51
|
Sztuba-Solinska J, Rausch JW, Smith R, Miller JT, Whitby D, Le Grice SFJ. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Res 2017; 45:6805-6821. [PMID: 28383682 PMCID: PMC5499733 DOI: 10.1093/nar/gkx241] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
52
|
Liu W, Ding C. Roles of LncRNAs in Viral Infections. Front Cell Infect Microbiol 2017; 7:205. [PMID: 28603696 PMCID: PMC5445353 DOI: 10.3389/fcimb.2017.00205] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
Many proteins and signaling pathways participate in anti-viral host responses. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs greater than 200 nucleotides in length, have been recently described as critical regulators in viral infections. Accumulating research indicates that lncRNAs are important in the development and progression of infectious diseases. LncRNAs are not only involved in anti-viral responses, but in many different virus-host interactions, some of which may be beneficial to the virus. Here we review the current knowledge regarding host and viral lncRNAs and their roles in viral infections. In addition, the potential of using lncRNAs as diagnostic biomarkers is discussed.
Collapse
Affiliation(s)
- Weiwei Liu
- Avian infectious Department, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural ScienceShanghai, China
| | - Chan Ding
- Avian infectious Department, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural ScienceShanghai, China
| |
Collapse
|
53
|
Mumtaz PT, Bhat SA, Ahmad SM, Dar MA, Ahmed R, Urwat U, Ayaz A, Shrivastava D, Shah RA, Ganai NA. LncRNAs and immunity: watchdogs for host pathogen interactions. Biol Proced Online 2017; 19:3. [PMID: 28465674 PMCID: PMC5406993 DOI: 10.1186/s12575-017-0052-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/06/2017] [Indexed: 01/23/2023] Open
Abstract
Immune responses combat various infectious agents by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. The polygenic responses to these external stimuli are temporally and coordinately regulated. Specific lncRNAs are induced to modulate innate and adaptive immune responses which can function through various target interactions like RNA-DNA, RNA-RNA, and RNA-protein interaction and hence affect the immunogenic regulation at various stages of gene expression. LncRNA are found to be present in various immune cells like monocytes, macrophages, dendritic cells, neutrophils, T cells and B cells. They have been shown to be involved in many biological processes, including the regulation of the expression of genes, the dosage compensation and genomics imprinting, but the knowledge how lncRNAs are regulated and how they alter cell differentiation/function is still obscure. Further dysregulation of lncRNA has been seen in many diseases, but as yet very less research has been carried out to understand the role of lncRNAs in regulation during host-pathogens interactions. In this review, we summarize the functional developments and mechanism of action of lncRNAs, in immunity and defense of host against pathogens.
Collapse
Affiliation(s)
- Peerzada Tajamul Mumtaz
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
- School of Life Sciences Jaipur National University, Jaipur, Rajasthan India
| | - Shakil Ahmad Bhat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Syed Mudasir Ahmad
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Mashooq Ahmad Dar
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Raashid Ahmed
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Uneeb Urwat
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Aadil Ayaz
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Divya Shrivastava
- School of Life Sciences Jaipur National University, Jaipur, Rajasthan India
| | - Riaz Ahmad Shah
- Division of Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| | - Nazir Ahmad Ganai
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Srinagar, Jammu and Kashmir India
| |
Collapse
|
54
|
Wang Z, Zhao Y, Zhang Y. Viral lncRNA: A regulatory molecule for controlling virus life cycle. Noncoding RNA Res 2017; 2:38-44. [PMID: 30159419 PMCID: PMC6096409 DOI: 10.1016/j.ncrna.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are found not only in mammals but also in other organisms, including viruses. Recent findings suggest that lncRNAs play various regulatory roles in multiple major biological and pathological processes. During viral life cycles, lncRNAs are involved in a series of steps, including enhancing viral gene expression, promoting viral replication and genome packaging, boosting virion release, maintaining viral latency and assisting viral transformation; additionally, lncRNAs antagonize host antiviral innate immune responses. In contrast to proteins that function in viral infection, lncRNAs are expected to be novel targets for the modulation of all types of biochemical processes due to their broad characteristics and profound influence. This review highlights our current understanding of the regulatory roles of lncRNAs during viral infection processes with an emphasis on the potential usefulness of lncRNAs as a target for viral intervention strategies, which could have therapeutic implications for the application of a clinical approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yiwan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China.,Open FIESTA Center, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
