51
|
Abstract
The findings on the strategies employed by endophytic microbes have provided salient information to the researchers on the need to maximally explore them as bio-input in agricultural biotechnology. Biotic and abiotic factors are known to influence microbial recruitments from external plant environments into plant tissues. Endophytic microbes exhibit mutualism or antagonism association with host plants. The beneficial types contribute to plant growth and soil health, directly or indirectly. Strategies to enhance the use of endophytic microbes are desirable in modern agriculture, such that these microbes can be applied individually or combined as bioinoculants with bioprospecting in crop breeding systems. Scant information is available on the strategies for shaping the endophytic microbiome; hence, the need to unravel microbial strategies for yield enhancement and pathogen suppressiveness have become imperative. Therefore, this review focuses on the endophytic microbiome, mechanisms, factors influencing endophyte recruitment, and strategies for possible exploration as bioinoculants.
Collapse
|
52
|
Verma KK, Song XP, Joshi A, Rajput VD, Singh M, Sharma A, Singh RK, Li DM, Arora J, Minkina T, Li YR. Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. FRONTIERS IN PLANT SCIENCE 2022; 13:865048. [PMID: 35677230 PMCID: PMC9168910 DOI: 10.3389/fpls.2022.865048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
Conventional fertilizers and pesticides are not sustainable for multiple reasons, including high delivery and usage inefficiency, considerable energy, and water inputs with adverse impact on the agroecosystem. Achieving and maintaining optimal food security is a global task that initiates agricultural approaches to be revolutionized effectively on time, as adversities in climate change, population growth, and loss of arable land may increase. Recent approaches based on nanotechnology may improve in vivo nutrient delivery to ensure the distribution of nutrients precisely, as nanoengineered particles may improve crop growth and productivity. The underlying mechanistic processes are yet to be unlayered because in coming years, the major task may be to develop novel and efficient nutrient uses in agriculture with nutrient use efficiency (NUE) to acquire optimal crop yield with ecological biodiversity, sustainable agricultural production, and agricultural socio-economy. This study highlights the potential of nanofertilizers in agricultural crops for improved plant performance productivity in case subjected to abiotic stress conditions.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Dong-Mei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
53
|
Yang G, Zhou D, Wan R, Wang C, Xie J, Ma C, Li Y. HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: compared with modern tea plantations. BMC PLANT BIOLOGY 2022; 22:239. [PMID: 35550027 PMCID: PMC9097118 DOI: 10.1186/s12870-022-03633-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ancient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their correlation with tea-leaves chemical components remained unclear. Tea-leaves chemical components including free amino acids, phenolic compounds and purine alkaloids collected from modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC), while their soil microbial community structure was analyzed by high-throughput sequencing, respectively. Additionally, soil microbial quantity and chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK) were determined in modern and ancient tea plantations. RESULTS Tea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. Ancient tea plantations were observed to possess significantly (P < 0.05) higher free amino acids, gallic acid, caffeine and epigallocatechin (EGC) in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly (P < 0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way might significantly (P < 0.05) improve the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. CONCLUSIONS Due to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and soil microbial ecosystem, which contributed to the sustainable development of tea-leaves with higher quality.
Collapse
Affiliation(s)
- Guangrong Yang
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Dapeng Zhou
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Renyuan Wan
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Conglian Wang
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jin Xie
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Cunqiang Ma
- College of Tea, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
54
|
Rhizophagus irregularis and Nitrogen Fixing Azotobacter with a Reduced Rate of Chemical Fertilizer Application Enhances Pepper Growth along with Fruits Biochemical and Mineral Composition. SUSTAINABILITY 2022. [DOI: 10.3390/su14095653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bell pepper is an important vegetable crop containing lots of bioactive compounds. The present study was designed to improve the productivity and quality of bell pepper with the application of arbuscular mycorrhizal fungi (Rhizophagus irregularis) and plant growth-promoting bacteria (Azotobacter chroococcum) in a combination of chemical fertilizer. Five treatments consisted of 75% chemical fertilizer (T1), 100% chemical fertilizer (T2), 75% chemical fertilizer + R. irregularis (T3), 75% chemical fertilizer + A. chroococcum (T4) and 75% chemical fertilizer + R. irregularis + A. chroococcum (T5). Out of 18 morphological parameters, 11 morphometric fruit parameters were recorded in detail by a tomato analyzer. The morphological and biochemical (TSS, ascorbic acid and capsaicin content) attributes of bell pepper were recorded higher in the case of a mixed consortium of chemical fertilizers having R. irregularis and A. chroococcum. Similarly, the amount of mineral content recorded was highest after 75% chemical fertilizer + R. irregularis + A. chroococcum, followed by the treatment with only 100% chemical fertilizer. The root mycorrhization (%) and the number of spores were observed highest in 75% chemical fertilizer + R. irregularis + A. chroococcum, and there was no mycorrhization and spore formation in 75% CF, 100% CF and 75% CF+AC. The treatment involving 75% chemical fertilizer + R. irregularis + A. chroococcum proved better for pepper’s growth, yield and yield-related traits.
Collapse
|
55
|
Ye JH, Ye Y, Yin JF, Jin J, Liang YR, Liu RY, Tang P, Xu YQ. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
56
|
Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD, Fauzia FN, Amalludin FI, Sadila AY, Wijaya NH, Santoso H, Manuhara YSW, Bui LM, Hariyanto S, Wibowo AT. Soil Mineral Composition and Salinity Are the Main Factors Regulating the Bacterial Community Associated with the Roots of Coastal Sand Dune Halophytes. BIOLOGY 2022; 11:biology11050695. [PMID: 35625422 PMCID: PMC9138652 DOI: 10.3390/biology11050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant–microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops.
Collapse
Affiliation(s)
- Minh Thiet Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Almando Geraldi
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Hoang Danh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (M.T.V.); (H.D.K.D.); (H.D.N.)
| | - Faiza Nur Fauzia
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Fahmi Ikhlasul Amalludin
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Aliffa Yusti Sadila
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Nabilla Hapsari Wijaya
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
| | - Heri Santoso
- Generasi Biologi Indonesia (Genbinesia) Foundation, Gresik 61171, Indonesia;
| | - Yosephine Sri Wulan Manuhara
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
| | - Le Minh Bui
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Sucipto Hariyanto
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Correspondence: (S.H.); (A.T.W.)
| | - Anjar Tri Wibowo
- Departement of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia; (A.G.); (F.N.F.); (F.I.A.); (A.Y.S.); (N.H.W.); (Y.S.W.M.); (L.M.B.)
- Biotechnology of Tropical Medicinal Plants Research Group, Airlangga University, Surabaya 60115, Indonesia
- Correspondence: (S.H.); (A.T.W.)
| |
Collapse
|
57
|
Cui J, Yi Z, Fu Y, Liu H. Simulated microgravity shapes the endophytic bacterial community by affecting wheat root metabolism. Environ Microbiol 2022; 24:3355-3368. [PMID: 35437853 DOI: 10.1111/1462-2920.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
To improve nutrient utilization and pathogenic resistance of plants in space, it is crucial to understand the effects of microgravity on the plant root microbiome. However, the finer details of whether and how microgravity affects the root microbiome remain unclear. Here, we found that simulated microgravity elicits no significant changes in fungal community composition and diversity, whether rhizosphere or endophytic. However, simulated microgravity caused a significant change in the composition and diversity of endophytic bacteria of wheat seedlings, but not in rhizosphere bacteria. The alteration of endophytic bacterial communities demonstrates that wheat seedlings adopt strategies to recruit additional endophytic Enterobacteriaceae and increase the stability of the endophytic bacterial network to respond to the challenge of simulated microgravity. Furthermore, our results also suggest that the corresponding changes in endophytic bacteria under simulated microgravity is closely related to a significant decrease in metabolites of the host's carbon metabolism, flavonoid biosynthesis, benzoxazinoid biosynthesis, and tryptophan metabolism pathways. Our findings reveal details important to our understanding of the impact of gravity on the microbial community of plant seedlings and the theoretical basis for manipulation of microorganisms to ensure efficient plant production in space. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jingjing Cui
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhihao Yi
- China School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100083, China
| | - Yuming Fu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hong Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
58
|
Gwara S, Wale E, Odindo A. Behavioral intentions of rural farmers to recycle human excreta in agriculture. Sci Rep 2022; 12:5890. [PMID: 35393503 PMCID: PMC8989988 DOI: 10.1038/s41598-022-09917-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Considerable progress has been made in developing human excreta recovery pathways and processes for maximum nutrient recovery and contaminant elimination. The demand segment has often been ignored as an area for future research, especially during the technology development. The findings from the few published articles on social acceptance show missing and inconclusive influence of demographic, sociological, and economic farmer-characteristics. This study endeavours to close this gap by using the social psychological theories, technology adoption theories and the new ecological paradigm to investigate the factors that influence the behavioral intentions of rural farmers to recycle human excreta in agriculture. Study findings show that social acceptance was driven by awareness, religiosity, income, source of income, and environmental dispositions. Perceived behavioral control represents a potential barrier to human excreta reuse. The study recommends the demographic, cultural, sociological, and economic mainstreaming of dissemination strategies of circular bioeconomy approaches within the context of agricultural innovation systems.
