51
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
52
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
53
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
54
|
Tseng YW, Chang CC, Chang YC. Novel Virulence Role of Pneumococcal NanA in Host Inflammation and Cell Death Through the Activation of Inflammasome and the Caspase Pathway. Front Cell Infect Microbiol 2021; 11:613195. [PMID: 33777832 PMCID: PMC7991587 DOI: 10.3389/fcimb.2021.613195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Streptococcus pneumoniae is one of most deadly Gram-positive bacterium that causes significant mortality and morbidity worldwide. Intense inflammation and cytotoxicity is a hallmark of invasive pneumococcal disease. Pneumococcal NanA has been shown to exaggerate the production of inflammatory cytokines via unmasking of inhibitory Siglec-5 from its sialyl cis-ligands. To further investigate the mechanistic role of NanA and Siglec-5 in pneumococccal diseases, we systemically analyzed genes and signaling pathways differentially regulated in macrophages infected with wild type and NanA-deficient pneumococcus. We found that NanA-mediated desialylation impairs the Siglec-5-TLR-2 interaction and reduces the recruitment of phosphatase SHP-1 to Siglec-5. This dysregulated crosstalk between TLR-2 and inhibitory Siglec-5 exaggerated multiple inflammatory and death signaling pathways and consequently caused excessive inflammation and cytotoxicity in the infected macrophage. Collectively, our results reveal a novel virulence role of NanA in pneumococcal pathogenesis and suggest that targeting NanA activity may ameliorate the pneumococcus-mediated inflammation and cytotoxicity in severe invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Yu-Wen Tseng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
55
|
Tsuchiya K, Hosojima S, Hara H, Kushiyama H, Mahib MR, Kinoshita T, Suda T. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep 2021; 34:108887. [PMID: 33761363 DOI: 10.1016/j.celrep.2021.108887] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/05/2020] [Accepted: 02/27/2021] [Indexed: 01/13/2023] Open
Abstract
IL-1α serves as a pro-inflammatory cytokine. Although pro-IL-1α has cytokine activity, proteolytic maturation increases its potency and release from cells. IL-1α maturation occurs in a caspase-1-dependent manner following inflammasome activation. However, pro-IL-1α is not a substrate of caspase-1, and it remains unclear what mediates the maturation of this cytokine downstream of inflammasomes. Here, we show that gasdermin D (GSDMD), an executor of pyroptosis, is required for the rapid induction of IL-1α maturation by non-particulate inflammasome activators. Ablation of GSDMD abrogates the maturation of IL-1α, but not of IL-1β. Inflammasome-induced maturation of IL-1α relies on extracellular Ca2+ and calpains. Ca2+ influx and calpain activation are induced in a GSDMD-dependent manner. Glycine, which inhibits cell lysis, but not GSDMD pore formation, does not affect IL-1α maturation. These results suggest that during inflammasome activation, GSDMD processed by caspase-1 forms plasma membrane pores that mediate Ca2+ influx, resulting in the calpain-dependent maturation of IL-1α.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shoko Hosojima
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hideki Hara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Kushiyama
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mamunur Rashid Mahib
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong-4331, Bangladesh
| | - Takeshi Kinoshita
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
56
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
57
|
Tyrkalska SD, Candel S, Mulero V. The neutrophil inflammasome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103874. [PMID: 32987011 DOI: 10.1016/j.dci.2020.103874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Since inflammasomes were discovered in the early 21st century, knowledge about their biology has multiplied exponentially. These cytosolic multiprotein complexes alert the immune system about the presence of infection or tissue damage, and regulate the subsequent inflammatory responses. As inflammasome dysregulation is increasingly associated with numerous autoinflammatory disorders, there is an urgent need for further research into the inflammasome's involvement in the pathogenesis of such diseases in order to identify novel therapeutic targets and treatments. The zebrafish has become a widely used animal model to study human diseases in recent years, and has already provided relevant findings in the field of inflammasome biology including the identification of new components and pathways. We provide a detailed analysis of current knowledge on neutrophil inflammasome biology and compare its features with those of the better known macrophage inflammasome, focusing on its contribution to innate immunity and its relevance for human health. Importantly, a large body of evidence points to a link between neutrophil inflammasome dysfunction and many neutrophil-mediated human diseases, but the real contribution of the neutrophil inflammasome to the pathogenesis of these disorders is largely unknown. Although neutrophils have remained in the shadow of macrophages and monocytes in the field of inflammasome research since the discovery of these multiprotein platforms, recent studies strongly suggest that the importance of the neutrophil inflammasome has been underestimated.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
58
|
Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646071. [PMID: 33553427 PMCID: PMC7847335 DOI: 10.1155/2021/6646071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer (NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the development of effective therapies to treat and/or prevent pulmonary infections.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | | | - Nengzhang Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Animal Medicine, Southwest University, Chongqing, China
| |
Collapse
|
59
|
Jing W, Lo Pilato J, Kay C, Man SM. Activation mechanisms of inflammasomes by bacterial toxins. Cell Microbiol 2021; 23:e13309. [PMID: 33426791 DOI: 10.1111/cmi.13309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic innate immune complexes, which assemble in mammalian cells in response to microbial components and endogenous danger signals. A major family of inflammasome activators is bacterial toxins. Inflammasome sensor proteins, such as the nucleotide-binding oligomerisation domain-like receptor (NLR) family members NLRP1b and NLRP3, and the tripartite motif family member Pyrin+ efflux triggered by pore-forming toxins or by other toxin-induced homeostasis-altering events such as lysosomal rupture. Pyrin senses perturbation of host cell functions induced by certain enzymatic toxins resulting in impairment of RhoA GTPase activity. Assembly of the inflammasome complex activates the cysteine protease caspase-1, leading to the proteolytic cleavage of the proinflammatory cytokines IL-1β and IL-18, and the pore-forming protein gasdermin D causing pyroptosis. In this review, we discuss the latest progress in our understanding on the activation mechanisms of inflammasome complexes by bacterial toxins and effector proteins and explore avenues for future research into the relationships between inflammasomes and bacterial toxins.
Collapse
Affiliation(s)
- Weidong Jing
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jordan Lo Pilato
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Callum Kay
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
60
|
Trueperella pyogenes pyolysin inhibits lipopolysaccharide-induced inflammatory response in endometrium stromal cells via autophagy- and ATF6-dependent mechanism. Braz J Microbiol 2021; 52:939-952. [PMID: 33454924 DOI: 10.1007/s42770-021-00422-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is a common opportunistic pathogen of many livestock and play an important regulation role during multibacterial infection and interaction with the host by its primary virulence factor pyolysin (PLO). The purpose of this study was to investigate the regulation role of PLO which serve as a combinational pathogen with lipopolysaccharide (LPS) during endometritis. In this study, the expression of bioactive recombinant PLO (rPLO) in a prokaryotic expression system and its purification are described. Moreover, we observed that rPLO inhibited the innate immune response triggered by LPS and that methyl-β-cyclodextrin (MBCD) abrogated this inhibitory effect in goat endometrium stromal cells (gESCs). Additionally, we show from pharmacological and genetic studies that rPLO-induced autophagy represses gene expression by inhibiting NLRP3 inflammasome activation. Importantly, this study reported that ATF6 serves as a primary regulator of the cellular inflammatory reaction to rPLO. Overall, these observations suggest that T. pyogenes PLO could create an immunosuppressive environment for other pathogens invasion by regulating cellular signaling pathways.
Collapse
|
61
|
Schwaid AG, Spencer KB. Strategies for Targeting the NLRP3 Inflammasome in the Clinical and Preclinical Space. J Med Chem 2020; 64:101-122. [PMID: 33351619 DOI: 10.1021/acs.jmedchem.0c01307] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibiting the NLRP3 inflammasome mediates inflammation in an extensive number of preclinical models. As excitement in this field has grown, several companies have recently initiated testing of direct NLRP3 inhibitors in the clinic. At the same time, the NLRP3 inflammasome is part of a larger pro-inflammatory pathway, whose modulation is also being explored. Multiple targets in this pathway are already impinged upon by molecules that have been through clinical trials. These data, informed by the growing mechanistic understanding of the NLRP3 inflammasome in the preclinical space, provide a rich backdrop to assess the current state of the field. Here we explore attempts to inhibit the NLRP3 inflammasome in light of clinical and preclinical data around efficacy and safety.