55
|
Adler B, Sattler C, Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol 2017; 25:229-241. [DOI: 10.1016/j.tim.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
|
56
|
Expression of the Antisense-to-Latency Transcript Long Noncoding RNA in Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2017; 91:JVI.01698-16. [PMID: 27928018 DOI: 10.1128/jvi.01698-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
The regulation of latency is central to herpesvirus biology. Recent transcriptome-wide surveys have uncovered evidence for promiscuous transcription across the entirety of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome and postulated the existence of multiple viral long noncoding RNAs (lncRNAs). Next-generation sequencing studies are highly dependent on the specific experimental approach and particular algorithms of analysis and therefore benefit from independent confirmation of the results. The antisense-to-latency transcript (ALT) lncRNA was discovered by genome-tiling microarray (Chandriani et al., J Virol 86:7934-7942, 2010, https://doi.org/10.1128/JVI.00645-10). To characterize ALT in detail, we physically isolated this lncRNA by a strand-specific hybrid capture assay and then employed transcriptome sequencing and novel reverse transcription-PCR (RT-PCR) assays to distinguish all RNA species in the KSHV latency region. These methods confirm that ALT initiates at positions 120739/121012 and encodes a single splice site, which is shared with the 3'-coterminal K14-vGPCR/ORF74 mRNA, terminating at 130873 (GenBank accession number GQ994935), resulting in an ∼10,000-nucleotide transcript. No shorter ALT isoforms were identified. This study also identified a novel intron within the LANA 5' untranslated region using a splice acceptor at 127888. In summary, ALT joins PAN/nut1/T1.1 as a bona fide lncRNA of KSHV with potentially important roles in viral gene regulation and pathogenesis. IMPORTANCE Increasing data support the importance of noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and lncRNAs, which have been shown to exert critical regulatory functions without coding for recognizable proteins. Defining the sequences of these ncRNAs is essential for future studies aiming to functionally characterize a specific ncRNA. Most lncRNA studies are highly dependent on high-throughput sequencing and bioinformatic analyses, few studies follow up on the initial predictions, and analyses are at times discordant. The manuscript characterizes one key viral lncRNA, ALT, by physically isolating ALT and by a sequencing-independent assay. It provides for a simple assay to monitor lncRNA expression in experimental and clinical samples. ALT is expressed antisense to the major viral latency transcripts encoding LANA as well as the viral miRNAs and thus has the potential to regulate this key part of the viral life cycle.
Collapse
|
57
|
Abstract
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.
Collapse
|
58
|
Sharma N, Singh SK. Implications of non-coding RNAs in viral infections. Rev Med Virol 2016; 26:356-68. [PMID: 27401792 DOI: 10.1002/rmv.1893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023]
Abstract
The advances in RNA sequencing have unveiled various non-coding RNAs (ncRNAs), which modulate the gene expression. ncRNAs do not get translated into proteins. These include transfer RNAs, ribosomal RNAs, microRNA (miRNA), short interfering RNA, long non-coding RNA, piwi-interacting RNA and small nuclear RNA. ncRNAs regulate gene expression at various levels and control cellular machinery. miRNAs have been reported in plants, animals, several invertebrates and viruses. The miRNAs regulate the gene expression post-transcriptionally. Viral infection strongly influences the abundance and the distribution of miRNAs and other ncRNAs within the host cells. Viruses may encode their own miRNA, which help in the viral life cycle and other aspects of pathogenesis. Viruses are known to successfully modulate the expression pattern of ncRNAs. The ncRNA-based strategies adopted by viruses for their survival present a complex picture of host-virus interactions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sunit K Singh
- Laboratory of Human Molecular Virology and Immunology, Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences (IMS), Banaras Hindu University (BHU), Varanasi, India.
