51
|
Bao LQ, Nhi DM, Huy NT, Kikuchi M, Yanagi T, Hamano S, Hirayama K. Splenic CD11c+ cells derived from semi-immune mice protect naïve mice against experimental cerebral malaria. Malar J 2015; 14:23. [PMID: 25626734 PMCID: PMC4318192 DOI: 10.1186/s12936-014-0533-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/26/2014] [Indexed: 01/27/2023] Open
Abstract
Background Immunity to malaria requires innate, adaptive immune responses and Plasmodium-specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (‘three-cure’) were required to protect mice against Plasmodium berghei (ANKA strain) infection. Methods C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semi-immune mice were isolated and transferred into naïve mice which were subsequently challenged and followed up by survival and parasitaemia. Results The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naïve littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti-P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naïve counterparts. Conclusion CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody.
Collapse
Affiliation(s)
- Lam Q Bao
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
52
|
Perez-Mazliah D, Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol 2015; 5:671. [PMID: 25628621 PMCID: PMC4290673 DOI: 10.3389/fimmu.2014.00671] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
CD4+ T-cells have been shown to play a central role in immune control of infection with Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4+ T-cells and CD4+ T-cell help for the B-cell response are required for control and elimination of infected red blood cells. CD4+ T-cells are also important for controlling Plasmodium pre-erythrocytic stages through the activation of parasite-specific CD8+ T-cells. However, excessive inflammatory responses triggered by the infection have been shown to drive pathology. Early classical experiments demonstrated a biphasic CD4+ T-cell response against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4+ T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do play a role in controlling acute infections, and they contribute to acute erythrocytic-stage pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical feature of the CD4+ T-cell response during the chronic phase of infection. Rather, effective CD4+ T-cell help for B-cells, which can occur in the absence of IL-4, is required to control chronic parasitemia. IL-10, important to counterbalance inflammation and associated with protection from inflammatory-mediated severe malaria in both humans and experimental models, was originally considered be produced by CD4+ Th2 cells during infection. We review the interpretations of CD4+ T-cell responses during Plasmodium infection, proposed under the original Th1/Th2 paradigm, in light of more recent advances, including the identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the identification of follicular helper T-cells (Tfh) as the predominant CD4+ T helper subset for B-cells, and the recognition of inherent plasticity in the fates of different CD4+ T-cells.
Collapse
Affiliation(s)
- Damian Perez-Mazliah
- Division of Parasitology, MRC National Institute for Medical Research , London , UK
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research , London , UK
| |
Collapse
|
53
|
Guthmiller JJ, Zander RA, Butler NS. Measurement of the T Cell Response to Preerythrocytic Vaccination in Mice. Methods Mol Biol 2015; 1325:19-37. [PMID: 26450376 DOI: 10.1007/978-1-4939-2815-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whole attenuated parasite vaccines designed to elicit immunity against the clinically silent preerythrocytic stage of Plasmodium infection represent the most efficacious experimental platforms currently in clinical trial. Studies in rodents and humans show that T cells mediate vaccine-induced protection. Thus, determining the quantitative and qualitative properties of these T cells remains a major research focus. Most rodent models of preerythrocytic anti-Plasmodium vaccination focus on circumsporozoite-specific CD8 T cell responses in BALB/c mice. However, CD4 T cells and non-circumsporozoite-specific CD8 T cells also significantly contribute to protection. Here we describe alternative approaches that enable detection and functional characterization of total CD8 and CD4 T cell responses induced by preerythrocytic vaccination in mice. These flow cytometry-based approaches rely on monitoring the modulation of expressed integrins and co-receptors on the surface of T cells in vaccinated mice. The approaches enable direct determination of the magnitude, kinetics, distribution, phenotype, and functional features of T cell responses induced by infection or whole-parasite vaccination using any mouse-parasite species combination.
Collapse
Affiliation(s)
- Jenna J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73104, USA
| | - Ryan A Zander
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73104, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Sciences Building, Room 1035, 940 Stanton L. Young Blvd., Oklahoma, OK, 73104, USA.
| |
Collapse
|
54
|
Chronic parasitic infection maintains high frequencies of short-lived Ly6C+CD4+ effector T cells that are required for protection against re-infection. PLoS Pathog 2014; 10:e1004538. [PMID: 25473946 PMCID: PMC4256462 DOI: 10.1371/journal.ppat.1004538] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
In contrast to the ability of long-lived CD8+ memory T cells to mediate protection against systemic viral infections, the relationship between CD4+ T cell memory and acquired resistance against infectious pathogens remains poorly defined. This is especially true for T helper 1 (Th1) concomitant immunity, in which protection against reinfection coincides with a persisting primary infection. In these situations, pre-existing effector CD4 T cells generated by ongoing chronic infection, not memory cells, may be essential for protection against reinfection. We present a systematic study of the tissue homing properties, functionality, and life span of subsets of memory and effector CD4 T cells activated in the setting of chronic Leishmania major infection in resistant C57Bl/6 mice. We found that pre-existing, CD44+CD62L−T-bet+Ly6C+ effector (TEFF) cells that are short-lived in the absence of infection and are not derived from memory cells reactivated by secondary challenge, mediate concomitant immunity. Upon adoptive transfer and challenge, non-dividing Ly6C+ TEFF cells preferentially homed to the skin, released IFN-γ, and conferred protection as compared to CD44+CD62L−Ly6C− effector memory or CD44+CD62L+Ly6C− central memory cells. During chronic infection, Ly6C+ TEFF cells were maintained at high frequencies via reactivation of TCM and the TEFF themselves. The lack of effective vaccines for many chronic diseases may be because protection against infectious challenge requires the maintenance of pre-existing TEFF cells, and is therefore not amenable to conventional, memory inducing, vaccination strategies. Naturally acquired resistance to reinfection by numerous infectious pathogens including Leishmania, Plasmodium, Mycobacterium, and parasitic worms, typically coincides with an ongoing primary infection. This natural resistance to reinfection, termed concomitant immunity, is often referred to as a memory response and provides the rationale for the vaccine effort against these infectious pathogens. However, immune memory is mediated by populations of long-lived cells that do not require an ongoing primary infection to mediate protection. The requirement for chronic infection to maintain concomitant immunity suggests that the critical cells that mediate this immunity are not memory cells. In the present study we define short-lived effector T cells that pre-exist secondary challenge, not memory cells, as the critical cells that mediate concomitant immunity. These observations provide direct evidence on a cellular level that conventional vaccination strategies against chronic infectious diseases, whose development is predicated upon the belief that concomitant immunity can be mediated by long-lived memory cells, are unlikely to succeed.