Collapse
Affiliation(s)
- Simon Gwara
- Discipline of Agricultural Economics, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Edilegnaw Wale
- Department of Agricultural Economics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Alfred Odindo
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
59
|
Chen Y, Tu P, Yang Y, Xue X, Feng Z, Dan C, Cheng F, Yang Y, Deng L. Diversity of rice rhizosphere microorganisms under different fertilization modes of slow-release fertilizer. Sci Rep 2022; 12:2694. [PMID: 35177664 PMCID: PMC8854673 DOI: 10.1038/s41598-022-06155-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
The application of slow-release fertilizer is an effective way to satisfy the demand for nutrients of crops. The objective of present study was to investigate the microbial community characteristics in rice rhizosphere soil under different fertilization modes of slow-release fertilizer. Three fertilization modes of slow-release fertilizer, i.e., (CK) manually broadcasted on the soil surface at 300 kg·ha−1 before transplanting and then same fertilizer rate was applied at the same way one week after transplanting; (SF) 10 cm depth mechanized placement at 600 kg·ha−1 during the transplanting; (DSF) 10 cm depth mechanized placement at 480 kg·ha−1 during the transplanting, were adopt in the field experiment. The results showed that SF and DSF treatments promoted richness (ACE and Chao1 values) and diversity (Shannon value) of rice rhizosphere microorganisms compared with CK treatment. Compared with CK, SF treatment increased relative abundances of Planctomycetes and decreased relative abundance of Nitrospirae, DSF treatments increased relative abundances of Deltaproteobacteria. Moreover, higher relative abundances of Paenibacillus and Sphingomonas were recorded in DSF treatment than CK. In addition, the partial factor productivity (PFP) deep placement of slow-release fertilizer treatment was significantly higher than that of CK treatment. DSF treatment increased the yield by 16.61% compared with CK treatment while reducing fertilizer input by 20%. In conclusion, compared with broadcasting, deep placement of slow-release fertilizer could improve the structure, distribution, and diversity of the microbial community in rice rhizosphere soil, and increase the utilization rate of fertilizers, and increase rice yield.
Collapse
Affiliation(s)
- Yulin Chen
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Panfeng Tu
- Department of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Yibin Yang
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xinhai Xue
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zihui Feng
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chenxin Dan
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Fengxian Cheng
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yifan Yang
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Dongguan Yixiang Liquid Fertilizer Co., Ltd, Dongguan, 523125, People's Republic of China
| | - Lansheng Deng
- Department of Plant Nutrition, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
60
|
Benaffari W, Boutasknit A, Anli M, Ait-El-Mokhtar M, Ait-Rahou Y, Ben-Laouane R, Ben Ahmed H, Mitsui T, Baslam M, Meddich A. The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030393. [PMID: 35161374 PMCID: PMC8838481 DOI: 10.3390/plants11030393] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 05/17/2023]
Abstract
The present study aimed to determine the effects of biostimulants on the physicochemical parameters of the agricultural soil of quinoa under two water regimes and to understand the mode of action of the biostimulants on quinoa for drought adaptation. We investigated the impact of two doses of vermicompost (5 and 10 t/ha) and arbuscular mycorrhizal fungi applied individually, or in joint application, on attenuating the negative impacts of water shortage and improving the agro-physiological and biochemical traits of quinoa, as well as soil fertility, under two water regimes (well-watered and drought stress) in open field conditions. Exposure to drought decreased biomass, leaf water potential, and stomatal conductance, and increased malondialdehyde and hydrogen peroxide content. Mycorrhiza and/or vermicompost promoted plant growth by activating photosynthesis machinery and nutrient assimilation, leading to increased total soluble sugars, proteins, and antioxidant enzyme activities in the leaf and root. After the experiment, the soil's total organic matter, phosphorus, nitrogen, calcium, and soil glomalin content improved by the single or combined application of mycorrhiza and vermicompost. This knowledge suggests that the combination of mycorrhiza and vermicompost regulates the physiological and biochemical processes employed by quinoa in coping with drought and improves the understanding of soil-plant interaction.
Collapse
Affiliation(s)
- Wissal Benaffari
- Center of Agrobiotechnology and Bioengineering, Research Unit labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco; (W.B.); (A.B.); (M.A.); (Y.A.-R.); (R.B.-L.)
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis 1000, Tunisia;
| | - Abderrahim Boutasknit
- Center of Agrobiotechnology and Bioengineering, Research Unit labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco; (W.B.); (A.B.); (M.A.); (Y.A.-R.); (R.B.-L.)
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis 1000, Tunisia;
| | - Mohamed Anli
- Center of Agrobiotechnology and Bioengineering, Research Unit labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco; (W.B.); (A.B.); (M.A.); (Y.A.-R.); (R.B.-L.)
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis 1000, Tunisia;
| | - Mohamed Ait-El-Mokhtar
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Youssef Ait-Rahou
- Center of Agrobiotechnology and Bioengineering, Research Unit labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco; (W.B.); (A.B.); (M.A.); (Y.A.-R.); (R.B.-L.)
| | - Raja Ben-Laouane
- Center of Agrobiotechnology and Bioengineering, Research Unit labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco; (W.B.); (A.B.); (M.A.); (Y.A.-R.); (R.B.-L.)
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco;
| | - Hela Ben Ahmed
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis 1000, Tunisia;
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan;
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan;
- Correspondence: (M.B.); (A.M.); Tel.: +81-252627637 (M.B.); +212-661873158 (A.M.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco; (W.B.); (A.B.); (M.A.); (Y.A.-R.); (R.B.-L.)
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratoire Mixte Tuniso-Marocain (LMTM) de Physiologie et Biotechnologie Végétales et Changements Climatiques LPBV2C, Tunis 1000, Tunisia;
- Correspondence: (M.B.); (A.M.); Tel.: +81-252627637 (M.B.); +212-661873158 (A.M.)
| |
Collapse
|
61
|
Bioprospecting microwave-alkaline hydrolysate cocktail of defatted soybean meal and jackfruit peel biomass as carrier additive of molasses-alginate-bead biofertilizer. Sci Rep 2022; 12:254. [PMID: 34996897 PMCID: PMC8742054 DOI: 10.1038/s41598-021-02170-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/10/2021] [Indexed: 01/06/2023] Open
Abstract
The extraction of soluble hydrolysate protein and sugar from a biomass cocktail of defatted soybean meal (DSM) and jackfruit peel (JP) was examined using microwave-alkaline hydrolysis by varying the NaOH concentrations (0.04–0.11 M) and residence times (2–11 min). Based on the central composite design, the optimized parameters were achieved at 0.084 M NaOH concentration (100 mL), for 8.7 min at 300 W microwave power level to obtain the highest protein (5.31 mg/mL) and sugar concentrations (8.07 mg/mL) with > 75% recovery. Both raw and detoxified hydrolysate (using activated carbon) were correspondingly biocompatible with Enterobacter hormaechei strain 40a (P > 0.05) resulting in maximal cell counts of > 10 log CFU/mL. The optimized hydrolysate was prepared as an additive in molasses-alginate bead encapsulation of strain 40a. Further evaluation on phosphate and potassium solubilization performance of the encapsulated strain 40a exhibited comparable results with those of free cell counterpart (P > 0.05). The DSM-JP hydrolysate cocktail holds potential as a carrier additive of encapsulated-cell bead biofertilizers in order to sustain bacterial cell quality and consequently improve crop growth and productivity.
