51
|
Faster replication and higher expression levels of viral glycoproteins give the vesicular stomatitis virus/measles virus hybrid VSV-FH a growth advantage over measles virus. J Virol 2014; 88:8332-9. [PMID: 24829351 DOI: 10.1128/jvi.03823-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED VSV-FH is a hybrid vesicular stomatitis virus (VSV) with a deletion of its G glycoprotein and encoding the measles virus (MV) fusion (F) and hemagglutinin (H) envelope glycoproteins. VSV-FH infects cells expressing MV receptors and is fusogenic and effective against myeloma xenografts in mice. We evaluated the fusogenic activities of MV and VSV-FH in relationship to the density of receptor on the target cell surface and the kinetics of F and H expression in infected cells. Using a panel of cells expressing increasing numbers of the MV receptor CD46, we evaluated syncytium size in MV- or VSV-FH-infected cells. VSV-FH is not fusogenic at low CD46 density but requires less CD46 for syncytium formation than MV. The size of each syncytium is larger in VSV-FH-infected cells at a specific CD46 density. While syncytium size reached a plateau and did not increase further in MV-infected CHO cells expressing ≥4,620 CD46 copies/cell, there was a corresponding increase in syncytium size with increases in CD46 levels in VSV-FH-infected CD46-expressing CHO (CHO-CD46) cells. Further analysis in VSV-FH-infected cell lines shows earlier and higher expression of F and H mRNAs and protein. However, VSV-FH cytotoxic activity was reduced by pretreatment of the cells with type I interferon. In contrast, the cytopathic effects are not affected in MV-infected cells. In summary, VSV-FH has significant advantages over MV as an oncolytic virus due to its higher viral yield, faster replication kinetics, and larger fusogenic capabilities but should be used in cancer types with defective interferon signaling pathways. IMPORTANCE We studied the cytotoxic activity of a vesicular stomatitis/measles hybrid virus (VSV-FH), which is superior to that of measles virus (MV), in different cancer cell lines. We determined that viral RNA and protein were produced faster and in higher quantities in VSV-FH-infected cells. This resulted in the formation of larger syncytia, higher production of infectious particles, and a more potent cytopathic effect in permissive cells. Importantly, VSV-FH, similar to MV, can discriminate between low- and high-expressing CD46 cells, a phenotype important for cancer therapy as the virus will be able to preferentially infect cancer cells that overexpress CD46 over low-CD46-expressing normal cells.
Collapse
|
52
|
Castro BM, Prieto M, Silva LC. Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 2014; 54:53-67. [PMID: 24513486 DOI: 10.1016/j.plipres.2014.01.004] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Ceramides are involved in a variety of cellular processes and in disease. Their biological functions are thought to depend on ceramides' unique biophysical properties, which promote strong alterations of cell membrane properties and consequent triggering of signaling events. Over the last decades, efforts were made to understand the impact of ceramide on membrane biophysical features. Several studies, performed in a multitude of membrane models, address ceramides' specific interactions, the effect of their acyl chain structure and the influence of membrane lipid composition and properties on ceramide biophysical outcome. In this review, a rationale for the multiple and complex changes promoted by ceramide is provided, highlighting, on a comprehensive and critical manner, the interactions between ceramides and specific lipids and/or lipid phases. Focus is also given to the interplay between ceramide and cholesterol, particularly in lipid raft-mimicking mixtures, an issue of intense debate due to the urgent need to understand the biophysical impact of ceramide formation in models resembling the cell membrane. The implications of ceramide-induced biophysical changes on lipid-protein interactions and cell signaling are also discussed, together with the emerging evidence for the existence of ceramide-gel like domains in cellular membranes.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Complexo I, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Liana C Silva
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
53
|
Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Rev Respir Med 2014; 5:527-35. [DOI: 10.1586/ers.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
54
|
Pustylnikov S, Sagar D, Jain P, Khan ZK. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2014; 17:371-92. [PMID: 25224349 PMCID: PMC5553543 DOI: 10.18433/j3n590] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran's cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen-lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin-glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran-lectin interactions may also be important for development of future dextran applications in biological research and medicine.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Group of Molecular Biology Research, Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia. Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