Collapse
|
55
|
Kaveh DA, Garcia-Pelayo MC, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine 2014; 32:6911-6918. [PMID: 25444816 DOI: 10.1016/j.vaccine.2014.10.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/17/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) remains one of the most important infectious diseases of man and animals, and the only available vaccine (BCG) requires urgent replacement or improvement. To facilitate this, the protective mechanisms induced by BCG require further understanding. As a live attenuated vaccine, persistence of BCG bacilli in the host may be a crucial mechanism. We have investigated the long term persistence of BCG following vaccination and the influence on the induced immune response and protection, using an established murine model. We sought to establish whether previously identified BCG-specific CD4 TEM cells represent genuine long-lived memory cells of a relatively high frequency, or are a consequence of continual priming by chronically persistent BCG vaccine bacilli. By clearing persistent bacilli, we have compared immune responses (spleen and lung CD4: cytokine producing T effector/TEM; TCR-specific) and BCG-induced protection, in the presence and absence of these persisting vaccine bacilli. Viable BCG bacilli persisted for at least 16 months post-vaccination, associated with specific CD4 T effector/TEM and tetramer-specific responses. Clearing these bacilli abrogated all BCG-specific CD4 T cells whilst only reducing protection by 1log10. BCG may induce two additive mechanisms of immunity: (i) dependant on the presence of viable bacilli and TEM; and (ii) independent of these factors. These data have crucial implications on the rational generation of replacement TB vaccines, and the interpretation of BCG induced immunity in animal models.
Collapse
Affiliation(s)
- Daryan A Kaveh
- Vaccine Immunology Team, Department of Bacteriology, Animal and Plant Health Agency (APHA) Addlestone KT15 3NB, Surrey, UK
| | - M C Garcia-Pelayo
- Vaccine Immunology Team, Department of Bacteriology, Animal and Plant Health Agency (APHA) Addlestone KT15 3NB, Surrey, UK
| | - Philip J Hogarth
- Vaccine Immunology Team, Department of Bacteriology, Animal and Plant Health Agency (APHA) Addlestone KT15 3NB, Surrey, UK.
| |
Collapse
|
56
|
Wykes MN, Horne-Debets JM, Leow CY, Karunarathne DS. Malaria drives T cells to exhaustion. Front Microbiol 2014; 5:249. [PMID: 24904561 PMCID: PMC4034037 DOI: 10.3389/fmicb.2014.00249] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/07/2014] [Indexed: 01/08/2023] Open
Abstract
Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp. Recent research on malaria, has investigated the programmed cell death-1 (PD-1) pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4(+) T cells and an unappreciated role for CD8(+) T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8(+) T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.
Collapse
Affiliation(s)
- Michelle N Wykes
- Molecular Immunology Laboratory, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | - Joshua M Horne-Debets
- Molecular Immunology Laboratory, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia ; The School of Medicine, University of Queensland Brisbane, QLD, Australia
| | - Chiuan-Yee Leow
- Molecular Immunology Laboratory, QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | | |
Collapse
|
57
|
Freeman CM, McCubbrey AL, Crudgington S, Nelson J, Martinez FJ, Han MK, Washko GR, Chensue SW, Arenberg DA, Meldrum CA, McCloskey L, Curtis JL. Basal gene expression by lung CD4+ T cells in chronic obstructive pulmonary disease identifies independent molecular correlates of airflow obstruction and emphysema extent. PLoS One 2014; 9:e96421. [PMID: 24805101 PMCID: PMC4013040 DOI: 10.1371/journal.pone.0096421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022] Open
Abstract
Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-γ or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-γ production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-γ transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes.
Collapse
Affiliation(s)
- Christine M. Freeman
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Alexandra L. McCubbrey
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sean Crudgington
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Joshua Nelson
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Fernando J. Martinez
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - MeiLan K. Han
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham & Womans Hospital and Harvard University, Boston, Massachusetts, United States of America
| | - Stephen W. Chensue
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Pathology and Laboratory Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Douglas A. Arenberg
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Catherine A. Meldrum
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Pulmonary and Critical Care Medicine Section, Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
58
|
Deng N, Weaver JM, Mosmann TR. Cytokine diversity in the Th1-dominated human anti-influenza response caused by variable cytokine expression by Th1 cells, and a minor population of uncommitted IL-2+IFNγ- Thpp cells. PLoS One 2014; 9:e95986. [PMID: 24788814 PMCID: PMC4006810 DOI: 10.1371/journal.pone.0095986] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022] Open
Abstract
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.
Collapse
Affiliation(s)
- Nan Deng
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jason M. Weaver
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
59
|
Abstract
Parasitic diseases caused by helminth and protozoan infections remain one of the largest global public health problems for mankind. While natural immunity in man is rare or slow to develop for many parasites, the immune response is capable of recognizing and responding to infection by utilizing a number of different immunological mechanisms. This special topics journal issue examines many of the key findings in the recent literature regarding the immune response against helminth and protozoan infections, as well as highlighting areas in which our current knowledge falls short. The question of how we can tailor immune responses to prevent or reduce disease burden is a burning question within the field of immunoparasitology.
