51
|
Moorman NJ, Murphy EA. Roseomics: a blank slate. Curr Opin Virol 2014; 9:188-93. [PMID: 25437230 PMCID: PMC4268339 DOI: 10.1016/j.coviro.2014.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/24/2022]
Abstract
Recent technological advances have led to an explosion in the system-wide profiling of biological processes in the study of herpesvirus biology, herein referred to as '-omics'. In many cases these approaches have revealed novel virus-induced changes to host cell biology that can be targeted with new antiviral therapeutics. Despite these successes, -omics approaches are not widely applied in the study of roseoloviruses. Here we describe examples of how -omics studies have shaped our understanding of herpesvirus biology, and discuss how these approaches might be used to identify host and viral factors that mediate roseolovirus pathogenesis.
Collapse
Affiliation(s)
- Nathaniel J Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eain A Murphy
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
52
|
Smolarz B, Wilczyński J, Nowakowska D. DNA repair mechanisms and human cytomegalovirus (HCMV) infection. Folia Microbiol (Praha) 2014; 60:199-209. [PMID: 25366712 PMCID: PMC4429022 DOI: 10.1007/s12223-014-0359-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
Herpesvirus infections, such as those induced by human cytomegalovirus (HCMV), induce specific DNA damages. DNA damages can lead to cell mutation, death, apoptosis and immune system activation. Various types of DNA damage are repaired through multiple repair pathways, such as base excision, nucleotide excision, homologous recombination and nonhomologous end joining. Changes in the activity of DNA repair proteins during viral infection can cause disturbances in the DNA repair system and change its mechanisms. This report reviews results from studies, assaying a DNA repair system in HCMV infection.
Collapse
Affiliation(s)
- Beata Smolarz
- Department of Fetal-Maternal Medicine and Gynaecology, Polish Mother's Memorial Hospital Research Institute, 281/289 Rzgowska Street, Lodz, 93-338, Poland,
| | | | | |
Collapse
|
53
|
Strang BL. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells. J Gen Virol 2014; 96:239-252. [PMID: 25359764 DOI: 10.1099/vir.0.071084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
54
|
Chang PC, Kung HJ. SUMO and KSHV Replication. Cancers (Basel) 2014; 6:1905-24. [PMID: 25268162 PMCID: PMC4276950 DOI: 10.3390/cancers6041905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023] Open
Abstract
Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV's life cycle and pathogenesis.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsing-Jien Kung
- Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
55
|
Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli. J Virol 2014; 88:11738-47. [PMID: 25078694 DOI: 10.1128/jvi.01889-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular proteins required for HCMV genome replication and replicating viral DNA. We found that UL84 localizes with viral proteins, viral DNA, and the cellular nucleolar protein nucleolin in the subnuclear replication compartments in which viral DNA replication occurs. Unexpectedly, we also found localization of UL84 with nucleolin in nucleoli and showed that the presence of nucleolin is involved in localization of UL84 to the nucleus. These results add to previous work showing the importance of nucleolin in replication compartment architecture and viral DNA synthesis and are relevant to understanding UL84 function.
Collapse
|
56
|
Abstract
UNLABELLED Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP. IMPORTANCE Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
Collapse
|
57
|
Human cytomegalovirus UL76 elicits novel aggresome formation via interaction with S5a of the ubiquitin proteasome system. J Virol 2013; 87:11562-78. [PMID: 23966401 DOI: 10.1128/jvi.01568-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV UL76 is a member of a conserved Herpesviridae protein family (Herpes_UL24) that is involved in viral production, latency, and reactivation. UL76 presents as globular aggresomes in the nuclei of transiently transfected cells. Bioinformatic analyses predict that UL76 has a propensity for aggregation and targets cellular proteins implicated in protein folding and ubiquitin-proteasome systems (UPS). Furthermore, fluorescence recovery after photobleaching experiments suggests that UL76 reduces protein mobility in the aggresome, which indicates that UL76 elicits the aggregation of misfolded proteins. Moreover, in the absence of other viral proteins, UL76 interacts with S5a, which is a major receptor of polyubiquitinated proteins for UPS proteolysis via its conserved region and the von Willebrand factor type A (VWA) domain of S5a. We demonstrate that UL76 sequesters polyubiquitinated proteins and S5a to nuclear aggresomes in biological proximity. After knockdown of endogenous S5a by RNA interference techniques, the UL76 level was only minimally affected in transiently expressing cells. However, a significant reduction in the number of cells containing UL76 nuclear aggresomes was observed, which suggests that S5a may play a key role in aggresome formation. Moreover, we show that UL76 interacts with S5a in the late phase of viral infection and that knockdown of S5a hinders the development of both the replication compartment and the aggresome. In this study, we demonstrate that UL76 induces a novel nuclear aggresome, likely by subverting S5a of the UPS. Given that UL76 belongs to a conserved family, this underlying mechanism may be shared by all members of the Herpesviridae.