Collapse
|
62
|
Çakirsoy I, Miyamoto T, Ohtake N. Physiology of microalgae and their application to sustainable agriculture: A mini-review. FRONTIERS IN PLANT SCIENCE 2022; 13:1005991. [PMID: 36466259 PMCID: PMC9712798 DOI: 10.3389/fpls.2022.1005991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 05/13/2023]
Abstract
Concern that depletion of fertilizer feedstocks, which are a finite mineral resource, threatens agricultural sustainability has driven the exploration of sustainable methods of soil fertilization. Given that microalgae, which are unicellular photosynthetic organisms, can take up nutrients efficiently from water systems, their application in a biological wastewater purification system followed by the use of their biomass as a fertilizer alternative has attracted attention. Such applications of microalgae would contribute to the accelerated recycling of nutrients from wastewater to farmland. Many previous reports have provided information on the physiological characteristics of microalgae that support their utility. In this review, we focus on recent achievements of studies on microalgal physiology and relevant applications and outline the prospects for the contribution of microalgae to the establishment of sustainable agricultural practices.
Collapse
Affiliation(s)
- Iffet Çakirsoy
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Takuji Miyamoto
- Sakeology Center, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| | - Norikuni Ohtake
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- *Correspondence: Takuji Miyamoto, ; Norikuni Ohtake,
| |
Collapse
|
63
|
Soil Quality and Pomelo Productivity as Affected by Chicken Manure and Cow Dung. ScientificWorldJournal 2021; 2021:6289695. [PMID: 34899086 PMCID: PMC8660182 DOI: 10.1155/2021/6289695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022] Open
Abstract
Fruit orchards in the Vietnamese Mekong Delta (VMD) are severely degraded due to many factors, such as low organic matter content, soil acidification, and poor soil management. Organic manures are considered to be a soil conservation measure that decreases soil degradation and acidity. This study aimed to evaluate the impacts of soil organic amendments on the improvement of soil fertility and pomelo productivity. Two soil amendments, namely, chicken manure (CM) and cow dung (CD), were investigated for a period of three years at three pomelo orchards. The soil quality was assessed in two depths (0–20 and 20–50 cm), including the soil pH, electrical conductivity (EC), total nitrogen (Ntot), available phosphorus (Pavail), soil organic matter (SOM), bulk density (BD), and exchangeable cations (Ca, Mg, and K). The results indicated that CD and CM improved soil fertility in topsoil layer (0–20 cm) due to an increase in soil pH, SOM, exchangeable Ca, Ntot, and Pavail. In addition, soil BD significantly reduced after CD and CM were supplied in the three consecutive years of study. The soil quality properties that significantly affected pomelo yield were SOM, Ntot, Pavail, and soil BD. Thus, these soil qualities may be considered as key factors for determining and assessing soil quality in fruit orchards in the VMD. More studies on the influence of organic manures on nutrient uptake and pomelo fruit quality are warranted.
Collapse
|
64
|
Yang Y, Wu H, Wang S. Comparison of Microbial Communities in the Rhizosphere Soils from Two Varieties of Camellia sinensis in Yunnan Province, China. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
65
|
Response of Indian gooseberry (Emblica officinalis Gaertn.) to Different Sources of Plant Nutrients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Indian gooseberry is a monoecious tree and bears a unisexual flower where a high degree of cross-pollination is required for an ideal fruit set as well as better productivity. The fruit set, retention and yield in gooseberry depends on the nutritional and hormonal balance of the tree. The current work is based on the objective to estimate the fruit set, retention, sex ratio and yield in gooseberry after application of a recommended dose of fertilization (RDF) in association with farm yard manure (FYM) and biofertilizers (Azotobacter, Azospirillum and phosphate solubilizing bacteria). The maximum sex ratio was estimated in control (250.22 and 251.09) due to sufficient nitrogen fertilization. However, the highest fruit set, retention percent and yield per tree were reported with the treatment containing three-fourth of RDF in combination with Azotobacter, Azospirillum and PSB (phosphate solubilizing bacteria). Further, it was observed that about 25 to 50% replacement in RDF could be possible through biofertilizer application as a constant source of nutrients to trees.
Collapse
|
66
|
Gómez-Godínez LJ, Martínez-Romero E, Banuelos J, Arteaga-Garibay RI. Tools and challenges to exploit microbial communities in agriculture. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100062. [PMID: 34841352 PMCID: PMC8610360 DOI: 10.1016/j.crmicr.2021.100062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Plants contain diverse microbial communities. The associated microorganisms confer advantages to the host plant, which include growth promotion, nutrient absorption, stress tolerance, and pathogen and disease resistance. In this review, we explore how agriculture is implementing the use of microbial inoculants (single species or consortia) to improve crop yields, and discuss current strategies to study plant-associated microorganisms and how their diversity varies under unconventional agriculture. It is predicted that microbial inoculation will continue to be used in agriculture.
Collapse
Affiliation(s)
- Lorena Jacqueline Gómez-Godínez
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos. Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios. Boulevard de la Biodiversidad 400, Rancho las Cruces, C.P. 47600. Tepatitlán de Morelos, Jalisco, México
| | - Esperanza Martínez-Romero
- Centro de Ciencias genómicas, Universidad Nacional Autónoma de México Campus Morelos, Cuernavaca, Morelos México
| | - Jacob Banuelos
- Laboratorio de Organismos Benéficos, Facultad de Ciencias Agrícolas, Universidad Veracruzana. Circuito Aguirre Beltrán SN, Col. Universitaria, CP 91000, Xalapa, Veracruz, México
| | - Ramón I. Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos. Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios. Boulevard de la Biodiversidad 400, Rancho las Cruces, C.P. 47600. Tepatitlán de Morelos, Jalisco, México
- Corresponding authors.
| |
Collapse
|
67
|
Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Sci Rep 2021; 11:22835. [PMID: 34819547 PMCID: PMC8613250 DOI: 10.1038/s41598-021-02018-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
In the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.
Collapse
|
68
|
Rahman MM, Uddin S, Jahangir MMR, Solaiman ZM, Alamri S, Siddiqui MH, Islam MR. Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112547. [PMID: 34834910 PMCID: PMC8621362 DOI: 10.3390/plants10112547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 05/30/2023]
Abstract
Integrated Plant Nutrient System (IPNS) is practiced worldwide to maintain soil quality. Two field experiments were conducted in 2019 and 2020 in acidic and charland soils to assess the impact of different manures, viz., poultry manure (PM), vermicompost (VC), compost (OF), rice husk biochar (RHB), poultry manure biochar (PMB)-based IPNS, and dolomite over control on productivity and nitrogen use efficiency (NUE) of the Mustard-Boro-Transplanted Aman and Maize-Jute-Transplanted Aman cropping patterns, and on soil properties. The experiments were laid out in a randomized complete block design with four replications. The results showed that IPNS treatments significantly improved soil aggregate properties and total nitrogen in acidic soil, and bulk density in charland soil. In both years, IPNS treatments increased system productivity from 55.4 to 82.8% in acidic soil and from 43.3 to 115.4% in charland soil over that of control. IPNS and dolomite treatments increased nitrogen uptake from 35.5 to 105.7% over that of control and NUE in both soils in 2019 and 2020. PMB- and OF-based INPS treatments exhibited superior performances in both soils, and the impact was more prominent in 2020. Therefore, PMB- and OF-based IPNS can be recommended for maximizing system productivity and NUE with concurrent improvement of physicochemical properties of acidic and charland soils.