| |
Collapse
|
59
|
Ben-Yishay R, Ashkenazy AJ, Shav-Tal Y. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore. Trends Genet 2016; 32:419-431. [DOI: 10.1016/j.tig.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023]
|
60
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
61
|
Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016; 8:92. [PMID: 27043613 PMCID: PMC4848587 DOI: 10.3390/v8040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.
Collapse
Affiliation(s)
- Roxanne Strahan
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
62
|
Scheckel C, Drapeau E, Frias MA, Park CY, Fak J, Zucker-Scharff I, Kou Y, Haroutunian V, Ma'ayan A, Buxbaum JD, Darnell RB. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain. eLife 2016; 5. [PMID: 26894958 PMCID: PMC4798961 DOI: 10.7554/elife.10421] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022] Open
Abstract
Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI:http://dx.doi.org/10.7554/eLife.10421.001 When a gene is active, its DNA is copied into a molecule of RNA. This molecule then undergoes a process called splicing which removes certain segments, and the resulting ‘messenger RNA’ molecule is then translated into protein. Many messenger RNAs go through alternative splicing, whereby different segments can be included or excluded from the final molecule. This allows more than one type of protein to be produced from a single gene. Specialized RNA binding proteins associate with messenger RNAs and regulate not only their splicing, but also their abundance and location within the cell. These activities are crucially important in the brain where forming memories and learning new skills requires thousands of proteins to be made rapidly. Many members of a family of RNA binding proteins called ELAV-like proteins are unique to neurons. These proteins have also been associated with conditions such as Alzheimer’s disease, but it was not known which messenger RNAs were the targets of these proteins in the human brain. Scheckel, Drapeau et al. have now addressed this question and used a method termed 'CLIP' to identify thousands of messenger RNAs that directly bind to neuronal ELAV-like proteins in the human brain. Many of these messenger RNAs coded for proteins that are important for the health of neurons, and neuronal ELAV-like proteins were shown to regulate both the alternative splicing and the abundance of these messenger RNAs. The regulation of RNA molecules in post-mortem brain samples of people with or without Alzheimer’s disease was then compared. Scheckel, Drapeau et al. unexpectedly observed that, in the Alzheimer’s disease patients, the neuronal ELAV-like proteins were very often associated with a class of RNA molecules known as Y RNAs. These RNA molecules do not code for proteins, and are therefore classified as non-coding RNA. Moreover, massive shifts in the binding of ELAV-like proteins onto Y RNAs were observed in neurons grown in the laboratory that had been briefly stressed by exposure to ultraviolet radiation. Scheckel, Drapeau et al. suggest that the strong tendency of neuronal ELAV-like proteins to bind to Y RNAs in conditions of short- or long-term stress, including Alzheimer’s disease, might prevent these proteins from associating with their normal messenger RNA targets. This was supported by finding that some messenger RNAs targeted by neuronal ELAV-like proteins showed altered regulation after stress. Such changes to the normal regulation of these messenger RNAs could have a large impact on the proteins that are produced from them. Together, these findings link Y RNAs to both neuronal stress and Alzheimer’s disease, and suggest a new way that a cell can alter which messenger RNAs are expressed in response to changes in its environment. The next step is to explore what causes the shift in neuronal ELAV-like protein binding from messenger RNAs to Y RNAs and how it might contribute to disease. DOI:http://dx.doi.org/10.7554/eLife.10421.002
Collapse
Affiliation(s)
- Claudia Scheckel
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maria A Frias
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States.,New York Genome Center, New York, United States
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Yan Kou
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Integration and Coordination Center, Mount Sinai Knowledge Management Center for Illuminating the Druggable Genome, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,James J. Peters VA Medical Center, New York, United States
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Integration and Coordination Center, Mount Sinai Knowledge Management Center for Illuminating the Druggable Genome, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States.,New York Genome Center, New York, United States
| |
Collapse
|
63
|
Abstract
Precise and dynamic regulation of gene expression is a key feature of immunity. In recent years, rapid advances in transcriptome profiling analysis have led to recognize long non-coding RNAs (lncRNAs) as an additional layer of gene regulation context. In the immune system, lncRNAs are found to be widely expressed in immune cells including monocytes, macrophages, dendritic cells (DC), neutrophils, T cells and B cells during their development, differentiation and activation. However, the functional importance of immune-related lncRNAs is just emerging to be characterized. In this review, we discuss the up-to-date knowledge of lncRNAs in immune regulation.