Collapse
|
58
|
Modulation of the cellular distribution of human cytomegalovirus helicase by cellular factor Snapin. J Virol 2013; 87:10628-40. [PMID: 23885069 DOI: 10.1128/jvi.01657-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV UL105 is believed to encode the helicase of the DNA replication machinery that needs to localize in the nuclei, the site of viral DNA synthesis. No host factors that interact with UL105 have been identified. In this study, we show that UL105 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and associated with cellular vesicles. UL105 was found to interact with Snapin in both the yeast two-hybrid screen and coimmunoprecipitation experiments in HCMV-infected cells. The nuclear and cytoplasmic levels of UL105 were decreased and increased in cells overexpressing Snapin, respectively, while the levels of UL105 in the nuclei and cytoplasm were increased and decreased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. Our results provide the first direct evidence to suggest that Snapin interacts with UL105 and alters its cellular distribution, leading to modulation of viral DNA synthesis and progeny production. Our study further suggests that modulation of the cellular distribution of viral helicase by Snapin may represent a possible mechanism for regulating HCMV genomic DNA synthesis, a key step during herpesvirus lytic and persistent infections.
Collapse
|
59
|
Mao W, Kim T, Cheng HH. Visualization of Marek’s disease virus in vitro using enhanced green fluorescent protein fused with US10. Virus Genes 2013; 47:181-3. [DOI: 10.1007/s11262-013-0920-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/11/2013] [Indexed: 12/20/2022]
|
60
|
Comprehensive analysis of varicella-zoster virus proteins using a new monoclonal antibody collection. J Virol 2013; 87:6943-54. [PMID: 23596286 DOI: 10.1128/jvi.00407-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus's restricted host and cell type tropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251 monoclonal antibodies (MAbs) against 59 of the 71 (83%) currently known unique VZV proteins to characterize VZV protein expression in vitro and in situ. Using this new set of MAbs, 44 viral proteins were detected by Western blotting (WB) and indirect immunofluorescence (IF); 13 were detected by WB only, and 2 were detected by IF only. A large proportion of viral proteins was analyzed for the first time in the context of virus infection. Our study revealed the subcellular localization of 46 proteins, 14 of which were analyzed in detail by confocal microscopy. Seven viral proteins were analyzed in time course experiments and showed a cascade-like temporal gene expression pattern similar to those of other herpesviruses. Furthermore, selected MAbs tested positive on human skin lesions by using immunohistochemistry, demonstrating the wide applicability of the MAb collection. Finally, a significant portion of the VZV-specific antibodies reacted with orthologs of simian varicella virus (SVV), thus enabling the systematic analysis of varicella in a nonhuman primate model system. In summary, this study provides insight into the potential function of numerous VZV proteins and novel tools to systematically study VZV and SVV pathogenesis.
Collapse
|
61
|
Pei Y, Fu W, Yang E, Shen A, Chen YC, Gong H, Chen J, Huang J, Xiao G, Liu F. A Hsp40 chaperone protein interacts with and modulates the cellular distribution of the primase protein of human cytomegalovirus. PLoS Pathog 2012; 8:e1002968. [PMID: 23133382 PMCID: PMC3486897 DOI: 10.1371/journal.ppat.1002968] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
Genomic DNA replication is a universal and essential process for all herpesvirus including human cytomegalovirus (HCMV). HCMV UL70 protein, which is believed to encode the primase activity of the viral DNA replication machinery and is highly conserved among herpesviruses, needs to be localized in the nucleus, the site of viral DNA synthesis. No host factors that facilitate the nuclear import of UL70 have been reported. In this study, we provided the first direct evidence that UL70 specifically interacts with a highly conserved and ubiquitously expressed member of the heat shock protein Hsp40/DNAJ family, DNAJB6, which is expressed as two isoforms, a and b, as a result of alternative splicing. The interaction of UL70 with a common region of DNAJB6a and b was identified by both a two hybrid screen in yeast and coimmunoprecipitation in human cells. In transfected cells, UL70 was primarily co-localized with DNAJB6a in the nuclei and with DNAJB6b in the cytoplasm, respectively. The nuclear import of UL70 was increased in cells in which DNAJB6a was up-regulated or DNAJB6b was down-regulated, and was reduced in cells in which DNAJB6a was down-regulated or DNAJB6b was up-regulated. Furthermore, the level of viral DNA synthesis and progeny production was increased in cells in which DNAJB6a was up-regulated or DNAJB6b was down-regulated, and was reduced in cells in which DNAJB6a was down-regulated or DNAJB6b was up-regulated. Thus, DNAJB6a and b appear to enhance the nuclear import and cytoplasmic accumulation of UL70, respectively. Our results also suggest that the relative expression levels of DNAJB6 isoforms may play a key role in regulating the cellular localization of UL70, leading to modulation of HCMV DNA synthesis and lytic infection. Genomic DNA replication is highly conserved across all herpesviruses including human cytomegalovirus (HCMV) and is the target for most of the current FDA-approved anti-herpes therapeutic agents. Little is known about how UL70, which is believed to encode the primase activity of the viral DNA replication machinery and is essential for genomic replication, is imported to the nuclei, the site of viral DNA synthesis. In this study, we demonstrated that the HCMV primase interacts with a highly conserved and ubiquitously expressed chaperone protein DNAJB6 that belongs to the heat shock protein 40 (Hsp40) family. As a result of alternative splicing, DNAJB6 is expressed as two isoforms, a and b. While DNAJB6b promotes cytoplasmic accumulation of the viral primase, DNAJB6a enhances its nuclear distribution, representing the first example of a cellular factor involved in facilitating nuclear import of a herpesvirus primase. Our study suggests that the relative expression level of DNAJB6 isoforms may represent a novel mechanism for modulating HCMV lytic replication by regulating the cellular localization of the viral primase. Furthermore, our results raise the possibility of developing new strategies for treating herpesvirus replication by modulating the cellular distribution of the primase with altered expression of a cellular protein.
