51
|
Alout H, Yameogo B, Djogbénou LS, Chandre F, Dabiré RK, Corbel V, Cohuet A. Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J Infect Dis 2014; 210:1464-70. [PMID: 24829465 DOI: 10.1093/infdis/jiu276] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite its epidemiological importance, the impact of insecticide resistance on vector-parasite interactions and malaria transmission is poorly understood. Here, we explored the impact of Plasmodium infection on the level of insecticide resistance to dichlorodiphenyltrichloroethane (DDT) in field-caught Anopheles gambiae sensu stricto homozygous for the kdr mutation. Results showed that kdr homozygous mosquitoes that fed on infectious blood were more susceptible to DDT than mosquitoes that fed on noninfectious blood during both ookinete development (day 1 after the blood meal) and oocyst maturation (day 7 after the blood meal) but not during sporozoite invasion of the salivary glands. Plasmodium falciparum infection seemed to impose a fitness cost on mosquitoes by reducing the ability of kdr homozygous A. gambiae sensu stricto to survive exposure to DDT. These results suggest an interaction between Plasmodium infection and the insecticide susceptibility of mosquitoes carrying insecticide-resistant alleles. We discuss this finding in relation to vector control efficacy.
Collapse
Affiliation(s)
- Haoues Alout
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, UM1-UM2-CNRS5290-IRD 224, Montpellier, France Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Bienvenue Yameogo
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | | | - Fabrice Chandre
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, UM1-UM2-CNRS5290-IRD 224, Montpellier, France
| | | | - Vincent Corbel
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, UM1-UM2-CNRS5290-IRD 224, Montpellier, France Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Anna Cohuet
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, UM1-UM2-CNRS5290-IRD 224, Montpellier, France Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
52
|
Sangare I, Dabire R, Yameogo B, Da DF, Michalakis Y, Cohuet A. Stress dependent infection cost of the human malaria agent Plasmodium falciparum on its natural vector Anopheles coluzzii. INFECTION GENETICS AND EVOLUTION 2014; 25:57-65. [PMID: 24747607 DOI: 10.1016/j.meegid.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/01/2014] [Accepted: 04/08/2014] [Indexed: 01/25/2023]
Abstract
Unraveling selective forces that shape vector-parasite interactions has critical implications for malaria control. However, it remains unclear whether Plasmodium infection induces a fitness cost to their natural mosquito vectors. Moreover, environmental conditions are known to affect infection outcome and may impact the effect of infection on mosquito fitness. We investigated in the laboratory the effects of exposition to and infection by field isolates of Plasmodium falciparum on fecundity and survival of a major vector in the field, Anopheles coluzzii under different conditions of access to sugar resources after blood feeding. The results evidenced fitness costs induced by exposition and infection. When sugar was available after blood meal, infected and exposed mosquitoes had either reduced or equal to survival to unexposed mosquitoes while fecundity was either increased or decreased depending on the blood donor. Under strong nutritional stress, survival was reduced for exposed and infected mosquitoes in all assays. We therefore provide here evidence of an environmental-dependant reduced survival in mosquitoes exposed to infection in a natural and one of the most important parasite-mosquito species associations for human malaria transmission.
Collapse
Affiliation(s)
- I Sangare
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | - R Dabire
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso.
| | - B Yameogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso.
| | - D F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | - Y Michalakis
- Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | - A Cohuet
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberté, 01 BP 545 Bobo Dioulasso 01, Burkina Faso; Institut de Recherche pour le Développement, unité MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
53
|
Zhang J, Zhang S, Wang Y, Xu W, Zhang J, Jiang H, Huang F. Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito. PLoS One 2014; 9:e89473. [PMID: 24586804 PMCID: PMC3933544 DOI: 10.1371/journal.pone.0089473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/22/2014] [Indexed: 12/30/2022] Open
Abstract
Background Antimalarial drugs may impact mosquito’s defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. Methodology/Principal Findings We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Conclusions/Significance Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug’s impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Shuguang Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yanyan Wang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Wenyue Xu
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Jingru Zhang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail: (FH); (HJ)
| | - Fusheng Huang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
- * E-mail: (FH); (HJ)
| |
Collapse
|
54
|
Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, Billingsley PF. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit Vectors 2013; 6:345. [PMID: 24326030 PMCID: PMC4029273 DOI: 10.1186/1756-3305-6-345] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/04/2013] [Indexed: 01/05/2023] Open
Abstract
Background Mosquito fitness is determined largely by body size and nutritional reserves. Plasmodium infections in the mosquito and resultant transmission of malaria parasites might be compromised by the vector’s nutritional status. We studied the effects of nutritional stress and malaria parasite infections on transmission fitness of Anopheles mosquitoes. Methods Larvae of Anopheles gambiae sensu stricto and An. stephensi were reared at constant density but with nutritionally low and high diets. Fitness of adult mosquitoes resulting from each dietary class was assessed by measuring body size and lipid, protein and glycogen content. The size of the first blood meal was estimated by protein analysis. Mosquitoes of each dietary class were fed upon a Plasmodium yoelii nigeriensis-infected mouse, and parasite infections were determined 5 d after the infectious blood meal by dissection of the midguts and by counting oocysts. The impact of Plasmodium infections on gonotrophic development was established by dissection. Results Mosquitoes raised under low and high diets emerged as adults of different size classes comparable between An. gambiae and An. stephensi. In both species low-diet females contained less protein, lipid and glycogen upon emergence than high-diet mosquitoes. The quantity of larval diet impacted strongly upon adult blood feeding and reproductive success. The prevalence and intensity of P. yoelii nigeriensis infections were reduced in low-diet mosquitoes of both species, but P. yoelii nigeriensis impacted negatively only on low-diet, small-sized An. gambiae considering survival and egg maturation. There was no measurable fitness effect of P. yoelii nigeriensis on An. stephensi. Conclusions Under the experimental conditions, small-sized An. gambiae expressed high mortality, possibly caused by Plasmodium infections, the species showing distinct physiological concessions when nutrionally challenged in contrast to well-fed, larger siblings. Conversely, An. stephensi was a robust, successful vector regardless of its nutrional status upon emergence. The data suggest that small-sized An. gambiae, therefore, would contribute little to malaria transmission, whereas this size effect would not affect An. stephensi.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University, PO Box 8031, 6700, EH Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
55
|
Marie A, Boissière A, Tsapi MT, Poinsignon A, Awono-Ambéné PH, Morlais I, Remoue F, Cornelie S. Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae. Malar J 2013; 12:224. [PMID: 23819831 PMCID: PMC3707787 DOI: 10.1186/1475-2875-12-224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/04/2013] [Indexed: 12/15/2022] Open
Abstract
Background Evaluation of malaria sporozoite rates in the salivary glands of Anopheles gambiae is essential for estimating the number of infective mosquitoes, and consequently, the entomological inoculation rate (EIR). EIR is a key indicator for evaluating the risk of malaria transmission. Although the enzyme-linked immunosorbent assay specific for detecting the circumsporozoite protein (CSP-ELISA) is routinely used in the field, it presents several limitations. A multiplex PCR can also be used to detect the four species of Plasmodium in salivary glands. The aim of this study was to evaluate the efficacy of a real-time quantitative PCR in detecting and quantifying wild Plasmodium falciparum in the salivary glands of An. gambiae. Methods Anopheles gambiae (n=364) were experimentally infected with blood from P. falciparum gametocyte carriers, and P. falciparum in the sporozoite stage were detected in salivary glands by using a real-time quantitative PCR (qPCR) assay. The sensitivity and specificity of this qPCR were compared with the multiplex PCR applied from the Padley method. CSP-ELISA was also performed on carcasses of the same mosquitoes. Results The prevalence of P. falciparum and the intensity of infection were evaluated using qPCR. This method had a limit of detection of six sporozoites per μL based on standard curves. The number of P. falciparum genomes in the salivary gland samples reached 9,262 parasites/μL (mean: 254.5; 95% CI: 163.5-345.6). The qPCR showed a similar sensitivity (100%) and a high specificity (60%) compared to the multiplex PCR. The agreement between the two methods was “substantial” (κ = 0.63, P <0.05). The number of P. falciparum-positive mosquitoes evaluated with the qPCR (76%), multiplex PCR (59%), and CSP-ELISA (83%) was significantly different (P <0.005). Conclusions The qPCR assay can be used to detect P. falciparum in salivary glands of An. gambiae. The qPCR is highly sensitive and is more specific than multiplex PCR, allowing an accurate measure of infective An. gambiae. The results also showed that the CSP-ELISA overestimates the sporozoite rate, detecting sporozoites in the haemolymph in addition to the salivary glands.