Collapse
Affiliation(s)
- Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Corresponding author. Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 217, Chicago, IL 60611, USA. Tel.: +1 (773) 755 6380; fax: +1 (773) 755 6581.
| |
Collapse
|
64
|
Vogt C, Bohne J. The KSHV RNA regulator ORF57: target specificity and its role in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:173-85. [PMID: 26769399 DOI: 10.1002/wrna.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes ORF57, which enhances the expression of intron-less KSHV genes on multiple post-transcriptional levels mainly affecting RNA stability and export to the cytoplasm. Yet, it remains elusive how ORF57 recognizes viral RNAs and discriminates them from cellular messenger RNAs (mRNAs). Although one common binding motif on three separate KSHV RNAs has been described, most other lytic genes lack this sequence element. In this article we will review the sequence requirements for ORF57 to enhance RNA expression and discuss a model how ORF57 achieves specificity for viral RNAs. Finally, the role of ORF57 is integrated into the viral life cycle as a complex interplay with other viral and host factors and with implications for cellular gene expression.
Collapse
Affiliation(s)
- Carolin Vogt
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute for Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
65
|
Abstract
Over 12 % of all human cancers are caused by oncoviruses, primarily including Epstein-Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B and C viruses (HBV and HCV, respectively), and Kaposi's sarcoma herpesvirus (KSHV). In addition to viral oncoproteins, a variety of noncoding RNAs (ncRNAs) produced by oncoviruses have been recognized as important cofactors that contribute to the oncogenic events. In this chapter, we will focus on the recent understanding of the long and short noncoding RNAs, as well as microRNAs of the viruses, and discuss their roles in the biology of multistep oncogenesis mediated by established human oncoviruses.
Collapse
|
66
|
Baquero-Pérez B, Whitehouse A. Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments. PLoS Pathog 2015; 11:e1005274. [PMID: 26587836 PMCID: PMC4654589 DOI: 10.1371/journal.ppat.1005274] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
67
|
Carpenter S. Long noncoding RNA: Novel links between gene expression and innate immunity. Virus Res 2015; 212:137-45. [PMID: 26362525 DOI: 10.1016/j.virusres.2015.08.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 01/08/2023]
Abstract
Protection against infection and maintenance of homeostasis are the hallmarks of the innate immune system. The complex signaling cascades that occur following microbial infection have been studied intensely for a number of years and long noncoding RNA (lncRNA) represent novel regulatory components of these pathways. The catalogue of lncRNA present in our genomes continues to increase as deep sequencing data becomes available. It is clear that they represent critical regulatory steps in a large number of biological systems yet we currently understand the functions for approximately 1% of all annotated lncRNA. This review will cover the recent findings on the emerging roles for lncRNA in controlling the inflammatory response and their mechanisms of action. Gaining a better understanding of these processes could facilitate the development of novel therapeutics to prevent damaging inflammation.