Collapse
Affiliation(s)
- Yonggang Pei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenmin Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ed Yang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Ao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Yuan-Chuan Chen
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Hao Gong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Jun Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jun Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J Virol 2012; 86:6146-58. [PMID: 22491455 DOI: 10.1128/jvi.00013-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
EBNA1 is the only nuclear Epstein-Barr virus (EBV) protein expressed in both latent and lytic modes of infection. While EBNA1 is known to play several important roles in latent infection, the reason for its continued expression in lytic infection is unknown. Here we identified two roles for EBNA1 in the reactivation of latent EBV to the lytic cycle in epithelial cells. First, EBNA1 depletion in latently infected cells was shown to positively contribute to spontaneous EBV reactivation, showing that EBNA1 has a role in suppressing reactivation. Second, when the lytic cycle was induced, EBNA1 depletion decreased lytic gene expression and DNA amplification, showing that it positively contributed to lytic infection. Since we have previously shown that EBNA1 disrupts promyelocytic leukemia (PML) nuclear bodies, we investigated whether this function could account for the effects of EBNA1 on lytic infection by repeating the experiments with cells lacking PML proteins. In the absence of PML, EBNA1 did not promote lytic infection, indicating that the EBNA1-mediated PML disruption is responsible for promoting lytic infection. In keeping with this conclusion, PML silencing was found to be sufficient to induce the EBV lytic cycle. Finally, by generating cells with single PML isoforms, we showed that individual PML isoforms were sufficient to suppress EBV lytic reactivation, although PML isoform IV (PML IV) was ineffective because it was most efficiently degraded by EBNA1. Our results provide the first function for EBNA1 in lytic infection and show that EBNA1 interactions with PML IV lead to a loss of PML nuclear bodies (NBs) that promotes lytic infection.
Collapse
|
63
|
SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86:5412-21. [PMID: 22398289 DOI: 10.1128/jvi.00314-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.
Collapse
|
64
|
Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol 2011; 86:806-20. [PMID: 22072767 DOI: 10.1128/jvi.05442-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus infections involve the extensive modification of host cell pathways, including cell cycle control, the regulation of the DNA damage response, and averting promyelocytic leukemia (PML)-mediated antiviral responses. The UL35 gene from human cytomegalovirus is important for viral gene expression and efficient replication and encodes two proteins, UL35 and UL35a, whose mechanism of action is not well understood. Here, affinity purification coupled with mass spectrometry was used to identify previously unknown human cellular targets of UL35 and UL35a. We demonstrate that both viral proteins interact with the ubiquitin-specific protease USP7, and that UL35 expression can alter USP7 subcellular localization. In addition, UL35 (but not UL35a) was found to associate with three components of the Cul4(DCAF1) E3 ubiquitin ligase complex (DCAF1, DDB1, and DDA1) previously shown to be targeted by the HIV-1 Vpr protein. The coimmunoprecipitation and immunofluorescence microscopy of DCAF1 mutants revealed that the C-terminal region of DCAF1 is required for association with UL35 and mediates the dramatic relocalization of DCAF1 to UL35 nuclear bodies, which also contain conjugated ubiquitin. As previously reported for the Vpr-DCAF1 interaction, UL35 (but not UL35a) expression resulted in the accumulation of cells in the G(2) phase of the cell cycle, which is typical of a DNA damage response, and activated the G(2) checkpoint in a DCAF1-dependent manner. In addition, UL35 (but not UL35a) induced γ-H2AX and 53BP1 foci, indicating the activation of DNA damage and repair responses. Therefore, the identified interactions suggest that UL35 can contribute to viral replication through the manipulation of host responses.
Collapse
|
65
|
Human cytomegalovirus primase UL70 specifically interacts with cellular factor Snapin. J Virol 2011; 85:11732-41. [PMID: 21917956 DOI: 10.1128/jvi.05357-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV). HCMV UL70 is believed to encode the primase of the DNA replication machinery, a function which requires localization in the nucleus, the site of viral DNA synthesis. No host factors that interact with UL70 have been reported. In this study, we provide the first direct evidence that UL70 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and is associated with cellular vesicles. The interaction between UL70 and Snapin was identified in both the two-hybrid screen in yeast and coimmunoprecipitation in human cells. The nuclear import of UL70 was decreased in cells overexpressing Snapin and increased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. In contrast, no significant difference in the nuclear level of UL70, viral DNA synthesis, and progeny production was found among the parental cells and cells that either expressed a control empty vector or were treated with control siRNA molecules that did not recognize any viral or cellular transcripts. Our results suggest that Snapin may play a key role in regulating the cellular localization of UL70 in HCMV, leading to modulation of viral DNA synthesis and progeny production.
Collapse
|
66
|
Senkevich TG, Koonin EV, Moss B. Vaccinia virus F16 protein, a predicted catalytically inactive member of the prokaryotic serine recombinase superfamily, is targeted to nucleoli. Virology 2011; 417:334-42. [PMID: 21752417 PMCID: PMC3163719 DOI: 10.1016/j.virol.2011.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 11/24/2022]
Abstract
The F16L gene of vaccinia virus (VACV) is conserved in all chordopoxviruses except avipoxviruses. The crocodile poxvirus F16 protein ortholog has highly significant similarity to prokaryotic serine recombinases and contains all amino acids that comprise the catalytic site. In contrast, F16 orthologs encoded by other poxviruses show only marginally significant similarity to serine recombinases, lack essential amino acids of the active site and are most likely inactive derivatives of serine recombinases. Nevertheless, the conservation of F16L in non-avian poxviruses suggested an important function. However, a VACV mutant with the F16L gene knocked out replicated normally in dividing and quiescent cells. The F16 protein was synthesized early after infection and detected in virus cores. When expressed in infected or uninfected cells, F16 accumulated in nucleoli depending on the level of expression and confluency of cells. Evidence was obtained that F16 forms multimers, which might regulate concentration-dependent intracellular localization.
