51
|
van der Linden L, Vives-Adrián L, Selisko B, Ferrer-Orta C, Liu X, Lanke K, Ulferts R, De Palma AM, Tanchis F, Goris N, Lefebvre D, De Clercq K, Leyssen P, Lacroix C, Pürstinger G, Coutard B, Canard B, Boehr DD, Arnold JJ, Cameron CE, Verdaguer N, Neyts J, van Kuppeveld FJM. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family. PLoS Pathog 2015; 11:e1004733. [PMID: 25799064 PMCID: PMC4370873 DOI: 10.1371/journal.ppat.1004733] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/06/2015] [Indexed: 01/08/2023] Open
Abstract
The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Laia Vives-Adrián
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Barbara Selisko
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Xinran Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rachel Ulferts
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Armando M. De Palma
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Federica Tanchis
- Abteilung Pharmazeutische Chemie, Institut für Pharmazie, Universität Innsbruck, Innsbruck, Austria
| | | | - David Lefebvre
- Unit of Vesicular and Exotic Diseases, Virology Department, CODA-CERVA, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Kris De Clercq
- Unit of Vesicular and Exotic Diseases, Virology Department, CODA-CERVA, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Céline Lacroix
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Gerhard Pürstinger
- Abteilung Pharmazeutische Chemie, Institut für Pharmazie, Universität Innsbruck, Innsbruck, Austria
| | - Bruno Coutard
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - Bruno Canard
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - David D. Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Frank J. M. van Kuppeveld
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
52
|
Ammer E, Nietzsche S, Rien C, Kühnl A, Mader T, Heller R, Sauerbrei A, Henke A. The anti-obesity drug orlistat reveals anti-viral activity. Med Microbiol Immunol 2015; 204:635-45. [DOI: 10.1007/s00430-015-0391-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022]
|
53
|
Cell-specific establishment of poliovirus resistance to an inhibitor targeting a cellular protein. J Virol 2015; 89:4372-86. [PMID: 25653442 DOI: 10.1128/jvi.00055-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can easily generate mutants resistant to practically any compounds targeting viral proteins. An alternative approach is to target stable cellular factors recruited for the virus-specific functions. In the present study, we analyzed the factors permitting and restricting the establishment of the resistance of poliovirus, a small (+)RNA virus, to brefeldin A (BFA), a drug targeting a cellular component of the viral replication complex. We found that the emergence and replication potential of resistant mutants is cell type dependent and that BFA resistance reduces virus fitness. Our data provide a rational approach to the development of antiviral therapeutics targeting host factors.
Collapse
|
54
|
Greninger AL. Picornavirus–Host Interactions to Construct Viral Secretory Membranes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 129:189-212. [DOI: 10.1016/bs.pmbts.2014.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Hepatitis C virus life cycle and lipid metabolism. BIOLOGY 2014; 3:892-921. [PMID: 25517881 PMCID: PMC4280516 DOI: 10.3390/biology3040892] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus (HCV) infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.
Collapse
|
56
|
GBF1- and ACBD3-independent recruitment of PI4KIIIβ to replication sites by rhinovirus 3A proteins. J Virol 2014; 89:1913-8. [PMID: 25410869 DOI: 10.1128/jvi.02830-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PI4KIIIβ recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIβ to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIβ to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact with ACBD3, our data suggest that PI4KIIIβ recruitment occurred independently of both GBF1 and ACBD3.
Collapse
|
57
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection. Commun Integr Biol 2014. [DOI: 10.4161/cib.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
58
|
Abstract
The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.
Collapse
Affiliation(s)
- Catherine L Jackson
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Samuel Bouvet
- Membrane Dynamics and Intracellular Trafficking, Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| |
Collapse
|
59
|
Abstract
UNLABELLED Few drugs targeting picornaviruses are available, making the discovery of antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited both the formation and functioning of the replication complexes, while E5(1) and E7(2) were most effective during the formation but not the functioning step. Neither of the compounds significantly inhibited VPg uridylylation. Poliovirus resistant to E7(2) had a G5318A mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target a phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ)-dependent step in viral replication. Analysis of host protein recruitment showed that E7(2) reduced the amount of GBF1 on the replication complexes; however, the level of PI4KIIIβ remained intact. E7(2) as well as another enviroxime-like compound, GW5074, interfered with viral polyprotein processing affecting both 3C- and 2A-dependent cleavages, and the resistant G5318A mutation partially rescued this defect. Moreover, E7(2) induced abnormal recruitment to membranes of the viral proteins; thus, enviroxime-like compounds likely severely compromise the interaction of the viral polyprotein with membranes. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. IMPORTANCE Diverse picornaviruses can trigger multiple human maladies, yet currently, only hepatitis A virus and poliovirus can be controlled with vaccination. The development of antipicornavirus therapeutics is also facing significant difficulties because these viruses readily generate resistance to compounds targeting either viral or cellular factors. Here, we describe three novel compounds that effectively block replication of distantly related picornaviruses with minimal toxicity to cells. The compounds prevent viral RNA replication after the synthesis of the uridylylated VPg primer. Importantly, two of the inhibitors are strongly refractory to the emergence of resistant mutants, making them promising candidates for further broad-spectrum therapeutic development. Evaluation of one of the compounds in an in vivo model of poliomyelitis demonstrated partial protection from the onset of paralysis.
Collapse
|
60
|
Abstract
Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway "as is" for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited.
Collapse
|
61
|
Wang J, Du J, Jin Q. Class I ADP-ribosylation factors are involved in enterovirus 71 replication. PLoS One 2014; 9:e99768. [PMID: 24911624 PMCID: PMC4049829 DOI: 10.1371/journal.pone.0099768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/16/2022] Open
Abstract
Enterovirus 71 is one of the major causative agents of hand, foot, and mouth disease in infants and children. Replication of enterovirus 71 depends on host cellular factors. The viral replication complex is formed in novel, cytoplasmic, vesicular compartments. It has not been elucidated which cellular pathways are hijacked by the virus to create these vesicles. Here, we investigated whether proteins associated with the cellular secretory pathway were involved in enterovirus 71 replication. We used a loss-of-function assay, based on small interfering RNA. We showed that enterovirus 71 RNA replication was dependent on the activity of Class I ADP-ribosylation factors. Simultaneous depletion of ADP-ribosylation factors 1 and 3, but not three others, inhibited viral replication in cells. We also demonstrated with various techniques that the brefeldin-A-sensitive guanidine nucleotide exchange factor, GBF1, was critically important for enterovirus 71 replication. Our results suggested that enterovirus 71 replication depended on GBF1-mediated activation of Class I ADP-ribosylation factors. These results revealed a connection between enterovirus 71 replication and the cellular secretory pathway; this pathway may represent a novel target for antiviral therapies.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
62
|
Carpp LN, Rogers RS, Moritz RL, Aitchison JD. Quantitative proteomic analysis of host-virus interactions reveals a role for Golgi brefeldin A resistance factor 1 (GBF1) in dengue infection. Mol Cell Proteomics 2014; 13:2836-54. [PMID: 24855065 DOI: 10.1074/mcp.m114.038984] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Dengue virus is considered to be the most important mosquito-borne virus worldwide and poses formidable economic and health care burdens on many tropical and subtropical countries. Dengue infection induces drastic rearrangement of host endoplasmic reticulum membranes into complex membranous structures housing replication complexes; the contribution(s) of host proteins and pathways to this process is poorly understood but is likely to be mediated by protein-protein interactions. We have developed an approach for obtaining high confidence protein-protein interaction data by employing affinity tags and quantitative proteomics, in the context of viral infection, followed by robust statistical analysis. Using this approach, we identified high confidence interactors of NS5, the viral polymerase, and NS3, the helicase/protease. Quantitative proteomics allowed us to exclude a large number of presumably nonspecific interactors from our data sets and imparted a high level of confidence to our resulting data sets. We identified 53 host proteins reproducibly associated with NS5 and 41 with NS3, with 13 of these candidates present in both data sets. The host factors identified have diverse functions, including retrograde Golgi-to-endoplasmic reticulum transport, biosynthesis of long-chain fatty-acyl-coenzyme As, and in the unfolded protein response. We selected GBF1, a guanine nucleotide exchange factor responsible for ARF activation, from the NS5 data set for follow up and functional validation. We show that GBF1 plays a critical role early in dengue infection that is independent of its role in the maintenance of Golgi structure. Importantly, the approach described here can be applied to virtually any organism/system as a tool for better understanding its molecular interactions.