Collapse
Affiliation(s)
- Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| |
Collapse
|
68
|
Doubly Spliced RNA of Hepatitis B Virus Suppresses Viral Transcription via TATA-Binding Protein and Induces Stress Granule Assembly. J Virol 2015; 89:11406-19. [PMID: 26339052 DOI: 10.1128/jvi.00949-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes. IMPORTANCE Patients infected with certain genotypes of HBV have a lower risk of hepatocellular carcinoma and exhibit a more favorable response to antiviral therapy than patients infected with other HBV genotypes. Using cultured human hepatoma cells as a model of HBV infection, we found that the expression of 2.2DS-RNA caused a decrease in HBV replication. In cultured cells, the ectopic expression of 2.2DS-RNA obviously reduced the intracellular levels of HBV mRNAs. Our analysis of the 2.2DS-RNA-mediated suppression of viral RNA expression showed that 2.2DS-RNA inhibited transcription via binding to the TATA-binding protein and stress granule proteins. Our findings suggest that the 2.2DS-RNA acts as a suppressive noncoding RNA that modulates HBV replication, which may in turn influence the development of chronic hepatitis B.
Collapse
|
69
|
Zhang Y, Cao X. Long noncoding RNAs in innate immunity. Cell Mol Immunol 2015; 13:138-47. [PMID: 26277893 PMCID: PMC4786632 DOI: 10.1038/cmi.2015.68] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in immune cell development and immune responses through different mechanisms, such as dosage compensation, imprinting, enhancer function, and transcriptional regulation. Although the functions of most lncRNAs are unclear, some lncRNAs have been found to control transcriptional or post-transcriptional regulation of the innate and adaptive immune responses via new methods of protein–protein interactions or pairing with DNA and RNA. Interestingly, increasing evidence has elucidated the importance of lncRNAs in the interaction between hosts and pathogens. In this review, an overview of the lncRNAs modes of action, as well as the important and diversified roles of lncRNAs in immunity, are provided, and an emerging paradigm of lncRNAs in regulating innate immune responses is highlighted.
Collapse
|
70
|
Rapid and efficient elimination of specific nuclear noncoding RNAs in mammalian cells with antisense oligonucleotides. Methods Mol Biol 2015; 1206:149-56. [PMID: 25240894 DOI: 10.1007/978-1-4939-1369-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A wide variety of noncoding RNAs are thought to play fundamental and regulatory functions in the mammalian cell nucleus, although their primary functions have yet to be elucidated. Here, we describe a method for the rapid and efficient elimination of specific nuclear noncoding RNAs in mammalian cells using chemically modified antisense oligonucleotides, which may facilitate the functional assessment of nuclear ncRNAs.
Collapse
|
71
|
Conrad NK. New insights into the expression and functions of the Kaposi's sarcoma-associated herpesvirus long noncoding PAN RNA. Virus Res 2015; 212:53-63. [PMID: 26103097 DOI: 10.1016/j.virusres.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) is a clinically relevant pathogen associated with several human diseases that primarily affect immunocompromised individuals. KSHV encodes a noncoding polyadenylated nuclear (PAN) RNA that is essential for viral propagation and viral gene expression. PAN RNA is the most abundant viral transcript produced during lytic replication. The accumulation of PAN RNA depends on high levels of transcription driven by the Rta protein, a KSHV transcription factor necessary and sufficient for latent-to-lytic phase transition. In addition, KSHV uses several posttranscriptional mechanisms to stabilize PAN RNA. A cis-acting element, called the ENE, prevents PAN RNA decay by forming a triple helix with its poly(A) tail. The viral ORF57 and the cellular PABPC1 proteins further contribute to PAN RNA stability during lytic phase. PAN RNA functions are only beginning to be uncovered, but PAN RNA has been proposed to control gene expression by several different mechanisms. PAN RNA associates with the KSHV genome and may regulate gene expression by recruiting chromatin-modifying factors. Moreover, PAN RNA binds the viral latency-associated nuclear antigen (LANA) protein and decreases its repressive activity by sequestering it from the viral genome. Surprisingly, PAN RNA was found to associate with translating ribosomes, so this noncoding RNA may be additionally used to produce viral peptides. In this review, I highlight the mechanisms of PAN RNA accumulation and describe recent insights into potential functions of PAN RNA.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, United States.