55
|
Vijayan M, Seo YJ, Pritzl CJ, Squires SA, Alexander S, Hahm B. Sphingosine kinase 1 regulates measles virus replication. Virology 2013; 450-451:55-63. [PMID: 24503067 DOI: 10.1016/j.virol.2013.11.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/21/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Measles virus (MV) manipulates host factors to facilitate virus replication. Sphingosine kinase (SK) is an enzyme catalyzing the formation of sphingosine 1-phosphate and modulates multiple cellular processes including the host defense system. Here, we determined the role of SK1 in MV replication. Overexpression of SK1 enhanced MV replication. In contrast, inhibition of SK impaired viral protein expression and infectious virus production from cells expressing MV receptor, SLAM or Nectin-4. The inhibition of virus replication was observed when the cells were infected by vaccine strain or wild type MV or V/C gene-deficient MV. Importantly, SK inhibition suppressed MV-induced activation of NF-κB. The inhibitors specific to NF-κB signal pathway repressed the synthesis of MV proteins, revealing the importance of NF-κB activation for efficient MV replication. Therefore, SK inhibition restricts MV replication and modulates the NF-κB signal pathway, demonstrating that SK is a cellular factor critical for MV replication.
Collapse
Affiliation(s)
- Madhuvanthi Vijayan
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Young-Jin Seo
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Curtis John Pritzl
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Sarah Angela Squires
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Stephen Alexander
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA.
| |
Collapse
|
56
|
Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther 2013; 22:575-587. [PMID: 24419083 DOI: 10.1038/mt.2013.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/01/2013] [Indexed: 11/08/2022] Open
Abstract
As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.
Collapse
|
57
|
Cui L, Lee YH, Kumar Y, Xu F, Lu K, Ooi EE, Tannenbaum SR, Ong CN. Serum metabolome and lipidome changes in adult patients with primary dengue infection. PLoS Negl Trop Dis 2013; 7:e2373. [PMID: 23967362 PMCID: PMC3744433 DOI: 10.1371/journal.pntd.0002373] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022] Open
Abstract
Background Dengue virus (DENV) is the most widespread arbovirus with an estimated 100 million infections occurring every year. Endemic in the tropical and subtropical areas of the world, dengue fever/dengue hemorrhagic fever (DF/DHF) is emerging as a major public health concern. The complex array of concurrent host physiologic changes has hampered a complete understanding of underlying molecular mechanisms of dengue pathogenesis. Methodology/Principle Findings Systems level characterization of serum metabolome and lipidome of adult DF patients at early febrile, defervescence, and convalescent stages of DENV infection was performed using liquid chromatography- and gas chromatography-mass spectrometry. The tractability of following metabolite and lipid changes in a relatively large sample size (n = 44) across three prominent infection stages allowed the identification of critical physiologic changes that coincided with the different stages. Sixty differential metabolites were identified in our metabolomics analysis and the main metabolite classes were free fatty acids, acylcarnitines, phospholipids, and amino acids. Major perturbed metabolic pathways included fatty acid biosynthesis and β-oxidation, phospholipid catabolism, steroid hormone pathway, etc., suggesting the multifactorial nature of human host responses. Analysis of phospholipids and sphingolipids verified the temporal trends and revealed association with lymphocytes and platelets numbers. These metabolites were significantly perturbed during the early stages, and normalized to control levels at convalescent stage, suggesting their potential utility as prognostic markers. Conclusions/Significance DENV infection causes temporally distinct serum metabolome and lipidome changes, and many of the differential metabolites are involved in acute inflammatory responses. Our global analyses revealed early anti-inflammatory responses working in concert to modulate early pro-inflammatory processes, thus preventing the host from development of pathologies by excessive or prolonged inflammation. This study is the first example of how an omic- approach can divulge the extensive, concurrent, and dynamic host responses elicited by DENV and offers plausible physiological insights to why DF is self limiting. Dengue virus is the