Collapse
Affiliation(s)
- Lindsay N Carpp
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109
| | - Richard S Rogers
- ‖Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109
| | - Robert L Moritz
- §Institute for Systems Biology, 401 Terry Ave N, Seattle, Washington 98109
| | - John D Aitchison
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109; §Institute for Systems Biology, 401 Terry Ave N, Seattle, Washington 98109, ‖Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109.
| |
Collapse
|
63
|
Wittinghofer A. Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery. RAS SUPERFAMILY SMALL G PROTEINS: BIOLOGY AND MECHANISMS 2 2014. [PMCID: PMC7123483 DOI: 10.1007/978-3-319-07761-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arf small GTP-binding (G) proteins regulate membrane traffic and organelle structure in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. The first function identified for Arf proteins was recruitment of cytosolic coat complexes to membranes to mediate vesicle formation. However, subsequent studies have uncovered additional functions, including roles in plasma membrane signalling pathways, cytoskeleton regulation, lipid droplet function, and non-vesicular lipid transport. In contrast to other families of G proteins, there are only a few Arf proteins in each organism, yet they function specifically at many different cellular locations. Part of this specificity is achieved by formation of complexes with their guanine nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyse GTP binding and hydrolysis, respectively. Because these regulators outnumber their Arf substrates by at least 3-to-1, an important aspect of understanding Arf function is elucidating the mechanisms by which a single Arf protein is incorporated into different GEF, GAP, and effector complexes. New insights into these mechanisms have come from recent studies showing GEF–effector interactions, Arf activation cascades, and positive feedback loops. A unifying theme in the function of Arf proteins, carried out in conjunction with their regulators and effectors, is sensing and modulating the properties of the lipids that make up cellular membranes.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
64
|
Abstract
Poliovirus (PV), a model for interactions of picornaviruses with host cells, replicates its genomic RNA in association with cellular membranes. The origin of PV replication membranes has not been determined. Hypotheses about the origin of replication membranes, based largely on localization of viral proteins, include modification of coat protein complex I (COPI) and/or COPII secretory pathway vesicles and subversion of autophagic membranes. Here, we use an antibody against double-stranded RNA (dsRNA) to identify replication complexes by detection of dsRNA replication intermediates. dsRNA signal is dependent on virus genome replication and colocalizes with the viral integral membrane protein 3A, which is part of the RNA replication complex. We show that early in infection, dsRNA does not colocalize with a marker for autophagic vesicles, making it unlikely that autophagosomes contribute to the generation of PV RNA replication membranes. We also find that dsRNA does not colocalize with a marker of the COPII coat, Sec31, and, in fact, we demonstrate proteasome-dependent loss of full-length Sec31 during PV infection. These data indicate that COPII vesicles are an unlikely source of PV replication membranes. We show that the Golgi resident G-protein Arf1 and its associated guanine nucleotide exchange factor (GEF), GBF1, transiently colocalize with dsRNA early in infection. In uninfected cells, Arf1 nucleates COPI coat formation, although during infection the COPI coat itself does not colocalize with dsRNA. Phosphatidylinositol-4-phosphate, which is associated with enterovirus-induced vesicles, tightly colocalizes with Arf1/GBF1 throughout infection. Our data point to a noncanonical role for some of the COPI-generating machinery in producing unique replication surfaces for PV RNA replication. IMPORTANCE Picornaviruses are a diverse and major cause of human disease, and their genomes replicate in association with intracellular membranes. There are multiple hypotheses to explain the nature and origin of these membranes, and a complete understanding of the host requirements for membrane rearrangement would provide novel drug targets essential for viral genome replication. Here, we study the model picornavirus, poliovirus, and show that some, but not all, components of the cellular machinery required for retrograde traffic from the Golgi apparatus to the endoplasmic reticulum are transiently present at the sites of viral RNA replication. We also show that the full-length Sec31 protein, which has been suggested to be present on PV RNA replication membranes, is lost during infection in a proteasome-dependent manner. This study helps to reconcile multiple hypotheses about the origin of poliovirus replication membranes and points to known host cell protein complexes that would make likely drug targets to inhibit picornavirus infections.
Collapse
|
65
|
Recruitment of PI4KIIIβ to coxsackievirus B3 replication organelles is independent of ACBD3, GBF1, and Arf1. J Virol 2013; 88:2725-36. [PMID: 24352456 DOI: 10.1128/jvi.03650-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Members of the Enterovirus (poliovirus [PV], coxsackieviruses, and human rhinoviruses) and Kobuvirus (Aichi virus) genera in the Picornaviridae family rely on PI4KIIIβ (phosphatidylinositol-4-kinase IIIβ) for efficient replication. The small membrane-anchored enteroviral protein 3A recruits PI4KIIIβ to replication organelles, yet the underlying mechanism has remained elusive. Recently, it was shown that kobuviruses recruit PI4KIIIβ through interaction with ACBD3 (acyl coenzyme A [acyl-CoA]-binding protein domain 3), a novel interaction partner of PI4KIIIβ. Therefore, we investigated a possible role for ACBD3 in recruiting PI4KIIIβ to enterovirus replication organelles. Although ACBD3 interacted directly with coxsackievirus B3 (CVB3) 3A, its depletion from cells by RNA interference did not affect PI4KIIIβ recruitment to replication organelles and did not impair CVB3 RNA replication. Enterovirus 3A was previously also proposed to recruit PI4KIIIβ via GBF1/Arf1, based on the known interaction of 3A with GBF1, an important regulator of secretory pathway transport and a guanine nucleotide exchange factor (GEF) of Arf1. However, our results demonstrate that inhibition of GBF1 or Arf1 either by pharmacological inhibition or depletion with small interfering RNA (siRNA) treatment did not affect the ability of 3A to recruit PI4KIIIβ. Furthermore, we show that a 3A mutant that no longer binds GBF1 was capable of recruiting PI4KIIIβ, even in ACBD3-depleted cells. Together, our findings indicate that unlike originally envisaged, coxsackievirus recruits PI4KIIIβ to replication organelles independently of ACBD3 and GBF1/Arf1. IMPORTANCE A hallmark of enteroviral infection is the generation of new membranous structures to support viral RNA replication. The functionality of these "replication organelles" depends on the concerted actions of both viral nonstructural proteins and co-opted host factors. It is thus essential to understand how these structures are formed and which cellular components are key players in this process. GBF1/Arf1 and ACBD3 have been proposed to contribute to the recruitment of the essential lipid-modifying enzyme PI4KIIIβ to enterovirus replication organelles. Here we show that the enterovirus CVB3 recruits PI4KIIIβ by a mechanism independent of both GBF1/Arf1 and ACBD3. This study shows that the strategy employed by coxsackievirus to recruit PI4KIIIβ to replication organelles is far more complex than initially anticipated.