Collapse
Affiliation(s)
- Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY 10010
| |
Collapse
|
60
|
Opata MM, Stephens R. Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. ACTA ACUST UNITED AC 2014; 9:190-206. [PMID: 24790593 PMCID: PMC4000274 DOI: 10.2174/1573395509666131126231209] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/08/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022]
Abstract
As effector memory T cells (Tem) are the predominant population elicited by chronic parasitic infections,
increasing our knowledge of their function, survival and derivation, as phenotypically and functionally distinct from
central memory and effector T cells will be critical to vaccine development for these diseases. In some infections, memory
T cells maintain increased effector functions, however; this may require the presence of continued antigen, which can also
lead to T cell exhaustion. Alternatively, in the absence of antigen, only the increase in the number of memory cells
remains, without enhanced functionality as central memory. In order to understand the requirement for antigen and the
potential for longevity or protection, the derivation of each type of memory must be understood. A thorough review of the
data establishes the existence of both memory (Tmem) precursors and effector T cells (Teff) from the first hours of an
immune response. This suggests a new paradigm of Tmem differentiation distinct from the proposition that Tmem only
appear after the contraction of Teff. Several signals have been shown to be important in the generation of memory T cells,
such as the integrated strength of “signals 1-3” of antigen presentation (antigen receptor, co-stimulation, cytokines) as
perceived by each T cell clone. Given that these signals integrated at antigen presentation cells have been shown to
determine the outcome of Teff and Tmem phenotypes and numbers, this decision must be made at a very early stage. It
would appear that the overwhelming expansion of effector T cells and the inability to phenotypically distinguish memory
T cells at early time points has masked this important decision point. This does not rule out an effect of repeated
stimulation or chronic inflammatory milieu on populations generated in these early stages. Recent studies suggest that
Tmem are derived from early Teff, and we suggest that this includes Tem as well as Tcm. Therefore, we propose a
testable model for the pathway of differentiation from naïve to memory that suggests that Tem are not fully differentiated
effector cells, but derived from central memory T cells as originally suggested by Sallusto et al. in 1999, but much
debated since.
Collapse
Affiliation(s)
- Michael M Opata
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| | - Robin Stephens
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Disease, 300 University Avenue, Galveston, TX 77555-0435, USA
| |
Collapse
|
61
|
Jagannathan P, Eccles-James I, Bowen K, Nankya F, Auma A, Wamala S, Ebusu C, Muhindo MK, Arinaitwe E, Briggs J, Greenhouse B, Tappero JW, Kamya MR, Dorsey G, Feeney ME. IFNγ/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathog 2014; 10:e1003864. [PMID: 24415936 PMCID: PMC3887092 DOI: 10.1371/journal.ppat.1003864] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023] Open
Abstract
Although evidence suggests that T cells are critical for immunity to malaria, reliable T cell correlates of exposure to and protection from malaria among children living in endemic areas are lacking. We used multiparameter flow cytometry to perform a detailed functional characterization of malaria-specific T cells in 78 four-year-old children enrolled in a longitudinal cohort study in Tororo, Uganda, a highly malaria-endemic region. More than 1800 episodes of malaria were observed in this cohort, with no cases of severe malaria. We quantified production of IFNγ, TNFα, and IL-10 (alone or in combination) by malaria-specific T cells, and analyzed the relationship of this response to past and future malaria incidence. CD4+ T cell responses were measurable in nearly all children, with the majority of children having CD4+ T cells producing both IFNγ and IL-10 in response to malaria-infected red blood cells. Frequencies of IFNγ/IL10 co-producing CD4+ T cells, which express the Th1 transcription factor T-bet, were significantly higher in children with ≥2 prior episodes/year compared to children with <2 episodes/year (P<0.001) and inversely correlated with duration since malaria (Rho = −0.39, P<0.001). Notably, frequencies of IFNγ/IL10 co-producing cells were not associated with protection from future malaria after controlling for prior malaria incidence. In contrast, children with <2 prior episodes/year were significantly more likely to exhibit antigen-specific production of TNFα without IL-10 (P = 0.003). While TNFα-producing CD4+ T cells were not independently associated with future protection, the absence of cells producing this inflammatory cytokine was associated with the phenotype of asymptomatic infection. Together these data indicate that the functional phenotype of the malaria-specific T cell response is heavily influenced by malaria exposure intensity, with IFNγ/IL10 co-producing CD4+ T cells dominating this response among highly exposed children. These CD4+ T cells may play important modulatory roles in the development of antimalarial immunity. Despite reports of decreasing malaria morbidity across many parts of Africa, the incidence of malaria among children continues to be very high in Uganda, even in the setting of insecticide-treated bednets and artemisinin-based combination therapy. Additional control measures, including a vaccine, are sorely needed in these settings, but progress has been limited by our lack of understanding of immunologic correlates of exposure and protection. T cell responses to malaria are thought to be important for protection in experimental models, but their role in protecting against naturally acquired infection is not clear. In this study, we performed detailed assessments of the malaria-specific T cell response among 4-year-old children living in Tororo, Uganda, an area of high malaria transmission. We found that recent malaria infection induces a malaria-specific immune response dominated by Th1 T cells co-producing IFNγ and IL-10, and that these cells are not associated with protection from future infection. IFNγ/IL-10 co-producing cells have been described in several parasitic infections and are hypothesized to be important in limiting CD4-mediated pathology, but they may also prevent the development of sterilizing immunity. These observations have important implications for understanding the pathophysiology of malaria in humans and for malaria vaccine development.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Ijeoma Eccles-James
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Katherine Bowen
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | | | - Ann Auma
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Samuel Wamala
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Charles Ebusu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Jordan W. Tappero
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Moses R. Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret E. Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
Key role of effector memory CD4+ T lymphocytes in a short-incubation heparin-binding hemagglutinin gamma interferon release assay for the detection of latent tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:321-8. [PMID: 24391135 DOI: 10.1128/cvi.00651-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The treatment of latent tuberculosis infection (LTBI) in target populations is one of the current WHO strategies for preventing active tuberculosis (TB) infection and reducing the Mycobacterium tuberculosis reservoir. Therefore, powerful LTBI screening tools are indispensable. A gamma interferon release assay (IGRA) in response to the stimulation of peripheral blood mononuclear cells by the latency antigen native heparin-binding hemagglutinin (nHBHA-IGRA) has proven its potential for this purpose. We have evaluated its possible optimization through a reduction of incubation time from 96 to 24 h, while compensating for this by adding interleukin 7 (IL-7) to the medium. We have also investigated the phenotypes of the gamma interferon (IFN-γ)-producing cells after both short and long incubation times. One hundred thirty-one nonimmunocompromised patients were recruited from 3 Brussels-based university hospitals. They were divided into 1 of 4 subgroups according to their M. tuberculosis infection status (LTBI, TB infection, undetermined M. tuberculosis infection status, and noninfected controls). The novel 24-h nHBHA-IGRA was performed for all subjects, and a simultaneous 96-h classical HBHA-IGRA was performed for 79 individuals. The results showed a good correlation between the two tests, and the novel 24-h nHBHA-IGRA maintained the principal advantages of the classical test, namely, a high specificity for LTBI diagnosis, an absence of interference of Mycobacterium bovis BCG vaccination during infancy, and a relative discrimination between LTBI and TB infection. Whereas the commercialized IGRAs show a greater sensitivity for recent than for remote M. tuberculosis infections, the 24-h nHBHA-IGRA appears to have comparable diagnostic powers for recent and remote LTBI. The IFN-γ detected by the 24-h nHBHA-IGRA was mainly secreted by effector memory CD4(+) T lymphocytes, a finding suggestive of continuous HBHA presentation during latency.