most widespread arbovirus and a major public health threat in the tropical and subtropical areas of the world. As yet, little is known about the molecular mechanisms underlying infection, and there is no specific treatment or vaccine that is currently effective against the disease. Metabolomics and lipidomics provide global views of metabolome and lipidome landscapes and implicate metabolic to disease phenotype. We performed serum metabolic and lipidomic profiling on a cohort of dengue patients with three sampling time points at early febrile, defervescence, and convalescent stages via mass spectrometry-based analytical platforms. Compared with healthy subjects, approximately two hundred metabolites showed significant difference in dengue patients, and 60 were identified. This study revealed that in primary dengue infection, the host metabolome is tightly regulated, with active, early anti-inflammatory processes modulating the pro-inflammatory processes, suggesting the self-limiting phenotype of dengue fever. Major perturbed metabolic pathways included fatty acid biosynthesis, fatty acid β-oxidation, phospholipid catabolism, steroid hormone pathway, etc. This represents a first report on the characterization of the serum metabolome and significantly advances our understanding on host and dengue virus interactions. These differential metabolites have the potential as biomarkers for disease monitoring and evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- Liang Cui
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Yie Hou Lee
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Yadunanda Kumar
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Fengguo Xu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Kun Lu
- Departments of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eng Eong Ooi
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
- DUKE-NUS Graduate Medical School, Singapore
| | - Steven R. Tannenbaum
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
- Departments of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (SRT); (CNO)
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- NUS Environment Research Institute, Singapore
- * E-mail: (SRT); (CNO)
| |
Collapse
|
58
|
Abstract
The genus Morbillivirus includes measles virus, canine distemper virus and rinderpest virus. These are highly contagious and exhibit high mortality. These viruses have the attachment glycoprotein, hemagglutinin (H), at the virus surface, which bind to signaling lymphocyte activation molecule (SLAM) and Nectin 4 as receptors for the entry. However, the molecular mechanism for this entry has been limitedly understood. Here we summarize the current topics, (1) newly identified receptor, Nectin 4, (2) crystal structures of H-receptor complexes and (3) detail biochemical studies of the H-F communication for the entry. These provide insight on the mechanism of morbillivirus entry event and furthermore drug developments.
Collapse
Affiliation(s)
- Hideo Fukuhara
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | | | | |
Collapse
|
59
|
Abstract
The enzyme acid sphingomyelinase catalyzes the hydrolysis of sphingomyelin to ceramide. The importance of the enzyme for cell functions was first recognized in Niemann-Pick disease type A and B, the genetic disorders with a massive accumulation of sphingomyelin in many organs. Studies in the last years demonstrated that the enzyme also has an important role in cell signalling. Thus, the acid sphingomyelinase has a central function for the re-organization of molecules within the cell upon stimulation and thereby for the response of cells to stress and the induction of cell death but also proliferation and differentiation. Here, we discuss the current state of the art of the structure, regulation, and function of the acid sphingomyelinase.
Collapse
Affiliation(s)
- Brian Henry
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|
60
|
Abstract
Besides their essential role in the immune system, sphingolipids and their metabolites are potential key regulators in the life cycle of obligatory intracellular pathogens such as viruses. They are involved in lateral and vertical segregation of receptors required for attachment, membrane fusion and endocytosis, as well as in the intracellular replication, assembly and release of viruses. Glycosphingolipids may themselves act as receptors for viruses, such as Galactosylceramide for human immunodeficiency virus (HIV). In addition, sphingolipids and their metabolites are inseparably interwoven in signal transduction processes, dynamic alterations of the cytoskeleton, and the regulation of innate and intrinsic responses of infected target cells. Depending on the nature of the intracellular pathogen, they may support or inhibit infections. Understanding of the underlying mechanisms depending on the specific virus, immune control, and type of disease may open new avenues for therapeutic interventions.