Collapse
Affiliation(s)
- Adam G Schwaid
- Chemical Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kerrie B Spencer
- Chemical Biology, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
62
|
Zhang H, Zahid A, Ismail H, Tang Y, Jin T, Tao J. An overview of disease models for NLRP3 inflammasome over-activation. Expert Opin Drug Discov 2020; 16:429-446. [PMID: 33131335 DOI: 10.1080/17460441.2021.1844179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Inflammatory reactions, including those mediated by the NLRP3 inflammasome, maintain the body's homeostasis by removing pathogens, repairing damaged tissues, and adapting to stressed environments. However, uncontrolled activation of the NLRP3 inflammasome tends to cause various diseases using different mechanisms. Recently, many inhibitors of the NLRP3 inflammasome have been reported and many are being developed. In order to assess their efficacy, specificity, and mechanism of action, the screening process of inhibitors requires various types of cell and animal models of NLRP3-associated diseases.Areas covered: In the following review, the authors give an overview of the cell and animal models that have been used during the research and development of various inhibitors of the NLRP3 inflammasome.Expert opinion: There are many NLRP3 inflammasome inhibitors, but most of the inhibitors have poor specificity and often influence other inflammatory pathways. The potential risk for cross-reaction is high; therefore, the development of highly specific inhibitors is essential. The selection of appropriate cell and animal models, and combined use of different models for the evaluation of these inhibitors can help to clarify the target specificity and therapeutic effects, which is beneficial for the development and application of drugs targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science. Hefei National Science Center for Physical Sciences at Microscale. University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
63
|
Surabhi S, Cuypers F, Hammerschmidt S, Siemens N. The Role of NLRP3 Inflammasome in Pneumococcal Infections. Front Immunol 2020; 11:614801. [PMID: 33424869 PMCID: PMC7793845 DOI: 10.3389/fimmu.2020.614801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammasomes are innate immune sensors that regulate caspase-1 mediated inflammation in response to environmental, host- and pathogen-derived factors. The NLRP3 inflammasome is highly versatile as it is activated by a diverse range of stimuli. However, excessive or chronic inflammasome activation and subsequent interleukin-1β (IL-1β) release are implicated in the pathogenesis of various autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and diabetes. Accordingly, inflammasome inhibitor therapy has a therapeutic benefit in these diseases. In contrast, NLRP3 inflammasome is an important defense mechanism against microbial infections. IL-1β antagonizes bacterial invasion and dissemination. Unfortunately, patients receiving IL-1β or inflammasome inhibitors are reported to be at a disproportionate risk to experience invasive bacterial infections including pneumococcal infections. Pneumococci are typical colonizers of immunocompromised individuals and a leading cause of community-acquired pneumonia worldwide. Here, we summarize the current limited knowledge of inflammasome activation in pneumococcal infections of the respiratory tract and how inflammasome inhibition may benefit these infections in immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
64
|
Hollwedel FD, Maus R, Stolper J, Khan A, Stocker BL, Timmer MSM, Lu X, Pich A, Welte T, Yamasaki S, Maus UA. Overexpression of Macrophage-Inducible C-Type Lectin Mincle Aggravates Proinflammatory Responses to Streptococcus pneumoniae with Fatal Outcome in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:3390-3399. [PMID: 33158955 DOI: 10.4049/jimmunol.2000509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022]
Abstract
Macrophage-inducible C-type lectin (Mincle)-dependent sensing of pathogens triggers proinflammatory immune responses in professional phagocytes that contribute to protecting the host against pathogen invasion. In this study, we examined whether overexpression of Mincle that is designed to improve early pathogen sensing by professional phagocytes would improve lung-protective immunity against Streptococcus pneumoniae in mice. Proteomic profiling of alveolar macrophages of Mincle transgenic (tg) mice stimulated with the Mincle-specific pneumococcal ligand glucosyl-diacylglycerol (Glc-DAG) revealed increased Nlrp3 inflammasome activation and downstream IL-1β cytokine release that was not observed in Glc-DAG-stimulated Mincle knockout or Nlrp3 knockout macrophages. Along this line, Mincle tg mice also responded with a stronger Nlrp3 expression and early proinflammatory cytokine release after challenge with S. pneumoniae, ultimately leading to fatal pneumonia in the Mincle tg mice. Importantly, Nlrp3 inhibitor treatment of Mincle tg mice significantly mitigated the observed hyperinflammatory response to pneumococcal challenge. Together, we show that overexpression of the pattern recognition receptor Mincle triggers increased Glc-DAG-dependent Nlrp3 inflammasome activation in professional phagocytes leading to fatal pneumococcal pneumonia in mice that is amenable to Nlrp3 inhibitor treatment. These data show that ectopic expression of the Mincle receptor confers increased susceptibility rather than resistance to S. pneumoniae in mice, thus highlighting the importance of an inducible Mincle receptor expression in response to microbial challenge.
Collapse
Affiliation(s)
- Femke D Hollwedel
- Division of Experimental Pneumology, Hannover Medical School, Hannover 30625, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover 30625, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Hannover 30625, Germany
| | - Ayesha Khan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Xiuyuan Lu
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Andreas Pich
- Institute of Toxicology and Core Facility Proteomics, Hannover Medical School, Hannover 30625, Germany
| | - Tobias Welte
- German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover 30625, Germany; and.,Clinic for Pneumology, Hannover Medical School, Hannover 30625, Germany
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover 30625, Germany; .,German Center for Lung Research, Partner Site Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover 30625, Germany; and
| |
Collapse
|
65
|
Badgujar DC, Anil A, Green AE, Surve MV, Madhavan S, Beckett A, Prior IA, Godsora BK, Patil SB, More PK, Sarkar SG, Mitchell A, Banerjee R, Phale PS, Mitchell TJ, Neill DR, Bhaumik P, Banerjee A. Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestyle. PLoS Pathog 2020; 16:e1009016. [PMID: 33216805 PMCID: PMC7717573 DOI: 10.1371/journal.ppat.1009016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-π interaction, governing formation of the transmembrane β-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche.
Collapse
Affiliation(s)
- Dilip C. Badgujar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Manalee Vishnu Surve
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Alison Beckett
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ian A. Prior
- Division of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barsa K. Godsora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sanket B. Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prachi Kadam More
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Shruti Guha Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Andrea Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Timothy J. Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
66
|
Panagiotou S, Chaguza C, Yahya R, Audshasai T, Baltazar M, Ressel L, Khandaker S, Alsahag M, Mitchell TJ, Prudhomme M, Kadioglu A, Yang M. Hypervirulent pneumococcal serotype 1 harbours two pneumolysin variants with differential haemolytic activity. Sci Rep 2020; 10:17313. [PMID: 33057054 PMCID: PMC7560715 DOI: 10.1038/s41598-020-73454-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is a devastating global pathogen. Prevalent in sub-Saharan Africa, pneumococcal serotype 1 is atypical in that it is rarely found as a nasopharyngeal coloniser, yet is described as one of the most common causes of invasive pneumococcal disease. Clonal sequence type (ST)-306 and ST615 are representative of the two major serotype 1 lineages A and C, respectively. Here we investigated the virulence properties and haemolytic activities of these 2 clonal types using in vivo mouse models and in vitro assays. A lethal dose of ST615 administered intranasally to mice led to the rapid onset of disease symptoms and resulted in 90% mortality. In contrast, mice exposed to the same infection dose of ST306 or a pneumolysin (Ply)-deficient ST615 failed to develop any disease symptoms. Interestingly, the 2 strains did not differ in their ability to bind the immune complement or to undergo neutrophil-mediated phagocytosis. Upon comparative genomic analysis, we found higher within-ST sequence diversity in ST615 compared with ST306 and determined that ZmpA, ZmpD proteins, and IgA protease, were uniquely found in ST615. Using cell fractionation and cell contact-dependent assay, we made the unexpected finding that ST615 harbours the expression of two haemolytic variants of Ply: a cell-wall restricted fully haemolytic Ply, and a cytosolic pool of Ply void of any detectable haemolytic activity. This is the first time such a phenomenon has been described. We discuss the biological significance of our observation in relation to the aptitude of the pneumococcus for sustaining its human reservoir.
Collapse
Affiliation(s)
- Stavros Panagiotou
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Chrispin Chaguza
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Darwin College, University of Cambridge, Silver Street, Cambridge, CB3 9EU, UK
| | - Reham Yahya
- College of sciences and health professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Teerawit Audshasai
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Murielle Baltazar
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Shadia Khandaker
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
| | - Mansoor Alsahag
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK
- Faculty of Applied Medical Sciences, Albaha University, Albaha, Kingdom of Saudi Arabia
| | - Tim J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marc Prudhomme
- Université Paul Sabatier, Centre National de la Recherche Scientifique, 118 Route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Aras Kadioglu
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK.
| | - Marie Yang
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby St, Liverpool, L69 7BE, UK.