Collapse
Affiliation(s)
- Tatiana G. Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
67
|
Friedel CC, Haas J. Virus-host interactomes and global models of virus-infected cells. Trends Microbiol 2011; 19:501-8. [PMID: 21855347 DOI: 10.1016/j.tim.2011.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023]
Abstract
Novel high-throughput technologies such as yeast two-hybrid and RNA interference (RNAi) screens provide the tools to study interactions between viral proteins and the host on a genomic scale. In this review, we provide an overview of studies in which these technologies were applied and of computational approaches for the analysis of the identified viral interactors in the context of the host cell. The results of these studies illustrate the advantages of integrative systems biology approaches in the investigation of viral pathogens.
Collapse
Affiliation(s)
- Caroline C Friedel
- Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
68
|
Affiliation(s)
- Mark O. J. Olson
- Dept. Biochemistry, University of Mississippi Medical Center, North State St. 2500, Jackson, 39216 Mississippi USA
| |
Collapse
|
69
|
Arcangeletti MC, Rodighiero I, Mirandola P, De Conto F, Covan S, Germini D, Razin S, Dettori G, Chezzi C. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro. J Cell Biochem 2011; 112:307-17. [PMID: 21053310 DOI: 10.1002/jcb.22928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.
Collapse
|
70
|
Intrinsic cellular defense mechanisms targeting human cytomegalovirus. Virus Res 2011; 157:128-33. [DOI: 10.1016/j.virusres.2010.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
|
71
|
Salsman J, Wang X, Frappier L. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35. Virology 2011; 414:119-29. [PMID: 21489587 DOI: 10.1016/j.virol.2011.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 12/18/2022]
Abstract
The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Molecular Genetics, 1 Kings College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
72
|
The alphaherpesvirus serine/threonine kinase us3 disrupts promyelocytic leukemia protein nuclear bodies. J Virol 2011; 85:5301-11. [PMID: 21430051 DOI: 10.1128/jvi.00022-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Us3, a serine/threonine kinase encoded by all alphaherpesviruses, plays diverse roles during virus infection, including preventing virus-induced apoptosis, facilitating nuclear egress of capsids, stimulating mRNA translation and promoting cell-to-cell spread of virus infection. Given this diversity, the full spectrum of Us3 function may not yet be recognized. We noted, in transiently transfected cells, that herpes simplex virus type 2 (HSV-2) Us3 disrupted promyelocytic leukemia protein nuclear bodies (PML-NBs). However, PML-NB disruption was not observed in cells expressing catalytically inactive HSV-2 Us3. Analysis of PML-NBs in Vero cells transfected with pseudorabies virus (PRV) Us3 and those in Vero cells infected with Us3-null or -repaired PRV strains indicated that PRV Us3 expression also leads to the disruption of PML-NBs. While loss of PML-NBs in response to Us3 expression was prevented by the proteasome inhibitor MG132, Us3-mediated degradation of PML was not observed in infected cells or in transfected cells expressing enhanced green fluorescent protein (EGFP)-tagged PML isoform IV. These findings demonstrate that Us3 orthologues derived from distantly related alphaherpesviruses cause a disruption of PML-NBs in a kinase- and proteasome-dependent manner but, unlike the alphaherpesvirus ICP0 orthologues, do not target PML for degradation.
Collapse
|
73
|
Abstract
Recent advances in proteomics have been combined with traditional methods for isolation of nucleoli from mammalian and plant cells. This approach has confirmed the growing body of data showing a wide role for the nucleolus in eukaryotic cell biology beyond ribosome generation into many areas of cell function from regulation of the cell cycle, modulation of the cell stress response to innate immune responses. This has been reflected in the growing body of evidence that viruses specifically target the nucleolus by sequestering cellular nucleolar proteins or by targeting viral proteins to the nucleolus in order to maximise viral replication. This review covers those key areas and looks at the latest approaches using high‐throughput quantitative proteomics of the nucleolus in virus infected cells to gain an insight into the role of this fascinating compartment in viral infection.