Collapse
|
61
|
Abstract
Sphingolipids, the main component of cellular membranes, are cellular 'jack-of-all-trades', influencing a variety of functions including signal transduction, cell activation, membrane fluidity and cell-cell interactions.In the last few years, sphingolipids have begun to be investigated in the pathophysiology of major diseases of the brain, e.g. multiple sclerosis and dementia. Modulation of neuroinflammatory responses, such as lymphocyte behaviour, is a chance to intervene in the pathways that cause disease. There is much research still to be done in this field, but the prospect of treating previously untreatable medical conditions compels us onwards. Here, we review the current knowledge of the link between sphingolipids and neuroinflammation.
Collapse
Affiliation(s)
- Laura Davies
- Department of Neurology, Saarland University Hospital, Homburg, Germany
| | | | | |
Collapse
|
62
|
Coughlin MM, Bellini WJ, Rota PA. Contribution of dendritic cells to measles virus induced immunosuppression. Rev Med Virol 2012; 23:126-38. [DOI: 10.1002/rmv.1735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Melissa M. Coughlin
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| | - William J. Bellini
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| | - Paul A. Rota
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| |
Collapse
|
63
|
Delpeut S, Noyce RS, Siu RWC, Richardson CD. Host factors and measles virus replication. Curr Opin Virol 2012; 2:773-83. [PMID: 23146309 DOI: 10.1016/j.coviro.2012.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
This review takes a general approach to describing host cell factors that facilitate measles virus (MeV) infection and replication. It relates our current understanding of MeV entry receptors, with emphasis on how these host cell surface proteins contribute to pathogenesis within its host. The roles of SLAM/CD150 lymphocyte receptor and the newly discovered epithelial receptor PVRL4/nectin-4 are highlighted. Host cell factors such as HSP72, Prdx1, tubulin, casein kinase, and actin, which are known to impact viral RNA synthesis and virion assembly, are also discussed. Finally the review describes strategies used by measles virus to circumvent innate immunity and confound the effects of interferon within the host cell. Proteomic studies and genome wide RNAi screens will undoubtedly advance our knowledge in the future.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
64
|
Avota E, Koethe S, Schneider-Schaulies S. Membrane dynamics and interactions in measles virus dendritic cell infections. Cell Microbiol 2012; 15:161-9. [PMID: 22963539 DOI: 10.1111/cmi.12025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
Abstract
Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97878 Wuerzburg, Germany
| | | | | |
Collapse
|
65
|
Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol 2012; 20:429-39. [PMID: 22721863 DOI: 10.1016/j.tim.2012.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/14/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Measles virus (MV) causes acute respiratory disease, infects lymphocytes and multiple organs, and produces immune suppression leading to secondary infections. In rare instances it can also cause persistent infections in the brain and central nervous system. Vaccine and laboratory-adapted strains of MV use CD46 as a receptor, whereas wild-type strains of MV (wtMV) cannot. Both vaccine and wtMV strains infect lymphocytes, monocytes, and dendritic cells (DCs) using the signaling lymphocyte activation molecule (CD150/SLAM). In addition, MV can infect the airway epithelial cells of the host. Nectin 4 (PVRL4) was recently identified as the epithelial cell receptor for MV. Coupled with recent observations made in MV-infected macaques, this discovery has led to a new paradigm for how the virus accesses the respiratory tract and exits the host. Nectin 4 is also a tumor cell marker which is highly expressed on the apical surface of many adenocarcinoma cell lines, making it a potential target for MV oncolytic therapy.
Collapse
Affiliation(s)
- Ryan S Noyce
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | |
Collapse
|
66
|
Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components. J Virol 2012; 86:9773-81. [PMID: 22761368 DOI: 10.1128/jvi.00458-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.