| |
Collapse
|
67
|
Subramanian K, Iovino F, Tsikourkitoudi V, Merkl P, Ahmed S, Berry SB, Aschtgen MS, Svensson M, Bergman P, Sotiriou GA, Henriques-Normark B. Mannose receptor-derived peptides neutralize pore-forming toxins and reduce inflammation and development of pneumococcal disease. EMBO Mol Med 2020; 12:e12695. [PMID: 32985105 PMCID: PMC7645366 DOI: 10.15252/emmm.202012695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 12/30/2022] Open
Abstract
Cholesterol‐dependent cytolysins (CDCs) are essential virulence factors for many human pathogens like Streptococcus pneumoniae (pneumolysin, PLY), Streptococcus pyogenes (streptolysin O, SLO), and Listeria monocytogenes (Listeriolysin, LLO) and induce cytolysis and inflammation. Recently, we identified that pneumococcal PLY interacts with the mannose receptor (MRC‐1) on specific immune cells thereby evoking an anti‐inflammatory response at sublytic doses. Here, we identified the interaction sites between MRC‐1 and CDCs using computational docking. We designed peptides from the CTLD4 domain of MRC‐1 that binds to PLY, SLO, and LLO, respectively. In vitro, the peptides blocked CDC‐induced cytolysis and inflammatory cytokine production by human macrophages. Also, they reduced PLY‐induced damage of the epithelial barrier integrity as well as blocked bacterial invasion into the epithelium in a 3D lung tissue model. Pre‐treatment of human DCs with peptides blocked bacterial uptake via MRC‐1 and reduced intracellular bacterial survival by targeting bacteria to autophagosomes. In order to use the peptides for treatment in vivo, we developed calcium phosphate nanoparticles (CaP NPs) as peptide nanocarriers for intranasal delivery of peptides and enhanced bioactivity. Co‐administration of peptide‐loaded CaP NPs during infection improved survival and bacterial clearance in both zebrafish and mice models of pneumococcal infection. We suggest that MRC‐1 peptides can be employed as adjunctive therapeutics with antibiotics to treat bacterial infections by countering the action of CDCs.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vasiliki Tsikourkitoudi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sultan Ahmed
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Samuel B Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.,The Immunodeficiency Unit, Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
68
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
69
|
Song L, Li X, Xiao Y, Huang Y, Jiang Y, Meng G, Ren Z. Contribution of Nlrp3 Inflammasome Activation Mediated by Suilysin to Streptococcal Toxic Shock-like Syndrome. Front Microbiol 2020; 11:1788. [PMID: 32922370 PMCID: PMC7456889 DOI: 10.3389/fmicb.2020.01788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The aim of this study was to investigate the molecular mechanism of inflammasome activation in response to Streptococcus suis serotype 2 (SS2) infection and its contribution to the development of streptococcal toxic shock-like syndrome (STSS). Methods: To verify the role of suilysin (SLY) in STSS, we infected bone-marrow-derived macrophages (BMDMs) in vitro and C57BL/6J mice intraperitoneally (IP) with the SS2 wild-type (WT) strain or isogenic sly mutant (∆SLY) to measure the interleukin (IL)-1β release and survival rate. To determine the role of inflammasome activation and pyroptosis in STSS, we infected BMDMs from WT and various deficient mice, including Nlrp3-deficient (Nlrp3−/−), Nlrc4-deficient (Nlrc4−/−), Asc-deficient (Asc−/−), Aim2-deficient (Aim2−/−), Caspase-1/11-deficient (Caspase-1/11−/−), and Gsdmd-deficient (Gsdmd−/−) ex vivo, and IP injected WT, Nlrp3−/−, Caspase-1/11−/−, and Gsdmd−/− mice with SS2, to compare the IL-1β releases and survival rate in vivo. Results: The SS2-induced IL-1β production in mouse macrophages is mediated by SLY ex vivo. The survival rate of WT mice infected with SS2 was significantly lower than that of mice infected with the ∆SLY strain in vivo. Furthermore, SS2-triggered IL-1β releases, and the cytotoxicity in the BMDMs required the activation of the NOD-Like Receptors Family Pyrin Domain Containing 3 (Nlrp3), Caspase-1/11, and gasdermin D (Gsdmd) inflammasomes, but not the Nlrc4 and Aim2 inflammasomes ex vivo. The IL-1β production and survival rate of WT mice infected with SS2 were significantly lower than those of the Nlrp3−/−, Caspase-1/11−/−, and Gsdmd−/− mice in vivo. Finally, the inhibitor of the Nlrp3 inflammasome could reduce the IL-1β release and cytotoxicity of SS2-infected macrophages ex vivo and protect SS2-infected mice from death in vivo. Conclusion: Nlrp3 inflammasome activation triggered by SLY in macrophages played an important role in the pathogenesis of STSS.
Collapse
Affiliation(s)
- Liqiong Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchun Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanming Huang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhihong Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function (2018 RU010), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
70
|
Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020; 11:1543. [PMID: 32714314 PMCID: PMC7343714 DOI: 10.3389/fmicb.2020.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic pathogen responsible for widespread illness and is a major global health issue for children, the elderly, and the immunocompromised population. Pneumolysin (PLY) is a cholesterol-dependent cytolysin (CDC) and key pneumococcal virulence factor involved in all phases of pneumococcal disease, including transmission, colonization, and infection. In this review we cover the biology and cytolytic function of PLY, its contribution to S. pneumoniae pathogenesis, and its known interactions and effects on the host with regard to tissue damage and immune response. Additionally, we review statins as a therapeutic option for CDC toxicity and PLY toxoid as a vaccine candidate in protein-based vaccines.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Elaine I Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
71
|
Cui M, Liang J, Xu D, Zhao L, Zhang X, Zhang L, Ren S, Liu D, Niu X, Zang YJ, Zhang B. NLRP3 inflammasome is involved in nerve recovery after sciatic nerve injury. Int Immunopharmacol 2020; 84:106492. [PMID: 32402947 DOI: 10.1016/j.intimp.2020.106492] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/13/2020] [Accepted: 04/05/2020] [Indexed: 01/12/2023]
Abstract
The activation of the inflammasome plays an important role in the central nervous system. However, only a few studies have investigated the effects of inflammasome activation in the peripheral nerve, especially in the sciatic nerve, and the mechanism of this activation remains elusive. Moreover, how interleukin-1 beta (IL-1β) is produced after sciatic nerve injury is also unknown. In our study, we aimed to investigate whether the nucleotide-binding oligomerization domain-like pyrin domain containing protein 3 (NLRP3) inflammasome is activated after sciatic nerve injury and to explore its role in sciatic nerve injury. The results of immunoblotting and immunofluorescence microscopy indicate that the NLRP3 inflammasome was activated after sciatic nerve injury in wild-type (WT) mice, as demonstrated by upregulated inflammasome-related components, e.g., NLRP3, procaspase-1 and ASC. Furthermore, upregulated inflammasome-related components cis-cleavage precursor IL-1β (proIL-1β) and precursor interleukin-18 (proIL-18) to IL-1β and IL-18, contributing to the inflammatory response. Consequently, the inflammatory response after sciatic nerve injury in NLRP3 knockout (NLRP3-KO) mice was less severe than that in WT mice. Moreover, NLRP3-KO mice exhibited an increased sciatic functional index (SFI), which was determined by footprint analysis, suggesting that NLRP3 deficiency is beneficial to sciatic nerve recovery after injury. Therefore, our results indicate that NLRP3 is involved in the recovery from sciatic nerve injury and mediates the production of inflammatory factors, such as IL-1β, after sciatic nerve injury.
Collapse
Affiliation(s)
- Mengli Cui
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dan Xu
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lizhen Zhao
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiangyan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, PR China
| | - Li Zhang
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shurong Ren
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongkai Liu
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xuanxuan Niu
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yun-Jin Zang
- Department of Liver Transplantation, Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, PR China.
| | - Bei Zhang
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
72
|
Jacques LC, Panagiotou S, Baltazar M, Senghore M, Khandaker S, Xu R, Bricio-Moreno L, Yang M, Dowson CG, Everett DB, Neill DR, Kadioglu A. Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nat Commun 2020; 11:1892. [PMID: 32312961 PMCID: PMC7170840 DOI: 10.1038/s41467-020-15751-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae serotype 1 is the predominant cause of invasive pneumococcal disease in sub-Saharan Africa, but the mechanism behind its increased invasiveness is not well understood. Here, we use mouse models of lung infection to identify virulence factors associated with severe bacteraemic pneumonia during serotype-1 (ST217) infection. We use BALB/c mice, which are highly resistant to pneumococcal pneumonia when infected with other serotypes. However, we observe 100% mortality and high levels of bacteraemia within 24 hours when BALB/c mice are intranasally infected with ST217. Serotype 1 produces large quantities of pneumolysin, which is rapidly released due to high levels of bacterial autolysis. This leads to substantial levels of cellular cytotoxicity and breakdown of tight junctions between cells, allowing a route for rapid bacterial dissemination from the respiratory tract into the blood. Thus, our results offer an explanation for the increased invasiveness of serotype 1. The mechanisms behind the high invasiveness of Streptococcus pneumoniae serotype 1 are unclear. Here, Jacques et al. show that this feature is due to overproduction and rapid release of pneumolysin, which induces cytotoxicity and breakdown of tight junctions, allowing rapid bacterial dissemination from the respiratory tract into the blood.