Collapse
Affiliation(s)
- Mohammad Mojibur Rahman
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.M.R.); (S.U.); (M.M.R.J.)
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Shihab Uddin
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.M.R.); (S.U.); (M.M.R.J.)
| | | | - Zakaria M. Solaiman
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia; (S.A.); (M.H.S.)
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia; (S.A.); (M.H.S.)
| | - Mohammad Rafiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.M.R.); (S.U.); (M.M.R.J.)
| |
Collapse
|
69
|
Ren H, Wang H, Yu Z, Zhang S, Qi X, Sun L, Wang Z, Zhang M, Ahmed T, Li B. Effect of Two Kinds of Fertilizers on Growth and Rhizosphere Soil Properties of Bayberry with Decline Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112386. [PMID: 34834750 PMCID: PMC8624721 DOI: 10.3390/plants10112386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Decline disease causes severe damage to bayberry. However, the cause of this disease remains unclear. Interestingly, our previous studies found that the disease severity is related with the level of soil fertilizer. This study aims to explore the effect and mechanism of compound fertilizer (CF) and bio-organic fertilizer (OF) in this disease by investigating the vegetative growth, fruit characters, soil property, rhizosphere microflora and metabolites. Results indicated that compared with the disease control, CF and OF exhibited differential effect in plant healthy and soil quality, together with the increase in relative abundance of Burkholderia and Mortierella, and the reduction in that of Rhizomicrobium and Acidibacter, Trichoderma, and Cladophialophora reduced. The relative abundance of Geminibasidium were increased by CF (251.79%) but reduced by OF (13.99%). In general, the composition of bacterial and fungal communities in rhizosphere soil was affected significantly at genus level by exchangeable calcium, available phosphorus, and exchangeable magnesium, while the former two variables had a greater influence in bacterial communities than fungal communities. Analysis of GC-MS metabonomics indicated that compared to the disease control, CF and OF significantly changed the contents of 31 and 45 metabolites, respectively, while both fertilizers changed C5-branched dibasic acid, galactose, and pyrimidine metabolic pathway. Furthermore, a significant correlation was observed at the phylum, order and genus levels between microbial groups and secondary metabolites of bayberry rhizosphere soil. In summary, the results provide a new way for rejuvenation of this diseased bayberry trees.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.W.); (B.L.)
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
- Correspondence: (Z.W.); (B.L.)
| |
Collapse
|
70
|
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60406-60424. [PMID: 34535866 DOI: 10.1007/s11356-021-16191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Becky Nancy Aloo
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya.
| | - Ernest Rashid Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Billy Amendi Makumba
- Department of Biological Sciences, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - John Baptist Tumuhairwe
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| |
Collapse
|
71
|
Management for Paddy, Oil Palm, and Pineapple Plantations in Malaysia: Current Status and Reviews. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3438.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heavy rainfall causes a loss of fertiliser to the environment, and it leads to environmental issues such as eutrophication. Replenishment of fertiliser to replace the loss imposes a financial impact since frequent applications are costly and labour intensive. Therefore, investigations on proper fertiliser application in maintaining good soil pH, improving plant growth, and increasing crop yield from various plantations across Malaysia are of paramount importance. Meanwhile, limited agricultural-related studies about crop management in Malaysia have been done. This study presents a state-of-the-art review of Malaysia’s paddy, oil palm, pineapple plantations, and the existing nutrient management and fertilisation practices throughout the crop cycle. A systematic study of the existing crop management in terms of farming practices, nutrient management, and fertiliser application on the plantations of paddy, oil palm, and pineapple in Malaysia was carried out. Industry overviews for these three crop types based on past situations and future directions are also included. Recommendations on how to better manage these plantations are also outlined to promote a better understanding of the past, current, and future direction of the agricultural activities and management for principal edible crops like paddy, oil palm, and pineapple in Malaysia.
Collapse
|
72
|
Kumar G, Suman A, Lal S, Ram RA, Bhatt P, Pandey G, Chaudhary P, Rajan S. Bacterial structure and dynamics in mango (Mangifera indica) orchards after long term organic and conventional treatments under subtropical ecosystem. Sci Rep 2021; 11:20554. [PMID: 34654819 PMCID: PMC8519990 DOI: 10.1038/s41598-021-00112-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/28/2021] [Indexed: 02/01/2023] Open
Abstract
This study explores the comparative effect of conventional and organic treatments on the rhizosphere microbiome of Mangifera indica cv. Dashehari. The long-term exposures (about 20 years) were monitored under a subtropical ecosystem. Based on plant growth properties and acetylene reduction assay, 12 bacterial isolates (7 from G1-organic and 5 from G2-conventional systems) were identified as Pseudomonas and Bacillus spp. In the conventional system, dehydrogenase activity significantly decreased (0.053 µg TPF formed g−1 of soil h−1) and adversely affected the bacterial diversity composition. In comparison, organic treatments had a good impact on dehydrogenase activity (0.784 µg TPF formed g−1 of soil h−1), alkaline phosphatase (139.25 µg PNP g−1 soil h−1), and bacterial community composition. The Metagenomics approach targeted the V3 and V4 regions to see the impact in the phylum, order, family, genus, and species for both the treatments. Results showed that phylum Acidobacteria (13.6%), Firmicutes (4.84%), and Chloroflexi (2.56%) were dominating in the G2 system whereas phylum Bacteroides (14.55%), Actinobacteria (7.45%), and Proteobacteria (10.82%) were abundantly dominated in the G1 system. Metagenome sequences are at the NCBI-GenBank sequence read archive with SRX8289747 (G1) and SRX8289748 (G2) in the study PRJNA631113. Results indicated that conventional and organic conditions affect rhizosphere microbiome and their environment.
Collapse
Affiliation(s)
- Govind Kumar
- ICAR-Central Institute for Subtropical Horticulture (CISH), Lucknow, India.
| | | | - Shatrohan Lal
- ICAR-Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - R A Ram
- ICAR-Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Pankaj Bhatt
- SCAU, Integrative Microbiology Research Centre SCAU, Guangzhou, China
| | - Ghanshyam Pandey
- ICAR-Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Parul Chaudhary
- Department of Microbiology, GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Shailendra Rajan
- ICAR-Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| |
Collapse
|
73
|
Khuna S, Suwannarach N, Kumla J, Frisvad JC, Matsui K, Nuangmek W, Lumyong S. Growth Enhancement of Arabidopsis ( Arabidopsis thaliana) and Onion ( Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Front Microbiol 2021; 12:705896. [PMID: 34456888 PMCID: PMC8397495 DOI: 10.3389/fmicb.2021.705896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Some soil fungi play an important role in supplying elements to plants by the solubilizing of insoluble minerals in the soil. The present study was conducted to isolate the mineral-solubilizing fungi from rhizosphere soil in some agricultural areas in northern Thailand. Seven fungal strains were obtained and identified using a polyphasic taxonomic approach with multilocus phylogenetic and phenotypic (morphology and extrolite profile) analyses. All obtained fungal strains were newly identified in the genus Aspergillus section Nigri, Aspergillus chiangmaiensis (SDBR-CMUI4 and SDBR-CMU15), Aspergillus pseudopiperis (SDBR-CMUI1 and SDBR-CMUI7), and Aspergillus pseudotubingensis (SDBR-CMUO2, SDBR-CMUO8, and SDBR-CMU20). All fungal strains were able to solubilize the insoluble mineral form of calcium, copper, cobalt, iron, manganese, magnesium, zinc, phosphorus, feldspar, and kaolin in the agar plate assay. Consequently, the highest phosphate solubilization strains (SDBR-CMUI1, SDBR-CMUI4, and SDBR-CMUO2) of each fungal species were selected for evaluation of their plant growth enhancement ability on Arabidopsis and onion in laboratory and greenhouse experiments, respectively. Plant disease symptoms were not found in any treatment of fungal inoculation and control. All selected fungal strains significantly increased the leaf number, leaf length, dried biomass of shoot and root, chlorophyll content, and cellular inorganic phosphate content in both Arabidopsis and onion plants under supplementation with insoluble mineral phosphate. Additionally, the inoculation of selected fungal strains also improved the yield and quercetin content of onion bulb. Thus, the selected strains reveal the potential in plant growth promotion agents that can be applied as a biofertilizer in the future.