Collapse
|
67
|
Daenthanasanmak A, Salguero G, Borchers S, Figueiredo C, Jacobs R, Sundarasetty BS, Schneider A, Schambach A, Eiz-Vesper B, Blasczyk R, Weissinger EM, Ganser A, Stripecke R. Integrase-defective lentiviral vectors encoding cytokines induce differentiation of human dendritic cells and stimulate multivalent immune responses in vitro and in vivo. Vaccine 2012; 30:5118-31. [PMID: 22691433 DOI: 10.1016/j.vaccine.2012.05.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
Integrase-defective lentiviral vectors (ID-LVs) show several hallmarks of conventional lentiviral vectors such as absence of cytotoxic effects and long-term expression in non-replicating target cells. The integration rate of ID-LVs into the genome of target cells is dramatically reduced, which enhances safety and opens perspectives for their use in vaccine development. ID-LVs have been shown to be effective vaccines in mouse models, but functional studies with human cells in vitro and in vivo are lacking. Here, we evaluated whether ID-LVs expressing combinations of cytokines (GM-CSF/IL-4 or GM-CSF/IFN-α) used to transduce human monocytes would result in functional "induced dendritic cells" (iDCs). Overnight transduction of monocytes with high titer ID-LVs generated highly viable (14 days) and immunophenotypically stable iDCs expressing GM-CSF/IL-4 ("SmartDCs") or GM-CSF/IFN-α ("SmyleDCs"). SmartDCs and SmyleDCs maintained in vitro continuously secreted the transgenic cytokines and showed up-regulation of several endogenously produced inflammatory cytokines (IFN-γ, IL-2, -5, -6, and -8). Both iDC types potently stimulated T cells in mixed lymphocyte reactions at levels comparable to conventional DCs (maintained with exogenous cytokines). A single in vitro stimulation of CD8(+) T cells with autologous SmartDCs or SmyleDCs pulsed with peptide pools of pp65 (a human cytomegalovirus antigen) resulted in high expansion of central memory and effector memory CTLs reactive against different pp65 epitopes. We further evaluated the effects of SmartDCs and SmyleDCs to expand anti-pp65 CTLs in vivo using immune deficient NOD/Rag1((-/-))/IL-2rγ((-/-)) (NRG) mice. NRG mice immunized subcutaneously with SmartDCs or SmyleDCs co-expressing the full-length pp65 were subsequently infused with autologous CD8(+) T cells. Both types of iDCs effectively stimulated human CTLs reactive against different pp65 antigenic determinants in vivo. Due to the simplicity of generation, robust viability and combined capacity to stimulate homeostatic, antigenic and multivalent responses, iDCs are promising vaccines to be explored in immunization of lymphopenic patients in the post-transplantation setting.
Collapse
Affiliation(s)
- Anusara Daenthanasanmak
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol 2012; 86:7473-83. [PMID: 22573858 DOI: 10.1128/jvi.00136-12] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acid sphingomyelinase (ASMase) converts the lipid sphingomyelin (SM) to phosphocholine and ceramide and has optimum activity at acidic pH. Normally, ASMase is located in lysosomes and endosomes, but membrane damage or the interaction with some bacterial and viral pathogens can trigger its recruitment to the plasma membrane. Rhinovirus and measles viruses each require ASMase activity during early stages of infection. Both sphingomyelin and ceramide are important components of lipid rafts and are potent signaling molecules. Each plays roles in mediating macropinocytosis, which has been shown to be important for ebolavirus (EBOV) infection. Here, we investigated the role of ASMase and its substrate, SM, in EBOV infection. The work was performed at biosafety level 4 with wild-type virus with specificity and mechanistic analysis performed using virus pseudotypes and virus-like particles. We found that virus particles strongly associate with the SM-rich regions of the cell membrane and depletion of SM reduces EBOV infection. ASM-specific drugs and multiple small interfering RNAs strongly inhibit the infection by EBOV and EBOV glycoprotein pseudotyped viruses but not by the pseudotypes bearing the glycoprotein of vesicular stomatitis virus. Interestingly, the binding of virus-like particles to cells is strongly associated with surface-localized ASMase as well as SM-enriched sites. Our work suggests that ASMase activity and SM presence are necessary for efficient infection of cells by EBOV. The inhibition of this pathway may provide new avenues for drug treatment.