Collapse
Affiliation(s)
- Julian A Hiscox
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
74
|
Zielke B, Thomas M, Giede-Jeppe A, Müller R, Stamminger T. Characterization of the betaherpesviral pUL69 protein family reveals binding of the cellular mRNA export factor UAP56 as a prerequisite for stimulation of nuclear mRNA export and for efficient viral replication. J Virol 2011; 85:1804-19. [PMID: 21147923 PMCID: PMC3028876 DOI: 10.1128/jvi.01347-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022] Open
Abstract
UL69 of human cytomegalovirus (HCMV) encodes a pleiotropic transactivator protein and has a counterpart in every member of the Herpesviridae family thus far sequenced. However, little is known about the conservation of the functions of the nuclear phosphoprotein pUL69 in the homologous proteins of other betaherpesviruses. Therefore, eukaryotic expression vectors were constructed for pC69 of chimpanzee cytomegalovirus, pRh69 of rhesus cytomegalovirus, pM69 of murine cytomegalovirus, pU42 of human herpesvirus 6, and pU42 of elephant endotheliotropic herpesvirus. Indirect immunofluorescence experiments showed that all pUL69 homologs expressed by these vectors were localized to the cell nucleus. Coimmunoprecipitation experiments identified homodimerization as a conserved feature of all homologs, whereas heterodimerization with pUL69 was restricted to its closer relatives. Further analyses demonstrated that pC69 and pRh69 were the only two homologs that functioned, like pUL69, as viral-mRNA export factors. As we had reported recently that nucleocytoplasmic shuttling and interaction with the cellular DExD/H-box helicases UAP56 and URH49 were prerequisites for the nuclear-mRNA export activity of pUL69, the homologs were characterized with regard to these properties. Heterokaryon assays demonstrated nucleocytoplasmic shuttling for all homologs, and coimmunoprecipitation and mRNA export assays revealed that the interaction of UAP56 and/or URH49 with pC69 or pRh69 was required for mRNA export activity. Moreover, characterization of HCMV recombinants harboring mutations within the N-terminal sequence of pUL69 revealed a strong replication defect of viruses expressing pUL69 variants that were deficient in UAP56 binding. In summary, homodimerization and nucleocytoplasmic shuttling activity were identified as conserved features of betaherpesviral pUL69 homologs. UAP56 binding was shown to represent a unique characteristic of members of the genus Cytomegalovirus that is required for efficient replication of HCMV.
Collapse
Affiliation(s)
- Barbara Zielke
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Marco Thomas
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Antje Giede-Jeppe
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Regina Müller
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
75
|
Xing J, Wang S, Li Y, Guo H, Zhao L, Pan W, Lin F, Zhu H, Wang L, Li M, Wang L, Zheng C. Characterization of the subcellular localization of herpes simplex virus type 1 proteins in living cells. Med Microbiol Immunol 2010; 200:61-8. [PMID: 20949280 DOI: 10.1007/s00430-010-0175-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Indexed: 12/16/2022]
Abstract
In this study, we presented the construction of a library of expression clones for the herpes simplex virus type 1 (HSV-1) proteome and subcellular localization map of HSV-1 proteins in living cells using yellow fluorescent protein (YFP) fusion proteins. As a result, 21 proteins showed cytoplasmic or subcytoplasmic localization, 16 proteins showed nuclear or subnuclear localization, and others were present both in the nucleus and cytoplasm. Interestingly, most capsid proteins showed enriched or exclusive localization in the nucleus, and most of the envelope proteins showed cytoplasmic localization, suggesting that subcellular localization of the proteins correlated with their functions during virus replication. These results present a subcellular localization map of HSV-1 proteins in living cells, which provide useful information to further characterize the functions of these proteins.
Collapse
Affiliation(s)
- Junji Xing
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 430071 Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Cyclin-dependent kinase-like function is shared by the beta- and gamma- subset of the conserved herpesvirus protein kinases. PLoS Pathog 2010; 6:e1001092. [PMID: 20838604 PMCID: PMC2936540 DOI: 10.1371/journal.ppat.1001092] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/09/2010] [Indexed: 11/19/2022] Open
Abstract
The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5)), is a kinase that phosphorylates the cellular retinoblastoma (Rb) tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks). A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97. These UL97-homologous proteins have been termed the conserved herpesvirus protein kinases (CHPKs) to distinguish them from other human herpesvirus-encoded kinases. To determine if the Cdk-like activities of UL97 were shared by all of the CHPKs, we individually expressed epitope-tagged alleles of each protein in human Saos-2 cells to test for Rb phosphorylation, human U-2 OS cells to monitor nuclear lamina disruption and lamin A phosphorylation, or S. cerevisiae cdc28-13 mutant cells to directly assay for Cdk function. We found that the ability to phosphorylate Rb and lamin A, and to disrupt the nuclear lamina, was shared by all CHPKs from the beta- and gamma-herpesvirus families, but not by their alpha-herpesvirus homologs. Similarly, all but one of the beta and gamma CHPKs displayed bona fide Cdk activity in S. cerevisiae, while the alpha proteins did not. Thus, we have identified novel virally-encoded Cdk-like kinases, a nomenclature we abbreviate as v-Cdks. Interestingly, we found that other, non-Cdk-related activities reported for UL97 (dispersion of promyelocytic leukemia protein nuclear bodies (PML-NBs) and disruption of cytoplasmic or nuclear aggresomes) showed weak conservation among the CHPKs that, in general, did not segregate to specific viral families. Therefore, the genomic and evolutionary conservation of these kinases has not been fully maintained at the functional level. Our data indicate that these related kinases, some of which are targets of approved or developmental antiviral drugs, are likely to serve both overlapping and non-overlapping functions during viral infections.