Collapse
|
66
|
Langereis MA, Feng Q, Nelissen FHT, Virgen-Slane R, van der Heden van Noort GJ, Maciejewski S, Filippov DV, Semler BL, van Delft FL, van Kuppeveld FJM. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA. Nucleic Acids Res 2013; 42:2473-82. [PMID: 24243841 PMCID: PMC3936719 DOI: 10.1093/nar/gkt1162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Picornaviruses constitute a large group of viruses comprising medically and economically
important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and
foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a
viral peptide (VPg) as primer for viral RNA synthesis. As a consequence, all newly formed
viral RNA molecules possess a covalently linked VPg peptide. It is known that VPg is
enzymatically released from the incoming viral RNA by a host protein, called TDP2, but it
is still unclear whether the release of VPg is necessary to initiate RNA translation. To
study the possible requirement of VPg release for RNA translation, we developed a novel
method to modify the genomic viral RNA with VPg linked via a ‘non-cleavable’
bond. We coupled an azide-modified VPg peptide to an RNA primer harboring a cyclooctyne
[bicyclo[6.1.0]nonyne (BCN)] by a copper-free ‘click’ reaction, leading to a
VPg-triazole-RNA construct that was ‘non-cleavable’ by TDP2. We successfully
ligated the VPg-RNA complex to the viral genomic RNA, directed by base pairing. We show
that the lack of VPg unlinkase does not influence RNA translation or replication. Thus,
the release of the VPg from the incoming viral RNA is not a prerequisite for RNA
translation or replication.
Collapse
Affiliation(s)
- Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands, Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA and Leiden Institute of Chemistry, Leiden University, Bioorganic Synthesis Leiden, 2300 RA, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
van der Schaar HM, Leyssen P, Thibaut HJ, de Palma A, van der Linden L, Lanke KHW, Lacroix C, Verbeken E, Conrath K, MacLeod AM, Mitchell DR, Palmer NJ, van de Poël H, Andrews M, Neyts J, van Kuppeveld FJM. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIβ. Antimicrob Agents Chemother 2013; 57:4971-81. [PMID: 23896472 PMCID: PMC3811463 DOI: 10.1128/aac.01175-13] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022] Open
Abstract
Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model.
Collapse
Affiliation(s)
- Hilde M. van der Schaar
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Hendrik J. Thibaut
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Armando de Palma
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lonneke van der Linden
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Kjerstin H. W. Lanke
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Céline Lacroix
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Erik Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Frank J. M. van Kuppeveld
- Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, and Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
68
|
Téoulé F, Brisac C, Pelletier I, Vidalain PO, Jégouic S, Mirabelli C, Bessaud M, Combelas N, Autret A, Tangy F, Delpeyroux F, Blondel B. The Golgi protein ACBD3, an interactor for poliovirus protein 3A, modulates poliovirus replication. J Virol 2013; 87:11031-46. [PMID: 23926333 PMCID: PMC3807280 DOI: 10.1128/jvi.00304-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
We have shown that the circulating vaccine-derived polioviruses responsible for poliomyelitis outbreaks in Madagascar have recombinant genomes composed of sequences encoding capsid proteins derived from poliovaccine Sabin, mostly type 2 (PVS2), and sequences encoding nonstructural proteins derived from other human enteroviruses. Interestingly, almost all of these recombinant genomes encode a nonstructural 3A protein related to that of field coxsackievirus A17 (CV-A17) strains. Here, we investigated the repercussions of this exchange, by assessing the role of the 3A proteins of PVS2 and CV-A17 and their putative cellular partners in viral replication. We found that the Golgi protein acyl-coenzyme A binding domain-containing 3 (ACBD3), recently identified as an interactor for the 3A proteins of several picornaviruses, interacts with the 3A proteins of PVS2 and CV-A17 at viral RNA replication sites, in human neuroblastoma cells infected with either PVS2 or a PVS2 recombinant encoding a 3A protein from CV-A17 [PVS2-3A(CV-A17)]. The small interfering RNA-mediated downregulation of ACBD3 significantly increased the growth of both viruses, suggesting that ACBD3 slowed viral replication. This was confirmed with replicons. Furthermore, PVS2-3A(CV-A17) was more resistant to the replication-inhibiting effect of ACBD3 than the PVS2 strain, and the amino acid in position 12 of 3A was involved in modulating the sensitivity of viral replication to ACBD3. Overall, our results indicate that exchanges of nonstructural proteins can modify the relationships between enterovirus recombinants and cellular interactors and may thus be one of the factors favoring their emergence.
Collapse
Affiliation(s)
- François Téoulé
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
- Université Versailles Saint-Quentin, Versailles, France
| | - Cynthia Brisac
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
- Université Versailles Saint-Quentin, Versailles, France
| | - Isabelle Pelletier
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS URA 3015, Paris, France
| | - Sophie Jégouic
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Carmen Mirabelli
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Nicolas Combelas
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Arnaud Autret
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France
- CNRS URA 3015, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| | - Bruno Blondel
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
- INSERM U994, Paris, France
| |
Collapse
|
69
|
Farhat R, Goueslain L, Wychowski C, Belouzard S, Fénéant L, Jackson CL, Dubuisson J, Rouillé Y. Hepatitis C virus replication and Golgi function in brefeldin a-resistant hepatoma-derived cells. PLoS One 2013; 8:e74491. [PMID: 24058576 PMCID: PMC3776844 DOI: 10.1371/journal.pone.0074491] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/01/2013] [Indexed: 12/15/2022] Open
Abstract
Recent reports indicate that the replication of hepatitis C virus (HCV) depends on the GBF1-Arf1-COP-I pathway. We generated Huh-7-derived cell lines resistant to brefeldin A (BFA), which is an inhibitor of this pathway. The resistant cell lines could be sorted into two phenotypes regarding BFA-induced toxicity, inhibition of albumin secretion, and inhibition of HCV infection. Two cell lines were more than 100 times more resistant to BFA than the parental Huh-7 cells in these 3 assays. This resistant phenotype was correlated with the presence of a point mutation in the Sec7 domain of GBF1, which is known to impair the binding of BFA. Surprisingly, the morphology of the cis-Golgi of these cells remained sensitive to BFA at concentrations of the drug that allowed albumin secretion, indicating a dichotomy between the phenotypes of secretion and Golgi morphology. Cells of the second group were about 10 times more resistant than parental Huh-7 cells to the BFA-induced toxicity. The EC50 for albumin secretion was only 1.5–1.8 fold higher in these cells than in Huh-7 cells. However their level of secretion in the presence of inhibitory doses of BFA was 5 to 15 times higher. Despite this partially effective secretory pathway in the presence of BFA, the HCV infection was almost as sensitive to BFA as in Huh-7 cells. This suggests that the function of GBF1 in HCV replication does not simply reflect its role of regulator of the secretory pathway of the host cell. Thus, our results confirm the involvement of GBF1 in HCV replication, and suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication.