Collapse
|
69
|
Itano MS, Steinhauer C, Schmied JJ, Forthmann C, Liu P, Neumann AK, Thompson NL, Tinnefeld P, Jacobson K. Super-resolution imaging of C-type lectin and influenza hemagglutinin nanodomains on plasma membranes using blink microscopy. Biophys J 2012; 102:1534-42. [PMID: 22500753 DOI: 10.1016/j.bpj.2012.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/30/2012] [Accepted: 02/13/2012] [Indexed: 11/28/2022] Open
Abstract
Dendritic cells express DC-SIGN, a C-type lectin (CTL) that binds a variety of pathogens and facilitates their uptake for subsequent antigen presentation. DC-SIGN forms remarkably stable microdomains on the plasma membrane. However, inner leaflet lipid markers are able to diffuse through these microdomains suggesting that, rather than being densely packed with DC-SIGN proteins, an elemental substructure exists. Therefore, a super-resolution imaging technique, Blink Microscopy (Blink), was applied to further investigate the lateral distribution of DC-SIGN. Blink indicates that DC-SIGN, another CTL (CD206), and influenza hemagglutinin (HA) are all localized in small (∼80 nm in diameter) nanodomains. DC-SIGN and CD206 nanodomains are randomly distributed on the plasma membrane, whereas HA nanodomains cluster on length scales up to several microns. We estimate, as a lower limit, that DC-SIGN and HA nanodomains contain on average two tetramers or two trimers, respectively, whereas CD206 is often nonoligomerized. Two-color Blink determined that different CTLs rarely occupy the same nanodomain, although they appear colocalized using wide-field microscopy. What to our knowledge is a novel domain structure emerges in which elemental nanodomains, potentially capable of binding viruses, are organized in a random fashion; evidently, these nanodomains can be clustered into larger microdomains that act as receptor platforms for larger pathogens like yeasts.
Collapse
Affiliation(s)
- Michelle S Itano
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Liu P, Wang X, Itano MS, Neumann AK, Jacobson K, Thompson NL. The formation and stability of DC-SIGN microdomains require its extracellular moiety. Traffic 2012; 13:715-26. [PMID: 22292921 DOI: 10.1111/j.1600-0854.2012.01337.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 12/25/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin (DC-SIGN) is a Ca(2+) -dependent transmembrane lectin that binds a large variety of pathogens and facilitates their uptake for subsequent antigen presentation. This receptor is present in cell surface microdomains, but factors involved in microdomain formation and their exceptional stability are not clear. To determine which domain/motif of DC-SIGN facilitates its presence in microdomains, we studied mutations at key locations including truncation of the cytoplasmic tail, and ectodomain mutations that resulted in the removal of the N-linked glycosylation site, the tandem repeats and the carbohydrate recognition domain (CRD), as well as modification of the calcium sites in the CRD required for carbohydrate binding. Confocal imaging and fluorescence recovery after photobleaching measurements showed that the cytoplasmic domain and the N-linked glycosylation site do not affect the ability of DC-SIGN to form stable microdomains. However, truncation of the CRD results in complete loss of visible microdomains and subsequent lateral diffusion of the mutants. Apart from cell adhesions, membrane domains are thought to be localized primarily via the cytoskeleton. By contrast, we propose that interactions between the CRD of DC-SIGN and the extracellular matrix and/or cis interactions with transmembrane scaffolding protein(s) play an essential role in organizing these microdomains.