Collapse
Affiliation(s)
- Alexandra Marie
- Laboratoire MIVEGEC (UMR IRD 224 CNRS 5290 UM1-UM2), 911 Av, Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Marsden CD, Cornel A, Lee Y, Sanford MR, Norris LC, Goodell PB, Nieman CC, Han S, Rodrigues A, Denis J, Ouledi A, Lanzaro GC. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control. Evol Appl 2013; 6:706-20. [PMID: 23789035 PMCID: PMC3684749 DOI: 10.1111/eva.12056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022] Open
Abstract
Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations for such trials. However, population genetic studies are necessary to verify isolation. Here, we used a panel of genetic markers to assess for evidence of genetic isolation of two oceanic island populations of the African malaria vector, Anopheles gambiae s.s. We found no evidence of isolation between the Bijagós archipelago and mainland Guinea-Bissau, despite separation by distances beyond the known dispersal capabilities of this taxon. Conversely, the Comoros Islands appear to be genetically isolated from the East African mainland, and thus represent a location worthy of further investigation for field trials. Based on assessments of gene flow within and between the Comoros islands, the island of Grande Comore was found to be genetically isolated from adjacent islands and also exhibited local population structure, indicating that it may be the most suitable site for trials with existing genetic modification technologies.
Collapse
Affiliation(s)
- Clare D Marsden
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Lombardo F, Ghani Y, Kafatos FC, Christophides GK. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae. PLoS Pathog 2013; 9:e1003145. [PMID: 23382679 PMCID: PMC3561300 DOI: 10.1371/journal.ppat.1003145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.
Collapse
Affiliation(s)
- Fabrizio Lombardo
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (GKC); (FL)
| | - Yasmeen Ghani
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Fotis C. Kafatos
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - George K. Christophides
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (GKC); (FL)
| |
Collapse
|
58
|
Boissière A, Gimonneau G, Tchioffo MT, Abate L, Bayibeki A, Awono-Ambéné PH, Nsango SE, Morlais I. Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon. PLoS One 2013; 8:e54820. [PMID: 23349974 PMCID: PMC3551906 DOI: 10.1371/journal.pone.0054820] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum is the causative agent of malaria, a disease that kills almost one million persons each year, mainly in sub-Saharan Africa. P. falciparum is transmitted to the human host by the bite of an Anopheles female mosquito, and Anopheles gambiae sensus stricto is the most tremendous malaria vector in Africa, widespread throughout the afro-tropical belt. An. gambiae s.s. is subdivided into two distinct molecular forms, namely M and S forms. The two molecular forms are morphologically identical but they are distinct genetically, and differ by their distribution and their ecological preferences. The epidemiological importance of the two molecular forms in malaria transmission has been poorly investigated so far and gave distinct results in different areas. We have developed a real-time quantitative PCR (qPCR) assay, and used it to detect P. falciparum at the oocyst stage in wild An. gambiae s.s. mosquitoes experimentally infected with natural isolates of parasites. Mosquitoes were collected at immature stages in sympatric and allopatric breeding sites and further infected at the adult stage. We next measured the infection prevalence and intensity in female mosquitoes using the qPCR assay and correlated the infection success with the mosquito molecular forms. Our results revealed different prevalence of infection between the M and S molecular forms of An. gambiae s.s. in Cameroon, for both sympatric and allopatric populations of mosquitoes. However, no difference in the infection intensity was observed. Thus, the distribution of the molecular forms of An. gambiae s.s. may impact on the malaria epidemiology, and it will be important to monitor the efficiency of malaria control interventions on the two M and S forms.
Collapse
Affiliation(s)
- Anne Boissière
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Geoffrey Gimonneau
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Majoline T. Tchioffo
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Luc Abate
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Albert Bayibeki
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Parfait H. Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Isabelle Morlais
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
59
|
Sangare I, Michalakis Y, Yameogo B, Dabire R, Morlais I, Cohuet A. Studying fitness cost of Plasmodium falciparum infection in malaria vectors: validation of an appropriate negative control. Malar J 2013; 12:2. [PMID: 23282172 PMCID: PMC3543248 DOI: 10.1186/1475-2875-12-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/29/2012] [Indexed: 12/13/2022] Open
Abstract
Background The question whether Plasmodium falciparum infection affects the fitness of mosquito vectors remains open. A hurdle for resolving this question is the lack of appropriate control, non-infected mosquitoes that can be compared to the infected ones. It was shown recently that heating P. falciparum gametocyte-infected blood before feeding by malaria vectors inhibits the infection. Therefore, the same source of gametocyte-infected blood could be divided in two parts, one heated, serving as the control, the other unheated, allowing the comparison of infected and uninfected mosquitoes which fed on exactly the same blood otherwise. However, before using this method for characterizing the cost of infection to mosquitoes, it is necessary to establish whether feeding on previously heated blood affects the survival and fecundity of mosquito females. Methods Anopheles gambiae M molecular form females were exposed to heated versus non-heated, parasite-free human blood to mimic blood meal on non-infectious versus infectious gametocyte-containing blood. Life history traits of mosquito females fed on blood that was heat-treated or not were then compared. Results The results reveal that heat treatment of the blood did not affect the survival and fecundity of mosquito females. Consistently, blood heat treatment did not affect the quantity of blood ingested. Conclusions The study indicates that heat inactivation of gametocyte-infected blood will only inhibit mosquito infection and that this method is suitable for quantifying the fitness cost incurred by mosquitoes upon infection by P. falciparum.