Collapse
Affiliation(s)
- Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jens Christian Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Wipornpan Nuangmek
- Faculty of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
74
|
Effects of Abiotic Stress on Soil Microbiome. Int J Mol Sci 2021; 22:ijms22169036. [PMID: 34445742 PMCID: PMC8396473 DOI: 10.3390/ijms22169036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
Collapse
|
75
|
Fallah N, Yang Z, Tayyab M, Zhang C, Abubakar AY, Lin Z, Pang Z, Allison A, Zhang H. Depth-dependent influence of biochar application on the abundance and community structure of diazotrophic under sugarcane growth. PLoS One 2021; 16:e0253970. [PMID: 34280207 PMCID: PMC8289083 DOI: 10.1371/journal.pone.0253970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Despite progress in understanding diazotrophic distribution in surface soils, few studies have investigated the distribution of diazotrophic bacteria in deeper soil layers. Here, we leveraged high-throughput sequencing (HTS) of nifH genes obtained to assess the influence of biochar amended soil (BC) and control (CK), and soil depths (0–20, 20–40 and 40–60 cm) on diazotrophic abundance and community structures, soil enzyme activities and physio-chemical properties. Multivariate ANOVA analysis revealed that soil depth had profound impact on majority of the soil parameters measured than fertilization. Although soil physio-chemical properties, enzymes activities, diazotrophic genera and enriched operational taxonomic units (OTUs) were significantly influenced across the entire soil profiles, we also observed that BC amended soil significantly increased cane stalk height and weight, nitrate (NO3-), ammonium (NH4+), organic matter (OM), total carbon (TC) and available potassium (AK), and enhanced diazotrophic genera in soil depth 0–20 cm compared to CK treatment. Soil TC, total nitrogen (TN), OM and NH4+ were the major impact factors shifting diazotrophic community structures in soil depth 0–20 cm. Overall, these results were more pronounced in 0–20 cm soil depth in BC than CK treatment.
Collapse
Affiliation(s)
- Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqi Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Caifang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ahmad Yusuf Abubakar
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaoli Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Americ Allison
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- * E-mail:
| |
Collapse
|
76
|
Gao S, He P, Lin T, Liu H, Guo B, Lin H, Hu Y, Chen Q, Xiang P, Zou L, Li X, Xiong Z, Lin J. Consecutive soybean (Glycine max) planting and covering improve acidified tea garden soil. PLoS One 2021; 16:e0254502. [PMID: 34255775 PMCID: PMC8277052 DOI: 10.1371/journal.pone.0254502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
Planting soybeans (Glycine max (L.) Merr.) in tea gardens decreased soil pH in theory but increased it in practice. This controversy was addressed in this study by treating the tea garden soil consecutively with different parts of a soybean cover crop: aboveground soybean (ASB) parts, underground soybean (USB) root residues, and the whole soybean (WSB) plants. In comparison with the control, the soil pH increased significantly after the third ASB and WSB treatments, but there was no significant change in the soil pH in the USB treatment. Concordantly, the soil exchangeable acidity decreased significantly and the soil exchangeable bases increased significantly in the ASB and WSB treatments. The exchangeable acidity increased in the USB treatment, but the amount of the increased acidity was less than that of the increased bases in the ASB treatment, resulting in a net increase in the exchangeable bases in the WSB treatment. Soybean planting and covering also increased the microbial richness and abundance significantly, which led to significantly more soil organic matters. Exchangeable K+ and Mg2+, and soil organic matters played significantly positive roles and exchangeable Al3+ played negative roles in improving soil pH. Our data suggest that consecutive plantings of soybean cover crop increase the pH of the acidified tea garden soil.
Collapse
Affiliation(s)
- Shuilian Gao
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| | - Peng He
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| | - Tianxiu Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| | - Haijuan Liu
- The College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Guo
- The College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huiling Lin
- The College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yunfei Hu
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| | - Qianjie Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| | - Ping Xiang
- The College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lifeng Zou
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Zhongguo Xiong
- School of Plant Sciences, BIO5 and College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Jinke Lin
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, Fujian, China
| |
Collapse
|
77
|
Aminzadeh M, Bardi MJ, Aminirad H. A new approach to enhance the conventional two-phase anaerobic co-digestion of food waste and sewage sludge. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:295-306. [PMID: 34150236 PMCID: PMC8172668 DOI: 10.1007/s40201-020-00603-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Two-phase anaerobic co-digestion (TAcoD) is a versatile technology for the simultaneous treatment of organic materials and biogas production. However, the produced digestate and supernatant of the system contain heavy metals and organic substances that need to be treated prior to discharge or land application. Therefore, in this study, an innovative TAcoD for organic fertilizer and high supernatant quality achievement was proposed. METHODS In the conventional TAcoD, mixed sewage sludge (SS) and food waste (FW) were first hydrolyzed in the acidogenic reactor, and then the hydrolyzate substrate was subjected to the methanogenic reactor (TAcoD 1). In the modified TAcoD (TAcoD 2), only FW was fed into the acidogenic reactor, and the produced hydrolyzed solid was directly converted to the organic fertilizer, while the supernatant with high soluble chemical demand (SCOD) concentration was further co-digested with SS in the methanogenic reactor. RESULTS Although TAcoD 1 produced bio-methane yield and potential energy of 56.18% and 1.6-fold higher than TAcoD 2, the economical valorization of TAcoD 2 was 9-fold of that from TAcoD 1. The supernatant quality of TAcoD 2 was far better than TAcoD 1, since the SCOD, total nitrogen (TN), and total phosphor (TP) removal in TAcoD 2 and TAcoD 1 were 94.3%, 79.4%, 90.7%, and 68.9%, 28%, 46%, respectively. In terms of solid waste management, the modified TAcoD converted FW to organic fertilizer and achieved a solid reduction of 43.62% higher than that of conventional TAcoD. CONCLUSIONS This new modification in two-phase anaerobic co-digestion of food waste and sewage sludge provides a potentially feasible practice for simultaneous bio-methane, organic fertilizer, and high supernatant quality achievement. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00603-8.
Collapse
Affiliation(s)
- Mohammad Aminzadeh
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Mohammad Javad Bardi
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hassan Aminirad
- Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
78
|
Shang JY, Wu Y, Huo B, Chen L, Wang ET, Sui Y, Chen WF, Tian CF, Chen WX, Sui XH. Potential of Bradyrhizobia inoculation to promote peanut growth and beneficial Rhizobacteria abundance. J Appl Microbiol 2021; 131:2500-2515. [PMID: 33966321 DOI: 10.1111/jam.15128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
AIMS To investigate the effects of three symbiotic Bradyrhizobium strains on peanut growth and on rhizobacterial communities in flowering and harvest stages in an organic farm, also to evaluate the role of plant development in influencing peanut rhizobacterial microbiota and correlations among the inoculants, rhizobacterial communities and plant growth. METHODS AND RESULTS Peanut seeds were inoculated with three individual Bradyrhizobium strains, plant growth performance was measured in two developmental stages and rhizobacterial communities were analysed by Illumina sequencing of rpoB gene amplicons from peanut rhizosphere. The three bradyrhizobial inoculants significantly increased the nodule numbers and aboveground fresh weight of peanut plants regardless of the different growth stages, and the pod yields were increased to some extent and significantly positively correlated with Bradyrhizobium abundances in rhizosphere. Principal coordinate analysis indicated that the rhizobacterial communities were strongly influenced by the inoculation and peanut developmental stages. The bradyrhizobia inoculation increased relative abundances of potentially beneficial bacteria in peanut rhizosphere, and also altered rhizobacterial co-occurrence association networks and important network hub taxa. Similarly, plant development also significantly influenced the structure, composition and co-occurrence association networks of rhizobacterial communities. CONCLUSIONS Bradyrhizobial inoculants increased peanut growth and yields, they and plant development affected the assembly of peanut rhizobacterial communities. SIGNIFICANCE AND IMPACT OF THE STUDY Rhizobial inoculants improved the host plant performance that might also be associated with the dynamic changes in rhizobacterial community except enhancing the biological nitrogen fixation and helps to profoundly understand the mechanism how rhizobia inoculants improve plant growth and yields.