Collapse
|
63
|
PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria. Cell Rep 2013; 5:1204-13. [PMID: 24316071 DOI: 10.1016/j.celrep.2013.11.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/12/2013] [Accepted: 11/02/2013] [Indexed: 12/14/2022] Open
Abstract
Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4(+) T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our incomplete understanding of immunity against this disease. Here, we used an experimental rodent malaria model to show that PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8(+) T cells. Furthermore, in contrast to widely held views, parasite-specific CD8(+) T cells are required to control both acute and chronic blood-stage disease even when parasite-specific antibodies and CD4(+) T cells are present. Our findings provide a molecular explanation for chronic malaria that will be relevant to future malaria-vaccine design and may need consideration when vaccine development for other infections is problematic.
Collapse
|
64
|
Stanisic DI, Barry AE, Good MF. Escaping the immune system: How the malaria parasite makes vaccine development a challenge. Trends Parasitol 2013; 29:612-22. [DOI: 10.1016/j.pt.2013.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
65
|
da Silva HB, de Salles EM, Panatieri RH, Boscardin SB, Rodríguez-Málaga SM, Alvarez JM, D'Império Lima MR. IFN-γ-induced priming maintains long-term strain-transcending immunity against blood-stage Plasmodium chabaudi malaria. THE JOURNAL OF IMMUNOLOGY 2013; 191:5160-9. [PMID: 24133169 DOI: 10.4049/jimmunol.1300462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.
Collapse
Affiliation(s)
- Henrique Borges da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
66
|
IL-27 receptor signaling regulates memory CD4+ T cell populations and suppresses rapid inflammatory responses during secondary malaria infection. Infect Immun 2013; 82:10-20. [PMID: 24101691 DOI: 10.1128/iai.01091-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-27 (IL-27) is known to control primary CD4(+) T cell responses during a variety of different infections, but its role in regulating memory CD4(+) T responses has not been investigated in any model. In this study, we have examined the functional importance of IL-27 receptor (IL-27R) signaling in regulating the formation and maintenance of memory CD4(+) T cells following malaria infection and in controlling their subsequent reactivation during secondary parasite challenge. We demonstrate that although the primary effector/memory CD4(+) T cell response was greater in IL-27R-deficient (WSX-1(-/-)) mice following Plasmodium berghei NK65 infection than in wild-type (WT) mice, there were no significant differences in the size of the maintained memory CD4(+) T population(s) at 20 weeks postinfection in the spleen, liver, or bone marrow of WSX-1(-/-) mice compared with WT mice. However, the composition of the memory CD4(+) T cell pool was slightly altered in WSX-1(-/-) mice following clearance of primary malaria infection, with elevated numbers of late effector memory CD4(+) T cells in the spleen and liver and increased production of IL-2 in the spleen. Crucially, WSX-1(-/-) mice displayed significantly enhanced parasite control compared with WT mice following rechallenge with homologous malaria parasites. Improved parasite control in WSX-1(-/-) mice during secondary infection was associated with elevated systemic production of multiple inflammatory innate and adaptive cytokines and extremely rapid proliferation of antigen-experienced T cells in the liver. These data are the first to demonstrate that IL-27R signaling plays a role in regulating the magnitude and quality of secondary immune responses during rechallenge infections.
Collapse
|
67
|
Ferrer M, Martin-Jaular L, De Niz M, Khan SM, Janse CJ, Calvo M, Heussler V, del Portillo HA. Imaging of the spleen in malaria. Parasitol Int 2013; 63:195-205. [PMID: 23999413 DOI: 10.1016/j.parint.2013.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Abstract
Splenomegaly, albeit variably, is a hallmark of malaria; yet, the role of the spleen in Plasmodium infections remains vastly unknown. The implementation of imaging to study the spleen is rapidly advancing our knowledge of this so-called "blackbox" of the abdominal cavity. Not only has ex vivo imaging revealed the complex functional compartmentalization of the organ and immune effector cells, but it has also allowed the observation of major structural remodeling during infections. In vivo imaging, on the other hand, has allowed quantitative measurements of the dynamic passage of the parasite at spatial and temporal resolution. Here, we review imaging techniques used for studying the malarious spleen, from optical microscopy to in vivo imaging, and discuss the bright perspectives of evolving technologies in our present understanding of the role of this organ in infections caused by Plasmodium.