Collapse
Affiliation(s)
- Ibrahim Sangare
- Institut de Recherche en Sciences de la Santé-Direction Régionale de l'Ouest, Bobo Dioulasso, Burkina Faso
| | | | | | | | | | | |
Collapse
|
60
|
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in Arthropods: Insight into the Machinery and Applications for Understanding the Pathogen-Vector Interface. Genes (Basel) 2012; 3:702-41. [PMID: 24705082 PMCID: PMC3899984 DOI: 10.3390/genes3040702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/06/2023] Open
Abstract
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase.
Collapse
Affiliation(s)
| | - Ard M Nijhof
- Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany.
| | - Wilma Fick
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| | - Christian Stutzer
- Department of Biochemistry, University of Pretoria, Pretoria, 0002, South Africa.
| | | |
Collapse
|
61
|
Lourenço AP, Martins JR, Guidugli-Lazzarini KR, Macedo LMF, Bitondi MMG, Simões ZLP. Potential costs of bacterial infection on storage protein gene expression and reproduction in queenless Apis mellifera worker bees on distinct dietary regimes. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1217-1225. [PMID: 22732231 DOI: 10.1016/j.jinsphys.2012.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity.
Collapse
Affiliation(s)
- Anete Pedro Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
62
|
Duncan AB, Agnew P, Noel V, Demettre E, Seveno M, Brizard JP, Michalakis Y. Proteome of Aedes aegypti in response to infection and coinfection with microsporidian parasites. Ecol Evol 2012; 2:681-94. [PMID: 22837817 PMCID: PMC3399191 DOI: 10.1002/ece3.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/01/2011] [Indexed: 12/24/2022] Open
Abstract
Hosts are frequently infected with more than one parasite or pathogen at any one time, but little is known as to how they respond to multiple immune challenges compared to those involving single infections. We investigated the proteome of Aedes aegypti larvae following infection with either Edhazardia aedis or Vavraia culicis, and coinfections involving both. They are both obligate intracellular parasites belonging to the phylum microsporidia and infect natural populations of Ae. aegypti. The results found some proteins only showing modified abundance in response to infections involving E. aedis, while others were only differentially abundant when infections involved V. culicis. Some proteins only responded with modified abundance to the coinfection condition, while others were differentially abundant in response to all three types of infection. As time since infection increased, the response to each of the single parasite infections diverged, while the response to the E. aedis and coinfection treatments converged. Some of the proteins differentially abundant in response to infection were identified. They included two vacuolar ATPases, proteins known to have a role in determining the infection success of intracellular parasites. This result suggests microsporidia could influence the infection success of other intracellular pathogens infecting vector species of mosquito, including viruses, Plasmodium and Wolbachia.
Collapse
|
63
|
Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 2012; 8:e1002742. [PMID: 22693451 PMCID: PMC3364955 DOI: 10.1371/journal.ppat.1002742] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/26/2012] [Indexed: 12/16/2022] Open
Abstract
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. During their development in the mosquito vector, Plasmodium parasites undergo complex developmental steps and incur severe bottlenecks. The largest parasite losses occur in the mosquito midgut where robust immune responses are activated. Variability in P. falciparum infection levels indicates that parasite transmission is the result of complex interactions between vectors and parasites, which rely on both genetic and environmental factors. However, in contrast to genetically encoded factors, the role of environmental factors in parasite transmission has received little attention. In this study, we characterized the midgut microbiota of mosquitoes derived from diverse breeding sites using pyrosequencing. We show that the composition of the midgut microbiota in adult mosquitoes exhibits great variability, which is likely determined by bacterial richness of the larval habitats. When field mosquitoes were collected at late immature stages in natural breeding sites and the emerging females challenged with Plasmodium falciparum in the laboratory, significant correlation was observed between P. falciparum infection and the presence of Enterobacteriaceae in the mosquito midgut. Greater understanding of these malaria-bacteria interactions may lead to novel malaria control strategies.
Collapse
Affiliation(s)
- Anne Boissière
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
| | - Majoline T. Tchioffo
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun
| | - Dipankar Bachar
- UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France
| | - Luc Abate
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
| | - Alexandra Marie
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
| | - Sandrine E. Nsango
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun
- CNRS UPR 9022, Inserm U963, Université de Strasbourg, Strasbourg, France
| | - Hamid R. Shahbazkia
- UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France
- Área Departamental de Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | | | - Elena A. Levashina
- CNRS UPR 9022, Inserm U963, Université de Strasbourg, Strasbourg, France
| | - Richard Christen
- UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France
| | - Isabelle Morlais
- UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France
- Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun
- * E-mail:
| |
Collapse
|
64
|
Dowell FE, Noutcha AEM, Michel K. Short report: The effect of preservation methods on predicting mosquito age by near infrared spectroscopy. Am J Trop Med Hyg 2012; 85:1093-6. [PMID: 22144450 PMCID: PMC3225158 DOI: 10.4269/ajtmh.2011.11-0438] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Determining mosquito age is important to evaluate vector control programs because the ability to transmit diseases is age dependent. Current age-grading techniques require dissection or RNA extraction. Near infrared spectroscopy has been used to rapidly and nondestructively determine the age of fresh mosquitoes and specimens stored in RNAlater, but other preservation techniques have not been examined. Thus, in this study, we investigate whether age can be predicted from insects preserved by various common methods. Results from this study show that age can be predicted from mosquitoes preserved with desiccants, ethanol, Carnoy, RNAlater, or refrigeration with confidence intervals < 1.4 days. The best results were generally obtained from mosquitoes stored using desiccants, RNAlater, or refrigeration.