Collapse
|
77
|
Emmott E, Rodgers MA, Macdonald A, McCrory S, Ajuh P, Hiscox JA. Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 2010; 9:1920-36. [PMID: 20467043 PMCID: PMC2938107 DOI: 10.1074/mcp.m900345-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 04/09/2010] [Indexed: 01/19/2023] Open
Abstract
Virus-host interactions involve complex interplay between viral and host factors, rendering them an ideal target for proteomic analysis. Here we detail a high throughput quantitative proteomics analysis of Vero cells infected with the coronavirus infectious bronchitis virus (IBV), a positive strand RNA virus that replicates in the cytoplasm. Stable isotope labeling with amino acids in cell culture (SILAC) was used in conjunction with LC-MS/MS to identify and quantify 1830 cellular and two viral proteins from IBV-infected cells. Fractionation of cells into cytoplasmic, nuclear, and nucleolar extracts was used to reduce sample complexity and provide information on the trafficking of proteins between the different compartments. Each fraction showed a proportion of proteins exhibiting >or=2-fold changes in abundance. Ingenuity Pathway Analysis revealed that proteins that changed in response to infection could be grouped into different functional categories. These included proteins regulated by NF-kappaB- and AP-1-dependent pathways and proteins involved in the cytoskeleton and molecular motors. A luciferase-based reporter gene assay was used to validate the up-regulation of AP-1- and NF-kappaB-dependent transcription in IBV-infected cells and confirmed using immunofluorescence. Immunofluorescence was used to validate changes in the subcellular localization of vimentin and myosin VI in IBV-infected cells. The proteomics analysis also confirmed the presence of the viral nucleocapsid protein as localizing in the cytoplasm, nucleus, and nucleolus and the viral membrane protein in the cytoplasmic fraction. This research is the first application of SILAC to study total host cell proteome changes in response to positive sense RNA virus infection and illustrates the versatility of this technique as applied to infectious disease research.
Collapse
Affiliation(s)
- Edward Emmott
- From the ‡Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and
- the §Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Mark A. Rodgers
- From the ‡Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Andrew Macdonald
- From the ‡Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Sarah McCrory
- From the ‡Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Paul Ajuh
- **Dundee Cell Products Ltd., James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Julian A. Hiscox
- From the ‡Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and
- the §Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
78
|
Epstein-Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 2010; 84:11113-23. [PMID: 20719947 DOI: 10.1128/jvi.01183-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is an important causative factor in the development of several cancers, including nasopharyngeal carcinoma (NPC). The one EBV protein expressed in the nucleus of NPC cells, EBNA1, has been shown to disrupt promyelocitic leukemia (PML) nuclear bodies (NBs) by inducing the degradation of PML proteins, leading to impaired DNA repair and increased cell survival. Although EBNA1-mediated PML disruption is likely to be an important factor in the development of NPC, little is known about its mechanism. We now show that an interaction between EBNA1 and the host CK2 kinase is crucial for EBNA1 to disrupt PML bodies and degrade PML proteins. EBNA1 increases the association of CK2 with PML proteins, thereby increasing the phosphorylation of PML proteins by CK2, a modification that is known to trigger the polyubiquitylation and degradation of PML. The interaction between EBNA1 and CK2 is direct and occurs through the β regulatory subunit of CK2 and EBNA1 amino acids 387 to 394. The binding of EBNA1 to the host ubiquitin specific protease USP7 has also been shown to be important for EBNA1-mediated PML disruption. We show that EBNA1 also increases the occupancy of USP7 at PML NBs and that CK2 and USP7 bind independently and simultaneously to EBNA1 to form a ternary complex. The combined results indicate that EBNA1 usurps two independent cellular pathways to trigger the loss of PML NBs.
Collapse
|
79
|
Xing J, Wu F, Pan W, Zheng C. Molecular anatomy of subcellular localization of HSV-1 tegument protein US11 in living cells. Virus Res 2010; 153:71-81. [PMID: 20633584 PMCID: PMC7114396 DOI: 10.1016/j.virusres.2010.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 01/05/2023]
Abstract
The herpes simplex virus type I (HSV-1) US11 protein is an RNA-binding multifunctional regulator that specifically and stably associates with nucleoli. Although the C-terminal part of US11 was responsible for its nucleolar localization, the precise nucleolar localization signal (NoLS) and nuclear export signal (NES) of US11 and its nuclear import and export mechanisms are still elusive. In this study, fluorescence microscopy was employed to investigate the subcellular localization of US11 and characterize its transport mechanism in living cells. By constructing a series of deletion mutants fused with enhanced yellow fluorescent protein (EYFP), three novel NoLSs of US11 were for the first time mapped to amino acids 84-125, 126-152, and 89-146, respectively. Additionally, the NES was identified to locate between amino acids 89 and 119. Furthermore, the US11 protein was demonstrated to target to the cytoplasm through the NES by chromosomal region maintenance 1 (CRM1)-independent pathway, and to the nucleolus through Ran and importin beta-dependent mechanism that does not require importin alpha 5.
Collapse
Affiliation(s)
- Junji Xing
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan 430071, PR China
| | | | | | | |
Collapse
|
80
|
Gaddy CE, Wong DS, Markowitz-Shulman A, Colberg-Poley AM. Regulation of the subcellular distribution of key cellular RNA-processing factors during permissive human cytomegalovirus infection. J Gen Virol 2010; 91:1547-59. [PMID: 20164265 PMCID: PMC2888166 DOI: 10.1099/vir.0.020313-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alternative splicing and polyadenylation of human cytomegalovirus (HCMV) immediate-early (IE) pre-mRNAs are temporally regulated and rely on cellular RNA-processing factors. This study examined the location and abundance of essential RNA-processing factors, which affect alternative processing of UL37 IE pre-mRNAs, during HCMV infection. Serine/threonine protein kinase 1 (SRPK1) phosphorylates serine/arginine-rich proteins, necessary for pre-spliceosome commitment. It was found that HCMV infection progressively increased the abundance of cytoplasmic SRPK1, which is regulated by subcellular partitioning. The essential polyadenylation factor CstF-64 was similarly increased in abundance, albeit in the nucleus, proximal to and within viral replication compartments (VRCs). In contrast, the location of polypyrimidine tract-binding protein (PTB), known to adversely affect splicing of HCMV major IE RNAs, was temporally regulated during infection. PTB co-localized with CstF-64 in the nucleus at IE times. By early times, PTB was detected in punctate cytoplasmic sites of some infected cells. At late times, PTB relocalized to the nucleus, where it was notably excluded from HCMV VRCs. Moreover, HCMV infection induced the formation of nucleolar stress structures, fibrillarin-containing caps, in close proximity to its VRCs. PTB exclusion from HCMV VRCs required HCMV DNA synthesis and/or late gene expression, whereas the regulation of SRPK1 subcellular distribution did not. Taken together, these results indicated that HCMV increasingly regulates the subcellular distribution and abundance of essential RNA-processing factors, thereby altering their ability to affect the processing of viral pre-mRNAs. These results further suggest that HCMV infection selectively induces sorting of nucleolar and nucleoplasmic components.