Collapse
Affiliation(s)
- Mireia Ferrer
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona) ISGlobal, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Inoue SI, Niikura M, Mineo S, Kobayashi F. Roles of IFN-γ and γδ T Cells in Protective Immunity Against Blood-Stage Malaria. Front Immunol 2013; 4:258. [PMID: 24009610 PMCID: PMC3756480 DOI: 10.3389/fimmu.2013.00258] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/15/2013] [Indexed: 01/10/2023] Open
Abstract
Malaria is caused by infection with Plasmodium parasites. Various studies with knockout mice have indicated that IFN-γ plays essential roles in protective immunity against blood-stage Plasmodium infection. However, after Plasmodium infection, increased IFN-γ production by various types of cells is involved not only in protective immunity, but also in immunopathology. Recent reports have shown that IFN-γ acts as a pro-inflammatory cytokine to induce not only the activation of macrophages, but also the generation of uncommon myelolymphoid progenitor cells after Plasmodium infection. However, the effects of IFN-γ on hematopoietic stem cells and progenitor cells are unclear. Therefore, the regulation of hematopoiesis by IFN-γ during Plasmodium infection remains to be clarified. Although there are conflicting reports concerning the significance of γδ T cells in protective immunity against Plasmodium infection, γδ T cells may respond to infection and produce IFN-γ as innate immune cells in the early phase of blood-stage malaria. Our recent studies have shown that γδ T cells express CD40 ligand and produce IFN-γ after Plasmodium infection, resulting in the enhancement of dendritic cell activation as part of the immune response to eliminate Plasmodium parasites. These data suggest that the function of γδ T cells is similar to that of NK cells. Although several reports suggest that γδ T cells have the potential to act as memory cells for various infections, it remains to be determined whether memory γδ T cells are generated by Plasmodium infection and whether memory γδ T cells can contribute to the host defense against re-infection with Plasmodium. Here, we summarize and discuss the effects of IFN-γ and the various functions of γδ T cells in blood-stage Plasmodium infection.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka , Tokyo , Japan
| | | | | | | |
Collapse
|
69
|
Mandai Y, Takahashi D, Hase K, Obata Y, Furusawa Y, Ebisawa M, Nakagawa T, Sato T, Katsuno T, Saito Y, Shimaoka T, Yokosuka O, Yokote K, Ohno H. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis. PLoS One 2013; 8:e65488. [PMID: 23840334 PMCID: PMC3686755 DOI: 10.1371/journal.pone.0065488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/25/2013] [Indexed: 12/17/2022] Open
Abstract
CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1−/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells.
Collapse
Affiliation(s)
- Yasushi Mandai
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Daisuke Takahashi
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Koji Hase
- Laboratory for Bioenvironmental Epigenetics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Mucosal Barriology, International Research and Development Center for mucosal vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (KH); (HO)
| | - Yuuki Obata
- Department of Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Bioenvironmental Epigenetics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yukihiro Furusawa
- Laboratory for Bioenvironmental Epigenetics, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Mucosal Barriology, International Research and Development Center for mucosal vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masashi Ebisawa
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomoo Nakagawa
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toru Sato
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tatsuro Katsuno
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasushi Saito
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Shimaoka
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Yokosuka
- Department of Medicine and Clinical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Yokote
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Department of Immune Regulation, Graduate School of Medicine, Chiba University, Chiba, Japan
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
- Division of Immunobiology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
- * E-mail: (KH); (HO)
| |
Collapse
|
70
|
Liu T, Xu G, Guo B, Fu Y, Qiu Y, Ding Y, Zheng H, Fu X, Wu Y, Xu W. An essential role for C5aR signaling in the optimal induction of a malaria-specific CD4+ T cell response by a whole-killed blood-stage vaccine. THE JOURNAL OF IMMUNOLOGY 2013; 191:178-86. [PMID: 23709683 DOI: 10.4049/jimmunol.1201190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The protective immunity induced by the whole-killed parasite vaccine against malarial blood-stage infection is dependent on the CD4(+) T cell response. However, the mechanism underlying this robust CD4(+) T cell response elicited by the whole-killed parasite vaccine is still largely unknown. In this study, we observe that immunization with Plasmodium yoelii-parasitized RBC lysate activates complement C5 and generates C5a. However, the protective efficacy against P. yoelii 17XL challenge is considerably reduced, and the malaria-specific CD4(+) T cell activation and memory T cell differentiation are largely suppressed in the C5aR-deficient (C5aR(-/-)) mice. An adoptive transfer assay demonstrates that the reduced protection of C5aR(-/-) mice is closely associated with the severely impaired CD4(+) T cell response. This is further confirmed by the fact that administration of C5aR antagonist significantly reduces the protective efficacy of the immunized B cell-deficient mice. Further study indicates that the defective CD4(+) T cell response in C5aR(-/-) mice is unlikely involved in the expansion of CD4(+)CD25(+)Foxp3(+) T cells, but strongly linked to a defect in dendritic cell (DC) maturation and the ability to allostimulate CD4(+) T cells. These results demonstrate that C5aR signaling is essential for the optimal induction of the malaria-specific CD4(+) T cell response by the whole-killed parasite vaccine through modulation of DCs function, which provides us with new clues to design an effective blood-stage subunit vaccine and helps us to understand the mechanism by which the T cell response is regulated by the complement system.
Collapse
Affiliation(s)
- Taiping Liu
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kling JC, Körner H. Different regulatory mechanisms in protozoan parasitic infections. Int J Parasitol 2013; 43:417-25. [PMID: 23470812 DOI: 10.1016/j.ijpara.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 02/07/2023]
Abstract
The immune response to the protozoan pathogens, Leishmania spp., Trypanosoma spp. and Plasmodium spp., has been studied extensively with particular focus on regulation of the immune response by immunological mechanisms. More specifically, in diseases caused by parasites, immunosuppression frequently prevents immunopathology that can injure the host. However, this allows a small number of parasites to evade the immune response and remain in the host after a clinical cure. The consequences can be chronic infections, which establish a zoonotic or anthroponotic reservoir. This review will highlight some of the identified regulatory mechanisms of the immune system that govern immune responses to parasitic diseases, in particular leishmaniasis, trypanosomiasis and malaria, and discuss implications for the development of efficient vaccines against these diseases.
Collapse
Affiliation(s)
- Jessica C Kling
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | | |
Collapse
|
72
|
Nelson RW, McLachlan JB, Kurtz JR, Jenkins MK. CD4+ T cell persistence and function after infection are maintained by low-level peptide:MHC class II presentation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2828-34. [PMID: 23382562 DOI: 10.4049/jimmunol.1202183] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4(+) memory-phenotype T cells decline over time when generated in response to acute infections cleared by other components of the immune system. Therefore, it was of interest to assess the stability of CD4(+) T cells during a persistent Salmonella infection, which is typical of persistent phagocytic infections that are controlled by this lymphocyte subset. We found that CD4(+) T cells specific for Salmonella peptide:MHC class II (MHCII) ligands were numerically stable for >1 y after initial oral infection. This stability was associated with peptide:MHCII-driven proliferation by a small number of T cells in the secondary lymphoid organs that harbored bacteria. The persistent population consisted of multifunctional Th1 cells that induced PD-1 and became exhausted when transferred to hosts expressing the specific peptide:MHCII ligand in all parts of the body. Thus, persistent infection of phagocytes produced a CD4(+) T cell population that was stably maintained by low-level peptide:MHCII presentation.