Collapse
Affiliation(s)
- Floyd E Dowell
- Engineering and Wind Erosion Research Unit, Center for Grain and Animal Health Research, United States Department of Agriculture, Agricultural Research Service, Manhattan, Kansas 66502, USA.
| | | | | |
Collapse
|
65
|
Gomes-Santos CSS, Itoe MA, Afonso C, Henriques R, Gardner R, Sepúlveda N, Simões PD, Raquel H, Almeida AP, Moita LF, Frischknecht F, Mota MM. Highly dynamic host actin reorganization around developing Plasmodium inside hepatocytes. PLoS One 2012; 7:e29408. [PMID: 22238609 PMCID: PMC3253080 DOI: 10.1371/journal.pone.0029408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/28/2011] [Indexed: 01/01/2023] Open
Abstract
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and infect hepatocytes, where a single sporozoite replicates into thousands of merozoites inside a parasitophorous vacuole. The nature of the Plasmodium-host cell interface, as well as the interactions occurring between these two organisms, remains largely unknown. Here we show that highly dynamic hepatocyte actin reorganization events occur around developing Plasmodium berghei parasites inside human hepatoma cells. Actin reorganization is most prominent between 10 to 16 hours post infection and depends on the actin severing and capping protein, gelsolin. Live cell imaging studies also suggest that the hepatocyte cytoskeleton may contribute to parasite elimination during Plasmodium development in the liver.
Collapse
Affiliation(s)
- Carina S. S. Gomes-Santos
- Malaria Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maurice A. Itoe
- Malaria Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Afonso
- Malaria Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Henriques
- Cell Biology Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Nuno Sepúlveda
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Center of Statistics and Applications, University of Lisbon, Lisboa, Portugal
| | - Pedro D. Simões
- Cell Biology of the Immune System Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Raquel
- Cell Biology of the Immune System Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - António Paulo Almeida
- Unidade de Entomologia Médica/UPMM, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Luis F. Moita
- Cell Biology of the Immune System Unit, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, University of Heidelberg, Heidelberg, Germany
- * E-mail: (FF); (MMM)
| | - Maria M. Mota
- Malaria Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (FF); (MMM)
| |
Collapse
|
66
|
Lorenz LM, Koella JC. Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes. Malar J 2011; 10:382. [PMID: 22188602 PMCID: PMC3269443 DOI: 10.1186/1475-2875-10-382] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/21/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. METHODS In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto) on their offspring's development, survival and susceptibility to malaria were studied. RESULTS The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection). CONCLUSIONS Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria.
Collapse
Affiliation(s)
- Lena M Lorenz
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK.
| | | |
Collapse
|
67
|
Marsden CD, Lee Y, Nieman CC, Sanford MR, Dinis J, Martins C, Rodrigues A, Cornel AJ, Lanzaro GC. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol 2011; 20:4983-94. [PMID: 22059383 PMCID: PMC3222736 DOI: 10.1111/j.1365-294x.2011.05339.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The suggestion that genetic divergence can arise and/or be maintained in the face of gene flow has been contentious since first proposed. This controversy and a rarity of good examples have limited our understanding of this process. Partially reproductively isolated taxa have been highlighted as offering unique opportunities for identifying the mechanisms underlying divergence with gene flow. The African malaria vector, Anopheles gambiae s.s., is widely regarded as consisting of two sympatric forms, thought by many to represent incipient species, the M and S molecular forms. However, there has been much debate about the extent of reproductive isolation between M and S, with one view positing that divergence may have arisen and is being maintained in the presence of gene flow, and the other proposing a more advanced speciation process with little realized gene flow because of low hybrid fitness. These hypotheses have been difficult to address because hybrids are typically rare (<1%). Here, we assess samples from an area of high hybridization and demonstrate that hybrids are fit and responsible for extensive introgression. Nonetheless, we show that strong divergent selection at a subset of loci combined with highly asymmetric introgression has enabled M and S to remain genetically differentiated despite extensive gene flow. We propose that the extent of reproductive isolation between M and S varies across West Africa resulting in a 'geographic mosaic of reproductive isolation'; a finding which adds further complexity to our understanding of divergence in this taxon and which has considerable implications for transgenic control strategies.
Collapse
Affiliation(s)
- Clare D. Marsden
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California – Davis, California, USA, 95616
| | - Yoosook Lee
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California – Davis, California, USA, 95616
| | - Catelyn C. Nieman
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California – Davis, California, USA, 95616
| | - Michelle R. Sanford
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California – Davis, California, USA, 95616
| | - Joao Dinis
- National Institute of Public Health (INASA), CP 1013, Bissau, Guinea-Bissau
| | - Cesario Martins
- National Institute of Public Health (INASA), CP 1013, Bissau, Guinea-Bissau
| | - Amabelia Rodrigues
- National Institute of Public Health (INASA), CP 1013, Bissau, Guinea-Bissau
| | - Anthony J. Cornel
- Mosquito Control Research Laboratory, Department of Entomology, University of California - Davis, California, USA, 95616
| | - Gregory C. Lanzaro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California – Davis, California, USA, 95616
| |
Collapse
|
68
|
Ndiath MO, Cohuet A, Gaye A, Konate L, Mazenot C, Faye O, Boudin C, Sokhna C, Trape JF. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis. Malar J 2011; 10:269. [PMID: 21929746 PMCID: PMC3184635 DOI: 10.1186/1475-2875-10-269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/19/2011] [Indexed: 12/15/2022] Open
Abstract
Background The different taxa belonging to Anopheles gambiae complex display phenotypic differences that may impact their contribution to malaria transmission. More specifically, their susceptibility to infection, resulting from a co-evolution between parasite and vector, might be different. The aim of this study was to compare the susceptibility of M and S molecular forms of Anopheles gambiae and Anopheles arabiensis to infection by Plasmodium falciparum. Methods F3 progenies of Anopheles gambiae s.l. collected in Senegal were infected, using direct membrane feeding, with P. falciparum gametocyte-containing blood sampled on volunteer patients. The presence of oocysts was determined by light microscopy after 7 days, and the presence of sporozoite by ELISA after 14 days. Mosquito species and molecular forms were identified by PCR. Results The oocyst rate was significantly higher in the molecular S form (79.07%) than in the M form (57.81%, Fisher's exact test p < 0.001) and in Anopheles arabiensis (55.38%, Fisher's exact test vs. S group p < 0.001). Mean ± s.e.m. number of oocyst was greater in the An. gambiae S form (1.72 ± 0.26) than in the An. gambiae M form (0.64 ± 0.04, p < 0.0001) and in the An. arabiensis group (0.58 ± 0.04, vs. S group, p < 0.0001). Sporozoite rate was also higher in the molecular form S (83.52%) than in form M (50.98%, Fisher's exact test p < 0.001) and Anopheles arabiensis 50.85%, Fisher's exact test vs. S group p < 0.001). Conclusion Infected in the same experimental conditions, the molecular form S of An. gambiae is more susceptible to infection by P. falciparum than the molecular form M of An. gambiae and An. arabiensis.