Collapse
Affiliation(s)
- J Y Shang
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - Y Wu
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - B Huo
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - L Chen
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - E T Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D. F., México
| | - Y Sui
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - W F Chen
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - C F Tian
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - W X Chen
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| | - X H Sui
- State Key Lab for Agrobiotechnology, MOA Key Lab of Soil Microbiology, and College of Biological Sciences, China Agricultural University, Beijing, PR China
| |
Collapse
|
79
|
Wongsaroj L, Chanabun R, Tunsakul N, Prombutara P, Panha S, Somboonna N. First reported quantitative microbiota in different livestock manures used as organic fertilizers in the Northeast of Thailand. Sci Rep 2021; 11:102. [PMID: 33420281 PMCID: PMC7794567 DOI: 10.1038/s41598-020-80543-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023] Open
Abstract
Northeastern Thailand relies on agriculture as a major economic activity, and has used high levels of agrochemicals due to low facility, and salty sandy soil. To support soil recovery and sustainable agriculture, local farmers have used organic fertilizers from farmed animal feces. However, knowledge about these animal fecal manures remains minimal restricting their optimal use. Specifically, while bacteria are important for soil and plant growth, an abundance and a diversity of bacterial composition in these animal fecal manures have not been reported to allow selection and adjustment for a more effective organic fertilizer. This study thereby utilized metagenomics combined with 16S rRNA gene quantitative PCR (qPCR) and sequencing to analyze quantitative microbiota profiles in association with nutrients (N, P, K), organic matters, and the other physiochemical properties, of the commonly used earthworm manure and other manures from livestock animals (including breed and feeding diet variations) in the region. Unlike the other manures, the earthworm manure demonstrated more favorable nutrient profiles and physiochemical properties for forming fertile soil. Despite low total microbial biomass, the microbiota were enriched with maximal OTUs and Chao richness, and no plant pathogenic bacteria were found based on the VFDB database. The microbial metabolic potentials supported functions to promote crop growth, such as C, N and P cyclings, xenobiotic degradation, and synthesis of bioactive compounds. Pearson's correlation analyses indicated that the quantitative microbiota of the earthworm manure were clustered in the same direction as N, and conductivity, salinity, and water content were essential to control the microbiota of animal manures.
Collapse
Affiliation(s)
- Lampet Wongsaroj
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratmanee Chanabun
- Program in Animal Science, Faculty of Agriculture Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, 47000, Thailand
| | - Naruemon Tunsakul
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pinidphon Prombutara
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somsak Panha
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Centre of Excellence on Biodiversity, Ministry of Higher of Education Science Research and Innovation/Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
80
|
Zarraonaindia I, Martínez-Goñi XS, Liñero O, Muñoz-Colmenero M, Aguirre M, Abad D, Baroja-Careaga I, de Diego A, Gilbert JA, Estonba A. Response of Horticultural Soil Microbiota to Different Fertilization Practices. PLANTS 2020; 9:plants9111501. [PMID: 33171888 PMCID: PMC7694448 DOI: 10.3390/plants9111501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023]
Abstract
Environmentally friendly agricultural production necessitates manipulation of microbe-plant interactions, requiring a better understanding of how farming practices influence soil microbiota. We studied the effect of conventional and organic treatment on soil bacterial richness, composition, and predicted functional potential. 16S rRNA sequencing was applied to soils from adjacent plots receiving either a synthetic or organic fertilizer, where two crops were grown within treatment, homogenizing for differences in soil properties, crop, and climate. Conventional fertilizer was associated with a decrease in soil pH, an accumulation of Ag, Mn, As, Fe, Co, Cd, and Ni; and an enrichment of ammonia oxidizers and xenobiotic compound degraders (e.g., Candidatus Nitrososphaera, Nitrospira, Bacillus, Pseudomonas). Soils receiving organic fertilization were enriched in Ti (crop biostimulant), N, and C cycling bacteria (denitrifiers, e.g., Azoarcus, Anaerolinea; methylotrophs, e.g., Methylocaldum, Methanosarcina), and disease-suppression (e.g., Myxococcales). Some predicted functions, such as glutathione metabolism, were slightly, but significantly enriched after a one-time manure application, suggesting the enhancement of sulfur regulation, nitrogen-fixing, and defense of environmental stressors. The study highlights that even a single application of organic fertilization is enough to originate a rapid shift in soil prokaryotes, responding to the differential substrate availability by promoting soil health, similar to recurrent applications.
Collapse
Affiliation(s)
- Iratxe Zarraonaindia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Bizkaia, Spain
- Correspondence:
| | - Xabier Simón Martínez-Goñi
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
| | - Olaia Liñero
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (O.L.); (A.d.D.)
| | - Marta Muñoz-Colmenero
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
| | - Mikel Aguirre
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
| | - David Abad
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
| | - Igor Baroja-Careaga
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
| | - Alberto de Diego
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (O.L.); (A.d.D.)
| | - Jack A. Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
| | - Andone Estonba
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (X.S.M.-G.); (M.M.-C.); (M.A.); (D.A.); (I.B.-C.); (A.E.)
| |
Collapse
|
81
|
Xianchen Z, Huiguang J, Xiaochun W, Yeyun L. The effects of different types of mulch on soil properties and tea production and quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5292-5300. [PMID: 32542650 DOI: 10.1002/jsfa.10580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tea is an important economic crop in China. Mulching, a modern agricultural practice, can modify the soil microenvironment and maintain the crop yield. RESULTS To investigate the effect of different mulching modes on tea plant growth, filed experiments were conducted in a Shizipu tea plantation located in Langxi Country (Xuanchen City, Anhui Province, China). Five treatments were carried out in a randomized complete block arrangement: (i) clean tillage (control); (ii) black plastic film; (iii) weed barrier fabric; (iv) rice straw mulch; and (v) intercropping with Vulpia myuros. The effects of different mulch modes on soil temperature, water moisture, soil compactness, root activity, soil enzyme activity and nutrition status on tea yield, quality and economic benefits were compared at the harvest stage. In the present study, compared with other mulch treatments, intercropping with V. myuros significantly reduced the topsoil temperature (to an optimum temperature) and soil compactness, and increased the water holding capacity in the deep soil layer, which contributed to increased tea root activity and respiration. Furthermore, intercropping with V. myuros significantly increased soil enzymes activity, soil organic matter, and the available nitrogen and phosphorus concentrations in the main root zone. Therefore, the stronger tea root activity accelerated nutrition uptake and increased the tea yield and quality-related components of the tea, thus resulting in a larger average net income. CONCLUSION Intercropping with V. myuros could serve as a profitable agricultural method for tea production. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Xianchen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jiang Huiguang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wan Xiaochun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Li Yeyun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
82
|
Metagenomic Analysis Exploring Taxonomic and Functional Diversity of Soil Microbial Communities in Sugarcane Fields Applied with Organic Fertilizer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9381506. [PMID: 33145361 PMCID: PMC7596465 DOI: 10.1155/2020/9381506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Organic fertilizers are critically important to soil fertility, microbial communities, and sustainable agricultural strategies. We compared the effect of two fertilizer groups (organic+chemical fertilizer: OM, chemical fertilizer: CK) on sugarcane growth, by observing the difference in microbial communities and functions, soil nutrient status, and agronomic characters of sugarcane. The results showed that the sugar content and yield of sugarcane increased significantly under organic fertilizer treatment. We believe that the increased soil nutrient status and soil microorganisms are the reasons for this phenomenon. In addition, redundancy analysis (RDA) shows that the soil nutrient condition has a major impact on the soil microbial community. In comparison with CK, the species richness of Acidobacteria, Proteobacteria, Chloroflexi, and Gemmatimonadetes as well as the functional abundance of nucleotide metabolism and energy metabolism increased significantly in the OM field. Moreover, compared with CK, genes related to the absorption and biosynthesis of sulfate were more prominent in OM. Therefore, consecutive organic fertilizer application could be an effective method in reference to sustainable production of sugarcane.