Collapse
Affiliation(s)
- Ryan W Nelson
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
73
|
Gigley JP, Bhadra R, Moretto MM, Khan IA. T cell exhaustion in protozoan disease. Trends Parasitol 2012; 28:377-84. [PMID: 22832368 DOI: 10.1016/j.pt.2012.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022]
Abstract
Protozoan parasites cause severe morbidity and mortality in humans worldwide, especially in developing countries where access to chemotherapeutic agents is limited. Although parasites initially evoke a robust immune response, subsequent immunity fails to clear infection, ultimately leading to the chronic stage. This enigmatic situation was initially addressed in chronic viral models, where T cells lose their function, a phenomenon referred to as 'exhaustion'. However, recent studies demonstrate that this paradigm can be extended to protozoan diseases as well, although with notable differences. These studies have revealed that T cell responses generated against Toxoplasma gondii, Plasmodium sp., and Leishmania sp. can become dysfunctional. This review discusses T cell exhaustion in parasitic infection, mechanisms of development, and a possible role in disease outcome.
Collapse
Affiliation(s)
- Jason P Gigley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
74
|
A Plasmodium-encoded cytokine suppresses T-cell immunity during malaria. Proc Natl Acad Sci U S A 2012; 109:E2117-26. [PMID: 22778413 DOI: 10.1073/pnas.1206573109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The inability to acquire protective immunity against Plasmodia is the chief obstacle to malaria control, and inadequate T-cell responses may facilitate persistent blood-stage infection. Malaria is characterized by a highly inflammatory cytokine milieu, and the lack of effective protection against infection suggests that memory T cells are not adequately formed or maintained. Using a genetically targeted strain of Plasmodium berghei, we observed that the Plasmodium ortholog of macrophage migration inhibitory factor enhanced inflammatory cytokine production and also induced antigen-experienced CD4 T cells to develop into short-lived effector cells rather than memory precursor cells. The short-lived effector CD4 T cells were more susceptible to Bcl-2-associated apoptosis, resulting in decreased CD4 T-cell recall responses against challenge infections. These findings indicate that Plasmodia actively interfere with the development of immunological memory and may account for the evolutionary conservation of parasite macrophage migration inhibitory factor orthologs.
Collapse
|
75
|
Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep 2012; 2:472. [PMID: 22737405 PMCID: PMC3382734 DOI: 10.1038/srep00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Characterisation of protective helminth acquired immunity in humans or experimental models has focused on effector responses with little work conducted on memory responses. Here we show for the first time, that human helminth infection is associated with altered proportions of the CD4+ memory T cells, with an associated alteration of TH1 responses. The reduced CD4+ memory T cell proportions are associated with a significantly lower ratio of schistosome-specific IgE/IgG4 (marker for resistance to infection/re-infection) in uninfected older people. Helminth infection does not affect the CD8+ memory T cell pool. Furthermore, we show for the first time in a helminth infection that the CD4+ memory T cell proportions decline following curative anti-helminthic treatment despite increased CD4+ memory cell replication. Reduced accumulation of the CD4+ memory T cells in schistosome-infected people has implications for the development of natural or vaccine induced schistosome-specific protective immunity as well as for unrelated pathogens.
Collapse
|
76
|
Spence PJ, Langhorne J. T cell control of malaria pathogenesis. Curr Opin Immunol 2012; 24:444-8. [PMID: 22658628 DOI: 10.1016/j.coi.2012.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/10/2012] [Indexed: 01/08/2023]
Abstract
Transmission of Plasmodium from mosquito to the mammalian host leads to a clinically silent pre-erythrocytic stage of malaria infection, and subsequent cyclical erythrocytic invasion associated with disease. Recent evidence demonstrates that it is the interplay between CD4+ and CD8+ T cells, and the regulation of their response, throughout infection that dictates immunity and the pathogenesis of malaria. The elicited T cell response is context dependent, influenced by diverse host and parasite factors, necessitating the development of a unifying model of T cell potential during Plasmodium infection. Only then can we predict their capacity to dictate the outcome of human disease.
Collapse
Affiliation(s)
- Philip J Spence
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | |
Collapse
|
77
|
Lawton J, Brugat T, Yan YX, Reid AJ, Böhme U, Otto TD, Pain A, Jackson A, Berriman M, Cunningham D, Preiser P, Langhorne J. Characterization and gene expression analysis of the cir multi-gene family of Plasmodium chabaudi chabaudi (AS). BMC Genomics 2012; 13:125. [PMID: 22458863 PMCID: PMC3384456 DOI: 10.1186/1471-2164-13-125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/29/2012] [Indexed: 11/13/2022] Open
Abstract
Background The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required. Results The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages. Conclusions In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein functions, including their contribution to antigenic variation and immune evasion.
Collapse
Affiliation(s)
- Jennifer Lawton
- Division of Parasitology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
The recall response induced by genital challenge with Chlamydia muridarum protects the oviduct from pathology but not from reinfection. Infect Immun 2012; 80:2194-203. [PMID: 22431649 DOI: 10.1128/iai.00169-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The significant morbidities of ectopic pregnancy and infertility observed in women after Chlamydia trachomatis genital infection result from ascension of the bacteria from the endocervix to the oviduct, where an overly aggressive inflammatory response leads to chronic scarring and Fallopian tube obstruction. A vaccine to prevent chlamydia-induced disease is urgently needed. An important question for vaccine development is whether sterilizing immunity at the level of the oviduct is essential for protection because of the possibility that a chlamydial component drives a deleterious anamnestic T cell response upon oviduct reinfection. We show that mice inoculated with attenuated plasmid-cured strains of Chlamydia muridarum are protected from oviduct pathology upon challenge with wild-type C. muridarum Nigg despite induction of a response that did not prevent reinfection of the oviduct. Interestingly, repeated abbreviated infections with Nigg also elicited recall responses that protected the oviduct from pathology despite low-level reinfection of this vulnerable tissue site. Challenged mice displayed significant decreases in tissue infiltration of inflammatory leukocytes with marked reductions in frequencies of neutrophils but significant increases in frequencies of CD4 Th1 and CD8 T cells. An anamnestic antibody response was also detected. These data indicate that exposure to a live attenuated chlamydial vaccine or repeated abbreviated genital infection with virulent chlamydiae promotes anamnestic antibody and T cell responses that protect the oviduct from pathology despite a lack of sterilizing immunity at the site.