Collapse
Affiliation(s)
- Charla E Gaddy
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
81
|
Strang BL, Boulant S, Coen DM. Nucleolin associates with the human cytomegalovirus DNA polymerase accessory subunit UL44 and is necessary for efficient viral replication. J Virol 2010; 84:1771-84. [PMID: 20007282 PMCID: PMC2812382 DOI: 10.1128/jvi.01510-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/23/2009] [Indexed: 01/04/2023] Open
Abstract
In the eukaryotic cell, DNA replication entails the interaction of multiple proteins with the DNA polymerase processivity factor PCNA. As the structure of the presumptive human cytomegalovirus (HCMV) DNA polymerase processivity factor UL44 is highly homologous to that of PCNA, we hypothesized that UL44 also interacts with numerous proteins. To investigate this possibility, recombinant HCMV expressing FLAG-tagged UL44 was generated and used to immunoprecipitate UL44 and associated proteins from infected cell lysates. Unexpectedly, nucleolin, a major protein component of the nucleolus, was identified among these proteins by mass spectrometry and Western blotting. The association of nucleolin and UL44 in infected cell lysate was confirmed by reciprocal coimmunoprecipitation in the presence and absence of nuclease. Western blotting and immunofluorescence assays demonstrated that the level of nucleolin increases during infection and that nucleolin becomes distributed throughout the nucleus. Furthermore, the colocalization of nucleolin and UL44 in infected cell nuclei was observed by immunofluorescence assays. Assays of HCMV-infected cells treated with small interfering RNA (siRNA) targeting nucleolin mRNA indicated that nucleolin was required for efficient virus production, viral DNA synthesis, and the expression of a late viral protein, with a correlation between the efficacy of knockdown and the effect on virus replication. In contrast, the level of neither global protein synthesis nor the replication of an unrelated virus (reovirus) was reduced in siRNA-treated cells. Taken together, our results indicate an association of nucleolin and UL44 in HCMV-infected cells and a role for nucleolin in viral DNA synthesis.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Steeve Boulant
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
82
|
Kobiler O, Lipman Y, Therkelsen K, Daubechies I, Enquist LW. Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes. Nat Commun 2010; 1:146. [PMID: 21266996 PMCID: PMC3079281 DOI: 10.1038/ncomms1145] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/24/2010] [Indexed: 01/12/2023] Open
Abstract
Whether all the infectious herpesvirus particles entering a cell are able to replicate and/or express their genomes is not known. Here, we developed a general method to determine the number of viral genomes expressed in an infected cell. We constructed and analysed fluorophore expression from a recombinant pseudorabies virus (PRV263) carrying a Brainbow cassette (Cre-conditional expression of different fluorophores). Using three isogenic strains derived from PRV263, each expressing a single fluorophore, we analysed the colour composition of cells infected with these three viruses at different multiplicities. We estimate that fewer than seven incoming genomes are expressed per cell. In addition, those templates that are expressed are the genomes selected for replication and packaging into virions. This finite limit on the number of viral genomes that can be expressed is an intrinsic property of the infected cell and may be influenced by viral and cellular factors.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Yaron Lipman
- The Program in Applied and Computational Mathematics, Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kate Therkelsen
- The Program in Applied and Computational Mathematics, Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ingrid Daubechies
- The Program in Applied and Computational Mathematics, Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Lynn W. Enquist
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
83
|
Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol 2010; 84:109-18. [PMID: 19864385 PMCID: PMC2798432 DOI: 10.1128/jvi.01428-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/20/2009] [Indexed: 12/13/2022] Open
Abstract
The UL24 family of proteins is widely conserved among herpesviruses. We demonstrated previously that UL24 of herpes simplex virus 1 (HSV-1) is important for the dispersal of nucleolin from nucleolar foci throughout the nuclei of infected cells. Furthermore, the N-terminal portion of UL24 localizes to nuclei and can disperse nucleolin in the absence of any other viral proteins. In this study, we tested the hypothesis that highly conserved residues in UL24 are important for the ability of the protein to modify the nuclear distribution of nucleolin. We constructed a panel of substitution mutations in UL24 and tested their effects on nucleolin staining patterns. We found that modified UL24 proteins exhibited a range of subcellular distributions. Mutations associated with a wild-type localization pattern for UL24 correlated with high levels of nucleolin dispersal. Interestingly, mutations targeting two regions, namely, within the first homology domain and overlapping or near the previously identified PD-(D/E)XK endonuclease motif, caused the most altered UL24 localization pattern and the most drastic reduction in its ability to disperse nucleolin. Viral mutants corresponding to the substitutions G121A and E99A/K101A both exhibited a syncytial plaque phenotype at 39 degrees C. vUL24-E99A/K101A replicated to lower titers than did vUL24-G121A or KOS. Furthermore, the E99A/K101A mutation caused the greatest impairment of HSV-1-induced dispersal of nucleolin. Our results identified residues in UL24 that are critical for the ability of UL24 to alter nucleoli and further support the notion that the endonuclease motif is important for the function of UL24 during infection.