Collapse
|
83
|
Iqbal A, He L, Ali I, Ullah S, Khan A, Khan A, Akhtar K, Wei S, Zhao Q, Zhang J, Jiang L. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS One 2020; 15:e0238934. [PMID: 33027309 PMCID: PMC7540855 DOI: 10.1371/journal.pone.0238934] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Excessive reliance on chemical fertilizer (CF) in conventional farming is a serious concern owing to its negative effects on soil health, the environment, and crop productivity. Organic manure is an alternative source of fertilizer to reduce the amount of CF usage in agriculture, decrease environmental pollution, and ensure sustainable crop production. This study assessed the integrated effect of poultry manure (PM) and cattle manure (CM) with CF on soil properties, plant physiology, and rice grain yield. Additionally, the difference in pre-and post-anthesis dry matter (DM) and nitrogen (N) accumulation and their relationship with grain yield was also determined. Pot experiments were performed in the early and late growing season at the experimental station of Guangxi University, China, in 2018. A total of six treatments, i.e., T1-CF0; T2-100% CF; T3-60% CM + 40% CF; T4-30% CM + 70% CF; T5-60% PM + 40% CF, and T6-30% PM + 70% CF were used in this pot experiment. Results showed that T6 enhanced leaf photosynthetic efficiency by 11% and 16%, chlorophyll content by 8% and 11%, panicle number by 12% and 16%, and grain yield by 11% and 15% in the early and late seasons, respectively, compared to T2. Similarly1, post-anthesis N and DM accumulation, N uptake, and soil properties (i.e., soil organic carbon, total N, and bulk density) were improved with integrated CF and manure treatments over the sole CF treatments. Interestingly, increases in post-anthesis N uptake and DM production were further supported by enhanced N-metabolizing enzyme activities (i.e., nitrate reductase, glutamine synthetase, and glutamate oxoglutarate aminotransferase during the grain-filling period in combined treatments. In-addition, the linear regression analysis showed that post-anthesis DM (R2 = 0.95) and N (R2 = 0.96) accumulation were highly associated with grain yield of rice. Thus, the combination of 30% N from PM or CM with 70% N from CF (i.e., urea) is a promising option for improvement of soil quality and rice grain yield. Furthermore, our study provides a sustainable nutrient management plan to increase rice yield with high N use efficiency.
Collapse
Affiliation(s)
- Anas Iqbal
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China.,Department of Agronomy, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Liang He
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China.,Department of Agronomy, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Saif Ullah
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| | - Ahmad Khan
- Department of Agronomy, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Aziz Khan
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shangqin Wei
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| | - Quan Zhao
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| | - Jing Zhang
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Farming Systems College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
84
|
Metagenomic profiling of the community structure, diversity, and nutrient pathways of bacterial endophytes in maize plant. Antonie van Leeuwenhoek 2020; 113:1559-1571. [PMID: 32803452 DOI: 10.1007/s10482-020-01463-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023]
Abstract
This study investigated the diversity, structure and nutrient pathways of the root-associated bacterial endophytes of maize plant cultivated using different fertilizers to verify the claim that inorganic fertilizers have some toxic effects on plant microbiome and not are ecofriendly. Whole DNA was extracted from the roots of maize plants cultivated with organic fertilizer, inorganic fertilizer and maize planted without any fertilizer at different planting sites in an experimental field and sequenced using shotgun metagenomics. Our results using the Subsystem database revealed a total of 28 phyla and different nutrient pathways in all the samples. The major phyla observed were Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, Tenericutes, Planctomycetes, Cyanobacteria, and Chlorobi. Bacteroidetes dominated maize from organic fertilizer sites, Firmicutes dominated the no fertilizers site while Proteobacteria dominated Inorganic fertilizer. The diversity analysis showed that the abundance of endophytic bacteria in all the sites is in the order organic fertilizer (FK) > no fertilizer (CK) > inorganic fertilizer (NK). Furthermore, the major nutrient cycling pathways identified are linked with nitrogen and phosphorus metabolism which were higher in FK samples. Going by the results obtained, this study suggests that organic fertilizer could be a boost to sustainable agricultural practices and should be encouraged. Also, a lot of novel endophytic bacteria groups were identified in maize. Mapping out strategies to isolate and purify this novel endophytic bacteria could help in promoting sustainable agriculture alongside biotechnological applications in future.
Collapse
|
85
|
Evaluation of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea ( Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorganisms 2020; 8:microorganisms8081168. [PMID: 32752164 PMCID: PMC7465209 DOI: 10.3390/microorganisms8081168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022] Open
Abstract
Some soil microorganisms, especially bacteria and mycorrhizal fungi, play a role in the promotion of plant growth. However, plant growth promotion involving yeasts in soil has not yet been extensively investigated. This study aimed to isolate and identify yeast strains obtained from soils of the Assam tea plant (Camellia sinensis var. assamica) in northern Thailand and to investigate their plant growth promoting capabilities. A total of 42 yeast strains were obtained and identified by analysis of the D1/D2 domain of the large subunit ribosomal RNA gene. We identified 35 strains of six species belonging to the phylum Ascomycota, namely Aureobasidium melanogenum, Kazachstania aquatica, Saturnispora diversa, Saturnispora sekii, Schwanniomyces pseudopolymorphus and Wickerhamomyces anomalus, and six species were determined to belong to the phylum Basidiomycota, namely Apiotrichum scarabaeorum, Curvibasidium pallidicorallinum, Papiliotrema laurentii, Rhodosporidiobolus ruineniae, Trichosporon asahii and Trichosporon coremiiforme. Seven strains were representative of potential new species and belonged to the genera Galactomyces and Wickerhamomyces. A total of 28 strains were found to produce indole-3-acetic acid (IAA) in a range of 2.12 to 37.32 mg/L, with the highest amount of IAA produced by R. ruineniae SDBR-CMU-S1-03. All yeast strains were positive in terms of ammonia production, and only eight strains were positive for siderophore production. Two yeast species, P. laurentii and W. anomalus, were able to solubilize the insoluble form of calcium and zinc. The ability to produce amylase, endogulcanase, lipase, pectinase, protease and xylanase was dependent upon the yeast species and strain involved.
Collapse
|
86
|
Lau ET, Tani A, Khew CY, Chua YQ, Hwang SS. Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiol Res 2020; 240:126549. [PMID: 32688172 DOI: 10.1016/j.micres.2020.126549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
Black pepper production in Malaysia was restricted by various diseases. Hazardous chemical products appear to be the best solution to control diseases in black pepper cultivation. However, persistence of chemical residues in peppercorns could affect the quality of exports and consumptions. Application of fertilizers is crucial to sustain pepper growth and high yield. But, continuous use of chemical fertilizers could affect the soil ecosystem and eventually restrict nutrient uptake by pepper roots. Therefore, we propose biological approaches as an alternative solution instead of chemical products to sustain pepper cultivation in Malaysia. In this study, we have isolated a total of seven indigenous rhizobacteria antagonistic to soil-borne Fusarium solani, the causal fungus of slow decline, the most serious debilitating disease of black pepper in Malaysia. The isolated bacteria were identified as Bacillus subtilis, Bacillus siamensis, Brevibacillus gelatini, Pseudomonas geniculata, Pseudomonas beteli, Burkholderia ubonensis and Burkholderia territorii. These bacteria were effective in production of antifungal siderophore with the amount of 53.4 %-73.5 % per 0.5 mL of cell-free supernatants. The bacteria also produced appreciable amount of chitinase with chitinolytic index was ranged from 1.19 to 1.76. The bacteria have shown phosphate solubilizing index within 1.61 to 2.01. They were also efficient in ACC deaminase (0.52 mM-0.62 mM) and ammonia (60.3 mM-75.3 mM) production. The isolated antagonists were efficacious in stimulation of black pepper plant growth and root development through IAA (10.5 μg/mL-42.6 μg/mL) secretion. In conclusion, the isolated rhizobacteria are potent to be developed not only as biocontrol agents to minimize the utilization of hazardous chemicals in black pepper disease management, but also developed as bio-fertilizers to improve black pepper plant growth due to their capabilities in plant growth-promotion.