Collapse
Affiliation(s)
- Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Stavros Panagiotou
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
73
|
Zhong Y, Lu Y, Yang X, Tang Y, Zhao K, Yuan C, Zhong X. The roles of NLRP3 inflammasome in bacterial infection. Mol Immunol 2020; 122:80-88. [PMID: 32305691 DOI: 10.1016/j.molimm.2020.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/08/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasomes are intracellular protein complexes that orchestrate immune responses through mediating caspase-1 activation, which leads to maturation of pro-interleukin (IL)-1β. Though it is known that both Gram-negative and Gram-positive bacteria could activate the NLRP3 inflammasome, the roles of NLRP3 inflammasome in bacterial sepsis is ill-defined. METHODS Sepsis was induced in C57BL/6, Nlrp3 KO, Asc KO and interleukin-1-receptor (Il1r) KO male mice. PBS or Escherichia coli were injected intravenously into mice. The number of days from cecal ligation and puncture (CLP) surgery or Escherichia coli injection to death in each group was documented for survival. After 16 h of CLP or Escherichia coli injection, livers, lungs and spleens were harvested and assessed for bacterial loads. Tissue sections of the liver and lung were done to show the infiltration of inflammatory cells and the serum and peritoneal lavage fluid were harvested and assessed by ELISA for pro-inflammatory cytokines (IL-6, IL-1β, IL-18), and by flow cytometric analysis for peritoneal neutrophil infiltration. RESULTS Using a murine CLP model, we found that the NLRP3 inflammasome is protective in polymicrobial abdominal infection. Genetic deletion of NLRP3 significantly inhibited the production of IL-1β and worsened the outcome after CLP. Loss of NLRP3 significantly inhibited neutrophil recruitment in peritoneal cavity and impaired the bacterial clearance after CLP. Genetic deletion of Il1r, the receptor of IL-1β, phenocopied NLRP3 deficiency in polymicrobial abdominal infection. However, NLRP3 deficiency conferred protection when Escherichia coli were directly injected into the blood stream. CONCLUSION Our results demonstrate that NLRP3 signaling confers protection against polymicrobial abdominal infection but promote lethality during disseminated bacterial infection.
Collapse
Affiliation(s)
- Yanjun Zhong
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Human Province, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China; ICU Center, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle, Road, Furong, Changsha, Hunan, 410011, PR China
| | - Yanyan Lu
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Human Province, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China
| | - Xiaolong Yang
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Human Province, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Human Province, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China
| | - Chuang Yuan
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Human Province, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China
| | - Xiaoli Zhong
- Department of Hematology and Key Laboratory of Non-Resolving Inflammation and Cancer of Human Province, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province, 410000, PR China.
| |
Collapse
|
74
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
75
|
Nucleic Acid-Sensing Toll-Like Receptors Play a Dominant Role in Innate Immune Recognition of Pneumococci. mBio 2020; 11:mBio.00415-20. [PMID: 32209688 PMCID: PMC7157524 DOI: 10.1128/mbio.00415-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae (or pneumococcus) is a highly prevalent human pathogen. Toll-like receptors (TLRs) function as immune sensors that can trigger host defenses against this bacterium. Defects in TLR-activated signaling pathways, including deficiency in the adaptor protein myeloid differentiation factor 88 (MyD88), are associated with markedly increased susceptibility to infection. However, the individual MyD88-dependent TLRs predominantly involved in antipneumococcal defenses have not been identified yet. Here we find that triple knockout mice simultaneously lacking TLR7, TLR9, and TLR13, which sense the presence of bacterial DNA (TLR9) and RNA (TLR7 and TLR13) in the phagolysosomes of phagocytic cells, display a phenotype that largely resembles that of MyD88-deficient mice and rapidly succumb to pneumococcal pneumonitis due to defective neutrophil influx into the lung. Accordingly, TLR7/9/13 triple knockout resident alveolar macrophages were largely unable to respond to pneumococci with the production of neutrophil-attracting chemokines and cytokines. Mice with single deficiencies of TLR7, TLR9, or TLR13 showed unaltered ability to control lung infection but were moderately more susceptible to encephalitis, in association with a decreased ability of microglia to mount cytokine responses in vitro Our data point to a dominant, tissue-specific role of nucleic acid-sensing pathways in innate immune recognition of S. pneumoniae and also show that endosomal TLRs are largely capable of compensating for the absence of each other, which seems crucial to prevent pneumococci from escaping immune recognition. These results may be useful to develop novel strategies to treat infections by antibiotic-resistant pneumococci based on stimulation of the innate immune system.IMPORTANCE The pneumococcus is a bacterium that frequently causes infections in the lungs, ears, sinus cavities, and meninges. During these infections, body defenses are triggered by tissue-resident cells that use specialized receptors, such as Toll-like receptors (TLRs), to sense the presence of bacteria. We show here that pneumococci are predominantly detected by TLRs that are located inside intracellular vacuoles, including endosomes, where these receptors can sense the presence of nucleic acids released from ingested bacteria. Mice that simultaneously lacked three of these receptors (specifically, TLR7, TLR9, and TLR13) were extremely susceptible to lung infection and rapidly died after inhalation of pneumococci. Moreover, tissue-resident macrophages from these mice were impaired in their ability to respond to the presence of pneumococci by producing inflammatory mediators capable of recruiting polymorphonuclear leucocytes to infection sites. This information may be useful to develop drugs to treat pneumococcal infections, particularly those caused by antibiotic-resistant strains.
Collapse
|
76
|
Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel) 2020; 8:vaccines8010132. [PMID: 32192117 PMCID: PMC7157650 DOI: 10.3390/vaccines8010132] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen causing pneumonia with over 2 million deaths annually, especially in young children and the elderly. To date, at least 98 different pneumococcal capsular serotypes have been identified. Currently, the vaccines for prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes and are unable to protect against non-vaccine serotypes and unencapsulated S. pneumoniae. This has led to a rapid increase in antibiotic-resistant non-vaccine serotypes. Hence, there is an urgent need to develop new, effective, and affordable pneumococcal vaccines, which could cover a wide range of serotypes. This review discusses the new approaches to develop effective vaccines with broad serotype coverage as well as recent development of promising pneumococcal vaccines in clinical trials. New vaccine candidates are the inactivated whole-cell vaccine strain (Δpep27ΔcomD mutant) constructed by mutations of specific genes and several protein-based S. pneumoniae vaccines using conserved pneumococcal antigens, such as lipoprotein and surface-exposed protein (PspA). Among the vaccines in Phase 3 clinical trials are the pneumococcal conjugate vaccines, PCV-15 (V114) and 20vPnC. The inactivated whole-cell and several protein-based vaccines are either in Phase 1 or 2 trials. Furthermore, the recent progress of nanoparticles that play important roles as delivery systems and adjuvants to improve the performance, as well as the immunogenicity of the nanovaccines, are reviewed.
Collapse
|
77
|
Evaluation of the Potency of Two Pyolysin-Derived Recombinant Proteins as Vaccine Candidates of Trueperella Pyogenes in a Mouse Model: Pyolysin Oligomerization and Structural Change Affect the Efficacy of Pyolysin-Based Vaccines. Vaccines (Basel) 2020; 8:vaccines8010079. [PMID: 32050696 PMCID: PMC7157609 DOI: 10.3390/vaccines8010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an important opportunistic pathogen in livestock and wild animals. However, only one commercial T. pyogenes vaccine is currently available, and its immunoprotective effect is not ideal. Pyolysin (PLO) is one of the important virulence factors expressed by T. pyogenes and one of the targets for the development of new T. pyogenes vaccines. In this study, we constructed two recombinant antigens, tPLOA1 (contains amino acids 1–110 and domain 4 of the PLO molecule) and tPLOA2 (contains amino acids 190–296 and domain 4 of the PLO molecule). Vaccines were prepared by mixing the two recombinant antigens with incomplete Freund’s adjuvant or sheep red blood cell membrane and provided partial immune protection to immunized mice against the lethal challenge of T. pyogenes. Analysis of the PLO-specific IgG levels of immunized mice indicated that the antibody-inducing potency and immunoprotective efficacy of PLO-based vaccines are affected by the oligomerization and structural changes of PLO after binding to a cholesterol-containing membrane. In addition, the titer of anti-hemolysis antibodies is not a suitable indicator of the immunoprotective effect of these vaccines in PLO-based vaccine-immunized animals. The results provide new insights into the development of T. pyogenes vaccines.
Collapse
|
78
|
Shears RK, Jacques LC, Naylor G, Miyashita L, Khandaker S, Lebre F, Lavelle EC, Grigg J, French N, Neill DR, Kadioglu A. Exposure to diesel exhaust particles increases susceptibility to invasive pneumococcal disease. J Allergy Clin Immunol 2020; 145:1272-1284.e6. [PMID: 31983527 PMCID: PMC7154500 DOI: 10.1016/j.jaci.2019.11.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The World Health Organization estimates that air pollution is responsible for 7 million deaths per annum, with 7% of these attributable to pneumonia. Many of these fatalities have been linked to exposure to high levels of airborne particulates, such as diesel exhaust particles (DEPs). OBJECTIVES We sought to determine whether exposure to DEPs could promote the progression of asymptomatic nasopharyngeal carriage of Streptococcus pneumoniae to invasive pneumococcal disease. METHODS We used mouse models and in vitro assays to provide a mechanistic understanding of the link between DEP exposure and pneumococcal disease risk, and we confirmed our findings by using induced sputum macrophages isolated from healthy human volunteers. RESULTS We demonstrate that inhaled exposure to DEPs disrupts asymptomatic nasopharyngeal carriage of S pneumoniae in mice, leading to dissemination to lungs and blood. Pneumococci are transported from the nasopharynx to the lungs following exposure to DEPs, leading to increased proinflammatory cytokine production, reduced phagocytic function of alveolar macrophages, and consequently, increased pneumococcal loads within the lungs and translocation into blood. These findings were confirmed by using DEP-exposed induced sputum macrophages isolated from healthy volunteers, demonstrating that impaired innate immune mechanisms following DEP exposure are also at play in humans. CONCLUSION Lung inhaled DEPs increase susceptibility to pneumococcal disease by leading to loss of immunological control of pneumococcal colonisation, increased inflammation, tissue damage, and systemic bacterial dissemination.