| |
Collapse
|
72
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
73
|
ORF45-Mediated Prolonged c-Fos Accumulation Accelerates Viral Transcription during the Late Stage of Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2015; 89:6895-906. [PMID: 25903346 DOI: 10.1128/jvi.00274-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple viral proteins that activate extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) cascades. One of these viral proteins, ORF45, mediates sustained ERK-p90 ribosomal S6 kinase (RSK) activation during KSHV lytic replication and facilitates viral translation through the phosphorylation of a eukaryotic translation initiation factor, eIF4B. The importance of ERK-RSK activation for KSHV viral transcription has been shown; however, which transcription factor senses the sustained MAPK signaling and leads to viral transcription remains poorly understood. Here we show that the presence of ORF45 leads to the prolonged accumulation of c-Fos during the late stage of KSHV lytic replication through ERK-RSK-dependent phosphorylation and stabilization and that the depletion of c-Fos disrupts viral lytic transcription. Genome-wide screening revealed that c-Fos directly binds to multiple viral gene promoters and enhances viral transcription. Mutation of the ERK-RSK phosphorylation sites of c-Fos restrains KSHV lytic gene expression and virion production. These results indicate that the prolonged accumulation of c-Fos promotes the progression of viral transcription from early to late stages and accelerates viral lytic replication upon sustained ORF45-ERK-RSK activation during the KSHV lytic life cycle. IMPORTANCE During KSHV lytic replication, transient activation and sustained activation of ERK-RSK induce viral immediate early (IE) transcription and late transcription, respectively. Studies have revealed that ERK-RSK activates several transcription factors involved in IE gene expression, including Ets, AP-1, CREB, and C/EBP, which lead to the transient ERK-RSK activation-dependent IE transcription. Whereas c-Fos acts as a sensor of sustained ERK-RSK activation, ORF45-ERK-RSK signaling mediates c-Fos phosphorylation and accumulation during late KSHV lytic replication, consequently promoting viral transcription through the direct binding of c-Fos to multiple KSHV promoters. This finding indicates that c-Fos mediates distinct viral transcriptional progression following sustained ERK-RSK signaling during the KSHV lytic life cycle.
Collapse
|
74
|
Avey D, Brewers B, Zhu F. Recent advances in the study of Kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin 2015; 30:130-45. [PMID: 25924994 PMCID: PMC8200917 DOI: 10.1007/s12250-015-3595-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Brittany Brewers
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| |
Collapse
|
75
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
76
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are required for the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into the function and biological properties of ORF57 in the KSHV life cycle and pathogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| |
Collapse
|
77
|
Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015; 160:607-618. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
78
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
Collapse
|
79
|
KSHV reactivation and novel implications of protein isomerization on lytic switch control. Viruses 2015; 7:72-109. [PMID: 25588053 PMCID: PMC4306829 DOI: 10.3390/v7010072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022] Open
Abstract
In Kaposi’s sarcoma-associated herpesvirus (KSHV) oncogenesis, both latency and reactivation are hypothesized to potentiate tumor growth. The KSHV Rta protein is the lytic switch for reactivation. Rta transactivates essential genes via interactions with cofactors such as the cellular RBP-Jk and Oct-1 proteins, and the viral Mta protein. Given that robust viral reactivation would facilitate antiviral responses and culminate in host cell lysis, regulation of Rta’s expression and function is a major determinant of the latent-lytic balance and the fate of infected cells. Our lab recently showed that Rta transactivation requires the cellular peptidyl-prolyl cis/trans isomerase Pin1. Our data suggest that proline‑directed phosphorylation regulates Rta by licensing binding to Pin1. Despite Pin1’s ability to stimulate Rta transactivation, unchecked Pin1 activity inhibited virus production. Dysregulation of Pin1 is implicated in human cancers, and KSHV is the latest virus known to co-opt Pin1 function. We propose that Pin1 is a molecular timer that can regulate the balance between viral lytic gene expression and host cell lysis. Intriguing scenarios for Pin1’s underlying activities, and the potential broader significance for isomerization of Rta and reactivation, are highlighted.