Collapse
|
79
|
Del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG. The role of the spleen in malaria. Cell Microbiol 2012; 14:343-55. [PMID: 22188297 DOI: 10.1111/j.1462-5822.2011.01741.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spleen is a complex organ that is perfectly adapted to selectively filtering and destroying senescent red blood cells (RBCs), infectious microorganisms and Plasmodium-parasitized RBCs. Infection by malaria is the most common cause of spleen rupture and splenomegaly, albeit variably, a landmark of malaria infection. Here, the role of the spleen in malaria is reviewed with special emphasis in lessons learned from human infections and mouse models.
Collapse
Affiliation(s)
- Hernando A Del Portillo
- Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
80
|
Freitas do Rosário AP, Lamb T, Spence P, Stephens R, Lang A, Roers A, Muller W, O’Garra A, Langhorne J. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: a critical mechanism for protection from severe immunopathology during malaria infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:1178-90. [PMID: 22205023 PMCID: PMC3272378 DOI: 10.4049/jimmunol.1102755] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with the malaria parasite, Plasmodium, is characterized by excessive inflammation. The establishment of a precise balance between the pro- and anti-inflammatory responses is critical to guarantee control of the parasite and survival of the host. IL-10, a key regulatory cytokine produced by many cells of the immune system, has been shown to protect mice against pathology during acute Plasmodium0 chabaudi chabaudi AS model of malaria. However, the critical cellular source of IL-10 is still unknown. In this article, we demonstrate that T cell-derived IL-10 is necessary for the control of pathology during acute malaria, as mice bearing specific deletion of Il10 in T cells fully reproduce the phenotype observed in Il10(-)(/)(-) mice, with significant weight loss, decline in temperature, and increased mortality. Furthermore, we show that IFN-γ(+) Th1 cells are the main producers of IL-10 throughout acute infection, expressing high levels of CD44 and ICOS, and low levels of CD127. Although Foxp3(+) regulatory CD4(+) T cells produce IL-10 during infection, highly activated IFN-γ(+) Th1 cells were shown to be the essential and sufficient source of IL-10 to guarantee protection against severe immune-mediated pathology. Finally, in this model of malaria, we demonstrate that the generation of protective IL10(+)IFN-γ(+) Th1 cells is dependent on IL-27 signaling and independent of IL-21.
Collapse
Affiliation(s)
| | - Tracey Lamb
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Philip Spence
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Robin Stephens
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Agathe Lang
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| | - Axel Roers
- Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | - Werner Muller
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Anne O’Garra
- Immunoregulation, MRC National Institute for Medical Research, London, UK
| | - Jean Langhorne
- Divisions of Parasitology, MRC National Institute for Medical Research, London, UK
| |
Collapse
|
81
|
Gitau EN, Tuju J, Stevenson L, Kimani E, Karanja H, Marsh K, Bull PC, Urban BC. T-cell responses to the DBLα-tag, a short semi-conserved region of the Plasmodium falciparum membrane erythrocyte protein 1. PLoS One 2012; 7:e30095. [PMID: 22272280 PMCID: PMC3260199 DOI: 10.1371/journal.pone.0030095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022] Open
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen expressed on mature forms of infected erythrocytes. It is considered an important target of naturally acquired immunity. Despite its extreme sequence heterogeneity, variants of PfEMP1 can be stratified into distinct groups. Group A PfEMP1 have been independently associated with low host immunity and severe disease in several studies and are now of potential interest as vaccine candidates. Although antigen-specific antibodies are considered the main effector mechanism in immunity to malaria, the induction of efficient and long-lasting antibody responses requires CD4+ T-cell help. To date, very little is known about CD4+ T-cell responses to PfEMP1 expressed on clinical isolates. The DBLα-tag is a small region from the DBLα-domain of PfEMP1 that can be amplified with universal primers and is accessible in clinical parasite isolates. We identified the dominant expressed PfEMP1 in 41 individual clinical parasite isolates and expressed the corresponding DBLα-tag as recombinant antigen. Individual DBLα-tags were then used to activate CD4+ T-cells from acute and convalescent blood samples in children who were infected with the respective clinical parasite isolate. Here we show that CD4+ T-cell responses to the homologous DBLα-tag were induced in almost all children during acute malaria and maintained in some for 4 months. Children infected with parasites that dominantly expressed group A-like PfEMP1 were more likely to maintain antigen-specific IFNγ-producing CD4+ T-cells than children infected with parasites dominantly expressing other PfEMP1. These results suggest that group A-like PfEMP1 may induce long-lasting effector memory T-cells that might be able to provide rapid help to variant-specific B cells. Furthermore, a number of children induced CD4+ T-cell responses to heterologous DBLα-tags, suggesting that CD4+ T-cells may recognise shared epitopes between several DBLα-tags.
Collapse
Affiliation(s)
- Evelyn N. Gitau
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James Tuju
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Liz Stevenson
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Eva Kimani
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Henry Karanja
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Internal Medicine, Oxford University, Oxford, United Kingdom
| | - Peter C. Bull
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Internal Medicine, Oxford University, Oxford, United Kingdom
| | - Britta C. Urban
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, Kilifi, Kenya
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
82
|
Mild Plasmodium falciparum malaria following an episode of severe malaria is associated with induction of the interferon pathway in Malawian children. Infect Immun 2012; 80:1150-5. [PMID: 22232187 DOI: 10.1128/iai.06008-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infection with Plasmodium falciparum can lead to a range of severe to minimal symptoms, occasionally resulting in death in young children or nonimmune adults. In areas of high transmission, older children and adults generally suffer only mild or asymptomatic malaria infections and rarely develop severe disease. The immune features underlying this apparent immunity to severe disease remain elusive. To gain insight into host responses associated with severe and mild malaria, we conducted a longitudinal study of five children who first presented with severe malaria and, 1 month later, with mild malaria. Employing peripheral blood whole-genome profiling, we identified 68 genes that were associated with mild malaria compared to their expression in the severe malaria episode (paired Students t test, P < 0.05). These genes reflect the interferon (IFN) pathway and T cell biology and include IFN-induced protein transcripts 1 to 3, oligoadenylate synthetases 1 and 3, and the T cell markers cathepsin W and perforin. Gene set enrichment analysis identified Gene Ontology (GO) pathways associated with mild malaria to include the type I interferon-mediated signaling pathway (GO 0060337), T cell activation (GO 0042110), and other GO pathways representing many aspects of immune activation. In contrast, only six genes were associated with severe malaria, including thymidine kinase 1, which was recently found to be a biomarker of cerebral malaria susceptibility in the murine model, and carbonic anhydrase, reflecting the blood's abnormal acid base environment during severe disease. These data may provide potential insights to inform pathogenesis models and the development of therapeutics to reduce severe disease outcomes due to P. falciparum infection.