Collapse
Affiliation(s)
- Luc Bertrand
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | | - Huda Hyjazie
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Angela Pearson
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
84
|
Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J Virol 2009; 84:2384-94. [PMID: 20032172 DOI: 10.1128/jvi.01686-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During productive infection, herpes simplex virus type 1 (HSV-1) induces the formation of discrete nuclear foci containing cellular chaperone proteins, proteasomal components, and ubiquitinated proteins. These structures are known as VICE domains and are hypothesized to play an important role in protein turnover and nuclear remodeling in HSV-1-infected cells. Here we show that VICE domain formation in Vero and other cells requires the HSV-1 immediate-early protein ICP22. Since ICP22 null mutants replicate efficiently in Vero cells despite being unable to induce VICE domain formation, it can be concluded that VICE domain formation is not essential for HSV-1 productive infection. However, our findings do not exclude the possibility that VICE domain formation is required for viral replication in cells that are nonpermissive for ICP22 mutants. Our studies also show that ICP22 itself localizes to VICE domains, suggesting that it could play a role in forming these structures. Consistent with this, we found that ICP22 expression in transfected cells is sufficient to reorganize the VICE domain component Hsc70 into nuclear inclusion bodies that resemble VICE domains. An N-terminal segment of ICP22, corresponding to residues 1 to 146, is critical for VICE domain formation in infected cells and Hsc70 reorganization in transfected cells. We previously found that this portion of the protein is dispensable for ICP22's effects on RNA polymerase II phosphorylation. Thus, ICP22 mediates two distinct regulatory activities that both modify important components of the host cell nucleus.
Collapse
|
85
|
Mühlbach H, Mohr CA, Ruzsics Z, Koszinowski UH. Dominant-negative proteins in herpesviruses - from assigning gene function to intracellular immunization. Viruses 2009; 1:420-40. [PMID: 21994555 PMCID: PMC3185506 DOI: 10.3390/v1030420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/17/2022] Open
Abstract
Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.
Collapse
Affiliation(s)
| | | | - Zsolt Ruzsics
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| | - Ulrich H. Koszinowski
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| |
Collapse
|
86
|
Siew VK, Duh CY, Wang SK. Human cytomegalovirus UL76 induces chromosome aberrations. J Biomed Sci 2009; 16:107. [PMID: 19930723 PMCID: PMC2788540 DOI: 10.1186/1423-0127-16-107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 11/25/2009] [Indexed: 12/26/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations.
Collapse
Affiliation(s)
- Voon-Kwan Siew
- Department of Microbiology, Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan.
| | | | | |
Collapse
|
87
|
Abstract
Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalised in the nucleolus of infected cells. Well‐documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s). Copyright © 2009 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Greco
- Université de Lyon, Lyon F-69003, France.
| |
Collapse
|
88
|
Henson BW, Perkins EM, Cothran JE, Desai P. Self-assembly of Epstein-Barr virus capsids. J Virol 2009; 83:3877-90. [PMID: 19158247 PMCID: PMC2663254 DOI: 10.1128/jvi.01733-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/13/2009] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), a member of the Gammaherpesvirus family, primarily infects B lymphocytes and is responsible for a number of lymphoproliferative diseases. The molecular genetics of the assembly pathway and high-resolution structural analysis of the capsid have not been determined for this lymphocryptovirus. As a first step in studying EBV capsid assembly, the baculovirus expression vector (BEV) system was used to express the capsid shell proteins BcLF1 (major capsid protein), BORF1 (triplex protein), BDLF1 (triplex protein), and BFRF3 (small capsid protein); the internal scaffold protein, BdRF1; and the maturational protease (BVRF2). Coinfection of insect cells with the six viruses expressing these proteins resulted in the production of closed capsid structures as judged by electron microscopy and sedimentation methods. Therefore, as shown for other herpesviruses, only six proteins are required for EBV capsid assembly. Furthermore, the small capsid protein of EBV (BFRF3), like that of Kaposi's sarcoma-associated herpesvirus, was found to be required for assembly of a stable structure. Localization of the small capsid protein to nuclear assembly sites required both the major capsid (BcLF1) and scaffold proteins (BdRF1) but not the triplex proteins. Mutational analysis of BFRF3 showed that the N-terminal half (amino acids 1 to 88) of this polypeptide is required and sufficient for capsid assembly. A region spanning amino acids 65 to 88 is required for the concentration of BFRF3 at a subnuclear site and the N-terminal 65 amino acids contain the sequences required for interaction with major capsid protein. These studies have identified the multifunctional role of the gammaherpesvirus small capsid proteins.
Collapse
Affiliation(s)
- Brandon W Henson
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 353 CRB1 Viral Oncology, 1650 New Orleans St., Baltimore, MD 21117, USA
| | | | | | | |
Collapse
|
89
|
Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression. J Virol 2008; 83:128-39. [PMID: 18971282 DOI: 10.1128/jvi.01954-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.
Collapse
|