1 mice at an age when amyloid plaques had already formed, performance in an object recognition task was improved in APP/PS1 mice by both drugs at all doses tested. When analysing synaptic plasticity in the hippocampus, LTP was strongly increased in APP/PS1 mice by either drug. Lixisenatide (1 nmol/kg) was most effective. The reduction of synapse numbers seen in APP/PS1 mice was prevented by the drugs. The amyloid plaque load and dense-core Congo red positive plaque load in the cortex was reduced by both drugs at all doses. The chronic inflammation response (microglial activation) was also reduced by all treatments. The results demonstrate that the GLP-1 receptor agonists liraglutide and lixisenatide which are on the market as treatments for type 2 diabetes show promise as potential drug treatments of AD. Lixisenatide was equally effective at a lower dose compared to liraglutide in some of the parameters measured.
Collapse
Affiliation(s)
- Paula L McClean
- Clinical Translational Research and Innovation Centre, University of Ulster, Derry/Londonderry, BT47 6SB, Northern Ireland, UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
99
|
Zhang ZY, Li C, Zug C, Schluesener HJ. Icariin ameliorates neuropathological changes, TGF-β1 accumulation and behavioral deficits in a mouse model of cerebral amyloidosis. PLoS One 2014; 9:e104616. [PMID: 25101849 PMCID: PMC4125230 DOI: 10.1371/journal.pone.0104616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022] Open
Abstract
Icariin, a major constituent of flavonoids from the Chinese medicinal herb Epimedium brevicornum, exhibits multiple biological properties, including anti-inflammatory, neuroregulatory and neuroprotective activities. Therefore, Icariin might be applied in treatment of neurodegenerative disorders, including Alzheimer's disease (AD), which is neuropathologically characterized by β-amyloid aggregation, hyperphosphorylated tau and neuroinflammation. Potential therapeutic effects of Icariin were investigated in an animal model of cerebral amyloidosis for AD, transgenic APP/PS1 mouse. Icariin was suspended in carboxymethylcellulose and given orally to APP/PS1 mice. Therapeutic effects were monitored by behavioral tests, namely nesting assay, before and during the experimental treatment. Following an oral treatment of 10 days, Icariin significantly attenuated Aβ deposition, microglial activation and TGF-β1 immunoreactivity at amyloid plaques in cortex and hippocampus of transgenic mice 5 months of age, and restored impaired nesting ability. Our results suggest that Icariin might be considered a promising therapeutic option for human AD.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Chaoyun Li
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Caroline Zug
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Hermann J. Schluesener
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
100
|
Davis KE, Fox S, Gigg J. Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer's disease in vivo. PLoS One 2014; 9:e91203. [PMID: 24621690 PMCID: PMC3951322 DOI: 10.1371/journal.pone.0091203] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 02/11/2014] [Indexed: 01/24/2023] Open
Abstract
Mouse Alzheimer's disease (AD) models develop age- and region-specific pathology throughout the hippocampal formation. One recently established pathological correlate is an increase in hippocampal excitability in vivo. Hippocampal pathology also produces episodic memory decline in human AD and we have shown a similar episodic deficit in 3xTg AD model mice aged 3–6 months. Here, we tested whether hippocampal synaptic dysfunction accompanies this cognitive deficit by probing dorsal CA1 and DG synaptic responses in anaesthetized, 4–6 month-old 3xTgAD mice. As our previous reports highlighted a decline in episodic performance in aged control mice, we included aged cohorts for comparison. CA1 and DG responses to low-frequency perforant path stimulation were comparable between 3xTgAD and controls at both age ranges. As expected, DG recordings in controls showed paired-pulse depression; however, paired-pulse facilitation was observed in DG and CA1 of young and old 3xTgAD mice. During stimulus trains both short-latency (presumably monosynaptic: ‘direct’) and long-latency (presumably polysynaptic: ‘re-entrant’) responses were observed. Facilitation of direct responses was modest in 3xTgAD animals. However, re-entrant responses in DG and CA1 of young 3xTgAD mice developed earlier in the stimulus train and with larger amplitude when compared to controls. Old mice showed less DG paired-pulse depression and no evidence for re-entrance. In summary, DG and CA1 responses to low-frequency stimulation in all groups were comparable, suggesting no loss of synaptic connectivity in 3xTgAD mice. However, higher-frequency activation revealed complex change in synaptic excitability in DG and CA1 of 3xTgAD mice. In particular, short-term plasticity in DG and CA1 was facilitated in 3xTgAD mice, most evidently in younger animals. In addition, re-entrance was facilitated in young 3xTgAD mice. Overall, these data suggest that the episodic-like memory deficit in 3xTgAD mice could be due to the development of an abnormal hyper-excitable state in the hippocampal formation.
Collapse
Affiliation(s)
- Katherine E. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah Fox
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John Gigg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|