Collapse
Affiliation(s)
- Rayan Farhat
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Lucie Goueslain
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Czeslaw Wychowski
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Lucie Fénéant
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Catherine L. Jackson
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
70
|
Wang J, Ptacek JB, Kirkegaard K, Bullitt E. Double-membraned liposomes sculpted by poliovirus 3AB protein. J Biol Chem 2013; 288:27287-27298. [PMID: 23908350 DOI: 10.1074/jbc.m113.498899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with many positive-strand RNA viruses dramatically remodels cellular membranes, resulting in the accumulation of double-membraned vesicles that resemble cellular autophagosomes. In this study, a single protein encoded by poliovirus, 3AB, is shown to be sufficient to induce the formation of double-membraned liposomes via the invagination of single-membraned liposomes. Poliovirus 3AB is a 109-amino acid protein with a natively unstructured N-terminal domain. HeLa cells transduced with 3AB protein displayed intracellular membrane disruption; specifically, the formation of cytoplasmic invaginations. The ability of a single viral protein to produce structures of similar topology to cellular autophagosomes should facilitate the understanding of both cellular and viral mechanisms for membrane remodeling.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jennifer B Ptacek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94301
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94301.
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
71
|
Nchoutmboube JA, Viktorova EG, Scott AJ, Ford LA, Pei Z, Watkins PA, Ernst RK, Belov GA. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog 2013; 9:e1003401. [PMID: 23762027 PMCID: PMC3675155 DOI: 10.1371/journal.ppat.1003401] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/19/2013] [Indexed: 12/20/2022] Open
Abstract
All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well. Eukaryotic cells feature astonishing complexity of regulatory networks, yet control over this fine-tuned machinery is easily overrun by viruses with expression of just a handful of proteins. One of the striking examples of such hostile take-over is the rewiring of normal cellular membrane metabolism by (+)RNA viruses towards development of new membranous organelles harboring viral replication machinery. (+)RNA viruses of eukaryotes infect organisms from unicellular algae to humans. Many of them induce diseases resulting in significant economic losses, public health burden, human suffering and sometimes fatal consequences. We show how picornaviruses reorganize cellular lipid metabolism by targeting long chain acyl-CoA synthetase activity. This induces increased import of fatty acids in infected cells and up-regulation of phospholipid synthesis, resulting in formation of replication organelles different from the pre-existing cellular membranes. This mechanism is utilized by diverse viruses and may represent an attractive target for anti-viral interventions.
Collapse
Affiliation(s)
- Jules A. Nchoutmboube
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ekaterina G. Viktorova
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Alison J. Scott
- University of Maryland, School of Dentistry, Baltimore, Maryland, United States of America
| | - Lauren A. Ford
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Zhengtong Pei
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul A. Watkins
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert K. Ernst
- University of Maryland, School of Dentistry, Baltimore, Maryland, United States of America
| | - George A. Belov
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
72
|
Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol 2013; 2:32-48. [PMID: 24175228 PMCID: PMC3785047 DOI: 10.5501/wjv.v2.i2.32] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 02/05/2023] Open
Abstract
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories.
Collapse
|
73
|
Affiliation(s)
| | - William T. Jackson
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
74
|
Greninger AL, Knudsen GM, Betegon M, Burlingame AL, DeRisi JL. ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. mBio 2013; 4:e00098-13. [PMID: 23572552 PMCID: PMC3622926 DOI: 10.1128/mbio.00098-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/08/2013] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Despite wide sequence divergence, multiple picornaviruses use the Golgi adaptor acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GCP60) to recruit phosphatidylinositol 4-kinase class III beta (PI4KIIIβ/PI4KB), a factor required for viral replication. The molecular basis of this convergent interaction and the cellular function of ACBD3 are not fully understood. Using affinity purification-mass spectrometry, we identified the putative Rab33 GTPase-activating proteins TBC1D22A and TBC1D22B as ACBD3-interacting factors. Fine-scale mapping of binding determinants within ACBD3 revealed that the interaction domains for TBC1D22A/B and PI4KB are identical. Affinity purification confirmed that PI4KB and TBC1D22A/B interactions with ACBD3 are mutually exclusive, suggesting a possible regulatory mechanism for recruitment of PI4KB. The C-terminal Golgi dynamics (GOLD) domain of ACBD3 has been previously shown to bind the 3A replication protein from Aichi virus. We find that the 3A proteins from several additional picornaviruses, including hepatitis A virus, human parechovirus 1, and human klassevirus, demonstrate an interaction with ACBD3 by mammalian two-hybrid assay; however, we also find that the enterovirus and kobuvirus 3A interactions with ACBD3 are functionally distinct with respect to TBC1D22A/B and PI4KB recruitment. These data reinforce the notion that ACBD3 organizes numerous cellular functionalities and that RNA virus replication proteins likely modulate these interactions by more than one mechanism. IMPORTANCE Multiple viruses use the same Golgi protein (ACBD3) to recruit the lipid kinase phosphatidylinositol 4-kinase class III beta (PI4KB) in order to replicate. We identify a new binding partner of ACBD3 in the evolutionarily conserved Rab GTPase-activating proteins (RabGAPs) TBC1D22A and -B. Interestingly, TBC1D22A directly competes with PI4KB for binding to the same location of ACBD3 by utilizing a similar binding domain. Different viruses are able to influence this interaction through distinct mechanisms to promote the association of PI4KB with ACBD3. This work informs our knowledge of both the physical interactions of the proteins that help maintain metazoan Golgi structure and how viruses subvert these evolutionarily conserved interactions for their own purposes.
Collapse
Affiliation(s)
| | - Giselle M. Knudsen
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | | | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | | |
Collapse
|
75
|
Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J Virol 2013; 87:4252-60. [PMID: 23365445 DOI: 10.1128/jvi.03546-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enviroxime is an antipicornavirus compound that targets host phosphatidylinositol 4-kinase III beta (PI4KB) activity for its antipicornavirus activity. To date, several antipoliovirus (PV) compounds similar to enviroxime that are associated with a common resistance mutation in viral protein 3A (a G5318A [3A-Ala70Thr] mutation in PV) have been identified. Most of these compounds have a direct inhibitory effect on PI4KB activity, as well as enviroxime (designated major enviroxime-like compounds). However, one of the compounds, AN-12-H5, showed no inhibitory effect on PI4KB and was considered to belong to another group of enviroxime-like compounds (designated minor enviroxime-like compounds). In the present study, we performed a small interfering RNA (siRNA) sensitization assay targeting PI4KB-related genes and identified oxysterol-binding protein (OSBP) as a target of minor enviroxime-like compounds. Knockdown of OSBP and OSBP2 increased the anti-PV activities of AN-12-H5 and a newly identified minor enviroxime-like compound, T-00127-HEV2, and also to T-00127-HEV1 to a minor extent, in the cells. A ligand of OSBP, 25-hydroxycholesterol (25-HC), acted as a minor enviroxime-like compound. Minor enviroxime-like compounds induced relocalization of OSBP to the Golgi apparatus in cells. Treatment of the cells with major or minor enviroxime-like compounds suppressed the expression of genes (HMGCS1 and SQLE) in the SREBP/SCAP regulatory pathway and diminished endogenous phosphatidylinositol 4-phosphate (PI4P) at the Golgi apparatus. Our results suggested that minor enviroxime-like compounds are phenotypically identical to 25-HC and that major and minor enviroxime-like compounds suppress the production and/or accumulation of PI4P in PV-infected cells by targeting PI4KB and OSBP family I activities, respectively.
Collapse
|
76
|
Divergent roles of autophagy in virus infection. Cells 2013; 2:83-104. [PMID: 24709646 PMCID: PMC3972664 DOI: 10.3390/cells2010083] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 12/16/2022] Open
Abstract
Viruses have played an important role in human evolution and have evolved diverse strategies to co-exist with their hosts. As obligate intracellular pathogens, viruses exploit and manipulate different host cell processes, including cellular trafficking, metabolism and immunity-related functions, for their own survival. In this article, we review evidence for how autophagy, a highly conserved cellular degradative pathway, serves either as an antiviral defense mechanism or, alternatively, as a pro-viral process during virus infection. Furthermore, we highlight recent reports concerning the role of selective autophagy in virus infection and how viruses manipulate autophagy to evade lysosomal capture and degradation.