Collapse
Affiliation(s)
- Mamadou O Ndiath
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), IRD, BP 1386 Dakar, Senegal
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Infection intensity-dependent responses of Anopheles gambiae to the African malaria parasite Plasmodium falciparum. Infect Immun 2011; 79:4708-15. [PMID: 21844236 DOI: 10.1128/iai.05647-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Malaria remains a devastating disease despite efforts at control and prevention. Extensive studies using mostly rodent infection models reveal that successful Plasmodium parasite transmission by the African mosquito vector Anopheles gambiae depends on finely tuned vector-parasite interactions. Here we investigate the transcriptional response of A. gambiae to geographically related Plasmodium falciparum populations at various infection intensities and different infection stages. These responses are compared with those of mosquitoes infected with the rodent parasite Plasmodium berghei. We demonstrate that mosquito responses are largely dependent on the intensity of infection. A major transcriptional suppression of genes involved in the regulation of midgut homeostasis is detected in low-intensity P. falciparum infections, the most common type of infection in Africa. Importantly, genes transcriptionally induced during these infections tend to be phylogenetically unique to A. gambiae. These data suggest that coadaptation between vectors and parasites may act to minimize the impact of infection on mosquito fitness by selectively suppressing specific functional classes of genes. RNA interference (RNAi)-mediated gene silencing provides initial evidence for important roles of the mosquito G protein-coupled receptors (GPCRs) in controlling infection intensity-dependent antiparasitic responses.
Collapse
|
70
|
Lorenz LM, Koella JC. The microsporidian parasite Vavraia culicis as a potential late life-acting control agent of malaria. Evol Appl 2011; 4:783-90. [PMID: 25568022 PMCID: PMC3352544 DOI: 10.1111/j.1752-4571.2011.00199.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/14/2011] [Indexed: 01/16/2023] Open
Abstract
Microsporidian parasites are being considered as alternatives to conventional insecticides for malaria control. They should reduce malaria transmission by shortening the lifespan of female mosquitoes and thus killing them before they transmit malaria. As the parasite replicates throughout the mosquito's life, it should have little detrimental effects on young mosquitoes, thus putting less selection pressure on the hosts to evolve resistance. Here, we examined these expectations for the microsporidian Vavraia culicis on Anopheles gambiae Giles sensu stricto mosquitoes under varying environmental conditions. Infection by the microsporidian delayed pupation by 10%, decreased fecundity by 23% and reduced adult lifespan by 27%, with higher infectious doses causing greater effects. The decrease of lifespan was mostly because of an increase of the mortality rate with age. Similarly, the parasite's effect on mosquito fecundity increased with the mosquitoes’ age. Neither infection nor food availability affected juvenile survival. Thus, as V. culicis reduced the longevity of A. gambiae (s.s.), yet affected mortality and fecundity of the young mosquitoes only slightly, the microsporidian is a promising alternative to insecticides for effective malaria control that will impose little evolutionary pressure for resistance.
Collapse
Affiliation(s)
- Lena M Lorenz
- Division of Biology, Imperial College London Silwood Park Campus, Ascot, UK ; Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Jacob C Koella
- Division of Biology, Imperial College London Silwood Park Campus, Ascot, UK
| |
Collapse
|
71
|
Gupta L, Noh JY, Jo YH, Oh SH, Kumar S, Noh MY, Lee YS, Cha SJ, Seo SJ, Kim I, Han YS, Barillas-Mury C. Apolipophorin-III mediates antiplasmodial epithelial responses in Anopheles gambiae (G3) mosquitoes. PLoS One 2010; 5:e15410. [PMID: 21072214 PMCID: PMC2970580 DOI: 10.1371/journal.pone.0015410] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/06/2010] [Indexed: 11/18/2022] Open
Abstract
Background Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. Methodology/Principal Findings We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold. Conclusion There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.
Collapse
Affiliation(s)
- Lalita Gupta
- Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ju Young Noh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Seung Han Oh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Sanjeev Kumar
- Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mi Young Noh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Yong Seok Lee
- Department of Parasitology, College of Medicine and Frontier Inje Research for Science and Technology, Inje University, Busan, Korea
| | - Sung-Jae Cha
- Johns Hopkins School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Sook Jae Seo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Iksoo Kim
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
- * E-mail: (YSH); (CB-M)
| | - Carolina Barillas-Mury
- Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (YSH); (CB-M)
| |
Collapse
|
72
|
Aguilar R, Simard F, Kamdem C, Shields T, Glass GE, Garver LS, Dimopoulos G. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. INSECT MOLECULAR BIOLOGY 2010; 19:695-705. [PMID: 20738426 PMCID: PMC2975901 DOI: 10.1111/j.1365-2583.2010.01031.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of Anopheles gambiae molecular biology has mainly been based on studies using inbred laboratory strains. Differences in the environmental exposure of these and natural field mosquitoes have inevitably led to physiological divergences. We have used global transcript abundance analyses to probe into this divergence, and identified transcript abundance patterns of genes that provide insight on specific adaptations of caged and field mosquitoes. We also compared the gene transcript abundance profiles of field mosquitoes belonging to the two morphologically indistinguishable but reproductively isolated sympatric molecular forms, M and S, from two different locations in the Yaoundé area of Cameroon. This analysis suggested that environmental exposure has a greater influence on the transcriptome than does the mosquito's molecular form-specific genetic background.
Collapse
Affiliation(s)
- Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Frederic Simard
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
- Institut de Recherche pour le Développement (IRD), Research Unit #016, 911 Avenue Agropolis, 34 394 Montpellier, France
| | - Colince Kamdem
- Laboratoire de Recherche sur le Paludisme, OCEAC (Organisation de Coordination pour la lutte Contre les Endemies en Afrique Centrale), B.P. 288 Yaoundé, Cameroun
| | - Tim Shields
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Gregory E. Glass
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - Lindsey S. Garver
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N. Wolfe Street, Baltimore, MD 21205-2179, USA
| |
Collapse
|
73
|
Harris C, Lambrechts L, Rousset F, Abate L, Nsango SE, Fontenille D, Morlais I, Cohuet A. Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum. PLoS Pathog 2010; 6:e1001112. [PMID: 20862317 PMCID: PMC2940751 DOI: 10.1371/journal.ppat.1001112] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/18/2010] [Indexed: 12/13/2022] Open
Abstract
Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs) associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria. Anopheles gambiae is the main malaria vector in Africa, transmitting the parasite when it blood feeds on human hosts. The parasite undergoes several developmental stages in the mosquito to complete its life cycle, during which time it is confronted by the mosquito's immune system. The resistance of mosquitoes to malaria infection is highly variable in wild populations and is known to be under strong genetic control, but to date the specific genes responsible for this variation remain to be identified. The present study uncovers variations in A. gambiae immune genes that are associated with natural resistance to Plasmodium falciparum, the deadliest human malaria parasite. The association of some mosquito genetic loci with the level of infection depended on the P. falciparum isolate, suggesting that resistance is determined by interactions between the genome of the mosquito and that of the parasite. This finding highlights the need to account for the natural genetic diversity of malaria parasites in future research on vector-parasite interactions. The loci uncovered in this study are potential targets for developing novel malaria control strategies based on natural mosquito resistance mechanisms.