Collapse
Affiliation(s)
- Ee Tiing Lau
- Division of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia; School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Choy Yuen Khew
- Division of Research and Quality Development, Malaysian Pepper Board, Lot 1115, Jalan Utama, Pending Industrial Area, 93916 Kuching, Sarawak, Malaysia
| | - Yee Qin Chua
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Siaw San Hwang
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| |
Collapse
|
87
|
Singh A, Karmegam N, Singh GS, Bhadauria T, Chang SW, Awasthi MK, Sudhakar S, Arunachalam KD, Biruntha M, Ravindran B. Earthworms and vermicompost: an eco-friendly approach for repaying nature's debt. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1617-1642. [PMID: 31974693 DOI: 10.1007/s10653-019-00510-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
The steady increase in the world's population has intensified the need for crop productivity, but the majority of the agricultural practices are associated with adverse effects on the environment. Such undesired environmental outcomes may be mitigated by utilizing biological agents as part of farming practice. The present review article summarizes the analyses of the current status of global agriculture and soil scenarios; a description of the role of earthworms and their products as better biofertilizer; and suggestions for the rejuvenation of such technology despite significant lapses and gaps in research and extension programs. By maintaining a close collaboration with farmers, we have recognized a shift in their attitude and renewed optimism toward nature-based green technology. Based on these relations, it is inferred that the application of earthworm-mediated vermitechnology increases sustainable development by strengthening the underlying economic, social and ecological framework.
Collapse
Affiliation(s)
- Archana Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 011, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India
| | - Gopal Shankar Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 011, India.
| | - Tunira Bhadauria
- Department of Zoology, Feroze Gandhi College, Raebareli, Uttar Pradesh, 229 001, India
| | - Soon Woong Chang
- Department of Evironmental Energy and Engineering, Kyonggi University, Youngtong Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Sivasubramaniam Sudhakar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627 012, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM institute of science and technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Muniyandi Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Balasubramani Ravindran
- Department of Evironmental Energy and Engineering, Kyonggi University, Youngtong Gu, Suwon, 16227, South Korea.
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
88
|
Zhang J, Li B, Zhang J, Christie P, Li X. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS One 2020; 15:e0230593. [PMID: 32187218 PMCID: PMC7080258 DOI: 10.1371/journal.pone.0230593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/03/2020] [Indexed: 11/18/2022] Open
Abstract
Low soil fertility, high rates of fertilizer application and low yields and quality are major problems in intensive banana production in acid soils of south China. A field experiment was carried out for two years to determine the optimum management practices for maximizing soil health and banana yield and quality. The experiment consisted of an unamended control (CK) and lime (Lime), calcium magnesium phosphate fertilizer (CMP), organic fertilizer (OF), and organic fertilizer combined with calcium magnesium phosphate fertilizer (OFC) treatments. Soil nutrient concentrations and banana shoot biomass, nutrient uptake, yield and fruit quality were determined. Application of lime and CMP was found to increase soil pH and nutrient availability and increase banana yield. Yet, the banana biomass and yields in the Lime and CMP treatments were significantly lower than those in the OF and OFC treatments in which soil organic matter (SOM) content increased. Total soluble solids and soluble sugar contents increased in the CMP and organic fertilizer treatments. A consistent increase in Mg concentrations in banana leaves over the two years in the CMP and organic fertilizer treatments indicates that Mg is essential for banana production and quality. Short-term adding Mg from banana corms increased total soluble solids and soluble sugar content. The application of organic fertilizer combined with CMP or Mg solution is therefore recommended to increase soil health and promote the yield and quality of banana in intensively managed plantations in subtropical regions.
Collapse
Affiliation(s)
- Jiangzhou Zhang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Baoshen Li
- Guangxi Jinsui Agricultural Group Co., Ltd., Nanning, China
| | - Junling Zhang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Peter Christie
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiaolin Li
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
89
|
Li J, Liu L. Determining the carrying capacity and environmental risks of livestock and poultry breeding in coastal areas of eastern China: an empirical model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7984-7995. [PMID: 31889293 DOI: 10.1007/s11356-019-07517-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The scale of regional livestock and poultry breeding (LPB) is generally not determined by the supporting capacity (fodder supply), but by the environmental carrying capacity of wastes from the LPB. The soil's own nutrient-supplying capacity used to be overlooked, which consequently produced an inaccurate result of carrying capacity estimation of the LPB. An empirical method was, therefore, employed to evaluate the soil's own nutrient-supplying capacity and further determine the carrying capacity and environmental risks of the LPB accurately. Thirteen counties along the coast of Jiangsu were selected to conduct this study, according to the framework of planting-breeding balance. Our results indicate that, including the soil's own nutrient-supplying capacity in the estimation of the carrying capacity of the LPB, it can reduce the original carrying capacity by 50%. This suggests that our empirical method can significantly increase the accuracy of estimating the carrying capacity of the LPB. The carrying capacity of the LPB in the study area varies from 1.5 to 48.08 pigs/hm2, with a mean of 14 pigs/hm2 based on phosphorus (P) balance. Furthermore, four sub-regions (Ganyu, Dongtai, Dafeng, and Guannan) that have a high P pollution risk should focus on controlling the scale of the LPB. The nitrogen (N) pollution risk in the study area is generally low. Results suggest that the soil's own nutrient-supplying capacity plays an important role in estimating the carrying capacity of the LPB accurately. This study can provide insights on reducing environmental risks of the LPB, which may be beneficial for decision makers.
Collapse
Affiliation(s)
- Jianguo Li
- School of Geography, Geomatics, and Planning, Jiangsu Normal University, No.101 Shanghai Road, Tongshan District, Xuzhou City, 221116, Jiangsu Province, People's Republic of China.
| | - Lili Liu
- School of Geography, Geomatics, and Planning, Jiangsu Normal University, No.101 Shanghai Road, Tongshan District, Xuzhou City, 221116, Jiangsu Province, People's Republic of China.
| |
Collapse
|
90
|
Adaikpoh BI, Akbar S, Albataineh H, Misra SK, Sharp JS, Stevens DC. Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Front Microbiol 2020; 11:34. [PMID: 32047489 PMCID: PMC6997564 DOI: 10.3389/fmicb.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Chemical exchanges between plants and microbes within rhizobiomes are critical to the development of community structure. Volatile root exudates such as the phytohormone methyljasmonate (MeJA) contribute to various plant stress responses and have been implicated to play a role in the maintenance of microbial communities. Myxobacteria are competent predators of plant pathogens and are generally considered beneficial to rhizobiomes. While plant recruitment of myxobacteria to stave off pathogens has been suggested, no involved chemical signaling processes are known. Herein we expose predatory myxobacteria to MeJA and employ untargeted mass spectrometry, motility assays, and RNA sequencing to monitor changes in features associated with predation such as specialized metabolism, swarm expansion, and production of lytic enzymes. From a panel of four myxobacteria, we observe the most robust metabolic response from plant-associated Archangium sp. strain Cb G35 with 10 μM MeJA impacting the production of at least 300 metabolites and inducing a ≥ fourfold change in transcription for 56 genes. We also observe that MeJA induces A. sp. motility supporting plant recruitment of a subset of the investigated micropredators. Provided the varying responses to MeJA exposure, our observations indicate that MeJA contributes to the recruitment of select predatory myxobacteria suggesting further efforts are required to explore the microbial impact of plant exudates associated with biotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - D. Cole Stevens
- Department of BioMolecular Sciences, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|