Collapse
|
77
|
Hyodo K, Mine A, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J Virol 2013; 87:163-76. [PMID: 23097452 PMCID: PMC3536388 DOI: 10.1128/jvi.02383-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/16/2012] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic positive-strand RNA viruses replicate using the membrane-bound replicase complexes, which contain multiple viral and host components. Virus infection induces the remodeling of intracellular membranes. Virus-induced membrane structures are thought to increase the local concentration of the components that are required for replication and provide a scaffold for tethering the replicase complexes. However, the mechanisms underlying virus-induced membrane remodeling are poorly understood. RNA replication of red clover necrotic mosaic virus (RCNMV), a positive-strand RNA plant virus, is associated with the endoplasmic reticulum (ER) membranes, and ER morphology is perturbed in RCNMV-infected cells. Here, we identified ADP ribosylation factor 1 (Arf1) in the affinity-purified RCNMV RNA-dependent RNA polymerase fraction. Arf1 is a highly conserved, ubiquitous, small GTPase that is implicated in the formation of the coat protein complex I (COPI) vesicles on Golgi membranes. Using in vitro pulldown and bimolecular fluorescence complementation analyses, we showed that Arf1 interacted with the viral p27 replication protein within the virus-induced large punctate structures of the ER membrane. We found that inhibition of the nucleotide exchange activity of Arf1 using the inhibitor brefeldin A (BFA) disrupted the assembly of the viral replicase complex and p27-mediated ER remodeling. We also showed that BFA treatment and the expression of dominant negative Arf1 mutants compromised RCNMV RNA replication in protoplasts. Interestingly, the expression of a dominant negative mutant of Sar1, a key regulator of the biogenesis of COPII vesicles at ER exit sites, also compromised RCNMV RNA replication. These results suggest that the replication of RCNMV depends on the host membrane traffic machinery.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takako Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hisaaki Taniguchi
- Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
78
|
Grangeon R, Jiang J, Laliberté JF. Host endomembrane recruitment for plant RNA virus replication. Curr Opin Virol 2012; 2:683-90. [PMID: 23123078 PMCID: PMC7185485 DOI: 10.1016/j.coviro.2012.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 01/27/2023]
Abstract
Although there is a significant amount of literature that deals with the identification of plant viral proteins involved in membrane remodeling and vesicle production in infected cells, there are very few investigations that report on the impact that infection has on the overall architecture and dynamics of the early secretory endomembranes. Recent investigations have shown that for some viruses the endoplasmic reticulum, Golgi bodies and other organelles are heavily recruited into virus-induced perinuclear structures. These structures are not isolated organelles and are dynamically connected to the bulk of non-modified endomembranes. They also have a functional link with peripheral motile vesicles involved in virus intracellular movement. The full molecular events that consubstantiate with this endomembrane recruitment in virus-induced structures remain to be elucidated but viral genome replication and virion assembly are probably taking place within these structures.
Collapse
Affiliation(s)
- Romain Grangeon
- INRS-Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | | | | |
Collapse
|
79
|
Belov GA, van Kuppeveld FJM. (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol 2012; 2:740-7. [PMID: 23036609 PMCID: PMC7102821 DOI: 10.1016/j.coviro.2012.09.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 12/24/2022]
Abstract
Positive-strand RNA [(+)RNA] viruses show a significant degree of conservation of their mechanisms of replication. The universal requirement of (+)RNA viruses for cellular membranes for genome replication, and the formation of membranous replication organelles with similar architecture, suggest that they target essential control mechanisms of membrane metabolism conserved among eukaryotes. Recently, significant progress has been made in understanding the role of key host factors and pathways that are hijacked for the development of replication organelles. In addition, electron tomography studies have shed new light on their ultrastructure. Collectively, these studies reveal an unexpected complexity of the spatial organization of the replication membranes and suggest that (+)RNA viruses actively change cellular membrane composition to build their replication organelles.
Collapse
Affiliation(s)
- George A Belov
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Frank JM van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
80
|
Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication. Cell Res 2012; 22:1576-92. [PMID: 22945356 DOI: 10.1038/cr.2012.129] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.
Collapse
|
81
|
Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberté JF. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 2012; 86:9255-65. [PMID: 22718813 PMCID: PMC3416146 DOI: 10.1128/jvi.01146-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.
Collapse
Affiliation(s)
- Romain Grangeon
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Maxime Agbeci
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Jun Chen
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Gilles Grondin
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
82
|
Abstract
Enterovirus 71 (EV71), a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11), is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies.
Collapse
|
83
|
Valosin-containing protein (VCP/p97) is required for poliovirus replication and is involved in cellular protein secretion pathway in poliovirus infection. J Virol 2012; 86:5541-53. [PMID: 22379090 DOI: 10.1128/jvi.00114-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Poliovirus (PV) modifies membrane-trafficking machinery in host cells for its viral RNA replication. To date, ARF1, ACBD3, BIG1/BIG2, GBF1, RTN3, and PI4KB have been identified as host factors of enterovirus (EV), including PV, involved in membrane traffic. In this study, we performed small interfering RNA (siRNA) screening targeting membrane-trafficking genes for host factors required for PV replication. We identified valosin-containing protein (VCP/p97) as a host factor of PV replication required after viral protein synthesis, and its ATPase activity was essential for PV replication. VCP colocalized with viral proteins 2BC/2C and 3AB/3B in PV-infected cells and showed an interaction with 2BC and 3AB but not with 2C and 3A. Knockdown of VCP did not suppress the replication of coxsackievirus B3 or Aichi virus. A VCP-knockdown-resistant PV mutant had an A4881G (a mutation of E253G in 2C) mutation, which is known as a determinant of a secretion inhibition-negative phenotype. However, knockdown of VCP did not affect the inhibition of cellular protein secretion caused by overexpression of each individual viral protein. These results suggested that VCP is a host factor required for viral RNA replication of PV among membrane-trafficking proteins and provides a novel link between cellular protein secretion and viral RNA replication.
Collapse
|
84
|
Zhang L, Hong Z, Lin W, Shao RX, Goto K, Hsu VW, Chung RT. ARF1 and GBF1 generate a PI4P-enriched environment supportive of hepatitis C virus replication. PLoS One 2012; 7:e32135. [PMID: 22359663 PMCID: PMC3281116 DOI: 10.1371/journal.pone.0032135] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular levels of phosphatidylinositol 4-phosphate (PI4P) have been shown to be upregulated during RNA replication of several viruses, including the HCV replicon model. However, whether PI4P is required in an infectious HCV model remains unknown. Moreover, it is not established whether the host transport machinery is sequestered by the generation of PI4P during HCV infection. Here we found that PI4P was enriched in HCV replication complexes when Huh7.5.1 cells were infected with JFH1. HCV replication was inhibited upon overexpression of the PI4P phosphatase Sac1. The PI4P kinase PI4KIIIβ was also found to be required for HCV replication. Moreover, the vesicular transport proteins ARF1 and GBF1 colocalized with PI4KIIIβ and were both required for HCV replication. During authentic HCV infection, PI4P plays an integral role in virus replication.