Collapse
Affiliation(s)
- Caroline Harris
- Characterization and Control of Vector Populations, Institut de Recherche pour le Développement, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Rono MK, Whitten MMA, Oulad-Abdelghani M, Levashina EA, Marois E. The major yolk protein vitellogenin interferes with the anti-plasmodium response in the malaria mosquito Anopheles gambiae. PLoS Biol 2010; 8:e1000434. [PMID: 20652016 PMCID: PMC2907290 DOI: 10.1371/journal.pbio.1000434] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/10/2010] [Indexed: 11/28/2022] Open
Abstract
Functional gene analysis in malaria mosquitoes reveals molecules underpinning the trade-off between efficient reproduction and the antiparasitic response. When taking a blood meal on a person infected with malaria, female Anopheles gambiae mosquitoes, the major vector of human malaria, acquire nutrients that will activate egg development (oogenesis) in their ovaries. Simultaneously, they infect themselves with the malaria parasite. On traversing the mosquito midgut epithelium, invading Plasmodium ookinetes are met with a potent innate immune response predominantly controlled by mosquito blood cells. Whether the concomitant processes of mosquito reproduction and immunity affect each other remains controversial. Here, we show that proteins that deliver nutrients to maturing mosquito oocytes interfere with the antiparasitic response. Lipophorin (Lp) and vitellogenin (Vg), two nutrient transport proteins, reduce the parasite-killing efficiency of the antiparasitic factor TEP1. In the absence of either nutrient transport protein, TEP1 binding to the ookinete surface becomes more efficient. We also show that Lp is required for the normal expression of Vg, and for later Plasmodium development at the oocyst stage. Furthermore, our results uncover an inhibitory role of the Cactus/REL1/REL2 signaling cassette in the expression of Vg, but not of Lp. We reveal molecular links that connect reproduction and immunity at several levels and provide a molecular basis for a long-suspected trade-off between these two processes. Malaria annually claims the lives of almost 1 million infants and imposes a major socio-economic burden on Africa and other tropical regions. Meanwhile, the detailed biological interactions between the malaria parasite and its Anopheles mosquito vector remain largely enigmatic. What we do know is that the majority of malaria parasites are normally eliminated by the mosquito's immune response. Mosquitoes accidentally acquire an infection by sucking parasite-laden blood, but this belies the primary function of the blood in the provisioning of nutrients for egg development in the insect's ovaries. We have found that the molecular processes involved in delivering blood-acquired nutrients to maturing eggs diminish the efficiency of parasite killing by the mosquito immune system. Conversely, molecular pathways that set the immune system on its maximal capacity for parasite killing preclude the efficient development of the mosquito's eggs. Our results reveal some of the molecules that underpin this example of the trade-offs between reproduction and immunity, a concept that has long intrigued biologists.
Collapse
Affiliation(s)
- Martin K. Rono
- INSERM, U963, Strasbourg, France
- CNRS, IBMC, UPR9022, Strasbourg, France
- Université de Strasbourg, UMR 963, Strasbourg, France
| | - Miranda M. A. Whitten
- INSERM, U963, Strasbourg, France
- CNRS, IBMC, UPR9022, Strasbourg, France
- Université de Strasbourg, UMR 963, Strasbourg, France
| | | | - Elena A. Levashina
- INSERM, U963, Strasbourg, France
- CNRS, IBMC, UPR9022, Strasbourg, France
- Université de Strasbourg, UMR 963, Strasbourg, France
| | - Eric Marois
- INSERM, U963, Strasbourg, France
- CNRS, IBMC, UPR9022, Strasbourg, France
- Université de Strasbourg, UMR 963, Strasbourg, France
- * E-mail:
| |
Collapse
|
75
|
Chertemps T, Mitri C, Perrot S, Sautereau J, Jacques JC, Thiery I, Bourgouin C, Rosinski-Chupin I. Anopheles gambiae PRS1 modulates Plasmodium development at both midgut and salivary gland steps. PLoS One 2010; 5:e11538. [PMID: 20634948 PMCID: PMC2902509 DOI: 10.1371/journal.pone.0011538] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/12/2010] [Indexed: 11/19/2022] Open
Abstract
Background Invasion of the mosquito salivary glands by Plasmodium is a critical step for malaria transmission. From a SAGE analysis, we previously identified several genes whose expression in salivary glands was regulated coincident with sporozoite invasion of salivary glands. To get insights into the consequences of these salivary gland responses, here we have studied one of the genes, PRS1 (Plasmodium responsive salivary 1), whose expression was upregulated in infected glands, using immunolocalization and functional inactivation approaches. Methodology/Principal Findings PRS1 belongs to a novel insect superfamily of genes encoding proteins with DM9 repeat motifs of uncharacterized function. We show that PRS1 is induced in response to Plasmodium, not only in the salivary glands but also in the midgut, the other epithelial barrier that Plasmodium has to cross to develop in the mosquito. Furthermore, this induction is observed using either the rodent parasite Plasmodium berghei or the human pathogen Plasmodium falciparum. In the midgut, PRS1 overexpression is associated with a relocalization of the protein at the periphery of invaded cells. We also find that sporozoite invasion of salivary gland cells occurs sequentially and induces intra-cellular modifications that include an increase in PRS1 expression and a relocalization of the corresponding protein into vesicle-like structures. Importantly, PRS1 knockdown during the onset of midgut and salivary gland invasion demonstrates that PRS1 acts as an agonist for the development of both parasite species in the two epithelia, highlighting shared vector/parasite interactions in both tissues. Conclusions/Significance While providing insights into potential functions of DM9 proteins, our results reveal that PRS1 likely contributes to fundamental interactions between Plasmodium and mosquito epithelia, which do not depend on the specific Anopheles/P. falciparum coevolutionary history.