Collapse
Affiliation(s)
- Rebecca K Shears
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Laura C Jacques
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgia Naylor
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Lisa Miyashita
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Shadia Khandaker
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Neil French
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom; Microbial Evolution, Genomics and Adaptation Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Bacterial Pathogenesis and Immunity Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
79
|
Mo Z, Tang C, Li H, Lei J, Zhu L, Kou L, Li H, Luo S, Li C, Chen W, Zhang L. Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci 2019; 242:117133. [PMID: 31830477 DOI: 10.1016/j.lfs.2019.117133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Acute cerebral infarction (ACI) is the most common type of acute cerebrovascular diseases resulting in high rate of death and disability. Numerous evidences show that inflammation is the leading cause of ischemic brain injury, thus anti-inflammatory therapy is an attractive candidate for ischemic brain damage. Eicosapentaenoic acid (EPA) exerts anti-inflammatory activity in lots of human inflammatory diseases, whereas its effect in ACI is left to elucidate. METHOD Nlpr3-/- mice, Gpr40-/-; Gpr120-/- mice and mice with right middle cerebral artery occlusion (MCAO) were used to detect NLR family pyrin domain containing 3 (NLRP3) inflammasome activation by Western Blot and the release of proinflammatory cytokines by ELISA. To estimate the acute ischemic condition in vitro, oxygen-glucose deprivation (OGD) was induced in BV2 microglia cells. Transfection of the shRNA targeting GPR40 and GPR120 mRNA into BV2 cells was also assessed. Apoptosis in ischemic cerebral tissues and BV2 cells was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry. RESULT Here we show that EPA suppresses ACI-induced inflammatory responses through blocking NLRP3 inflammasome activation. In addition, EPA inhibits NLRP3 inflammasome activation through G protein-coupled receptor 40 (GPR40) and GPR120. Importantly, EPA ameliorates ACI-induced apoptosis. CONCLUSION EPA exerts beneficial effect on ACI-induced inflammation through blocking NLRP3 inflammasome activation by GPR40 and GPR120. Our findings suggest the potential clinical use of EPA in ACI.
Collapse
Affiliation(s)
- Zhihuai Mo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Chaogang Tang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China; Department of Neurology, Maoming People's Hospital, 525000, Guangdong, China
| | - Huiqing Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Junjie Lei
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Lingjuan Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Li Kou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Hao Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China; Department of Neurology, Maoming People's Hospital, 525000, Guangdong, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Chunyi Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Wenli Chen
- Department of Pharmacology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China.
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China.
| |
Collapse
|
80
|
Morais V, Texeira E, Suarez N. Next-Generation Whole-Cell Pneumococcal Vaccine. Vaccines (Basel) 2019; 7:E151. [PMID: 31623286 PMCID: PMC6963273 DOI: 10.3390/vaccines7040151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae remains a major public health hazard. Although Pneumococcal Conjugate Vaccines (PCVs) are available and have significantly reduced the rate of invasive pneumococcal diseases, there is still a need for new vaccines with unlimited serotype coverage, long-lasting protection, and lower cost to be developed. One of the most promising candidates is the Whole-Cell Pneumococcal Vaccine (WCV). The new generation of whole-cell vaccines is based on an unencapsulated serotype that allows the expression of many bacterial antigens at a lower cost than a recombinant vaccine. These vaccines have been extensively studied, are currently in human trial phase 1/2, and seem to be the best treatment choice for pneumococcal diseases, especially for developing countries.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| | - Esther Texeira
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| | - Norma Suarez
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| |
Collapse
|
81
|
Periselneris J, Ercoli G, Pollard T, Chimalapati S, Camberlein E, Szylar G, Hyams C, Tomlinson G, Petersen FC, Floto RA, Noursadeghi M, Brown JS. Relative Contributions of Extracellular and Internalized Bacteria to Early Macrophage Proinflammatory Responses to Streptococcus pneumoniae. mBio 2019; 10:e02144-19. [PMID: 31551336 PMCID: PMC6759765 DOI: 10.1128/mbio.02144-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Both intracellular immune sensing and extracellular innate immune sensing have been implicated in initiating macrophage proinflammatory cytokine responses to Streptococcus pneumoniae The S. pneumoniae capsule, a major virulence determinant, prevents phagocytosis, and we hypothesized that this would reduce activation of host innate inflammatory responses by preventing activation of intracellular proinflammatory signaling pathways. We investigated this hypothesis in human monocyte-derived macrophages stimulated with encapsulated or isogenic unencapsulated mutant S. pneumoniae Unexpectedly, despite strongly inhibiting bacterial internalization, the capsule resulted in enhanced inflammatory cytokine production by macrophages infected with S. pneumoniae Experiments using purified capsule material and a Streptococcus mitis mutant expressing an S. pneumoniae serotype 4 capsule indicated these differences required whole bacteria and were not due to proinflammatory effects of the capsule itself. Transcriptional profiling demonstrated relatively few differences in macrophage gene expression profiles between infections with encapsulated S. pneumoniae and those with unencapsulated S. pneumoniae, largely limited to reduced expression of proinflammatory genes in response to unencapsulated bacteria, predicted to be due to reduced activation of the NF-κB family of transcription factors. Blocking S. pneumoniae internalization using cytochalasin D had minimal effects on the inflammatory response to S. pneumoniae Experiments using murine macrophages indicated that the affected genes were dependent on Toll-like receptor 2 (TLR2) activation, although not through direct stimulation of TLR2 by capsule polysaccharide. Our data demonstrate that the early macrophage proinflammatory response to S. pneumoniae is mainly dependent on extracellular bacteria and reveal an unexpected proinflammatory effect of encapsulated S. pneumoniae that could contribute to disease pathogenesis.IMPORTANCE Multiple extra- and intracellular innate immune receptors have been identified that recognize Streptococcus pneumoniae, but the relative contributions of intra- versus extracellular bacteria to the inflammatory response were unknown. We have shown that intracellular S. pneumoniae contributes surprisingly little to the inflammatory responses, with production of important proinflammatory cytokines largely dependent on extracellular bacteria. Furthermore, although we expected the S. pneumoniae polysaccharide capsule to block activation of the host immune system by reducing bacterial internalization and therefore activation of intracellular innate immune receptors, there was an increased inflammatory response to encapsulated compared to unencapsulated bacteria, which is likely to contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Jimstan Periselneris
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Tracey Pollard
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Suneeta Chimalapati
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Emilie Camberlein
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Gabriella Szylar
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Catherine Hyams
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Gillian Tomlinson
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fernanda C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| |
Collapse
|
82
|
Fang R, Uchiyama R, Sakai S, Hara H, Tsutsui H, Suda T, Mitsuyama M, Kawamura I, Tsuchiya K. ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism. Mucosal Immunol 2019; 12:1092-1103. [PMID: 31278375 DOI: 10.1038/s41385-019-0181-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
It is widely accepted that inflammasomes protect the host from microbial pathogens by inducing inflammatory responses through caspase-1 activation. Here, we show that the inflammasome components ASC and NLRP3 are required for resistance to pneumococcal pneumonia, whereas caspase-1 and caspase-11 are dispensable. In the lung of S. pneumoniae-infected mice, ASC and NLRP3, but not caspase-1/11, were required for optimal expression of several mucosal innate immune proteins. Among them, TFF2 and intelectin-1 appeared to be protective against pneumococcal pneumonia. During infection, ASC and NLRP3 maintained the expression of the transcription factor SPDEF, which can facilitate the expression of the mucosal defense factor genes. Moreover, activation of STAT6, a key regulator of Spdef expression, depended on ASC and NLRP3. Overexpression of these inflammasome proteins sustained STAT6 phosphorylation induced by type 2 cytokines. Collectively, this study suggests that ASC and NLRP3 promote airway mucosal innate immunity by an inflammasome-independent mechanism involving the STAT6-SPDEF pathway.