Collapse
Affiliation(s)
- Leiliang Zhang
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhi Hong
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Run-Xuan Shao
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kaku Goto
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victor W. Hsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
85
|
The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIβ. J Virol 2012; 86:3605-16. [PMID: 22258260 DOI: 10.1128/jvi.06778-11] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The activity of phosphatidylinositol 4-kinase class III beta (PI4KIIIβ) has been shown to be required for the replication of multiple picornaviruses; however, it is unclear whether a physical association between PI4KIIIβ and the viral replication machinery exists and, if it does, whether association is necessary. We examined the ability of the 3A protein from 18 different picornaviruses to form a complex with PI4KIIIβ by affinity purification of Strep-Tagged transiently transfected constructs followed by mass spectrometry and Western blotting for putative interacting targets. We found that the 3A proteins of Aichi virus, bovine kobuvirus, poliovirus, coxsackievirus B3, and human rhinovirus 14 all copurify with PI4KIIIβ. Furthermore, we found that multiple picornavirus 3A proteins copurify with the Golgi adaptor protein acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GPC60), including those from Aichi virus, bovine kobuvirus, human rhinovirus 14, poliovirus, and coxsackievirus B2, B3, and B5. Affinity purification of ACBD3 confirmed interaction with multiple picornaviral 3A proteins and revealed the ability to bind PI4KIIIβ in the absence of 3A. Mass-spectrometric analysis of transiently expressed Aichi virus, bovine kobuvirus, and human klassevirus 3A proteins demonstrated that the N-terminal glycines of these 3A proteins are myristoylated. Alanine-scanning mutagenesis along the entire length of Aichi virus 3A followed by transient expression and affinity purification revealed that copurification of PI4KIIIβ could be eliminated by mutation of specific residues, with little or no effect on recruitment of ACBD3. One mutation at the N terminus, I5A, significantly reduced copurification of both ACBD3 and PI4KIIIβ. The dependence of Aichi virus replication on the activity of PI4KIIIβ was confirmed by both chemical and genetic inhibition. Knockdown of ACBD3 by small interfering RNA (siRNA) also prevented replication of both Aichi virus and poliovirus. Point mutations in 3A that eliminate PI4KIIIβ association sensitized Aichi virus to PIK93, suggesting that disruption of the 3A/ACBD3/PI4KIIIβ complex may represent a novel target for therapeutic intervention that would be complementary to the inhibition of the kinase activity itself.
Collapse
|
86
|
Sanfaçon H. Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories. FRONTIERS IN PLANT SCIENCE 2012; 3:313. [PMID: 23439982 PMCID: PMC3557413 DOI: 10.3389/fpls.2012.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/31/2012] [Indexed: 05/08/2023]
Abstract
Formation of plant virus membrane-associated replication factories requires the association of viral replication proteins and viral RNA with intracellular membranes, the recruitment of host factors and the modification of membranes to form novel structures that house the replication complex. Many viruses encode integral membrane proteins that act as anchors for the replication complex. These hydrophobic proteins contain transmembrane domains and/or amphipathic helices that associate with the membrane and modify its structure. The comovirus Co-Pro and NTP-binding (NTB, putative helicase) proteins and the cognate nepovirus X2 and NTB proteins are among the best characterized plant virus integral membrane replication proteins and are functionally related to the picornavirus 2B, 2C, and 3A membrane proteins. The identification of membrane association domains and analysis of the membrane topology of these proteins is discussed. The evidence suggesting that these proteins have the ability to induce membrane proliferation, alter the structure and integrity of intracellular membranes, and modulate the induction of symptoms in infected plants is also reviewed. Finally, areas of research that need further investigation are highlighted.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- *Correspondence: Hélène Sanfaçon, Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0. e-mail:
| |
Collapse
|
87
|
Evolution of poliovirus defective interfering particles expressing Gaussia luciferase. J Virol 2011; 86:1999-2010. [PMID: 22156535 DOI: 10.1128/jvi.05871-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Polioviruses (PVs) carrying a reporter gene are useful tools for studies of virus replication, particularly if the viral chimeras contain the polyprotein that provides all of the proteins necessary for a complete replication cycle. Replication in HeLa cells of a previously constructed poliovirus expressing the gene for Renilla luciferase (RLuc) fused to the N terminus of the polyprotein H(2)N-RLuc-P1-P2-P3-COOH (P1, structural domain; P2 and P3, nonstructural domains) led to the deletion of RLuc after only one passage. Here we describe a novel poliovirus chimera that expresses Gaussia luciferase (GLuc) inserted into the polyprotein between P1 and P2 (N(2)H-P1-GLuc-P2-P3-COOH). This chimera, termed PV-GLuc, replicated to 10% of wild-type yield. The reporter signal was fully retained for three passages and then gradually lost. After six passages the signal was barely detectable. On further passages, however, the GLuc signal reappeared, and after eight passages it had reached the same levels observed with the original PV-GLuc at the first passage. We demonstrated that this surprising observation was due to coevolution of defective interfering (DI) particles that had lost part or all of the capsid coding sequence (ΔP1-GLuc-P2-P3) and wild-type-like viruses that had lost the GLuc sequence (P1-P2-P3). When used at low passage, PV-GLuc is an excellent tool for studying aspects of genome replication and morphogenesis. The GLuc protein was secreted from mammalian cells but, in agreement with published data, was not secreted from PV-GLuc-infected cells due to poliovirus-induced inhibition of cellular protein secretion. Published evidence indicates that individual expression of enterovirus polypeptide 3A, 2B, or 2BC in COS-1 cells strongly inhibits host protein secretion. In HeLa cells, however, expression of none of the poliovirus polypeptides, either singly or in pairs, inhibited GLuc secretion. Thus, inhibition of GLuc secretion in PV-infected HeLa cells is likely a result of the interaction between several viral and cellular proteins that are different from those in COS-1 cells.
Collapse
|
88
|
ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J 2011; 31:754-66. [PMID: 22124328 DOI: 10.1038/emboj.2011.429] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/31/2011] [Indexed: 01/11/2023] Open
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a host factor required for genome RNA replication of enteroviruses, small non-enveloped viruses belonging to the family Picornaviridae. Here, we demonstrated that PI4KB is also essential for genome replication of another picornavirus, Aichi virus (AiV), but is recruited to the genome replication sites by a different strategy from that utilized by enteroviruses. AiV non-structural proteins, 2B, 2BC, 2C, 3A, and 3AB, interacted with a Golgi protein, acyl-coenzyme A binding domain containing 3 (ACBD3). Furthermore, we identified previously unknown interaction between ACBD3 and PI4KB, which provides a novel manner of Golgi recruitment of PI4KB. Knockdown of ACBD3 or PI4KB suppressed AiV RNA replication. The viral proteins, ACBD3, PI4KB, and phophatidylinositol-4-phosphate (PI4P) localized to the viral RNA replication sites. AiV replication and recruitment of PI4KB to the RNA replication sites were not affected by brefeldin A, in contrast to those in enterovirus infection. These results indicate that a viral protein/ACBD3/PI4KB complex is formed to synthesize PI4P at the AiV RNA replication sites and plays an essential role in viral RNA replication.