Collapse
Affiliation(s)
- Ping Liu
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
71
|
Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol 2012; 86:5192-203. [PMID: 22345444 DOI: 10.1128/jvi.06283-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells capable of promoting or regulating innate and adaptive immune responses against non-self antigens. To better understand the DC biology or to use them for immune intervention, a tremendous effort has been made to improve gene transfer in these cells. Lentiviral vectors (LVs) have conferred a huge advantage in that they can transduce nondividing cells such as human monocyte-derived DCs (MDDCs) but required high amounts of viral particles and/or accessory proteins such as Vpx or Vpr to achieve sufficient transduction rates. As a consequence, these LVs have been shown to cause dramatic functional modifications, such as the activation or maturation of transduced MDDCs. Taking advantage of new pseudotyped LVs, i.e., with envelope glycoproteins from the measles virus (MV), we demonstrate that MDDCs are transduced very efficiently with these new LVs compared to the classically used vesicular stomatitis virus G-pseudotyped LVs and thus allowed to achieve high transduction rates at relatively low multiplicities of infection. Moreover, in this experimental setting, no activation or maturation markers were upregulated, while MV-LV-transduced cells remained able to mature after an appropriate Toll-like receptor stimulation. We then demonstrate that our MV-pseudotyped LVs use DC-SIGN, CD46, and CD150/SLAM as receptors to transduce MDDCs. Altogether, our results show that MV-pseudotyped LVs provide the most accurate and simple viral method for efficiently transferring genes into MDDCs without affecting their activation and/or maturation status.
Collapse
|
72
|
Abstract
The long-sought entry receptors for rubella, sindbis and respiratory syncytial viruses (RV, SV and RSV), together with the missing measles virus (MV) receptor for infection of epithelial cells, were identified in 2011. These have been major developments in the field of virus entry. In addition, 2011 was rich in new information about the interactions of MV, RSV and phleboviruses with DC-SIGN during infection of dendritic cells, a crucial step allowing the virus to breach the epithelial barrier and gain access to the lymph nodes. This faciliates dissemination to susceptible tissues where it can develop a vigorous and sustained replication, to eventually target specific organs from which it can propagate into the environment and efficiently infect new hosts, closing the merry-go-round of the virus cycle.
Collapse
|
73
|
Truman JP, Al Gadban MM, Smith KJ, Hammad SM. Acid sphingomyelinase in macrophage biology. Cell Mol Life Sci 2011; 68:3293-305. [PMID: 21533981 PMCID: PMC3178716 DOI: 10.1007/s00018-011-0686-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 12/21/2022]
Abstract
Macrophages play a central role in innate immune responses, in disposal of cholesterol, and in tissue homeostasis and remodeling. To perform these vital functions macrophages display high endosomal/lysosomal activities. Recent studies have highlighted that acid sphingomyelinase (ASMase), which generates ceramide from sphingomyelin, is involved in modulation of membrane structures and signal transduction in addition to its metabolic role in the lysosome. In this review, we bring together studies on ASMase, its different forms and locations that are necessary for the macrophage to accomplish its diverse functions. We also address the importance of ASMase to several disease processes that are mediated by activated macrophages.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 114 Doughty Street 629A, MSC 815, Charleston, SC 29425 USA
| | - Mohammed M. Al Gadban
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 114 Doughty Street 629A, MSC 815, Charleston, SC 29425 USA
| | - Kent J. Smith
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 114 Doughty Street 629A, MSC 815, Charleston, SC 29425 USA
| | - Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 114 Doughty Street 629A, MSC 815, Charleston, SC 29425 USA
| |
Collapse
|
74
|
Cytoskeletal dynamics: concepts in measles virus replication and immunomodulation. Viruses 2011; 3:102-117. [PMID: 22049305 PMCID: PMC3206598 DOI: 10.3390/v3020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level.
Collapse
|