Collapse
Affiliation(s)
- Rendong Fang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.,Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Ryosuke Uchiyama
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, 663-8179, Japan
| | - Shunsuke Sakai
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hideki Hara
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Masao Mitsuyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Hakubi Center, Kyoto University, Kyoto, 606-8501, Japan
| | - Ikuo Kawamura
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan. .,Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
83
|
Zhang X, Chen YR, Zhao YL, Liu WW, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ogura T, Onodera S, Ikejima T. Type I collagen or gelatin stimulates mouse peritoneal macrophages to aggregate and produce pro-inflammatory molecules through upregulated ROS levels. Int Immunopharmacol 2019; 76:105845. [PMID: 31470266 DOI: 10.1016/j.intimp.2019.105845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Extracellular matrix (ECM) comprising the environments of multicellular society has a dynamic network structure. Collagen is one of the ubiquitous components of ECM. Collagen affects the inflammatory response by regulating the release of pro-inflammatory cytokines from cells. Gelatin, denatured collagen found temporally in tissues, is supposed to be pathophysiologically involved in tissue remodeling, inflammation caused by tissue damage. Previous reports indicate that, phorbol myristate (PMA)-stimulated human U937 (lymphoma cell line) cells that are often used as macrophage-like cells, show cell aggregations when cultured on type I collagen (col I) or gelatin-coated dishes, accompanying the changes of production and release of proinflammatory factors. However, it still remains to be examined whether collagen and gelatin affects normal macrophages as well. AIM This study aims to investigate the effect of col. I, the main component of collagenous protein and its denatured product, gelatin, on mouse peritoneal macrophages (MPMs). METHODS MTT assay, flow cytometric analysis of ROS, biochemical detection of antioxidant levels, ELISA assay, and western blot were used. RESULTS MPMs formed multicellular aggregates on col. I - and gelatin-coated dishes with a concentration- and time-dependent manner. Further studies showed that the culture on col. I and gelatin up-regulated the protein expression and secretion of pro-inflammatory molecules such as IL-1β, TNFα and prostaglandin E2 (PGE2) in MPMs. The levels were higher in the cells on gelatin than those on col. I. ROS levels are significantly increased in the cells cultured on both col. I- and gelatin-coated dishes, accompanying decreased levels of antioxidant enzyme catalase (CAT) and anti-oxidant glutathione (GSH), and enhanced nuclear translocation of NF-κB. CONCLUSION Col I - or gelatin-coated culture induced the formation of multicellular aggregates and increased production of NF-κB-associated pro-inflammatory molecules in MPMs through up-regulation of ROS levels.
Collapse
Affiliation(s)
- Xuan Zhang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi-Ran Chen
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye-Li Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei-Wei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering Kogakuin University, 2665-1, Nakanomachi Hachioji, Tokyo 192-0015, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takayuki Ogura
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Satoshi Onodera
- Medical Research Institute of Curing mibyo, Machida, Tokyo 194-0042, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
84
|
Domain 4 of pneumolysin from Streptococcus pneumoniae is a multifunctional domain contributing TLR4 activating and hemolytic activity. Biochem Biophys Res Commun 2019; 517:596-602. [PMID: 31395343 DOI: 10.1016/j.bbrc.2019.07.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
The pneumolysin (Ply) protein of Streptococcus pneumoniae is composed of four domains and possesses several different but related activities. In this study, recombinant Ply and two truncated forms, Ply domain 1-3 and Ply domain 4 (rPly4), were expressed and characterized regarding their participation in apoptosis, the stimulation of cytokine production, hemolytic activity and virulence. rPly4 activated murine bone marrow-derived dendritic cells in a Toll-like receptor (TLR) 4-dependent manner. The rPly4 alone was able to produce hemolytic activity at high concertation and penetrate the lipid bilayer. We further demonstrated that domain 4 of Ply involved in the virulence of the bacteria in mouse model. In the absence of apoptotic activity, the virulence level caused by rPly4 was similar to that of full length Ply. Our data suggested that domain 4 of Ply alone with TLR4 agonist and hemolytic activity may play roles in virulence of Streptococcus pneumoniae.
Collapse
|
85
|
Hydrogen peroxide release by bacteria suppresses inflammasome-dependent innate immunity. Nat Commun 2019; 10:3493. [PMID: 31375698 PMCID: PMC6677825 DOI: 10.1038/s41467-019-11169-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Hydrogen peroxide (H2O2) has a major function in host-microbial interactions. Although most studies have focused on the endogenous H2O2 produced by immune cells to kill microbes, bacteria can also produce H2O2. How microbial H2O2 influences the dynamics of host-microbial interactions is unclear. Here we show that H2O2 released by Streptococcus pneumoniae inhibits inflammasomes, key components of the innate immune system, contributing to the pathogen colonization of the host. We also show that the oral commensal H2O2-producing bacteria Streptococcus oralis can block inflammasome activation. This study uncovers an unexpected role of H2O2 in immune suppression and demonstrates how, through this mechanism, bacteria might restrain the immune system to co-exist with the host. The functions of microbial hydrogen peroxide (H2O2) in host-pathogen interactions are unclear. Here, Erttmann and Gekara show that H2O2 released by Streptococcus pneumoniae inhibits inflammasomes, and thereby contributes to the pathogen’s ability to colonize the host.
Collapse
|
86
|
Li LH, Lin JS, Chiu HW, Lin WY, Ju TC, Chen FH, Chernikov OV, Liu ML, Chang JC, Hsu CH, Chen A, Ka SM, Gao HW, Hua KF. Mechanistic Insight Into the Activation of the NLRP3 Inflammasome by Neisseria gonorrhoeae in Macrophages. Front Immunol 2019; 10:1815. [PMID: 31417575 PMCID: PMC6685137 DOI: 10.3389/fimmu.2019.01815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Gonorrhea is a type III legal communicable disease caused by Neisseria gonorrhoeae (NG), one of the most common sexually transmitted bacteria worldwide. NG infection can cause urethritis or systemic inflammation and may lead to infertility or other complications. The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a protein complex composed of NLRP3, apoptosis-associated speck-like protein and caspase-1 and is an important part of the cellular machinery controlling the release of interleukin (IL)-1β and IL-18 and the pathogenesis of numerous infectious diseases. It has been reported that NG infection activates the NLRP3 inflammasome; however, the underlying mechanism remain unclear. In this report, the signaling pathways involved in the regulation of NG-mediated NLRP3 inflammasome activation in macrophages were studied. The results indicated that viable NG, but not heat-killed or freeze/thaw-killed NG, activated the NLRP3 inflammasome in macrophages through toll-like receptor 2, but not toll-like receptor 4. NG infection provided the priming signal to the NLRP3 inflammasome that induced the expression of NLRP3 and IL-1β precursor through the nuclear factor kappa B and mitogen-activated protein kinase pathways. In addition, NG infection provided the activation signal to the NLRP3 inflammasome that activated caspase-1 through P2X7 receptor-dependent potassium efflux, lysosomal acidification, mitochondrial dysfunction, and reactive oxygen species production pathways. Furthermore, we demonstrated that NLRP3 knockout increased phagocytosis of bacteria by macrophages and increases the bactericidal activity of macrophages against NG. These findings provide potential molecular targets for the development of anti-inflammatory drugs that could ameliorate NG-mediated inflammation.
Collapse
Affiliation(s)
- Lan-Hui Li
- Department of Laboratory Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Jia-Sing Lin
- Department of Laboratory Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
| | - Wen-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, Taichung City, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), Vladivostok, Russia
| | - May-Lan Liu
- Department of Nutritional Science, Toko University, Chiayi City, Taiwan
| | - Jen-Che Chang
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Department of Laboratory Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shuk-Man Ka
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan.,Department of Medicine, National Defense Medical Center, Graduate Institute of Aerospace and Undersea Medicine, Taipei, Taiwan
| | - Hong-Wei Gao
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
87
|
Hu X, Peng X, Lu C, Zhang X, Gan L, Gao Y, Yang S, Xu W, Wang J, Yin Y, Wang H. Type I
IFN
expression is stimulated by cytosolic Mt
DNA
released from pneumolysin‐damaged mitochondria via the
STING
signaling pathway in macrophages. FEBS J 2019; 286:4754-4768. [DOI: 10.1111/febs.15001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Xiaoqiong Peng
- Department of Ultrasound The First Affiliated Hospital of Chongqing Medical University China
| | - Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Jian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education Chongqing Medical University China
- School of Laboratory Medicine Chongqing Medical University China
| |
Collapse
|
88
|
Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21:e13077. [PMID: 31251447 PMCID: PMC6899785 DOI: 10.1111/cmi.13077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a human respiratory tract pathogen and a major cause of morbidity and mortality globally. Although the pneumococcus is a commensal bacterium that colonizes the nasopharynx, it also causes lethal diseases such as meningitis, sepsis, and pneumonia, especially in immunocompromised patients, in the elderly, and in young children. Due to the acquisition of antibiotic resistance and the emergence of nonvaccine serotypes, the pneumococcus has been classified as one of the priority pathogens for which new antibacterials are urgently required by the World Health Organization, 2017. Understanding molecular mechanisms behind the pathogenesis of pneumococcal infections and bacterial interactions within the host is crucial to developing novel therapeutics. Previously considered to be an extracellular pathogen, it is becoming evident that pneumococci may also occasionally establish intracellular niches within the body to escape immune surveillance and spread within the host. Intracellular survival within host cells also enables pneumococci to resist many antibiotics. Within the host cell, the bacteria exist in unique vacuoles, thereby avoiding degradation by the acidic lysosomes, and modulate the expression of its virulence genes to adapt to the intracellular environment. To invade and survive intracellularly, the pneumococcus utilizes a combination of virulence factors such as pneumolysin (PLY), pneumococcal surface protein A (PspA), pneumococcal adhesion and virulence protein B (PavB), the pilus‐1 adhesin RrgA, pyruvate oxidase (SpxB), and metalloprotease (ZmpB). In this review, we discuss recent findings showing the intracellular persistence of Streptococcus pneumoniae and its underlying mechanisms.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| |
Collapse
|
89
|
Feng S, Chen T, Lei G, Hou F, Jiang J, Huang Q, Peng Y, Ye C, Hu DL, Fang R. Absent in melanoma 2 inflammasome is required for host defence against Streptococcus pneumoniae infection. Innate Immun 2019; 25:412-419. [PMID: 31266383 PMCID: PMC6900643 DOI: 10.1177/1753425919860252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae, a leading cause of invasive
pneumococcal disease, is responsible for high mortality and morbidity worldwide.