Collapse
|
83
|
Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines. Methods Mol Biol 2012; 923:465-79. [PMID: 22990798 DOI: 10.1007/978-1-62703-026-7_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.
Collapse
|
84
|
Abstract
T-cell receptor transgenic mice are powerful tools to study T cell responses to malaria parasites. They allow for a population of antigen specific T cells to be monitored during developing responses to immunization or parasite infection; this makes them particularly useful to study fundamental aspects of T cell activation, differentiation, and migration in different tissue compartments. Moreover, the use of these cells allows for a thorough analysis of the mechanisms of antiparasite activity by T cells.
Collapse
Affiliation(s)
- Yun-Chi Chen
- Department of Molecular Microbiology and Immunology, John Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
85
|
Stephens R, Culleton RL, Lamb TJ. The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 2011; 28:73-82. [PMID: 22100995 DOI: 10.1016/j.pt.2011.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
Abstract
Malaria kills close to a million people every year, mostly children under the age of five. In the drive towards the development of an effective vaccine and new chemotherapeutic targets for malaria, field-based studies on human malaria infection and laboratory-based studies using animal models of malaria offer complementary opportunities to further our understanding of the mechanisms behind malaria infection and pathology. We outline here the parallels between the Plasmodium chabaudi mouse model of malaria and human malaria. We will highlight the contribution of P. chabaudi to our understanding of malaria in particular, how the immune response in malaria infection is initiated and regulated, its role in pathology, and how immunological memory is maintained. We will also discuss areas where new tools have opened up potential areas of exploration using this invaluable model system.
Collapse
Affiliation(s)
- Robin Stephens
- University of Texas Medical Branch, Departments of Microbiology and Immunology and Internal Medicine, Division of Infectious Diseases, 301 University Boulevard, Galveston, TX 77555-0435, USA
| | | | | |
Collapse
|
86
|
Stephens R, Seddon B, Langhorne J. Homeostatic proliferation and IL-7R alpha expression do not correlate with enhanced T cell proliferation and protection in chronic mouse malaria. PLoS One 2011; 6:e26686. [PMID: 22039531 PMCID: PMC3198788 DOI: 10.1371/journal.pone.0026686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/02/2011] [Indexed: 12/25/2022] Open
Abstract
While chronic infection has been shown to enhance protection from disease caused by several pathogens, the mechanisms are not known. The gamma-c family of cytokines IL-7, IL-2, and IL-15 are implicated in homeostatic proliferation, which is thought to maintain T cell memory. However in chronic infection, prolonged antigen exposure itself may contribute to lymphocyte survival. We have previously observed that chronic malaria infection enhances protection to re-infection, as well as enhancing B cell responses. Here, we show that chronic Plasmodium chabaudi malaria infection in mice enhances the expansion of CD4+ T cells in a second infection, and that this correlates with increased expression of the IL-2/15 Receptor beta (CD122) on memory T cells, as well as increasing IL-2 producers on re-infection. IL-2 has been recently linked to improved secondary proliferation, while the role of IL-7 in maintenance of CD4+ memory cells has been demonstrated in homeostatic proliferation, but its role in protective memory populations in infectious disease protective has not been fully investigated. Increased IL-7Rα (CD127) expression correlated, as previously reported with increased turnover of CD4 memory cells, however, this was not linked to protection or enhanced response to rechallenge, These data support the idea that antigen or IL-2 production resulting from chronic stimulation may play a role in an enhanced secondary T cell response.
Collapse
Affiliation(s)
- Robin Stephens
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Benedict Seddon
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
87
|
Metcalf CJE, Graham AL, Huijben S, Barclay VC, Long GH, Grenfell BT, Read AF, Bjørnstad ON. Partitioning regulatory mechanisms of within-host malaria dynamics using the effective propagation number. Science 2011; 333:984-8. [PMID: 21852493 PMCID: PMC3891600 DOI: 10.1126/science.1204588] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Zoology, Oxford University, Oxford OX1 3PS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Lineage-committed effector CD4(+) T cells are generated at the peak of the primary response and are followed by heterogeneous populations of central and effector memory cells. Here we review the evidence that T helper type 1 (T(H)1) effector cells survive the contraction phase of the primary response and become effector memory cells. We discuss the applicability of this idea to the T(H)2 cell, T(H)17 helper T cell, follicular helper T cell (T(FH) cell) and induced regulatory T cell lineages. We also discuss how central memory cells are formed, with an emphasis on the role of B cells in this process.
Collapse
|
89
|
Taylor JJ, Jenkins MK. CD4+ memory T cell survival. Curr Opin Immunol 2011; 23:319-23. [PMID: 21524898 DOI: 10.1016/j.coi.2011.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/24/2022]
Abstract
Memory CD4+ T cells specific for a given antigen are generated during the primary response from the effector lymphoblast progeny of naïve precursors. How memory CD4+ T cells differentiate from the effector population is not understood but new tools to assess transcription factor and cytokine expression are allowing for a more careful assessment of this process. Here we review the factors that allow some effector CD4+ T cells to survive the contraction phase of the primary response and become memory cells, and consider whether parallels can be drawn between T and B cells.
Collapse
Affiliation(s)
- Justin J Taylor
- Department of Microbiology and the Center for Immunology, University of Minnesota, 2101 Sixth St. SE, Minneapolis, MN 55455, United States
| | | |
Collapse
|