Collapse
|
89
|
Abstract
Replication of all positive-strand RNA viruses is intimately associated with membranes. Here we utilize electron tomography and other methods to investigate the remodeling of membranes in poliovirus-infected cells. We found that the viral replication structures previously described as "vesicles" are in fact convoluted, branching chambers with complex and dynamic morphology. They are likely to originate from cis-Golgi membranes and are represented during the early stages of infection by single-walled connecting and branching tubular compartments. These early viral organelles gradually transform into double-membrane structures by extension of membranous walls and/or collapsing of the luminal cavity of the single-membrane structures. As the double-membrane regions develop, they enclose cytoplasmic material. At this stage, a continuous membranous structure may have double- and single-walled membrane morphology at adjacent cross-sections. In the late stages of the replication cycle, the structures are represented mostly by double-membrane vesicles. Viral replication proteins, double-stranded RNA species, and actively replicating RNA are associated with both double- and single-membrane structures. However, the exponential phase of viral RNA synthesis occurs when single-membrane formations are predominant in the cell. It has been shown previously that replication complexes of some other positive-strand RNA viruses form on membrane invaginations, which result from negative membrane curvature. Our data show that the remodeling of cellular membranes in poliovirus-infected cells produces structures with positive curvature of membranes. Thus, it is likely that there is a fundamental divergence in the requirements for the supporting cellular membrane-shaping machinery among different groups of positive-strand RNA viruses.
Collapse
|
90
|
RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. Proc Natl Acad Sci U S A 2011; 108:19036-41. [PMID: 22065774 DOI: 10.1073/pnas.1113643108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process.
Collapse
|
91
|
Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 2011; 14:126-39. [PMID: 22051604 PMCID: PMC3264745 DOI: 10.1016/j.micinf.2011.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
Autophagy is a homeostatic process that functions to balance cellular metabolism and promote cell survival during stressful conditions by delivering cytoplasmic components for lysosomal degradation and subsequent recycling. During viral infection, autophagy can act as a surveillance mechanism that delivers viral antigens to the endosomal/lysosomal compartments that are enriched in immune sensors. Additionally, activated immune sensors can signal to activate autophagy. To evade this antiviral activity, many viruses elaborate functions to block the autophagy pathway at a variety of steps. Alternatively, some viruses actively subvert autophagy for their own benefit. Manipulated autophagy has been proposed to facilitate nearly every stage of the viral lifecycle in direct and indirect ways. In this review, we synthesize the extensive literature on virus–autophagy interactions, emphasizing the role of autophagy in antiviral immunity and the mechanisms by which viruses subvert autophagy for their own benefit.
Collapse
|
92
|
Rasmussen AL, Racaniello VR. Selection of rhinovirus 1A variants adapted for growth in mouse lung epithelial cells. Virology 2011; 420:82-8. [PMID: 21943827 DOI: 10.1016/j.virol.2011.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/11/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
Abstract
Rhinoviruses (RVs) are picornaviruses that are causative agents of the majority of upper respiratory tract infections, or "common colds," in humans. RVs infect both the upper and lower respiratory tract, and in addition to the common cold may also cause pneumonia, complications in patients with chronic lung diseases such as cystic fibrosis, and asthma exacerbations. Convenient animal models are not available to study the pathogenesis of rhinovirus-induced illness. Rhinovirus RV1A replicates poorly in mouse cells; variants with improved replication were selected by serial passage through mouse embryonic fibroblasts and mouse lung epithelial cells. Adaptation for improved growth in mouse cells was mediated by amino acid changes in the RV1a non-structural protein 3A. Mouse cell-adapted RV1A was capable of productively infecting mice in which the airway was subjected to chemical permeabilization. A mouse model for RV infection will permit studies of RV pathogenesis and may identify targets for therapeutic intervention.
Collapse
Affiliation(s)
- Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, WA 98114, USA.
| | | |
Collapse
|
93
|
Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 2011; 7:e1002198. [PMID: 21909260 PMCID: PMC3164637 DOI: 10.1371/journal.ppat.1002198] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates within a membrane-bound inclusion that acquires host sphingomyelin (SM), a process that is essential for replication as well as inclusion biogenesis. Previous studies demonstrate that SM is acquired by a Brefeldin A (BFA)-sensitive vesicular trafficking pathway, although paradoxically, this pathway is dispensable for bacterial replication. This finding suggests that other lipid transport mechanisms are involved in the acquisition of host SM. In this work, we interrogated the role of specific components of BFA-sensitive and BFA-insensitive lipid trafficking pathways to define their contribution in SM acquisition during infection. We found that C. trachomatis hijacks components of both vesicular and non-vesicular lipid trafficking pathways for SM acquisition but that the SM obtained from these separate pathways is being utilized by the pathogen in different ways. We show that C. trachomatis selectively co-opts only one of the three known BFA targets, GBF1, a regulator of Arf1-dependent vesicular trafficking within the early secretory pathway for vesicle-mediated SM acquisition. The Arf1/GBF1-dependent pathway of SM acquisition is essential for inclusion membrane growth and stability but is not required for bacterial replication. In contrast, we show that C. trachomatis co-opts CERT, a lipid transfer protein that is a key component in non-vesicular ER to trans-Golgi trafficking of ceramide (the precursor for SM), for C. trachomatis replication. We demonstrate that C. trachomatis recruits CERT, its ER binding partner, VAP-A, and SM synthases, SMS1 and SMS2, to the inclusion and propose that these proteins establish an on-site SM biosynthetic factory at or near the inclusion. We hypothesize that SM acquired by CERT-dependent transport of ceramide and subsequent conversion to SM is necessary for C. trachomatis replication whereas SM acquired by the GBF1-dependent pathway is essential for inclusion growth and stability. Our results reveal a novel mechanism by which an intracellular pathogen redirects SM biosynthesis to its replicative niche. C. trachomatis is the leading cause of non-congenital blindness in developing countries and is the number one cause of sexually transmitted disease and non-congenital infertility in Western countries. The capacity of Chlamydia infections to lead to infertility and blindness, their association with chronic diseases, and the extraordinary prevalence and array of these infections make them public concerns of primary importance. This pathogen must establish a protective membrane-bound niche and acquire essential lipids from the host cell during infection in order to survive and replicate. This study identifies novel mechanisms by which C. trachomatis hijacks various lipid trafficking proteins for distinct roles during intracellular development. Disruption of these lipid trafficking pathways results in alterations in the growth and stability of its protective niche as well as a defect in replication. Understanding the molecular mechanisms of these host-pathogen interactions will lead to rational approaches for the development of novel therapeutics, diagnostics, and preventative strategies.
Collapse
|
94
|
Barroso-González J, García-Expósito L, Puigdomènech I, de Armas-Rillo L, Machado JD, Blanco J, Valenzuela-Fernández A. Viral infection: Moving through complex and dynamic cell-membrane structures. Commun Integr Biol 2011; 4:398-408. [PMID: 21966556 DOI: 10.4161/cib.4.4.16716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/19/2023] Open
Abstract
Viruses have developed different survival strategies in host cells by crossing cell-membrane compartments, during different steps of their viral life cycle. In fact, the non-regenerative viral membrane of enveloped viruses needs to encounter the dynamic cell-host membrane, during early steps of the infection process, in which both membranes fuse, either at cell-surface or in an endocytic compartment, to promote viral entry and infection. Once inside the cell, many viruses accomplish their replication process through exploiting or modulating membrane traffic, and generating specialized compartments to assure viral replication, viral budding and spreading, which also serve to evade the immune responses against the pathogen. In this review, we have attempted to present some data that highlight the importance of membrane dynamics during viral entry and replicative processes, in order to understand how viruses use and move through different complex and dynamic cell-membrane structures and how they use them to persist.