Collapse
Affiliation(s)
- Thomas Chertemps
- Unité de Biochimie et Biologie Moléculaire des Insectes, Département de Parasitologie et Mycologie, Centre National de la Recherche Scientifique URA 3012, Institut Pasteur, Paris, France
| | - Christian Mitri
- CEPIA, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Sylvie Perrot
- Unité de Biochimie et Biologie Moléculaire des Insectes, Département de Parasitologie et Mycologie, Centre National de la Recherche Scientifique URA 3012, Institut Pasteur, Paris, France
| | - Jean Sautereau
- Unité de Biochimie et Biologie Moléculaire des Insectes, Département de Parasitologie et Mycologie, Centre National de la Recherche Scientifique URA 3012, Institut Pasteur, Paris, France
| | - Jean-Claude Jacques
- CEPIA, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Isabelle Thiery
- CEPIA, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- CEPIA, Département de Parasitologie et Mycologie, Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité de Biochimie et Biologie Moléculaire des Insectes, Département de Parasitologie et Mycologie, Centre National de la Recherche Scientifique URA 3012, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
76
|
Horton AA, Lee Y, Coulibaly CA, Rashbrook VK, Cornel AJ, Lanzaro GC, Luckhart S. Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection. Malar J 2010; 9:160. [PMID: 20540770 PMCID: PMC2896950 DOI: 10.1186/1475-2875-9-160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/11/2010] [Indexed: 01/26/2023] Open
Abstract
Background Laboratory studies have demonstrated that a variety of immune signaling pathways regulate malaria parasite infection in Anopheles gambiae, the primary vector species in Africa. Methods To begin to understand the importance of these associations under natural conditions, an association mapping approach was adopted to determine whether single nucleotide polymorphisms (SNPs) in selected immune signaling genes in A. gambiae collected in Mali were associated with the phenotype of Plasmodium falciparum infection. Results Three SNPs were identified in field-collected mosquitoes that were associated with parasite infection in molecular form-dependent patterns: two were detected in the Toll5B gene and one was detected in the gene encoding insulin-like peptide 3 precursor. In addition, one infection-associated Toll5B SNP was in linkage disequilibrium with a SNP in sequence encoding a mitogen-activated protein kinase that has been associated with Toll signaling in mammalian cells. Both Toll5B SNPs showed divergence from Hardy-Weinberg equilibrium, suggesting that selection pressure(s) are acting on these loci. Conclusions Seven of these eight infection-associated and linked SNPs alter codon frequency or introduce non-synonymous changes that would be predicted to alter protein structure and, hence, function, suggesting that these SNPs could alter immune signaling and responsiveness to parasite infection.
Collapse
Affiliation(s)
- Ashley A Horton
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G. Mosquito immune defenses against Plasmodium infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:387-95. [PMID: 20026176 PMCID: PMC3462653 DOI: 10.1016/j.dci.2009.12.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 05/11/2023]
Abstract
The causative agent of malaria, Plasmodium, has to undergo complex developmental transitions and survive attacks from the mosquito's innate immune system to achieve transmission from one host to another through the vector. Here we discuss recent findings on the role of the mosquito's innate immune signaling pathways in preventing infection by the Plasmodium parasite, the identification and mechanistic description of novel anti-parasite molecules, the role that natural bacteria harbored in the mosquito midgut might play in this immune defense and the crucial parasite and vector molecules that mediate midgut infection.
Collapse
Affiliation(s)
- Chris M Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
78
|
Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol 2010; 26:130-6. [PMID: 20056485 DOI: 10.1016/j.pt.2009.12.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 10/23/2009] [Accepted: 12/11/2009] [Indexed: 12/22/2022]
Abstract
In human malaria, transmission intensity is highly dependent on the vectorial capacity and competence of local mosquitoes. Most mosquitoes are dead ends for the parasite, and only limited ranges of Anopheles are able to transmit Plasmodium to humans. Research to understand the determinants of vectorial capacity and competence has greatly progressed in recent years; however, some aspects have been overlooked and the evolutionary pressures that affect them often neglected. Here, we review key factors of vectorial capacity and competence in Anopheles, with a particular focus on the most important malaria vector Anopheles gambiae. We aim to point out selection pressures exerted by Plasmodium on Anopheles to improve its own transmission and discuss how the parasite might shape the vector to its benefit.
Collapse
Affiliation(s)
- Anna Cohuet
- Institut de Recherche pour le Développement, UR016, Characterization and control of vector populations, Montpellier, France.
| | | | | | | |
Collapse
|
79
|
Abstract
The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects.
Collapse
|
80
|
Sant'anna MR, Diaz-Albiter H, Mubaraki M, Dillon RJ, Bates PA. Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania. Parasit Vectors 2009; 2:62. [PMID: 20003192 PMCID: PMC2796656 DOI: 10.1186/1756-3305-2-62] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/09/2009] [Indexed: 01/24/2023] Open
Abstract
Background Leishmania parasites must overcome several barriers to achieve transmission by their sand fly vectors. One of the earliest threats is exposure to enzymes during blood meal digestion. Trypsin-like enzymes appear to be detrimental to parasite survival during the very early phase of development as amastigotes transform into promastigote stages. Here, we investigate whether parasites can affect trypsin secretion by the sand fly midgut epithelium and if inhibition of this process is of survival value to the parasites. Results Infections of Lutzomyia longipalpis with Leishmania mexicana were studied and these showed that infected sand flies produced less trypsin-like enzyme activity during blood meal digestion when compared to uninfected controls. RNA interference was used to inhibit trypsin 1 gene expression by micro-injection into the thorax, as trypsin 1 is the major blood meal induced trypsin activity in the sand fly midgut. Injection of specific double stranded RNA reduced trypsin 1 expression as assessed by RT-PCR and enzyme assays, and also led to increased numbers of parasites in comparison with mock-injected controls. Injection by itself was observed to have an inhibitory effect on the level of infection, possibly through stimulation of a wound repair or immune response by the sand fly. Conclusion Leishmania mexicana was shown to be able to modulate trypsin secretion by Lutzomyia longipalpis to its own advantage, and direct inhibition of trypsin gene expression led to increased parasite numbers in the midguts of infected flies. Successful application of RNA interference methodology to Leishmania-infected sand flies now opens up the use of this technique to study a wide range of sand fly genes and their role in the parasite-vector interaction.
Collapse
|
81
|
Abstract
The successful development of Plasmodium in Anopheles mosquitoes is governed by complex molecular and cellular interactions that we are just beginning to understand. Anopheles immune system has received particular attention as genetic evidence points clearly to its critical role in eliminating the majority of parasites invading the midgut epithelium. Several factors regulating Plasmodium development have been identified and tentatively assigned to the individual steps leading to mosquito immune reactions; non-self-recognition, signal modulation, signal transduction and effector mechanisms. Detailed knowledge of these steps and their underlying molecular mechanisms may offer novel perspectives to abort Plasmodium development in the vector. Here, we summarize our current knowledge of mosquito innate immunity highlighting both, recent advances and areas where additional research is required.