A previous study showed that the NLR family pyrin domain containing 3 (NLRP3)
and absent in melanoma 2 (AIM2) inflammasomes are essential for caspase-1
activation and IL-1β production in the host response to S.
pneumoniae infection. The function of NLRP3 in host innate immunity
to S. pneumoniae was studied in vivo and
in vitro. However, the role of AIM2 in host defence against
S. pneumoniae remains unclear. Here, we show that
AIM2-deficient (AIM2–/–) mice display increased susceptibility to
intra-nasal infection with S. pneumoniae in comparison to wild
type mice and that this susceptibility was associated with defective IL-1β
production. Macrophages from AIM2–/– mice infected with S.
pneumoniae showed impaired secretion of IL-1β as well as activation
of the inflammasome, as determined by the oligomerisation of
apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1
activation. Taken together, these results indicate that the AIM2 inflammasome is
essential for caspase-1-dependent cytokine IL-1β production and eventual
protection from pneumococcal infection in mice.
Collapse
Affiliation(s)
- Siwei Feng
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Tingting Chen
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Guihua Lei
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Fengqing Hou
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Jiali Jiang
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Qingyuan Huang
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Yuanyi Peng
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Chao Ye
- 1 College of Animal Science and Technology, Southwest University, PR China
| | - Dong-Liang Hu
- 1 College of Animal Science and Technology, Southwest University, PR China.,2 Department of Zoonoses, Kitasato University School of Veterinary Medicine, Japan
| | - Rendong Fang
- 1 College of Animal Science and Technology, Southwest University, PR China
| |
Collapse
|
90
|
Lavagna A, Auger JP, Dumesnil A, Roy D, Girardin SE, Gisch N, Segura M, Gottschalk M. Interleukin-1 signaling induced by Streptococcus suis serotype 2 is strain-dependent and contributes to bacterial clearance and inflammation during systemic disease in a mouse model of infection. Vet Res 2019; 50:52. [PMID: 31262357 PMCID: PMC6604435 DOI: 10.1186/s13567-019-0670-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine pathogen and zoonotic agent causing sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the infection. A rapid, effective and balanced innate immune response against S. suis is critical to control bacterial growth without causing excessive inflammation. Even though interleukin (IL)-1 is one of the most potent and earliest pro-inflammatory mediators produced, its role in the S. suis pathogenesis has not been studied. We demonstrated that a classical virulent European sequence type (ST) 1 strain and the highly virulent ST7 strain induce important levels of IL-1 in systemic organs. Moreover, bone marrow-derived dendritic cells and macrophages contribute to its production, with the ST7 strain inducing higher levels. To better understand the underlying mechanisms involved, different cellular pathways were studied. Independently of the strain, IL-1β production required MyD88 and involved recognition via TLR2 and possibly TLR7 and TLR9. This suggests that the recognized bacterial components are similar and conserved between strains. However, very high levels of the pore-forming toxin suilysin, produced only by the ST7 strain, are required for efficient maturation of pro-IL-1β via activation of different inflammasomes resulting from pore formation and ion efflux. Using IL-1R−/− mice, we demonstrated that IL-1 signaling plays a beneficial role during S. suis systemic infection by modulating the inflammation required to control and clear bacterial burden, thus promoting host survival. Beyond a certain threshold, however, S. suis-induced inflammation cannot be counterbalanced by this signaling, making it difficult to discriminate its role.
Collapse
Affiliation(s)
- Agustina Lavagna
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Jean-Philippe Auger
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Audrey Dumesnil
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - David Roy
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
91
|
Lin L, Xu L, Lv W, Han L, Xiang Y, Fu L, Jin M, Zhou R, Chen H, Zhang A. An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog 2019; 15:e1007795. [PMID: 31170267 PMCID: PMC6553798 DOI: 10.1371/journal.ppat.1007795] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/28/2019] [Indexed: 02/01/2023] Open
Abstract
Infection with the Streptococcus suis (S. suis) epidemic strain can cause Streptococcal toxic shock-like syndrome (STSLS), which is characterized by a cytokine storm, dysfunction of multiple organs and a high incidence of mortality despite adequate treatment. Despite some progress concerning the contribution of the inflammatory response to STSLS, the precise mechanism underlying STSLS development remains elusive. Here, we use a murine model to demonstrate that caspase-1 activity is critical for STSLS development. Furthermore, we show that inflammasome activation by S. suis is mainly dependent on NLRP3 but not on NLRP1, AIM2 or NLRC4. The important role of NLRP3 activation in STSLS is further confirmed in vivo with the NLRP3 inhibitor MCC950 and nlrp3-knockout mice. By comparison of WT strain with isogenic strains with mutation of various virulence genes for inflammasome activation, Suilysin is essential for inflammasome activation, which is dependent on the membrane perforation activity to cause cytosolic K+ efflux. Moreover, the mutant strain msly (P353L) expressing mutagenic SLY without hemolytic activity was unable to activate the inflammasome and does not cause STSLS. In summary, we demonstrate that the high membrane perforation activity of the epidemic strain induces a high level of NLRP3 inflammasome activation, which is essential for the development of the cytokine storm and multi-organ dysfunction in STSLS and suggests NLRP3 inflammasome as an attractive target for the treatment of STSLS.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Weihua Lv
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| |
Collapse
|
92
|
Dhar P, McAuley J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front Cell Infect Microbiol 2019; 9:117. [PMID: 31069176 PMCID: PMC6491460 DOI: 10.3389/fcimb.2019.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
The family of cell surface (cs-) mucins are constitutively expressed at the cell surface by nearly all epithelial cells, beneath the gel-mucin layer. All cs-mucin family members have structural features that enable them to act as a releasable decoy barrier to mucosal pathogens, by providing ligands for pathogen binding and the ability to shed the bound extracellular domain. Due to the towering structure of cs-mucins at the surface, binding of mucosal pathogens can also sterically block binding to underlying cellular receptors. The cytoplasmic tail domain of cs-mucins are capable of initiating signal transduction cascades and due to their conservation across species, may play an important biological role in cellular signaling. MUC1 is one of the most extensively studied of the cs-mucin family. With respect to its physiological function in the mucosal environment, MUC1 has been demonstrated to play a dynamic role in protection of the host from infection by a wide variety of pathogens and to regulate inflammatory responses to infection. This review briefly summarizes the current knowledge and new findings regarding the structural features relating to the function of MUC1, its role as a protective barrier against pathogen invasion and mechanisms by which this cs-mucin regulates inflammation.
Collapse
Affiliation(s)
- Poshmaal Dhar
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
93
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
94
|
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019; 156:329-338. [PMID: 30666624 DOI: 10.1111/imm.13046] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated inflammation is one of the hallmarks of cancer initiation and progression. Emerging evidence indicates that inflammasomes play a central role in regulating immune cell functions in various infections and cancer. Inflammasomes are multimeric complexes consisting of nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs). Among the NLRs, NOD1, NOD2 and NLRP3 respond to a variety of endogenous (i.e. damage-associated molecular patterns) and exogenous (i.e. pathogen-associated molecular patterns) stimuli. The NLRP3 inflammasome is associated with the onset and progression of autoinflammatory and autoimmune diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, and cryopyrin-associated periodic fever syndrome. NLRP3 is also associated with a wide variety of infections and tumorigenesis that are closely correlated with chemotherapy response and prognosis. In this review, we explore the rapidly expanding body of research on the expression and functions of NLRP3 in infections and cancers and outline novel inhibitors targeting the NLRP3 inflammasome that could be developed as therapeutic alternatives to current anticancer treatment.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
95
|
Deng J, Yu XQ, Wang PH. Inflammasome activation and Th17 responses. Mol Immunol 2019; 107:142-164. [PMID: 30739833 DOI: 10.1016/j.molimm.2018.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022]
Abstract
Immune sensing of exogenous molecules from microbes (e.g., pathogen-associated molecular patterns) and nonmicrobial molecules (e.g., asbestos, alum, and silica), as well as endogenous damage-associated molecular patterns (e.g., ATP, uric acid crystals, and amyloid A) activates innate immunity by inducing immune-related genes, including proinflammatory cytokines, which further facilitate the development of adaptive immunity. The roles of transcriptional responses downstream of immune sensing have been widely characterized in informing adaptive immunity; however, few studies focus on the effect of post-translational responses on the modulation of adaptive immune responses. Inflammasomes activated by the previously described endo- and exogenous stimuli autocatalytically induce intracellular pro-caspase-1, which cleaves the inactive precursors of interleukin-1β (IL-1β) and IL-18 into bioactive proinflammatory cytokines. IL-1β and IL-18 not only contribute to the host defense against infections by activating phagocytes, such as monocytes, macrophages, dendritic cells, and neutrophils, but also induce T-helper 17 (Th17)- and Th1-mediated adaptive immune responses. In synergy with IL-6 and IL-23, IL-1β activates IL-1 receptor (IL-1R) signaling to drive the differentiation of IL-17-producing Th17 cells, which not only play critical roles in host protective immunity to infections of bacteria, fungi, and certain viruses but also participate in the pathology of inflammatory disorders and tumorigenesis. Consequently, targeting inflammasomes and IL-1/IL-1R signaling may effectively improve the treatment of Th17-associated disorders, such as autoinflammatory diseases and cancers, thereby providing novel insights into drug development.