Collapse
Affiliation(s)
- Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Laura García-Expósito
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Isabel Puigdomènech
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - José-David Machado
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| | - Julià Blanco
- Fundació irsiCaixa-HIVACAT; Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP); Hospital Germans Trias i Pujol; Universitat Autònoma de Barcelona; Barcelona, Catalonia Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral; Laboratorio de Neurosecreción; Unidad de Farmacología; Departamento de Medicina Física y Farmacología; Facultad de Medicina; Instituto de Tecnologías Biomédicas (ITB); Universidad de La Laguna (ULL)
| |
Collapse
|
95
|
Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011; 12:362-75. [PMID: 21587297 PMCID: PMC3245550 DOI: 10.1038/nrm3117] [Citation(s) in RCA: 711] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Members of the ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF-like (ARL) proteins and SAR1, regulate membrane traffic and organelle structure by recruiting cargo-sorting coat proteins, modulating membrane lipid composition, and interacting with regulators of other G proteins. New roles of ARF and ARL proteins are emerging, including novel functions at the Golgi complex and in cilia formation. Their function is under tight spatial control, which is mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that catalyse GTP exchange and hydrolysis, respectively. Important advances are being gained in our understanding of the functional networks that are formed not only by the GEFs and GAPs themselves but also by the inactive forms of the ARF proteins.
Collapse
Affiliation(s)
- Julie G. Donaldson
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, 20892 Maryland USA
| | - Catherine L. Jackson
- Laboratoire d'Enzymologie et Biochimie Structurales Centre de Recherche de Gif, Centre National de la Recherche Scientifique (CNRS), 91198 Gif-sur-Yvette France
- Present Address: Present address: Institut Jacques Monod — UMR 7592 CNRS, Université Paris Diderot-Paris 7, 15 rue Hélène Brion, 75205 Paris, France.,
| |
Collapse
|
96
|
Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells. J Virol 2011; 85:4284-96. [PMID: 21345960 DOI: 10.1128/jvi.02398-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus proteins 3A and 3AB are small, membrane-binding proteins that play multiple roles in viral RNA replication complex formation and function. In the infected cell, these proteins associate with other viral and cellular proteins as part of a supramolecular complex whose structure and composition are unknown. We isolated viable viruses with three different epitope tags (FLAG, hemagglutinin [HA], and c-myc) inserted into the N-terminal region of protein 3A. These viruses exhibited growth properties and characteristics very similar to those of the wild-type, untagged virus. Extracts prepared from the infected cells were subjected to immunoaffinity purification of the tagged proteins by adsorption to commercial antibody-linked beads and examined after elution for cellular and other viral proteins that remained bound to 3A sequences during purification. Viral proteins 2C, 2BC, 3D, and 3CD were detected in all three immunopurified 3A samples. Among the cellular proteins previously reported to interact with 3A either directly or indirectly, neither LIS1 nor phosphoinositol-4 kinase (PI4K) were detected in any of the purified tagged 3A samples. However, the guanine nucleotide exchange factor GBF1, which is a key regulator of membrane trafficking in the cellular protein secretory pathway and which has been shown previously to bind enteroviral protein 3A and to be required for viral RNA replication, was readily recovered along with immunoaffinity-purified 3A-FLAG. Surprisingly, we failed to cocapture GBF1 with 3A-HA or 3A-myc proteins. A model for variable binding of these 3A mutant proteins to GBF1 based on amino acid sequence motifs and the resulting practical and functional consequences thereof are discussed.
Collapse
|
97
|
Phosphatidylinositol 4-kinase III beta is a target of enviroxime-like compounds for antipoliovirus activity. J Virol 2010; 85:2364-72. [PMID: 21177810 DOI: 10.1128/jvi.02249-10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enviroxime is an antienterovirus compound that targets viral protein 3A and/or 3AB and suppresses a step in enterovirus replication by unknown mechanism. To date, four antienterovirus compounds, i.e., GW5074, Flt3 inhibitor II, TTP-8307, and AN-12-H5, are known to have similar mutations in the 3A protein-encoding region causing resistance to enviroxime (a G5318A [3A-Ala70Thr] mutation in poliovirus [PV]) and are considered enviroxime-like compounds. Recently, antienterovirus activity of a phosphatidylinositol 4-kinase III beta (PI4KB) inhibitor, PIK93, was reported, suggesting that PI4KB is an important host factor targetable by antienterovirus compounds (N. Y. Hsu et al., Cell 141:799-811, 2010). In this study, we analyzed the inhibitory effects of previously identified enviroxime-like compounds (GW5074 and AN-12-H5) and a newly identified antienterovirus compound, T-00127-HEV1, on phosphoinositide (PI) kinases. We found that T-00127-HEV1 inhibited PI4KB activity with a higher specificity for than other PI kinases, in contrast to GW5074, which had a broad specificity for PI kinases. In contrast, AN-12-H5 showed no inhibitory effect on PI4KB activity and only moderate inhibitory effects on PI 3-kinase activity. Small interfering RNA (siRNA) screening targeting PI kinases identified PI4KB is a target of GW5074 and T-00127-HEV1, but not of AN-12-H5, for anti-PV activity. Interestingly, T-00127-HEV1 and GW5074 did not inhibit hepatitis C virus (HCV) replication, in contrast to a strong inhibitory effect of AN-12-H5. These results suggested that PI4KB is an enterovirus-specific host factor required for the replication process and targeted by some enviroxime-like compounds (T-00127-HEV1 and GW5074) and that enviroxime-like compounds may have targets other than PI kinases for their antiviral effect.
Collapse
|
98
|
Kopek BG, Settles EW, Friesen PD, Ahlquist P. Nodavirus-induced membrane rearrangement in replication complex assembly requires replicase protein a, RNA templates, and polymerase activity. J Virol 2010; 84:12492-503. [PMID: 20943974 PMCID: PMC3004334 DOI: 10.1128/jvi.01495-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/04/2010] [Indexed: 12/22/2022] Open
Abstract
Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside ∼50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.
Collapse
Affiliation(s)
- Benjamin G. Kopek
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Erik W. Settles
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Paul D. Friesen
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| | - Paul Ahlquist
- Institute for Molecular Virology, Howard Hughes Medical Institute, University of Wisconsin—Madison, Madison, Wisconsin
| |
Collapse
|
99
|
Belov GA, Kovtunovych G, Jackson CL, Ehrenfeld E. Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfGEF GBF1. Cell Microbiol 2010; 12:1463-79. [PMID: 20497182 PMCID: PMC2945620 DOI: 10.1111/j.1462-5822.2010.01482.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/07/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
Abstract
Viruses are intracellular parasites whose reproduction relies on factors provided by the host. The cellular protein GBF1 is critical for poliovirus replication. Here we show that the contribution of GBF1 to virus replication is different from its known activities in uninfected cells. Normally GBF1 activates the ADP-ribosylation factor (Arf) GTPases necessary for formation of COPI transport vesicles. GBF1 function is modulated by p115 and Rab1b. However, in polio-infected cells, p115 is degraded and neither p115 nor Rab1b knock-down affects virus replication. Poliovirus infection is very sensitive to brefeldin A (BFA), an inhibitor of Arf activation by GBF1. BFA targets the catalytic Sec7 domain of GBF1. Nevertheless the BFA block of polio replication is rescued by expression of only the N-terminal region of GBF1 lacking the Sec7 domain. Replication of BFA-resistant poliovirus in the presence of BFA is uncoupled from Arf activation but is dependent on GBF1. Thus the function(s) of this protein essential for viral replication can be separated from those required for cellular metabolism.
Collapse
Affiliation(s)
- George A Belov
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
100
|
Arita M, Takebe Y, Wakita T, Shimizu H. A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J Gen Virol 2010; 91:2734-44. [DOI: 10.1099/vir.0.023374-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|