Collapse
Affiliation(s)
- Hassan Yassine
- Department of Biology, American University of Beirut, Lebanon
| | | |
Collapse
|
82
|
Mitri C, Jacques JC, Thiery I, Riehle MM, Xu J, Bischoff E, Morlais I, Nsango SE, Vernick KD, Bourgouin C. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog 2009; 5:e1000576. [PMID: 19750215 PMCID: PMC2734057 DOI: 10.1371/journal.ppat.1000576] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/12/2009] [Indexed: 01/13/2023] Open
Abstract
Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized. The African malaria vector mosquito Anopheles gambiae possesses immune mechanisms that can protect it against infection with malaria parasites, which kill more than one million people per year. Much work studying mosquito response to malaria has used model rodent malaria parasites that do not infect people, but are in the same genus and overall share most major features with the human parasites. Here, we show that the immune response used by A. gambiae to protect itself against infection by human and rodent malaria parasites utilizes different immune signaling pathways. A family of proteins called APL1 appears to be responsible for the ability of the mosquito to distinguish between the human or rodent malaria parasites. An individual APL1 relative is required for protection against the human malaria parasite but has no effect against the rodent parasite, and another APL1 relative is required for protection against rodent but not human malaria. This represents the finest ability yet demonstrated of mosquito immunity to distinguish between relatively similar pathogens, and highlights the distinct nature of mosquito response against human as compared to rodent malaria parasites.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Jean-Claude Jacques
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Isabelle Thiery
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jiannong Xu
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
| | - Isabelle Morlais
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement IRD-OCEAC, Yaoundé, Cameroun
| | - Sandrine E. Nsango
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement IRD-OCEAC, Yaoundé, Cameroun
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| | - Catherine Bourgouin
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| |
Collapse
|
83
|
Ecological immunology of mosquito-malaria interactions: Of non-natural versus natural model systems and their inferences. Parasitology 2009; 136:1935-42. [PMID: 19490728 DOI: 10.1017/s0031182009006234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There has been a recent shift in the literature on mosquito/Plasmodium interactions with an increasingly large number of theoretical and experimental studies focusing on their population biology and evolutionary processes. Ecological immunology of mosquito-malaria interactions - the study of the mechanisms and function of mosquito immune responses to Plasmodium in their ecological and evolutionary context - is particularly important for our understanding of malaria transmission and how to control it. Indeed, describing the processes that create and maintain variation in mosquito immune responses and parasite virulence in natural populations may be as important to this endeavor as describing the immune responses themselves. For historical reasons, Ecological Immunology still largely relies on studies based on non-natural model systems. There are many reasons why current research should favour studies conducted closer to the field and more realistic experimental systems whenever possible. As a result, a number of researchers have raised concerns over the use of artificial host-parasite associations to generate inferences about population-level processes. Here I discuss and review several lines of evidence that, I believe, best illustrate and summarize the limitations of inferences generated using non-natural model systems.
Collapse
|
84
|
MAPK ERK signaling regulates the TGF-beta1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog 2009; 5:e1000366. [PMID: 19343212 PMCID: PMC2658807 DOI: 10.1371/journal.ppat.1000366] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/05/2009] [Indexed: 11/19/2022] Open
Abstract
Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anopheles is controlled by ingested human TGF-beta1 and finely tunes mosquito innate immunity to parasite infection. Specifically, MEK-ERK signaling was dose-dependently induced in response to TGF-beta1 in immortalized cells in vitro and in the A. stephensi midgut epithelium in vivo. At the highest treatment dose of TGF-beta1, inhibition of ERK phosphorylation increased TGF-beta1-induced expression of the anti-parasite effector gene nitric oxide synthase (NOS), suggesting that increasing levels of ERK activation negatively feed back on induced NOS expression. At infection levels similar to those found in nature, inhibition of ERK activation reduced P. falciparum oocyst loads and infection prevalence in A. stephensi and enhanced TGF-beta1-mediated control of P. falciparum development. Taken together, our data demonstrate that malaria parasite development in the mosquito is regulated by a conserved MAPK signaling pathway that mediates the effects of an ingested cytokine.
Collapse
|
85
|
Boëte C. Anopheles mosquitoes: not just flying malaria vectors... especially in the field. Trends Parasitol 2008; 25:53-5. [PMID: 19095498 DOI: 10.1016/j.pt.2008.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/07/2008] [Accepted: 10/27/2008] [Indexed: 01/23/2023]
Abstract
The polymorphism of genes involved in the immunity of malaria vectors has been the subject of several recent studies with mosquitoes from natural populations. Most of the genes examined are known for their role against Plasmodium berghei and not necessarily for their role against Plasmodium falciparum. It seems, therefore, to be highly important not only to be cautious when linking natural selection with malaria epidemiology but also to consider the importance of other parasites and the environment on the mosquito genome.
Collapse
Affiliation(s)
- Christophe Boëte
- Institut de Recherche pour le Développement (IRD), Structure Gestion des Personnels, 44 bd de Dunkerque, 13572 Marseille, Cedex 02, France.
| |
Collapse
|
86
|
Obbard DJ, Callister DM, Jiggins FM, Soares DC, Yan G, Little TJ. The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC Evol Biol 2008; 8:274. [PMID: 18840262 PMCID: PMC2576239 DOI: 10.1186/1471-2148-8-274] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 10/07/2008] [Indexed: 01/20/2023] Open
Abstract
Background Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815) may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient balanced polymorphism in an animal immune system. Results We found evidence that the high divergence between TEP1 alleles is the product of genetic exchange between TEP1 and other TEP loci, i.e. gene conversion. Additionally, some TEP1 alleles showed unexpectedly low variability. Conclusion The TEP1 gene appears to be a chimera produced from at least two other TEP loci, and the divergence between TEP1 alleles is probably not caused by long-term balancing selection, but is instead due to two independent gene conversion events from one of these other genes. Nevertheless, TEP1 still shows evidence of natural selection, in particular there appears to have been recent changes in the frequency of alleles that has diminished polymorphism within each allelic class. Although the selective force driving this dynamic was not identified, given that susceptibility to Plasmodium parasites is known to be associated with allelic variation in TEP1, these changes in allele frequencies could alter the vectoring capacity of populations.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Rd, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
87
|
Blandin SA, Marois E, Levashina EA. Antimalarial Responses in Anopheles gambiae: From a Complement-like Protein to a Complement-like Pathway. Cell Host Microbe 2008; 3:364-74. [DOI: 10.1016/j.chom.2008.05.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 01/19/2023]
|
88
|
Abstract
Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species.
Collapse
Affiliation(s)
- Xiao-Guang Chen
- Department of Parasitology, School of Public Health and Tropical Medicine, Southern Medical University, Guang Zhou, GD 510515, People's Republic of China
| | | | | |
Collapse
|