Collapse
Affiliation(s)
- Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Qiang Yu
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110-2499, USA
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
96
|
Joshi H, Morley SC. Cells under stress: The mechanical environment shapes inflammasome responses to danger signals. J Leukoc Biol 2019; 106:119-125. [PMID: 30645000 DOI: 10.1002/jlb.3mir1118-417r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Many intracellular signals, such as host danger-associated molecules and bacterial toxins during infection, elicit inflammasome activation. However, the mechanical environment in tissues may also influence the sensitivity of various inflammasomes to activation. The cellular mechanical environment is determined by the extracellular tissue stiffness, or its inverse, tissue compliance. Tissue stiffness is sensed by the intracellular cytoskeleton through a process termed mechanotransduction. Thus, extracellular compliance and the intracellular cytoskeleton may regulate the sensitivity of inflammasome activation. Control of proinflammatory signaling by tissue compliance may contribute to the pathogenesis of diseases such as ventilator-induced lung injury during bacterial pneumonia and tissue fibrosis in inflammatory disorders. The responsible signaling cascades in inflammasome activation pathways and mechanotransduction crosstalk are not yet fully understood. This rather different immunomodulatory perspective will be reviewed and open questions discussed here.
Collapse
Affiliation(s)
- Hemant Joshi
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sharon Celeste Morley
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
97
|
Subramanian K, Neill DR, Malak H, Spelmink L, Khandaker S, Marchiori GDL, Dearing E, Kirby A, Yang M, Achour A, Nilvebrant J, Nygren PÅ, Plant L, Kadioglu A, Henriques-Normark B. Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival. Nat Microbiol 2019; 4:62-70. [PMID: 30420782 PMCID: PMC6298590 DOI: 10.1038/s41564-018-0280-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a major cause of mortality and morbidity globally, and the leading cause of death in children under 5 years old. The pneumococcal cytolysin pneumolysin (PLY) is a major virulence determinant known to induce pore-dependent pro-inflammatory responses. These inflammatory responses are driven by PLY-host cell membrane cholesterol interactions, but binding to a host cell receptor has not been previously demonstrated. Here, we discovered a receptor for PLY, whereby pro-inflammatory cytokine responses and Toll-like receptor signalling are inhibited following PLY binding to the mannose receptor C type 1 (MRC-1) in human dendritic cells and mouse alveolar macrophages. The cytokine suppressor SOCS1 is also upregulated. Moreover, PLY-MRC-1 interactions mediate pneumococcal internalization into non-lysosomal compartments and polarize naive T cells into an interferon-γlow, interleukin-4high and FoxP3+ immunoregulatory phenotype. In mice, PLY-expressing pneumococci colocalize with MRC-1 in alveolar macrophages, induce lower pro-inflammatory cytokine responses and reduce neutrophil infiltration compared with a PLY mutant. In vivo, reduced bacterial loads occur in the airways of MRC-1-deficient mice and in mice in which MRC-1 is inhibited using blocking antibodies. In conclusion, we show that pneumococci use PLY-MRC-1 interactions to downregulate inflammation and enhance bacterial survival in the airways. These findings have important implications for future vaccine design.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Daniel R Neill
- Institute of Infection and Global Health, Ronald Ross Building, 8 West Derby Street, University of Liverpool, Liverpool, UK
| | - Hesham Malak
- Institute of Infection and Global Health, Ronald Ross Building, 8 West Derby Street, University of Liverpool, Liverpool, UK
| | - Laura Spelmink
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Shadia Khandaker
- Institute of Infection and Global Health, Ronald Ross Building, 8 West Derby Street, University of Liverpool, Liverpool, UK
| | | | - Emma Dearing
- Institute of Infection and Global Health, Ronald Ross Building, 8 West Derby Street, University of Liverpool, Liverpool, UK
| | - Alun Kirby
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | - Marie Yang
- Institute of Infection and Global Health, Ronald Ross Building, 8 West Derby Street, University of Liverpool, Liverpool, UK
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, SE, 17176, Sweden
| | - Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| | - Per-Åke Nygren
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| | - Laura Plant
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden. .,Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden. .,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
98
|
NLRP3 Inflammasome Involves in the Acute Exacerbation of Patients with Chronic Obstructive Pulmonary Disease. Inflammation 2018; 41:1321-1333. [PMID: 29656319 DOI: 10.1007/s10753-018-0780-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The NLR pyrin domain-containing protein 3 (NLRP3) inflammasome, a multi-protein complex, produces the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, which may contribute to the development of airway inflammation in chronic obstructive pulmonary disease (COPD). The aim of this study was to explore the correlation between circulating and local airway NLRP3 inflammasome activation with acute exacerbation of COPD (AECOPD). mRNA levels of NLRP3, Caspase (Casp)-1, apoptosis-associated speck-like protein containing CARD (ASC), IL-18, and IL-1β in peripheral blood mononuclear cells (PBMCs) and bronchial tissues were determined by real-time PCR in 32 smokers, 65 patients with AECOPD, 50 COPD patients in recovery stage, and 30 COPD patients in stable stage. The levels of IL-1β and IL-18 in serum and bronchoalveolar lavage fluid (BALF) supernatants were measured by ELISA. The load of six common pathogens in BALF samples were determined by real-time PCR. The potential correlation between the mRNA levels of NLRP3, Casp-1, ASC, IL-18 or IL-1β and the load of pathogens was evaluated individually. Significantly higher mRNA levels of NLRP3, Casp-1, ASC, IL-18, IL-1β and higher levels of IL-18 and IL-1β were found in patients with AECOPD than in smokers. These NLRP3 inflammasome mediators were significantly decreased when COPD patients in the same group became clinical stable. The increased mRNA levels of NLRP3 inflammasomes in bronchial tissues were positively correlated with the load of the six common pathogens in the lower respiratory tract. We conclude that systemic and local airway NLRP3 inflammasome activation is associated with the acute exacerbation, which might be predictive factors of the acute exacerbation and clinical outcomes in COPD patients.
Collapse
|
99
|
Feng S, Huang Q, Ye C, Wu R, Lei G, Jiang J, Chen T, Peng Y, Fang R. Syk and JNK signaling pathways are involved in inflammasome activation in macrophages infected with Streptococcus pneumoniae. Biochem Biophys Res Commun 2018; 507:217-222. [PMID: 30446225 DOI: 10.1016/j.bbrc.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/15/2022]
Abstract
Streptococcus pneumoniae is a pathogen of significant clinical importance worldwide that can cause severe invasive diseases, such as pneumonia, otitis media and meningitis. Inflammsomes has been reported to participate in host defense against S. pneumoniae infection. S. pneumoniae could induce the assembly of the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/absent in melanoma 2 (AIM2) inflammasome, which mediates the activation of caspase-1 and the subsequent maturation of Interleukin-1β (IL-1β). However, the precise signals that activate inflammasomes during pneumococcal infection remain to be fully elucidated. In the present study, primary mouse macrophages were selected as a cell model, and the effects of kinases on inflammasome activity induced by S. pneumoniae infection were examined by ELISA and western blotting after pretreatment with a kinase inhibitor. Here, we show that Syk and JNK signaling are required for S. pneumoniae-induced activation of the inflammasome. Inhibitors of Syk and JNK almost abolished the oligomerization of apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain (ASC) and subsequent caspase-1 activation and IL-1β secretion. Moreover, pneumolysin (PLY) participated in this process and was critical for Syk/JNK activation. These results suggested that the Syk/JNK signaling pathway may play a vital role in the inflammasome activation and modulate host immune responses against S. pneumoniae.
Collapse
Affiliation(s)
- Siwei Feng
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingyuan Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Rui Wu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Guihua Lei
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Jiali Jiang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Tingting Chen
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Rendong Fang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
100
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|