Collapse
|
80
|
Noncoding RNA Expression During Viral Infection: The Long and the Short of It. MICRORNAS AND OTHER NON-CODING RNAS IN INFLAMMATION 2015. [PMCID: PMC7123390 DOI: 10.1007/978-3-319-13689-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
81
|
Tavanez JP, Quina AS, Cunha C. Virus and noncoding RNAs: stars in the host–virus interaction game. Future Virol 2014. [DOI: 10.2217/fvl.14.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT: In the past few years, noncoding RNAs (ncRNAs) have emerged as key modulators of the transcriptional and post-transcriptional control of a variety of cellular processes such as development, signaling, homeostasis and oncogenesis. Like their host cells, many viruses produce ncRNAs. During viral infection, and in order to establish persistent life-long infection of the host, viruses express both protein-coding and noncoding genes, modulating the cellular environment to favor infection. Given their limited genomic capacity, viruses evolved or acquired ncRNAs only if advantageous, either by enhancing the viral life cycle or assisting the virus in immune evasion of the host's response to infection. With variable length, structure, number, abundance and protein-binding partners, viral ncRNAs show specificity and diversity with respect to time of expression during the different stages of the virus life cycle and viral infection. Here, we review our current knowledge on the RNA-based mechanisms that regulate host–virus interaction focusing on viral ncRNAs and cellular ncRNAs modulated by viruses upon infection.
Collapse
Affiliation(s)
- João Paulo Tavanez
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Sofia Quina
- Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Centro de Estudos do Ambiente e do Mar, Aveiro, Portugal
| | - Celso Cunha
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
82
|
Campbell M, Kung HJ, Izumiya Y. Long non-coding RNA and epigenetic gene regulation of KSHV. Viruses 2014; 6:4165-77. [PMID: 25375882 PMCID: PMC4246214 DOI: 10.3390/v6114165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8) is a γ-herpesvirus linked to Kaposi's sarcoma (KS) and two lymphoproliferative disorders, primary effusion lymphoma (PEL or body-cavity B-lymphoma [BCBL]) and a subset of Multicentric Castleman's Disease. During lytic growth, pervasive viral transcription generating a variety of transcripts with uncertain protein-coding potential has been described on a genome-wide scale in β- and γ-herpesviruses. One class of such RNAs is called long non-coding RNAs (lncRNAs). KSHV encodes a viral lncRNA known as polyadenylated nuclear RNA (PAN RNA), a copious early gene product. PAN RNA has been implicated in KSHV gene expression, replication, and immune modulation. PAN RNA expression is required for optimal expression of the entire KSHV lytic gene expression program. Latent KSHV episomes are coated with viral latency-associated nuclear antigen (LANA). LANA rapidly dissociates from episomes during reactivation. Here we review recent studies suggesting that PAN RNA may function as a viral lncRNA, including a role in the facilitation of LANA-episomal dissociation during lytic replication.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology, University of California, Davis, CA 95616, USA.
| | - Hsing-Jien Kung
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
83
|
PAN's Labyrinth: Molecular biology of Kaposi's sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA. Viruses 2014; 6:4212-26. [PMID: 25375885 PMCID: PMC4246217 DOI: 10.3390/v6114212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesivrus, the causative agent of Kaposi’s sarcoma and body cavity lymphomas. During infection KSHV produces a highly abundant long non-coding polyadenylated RNA that is retained in the nucleus known as PAN RNA. Long noncoding RNAs (lncRNA) are key regulators of gene expression and are known to interact with specific chromatin modification complexes, working in cis and trans to regulate gene expression. Data strongly supports a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome.
Collapse
|
84
|
Abstract
Flaviviruses are a genus of (+)ssRNA (positive ssRNA) enveloped viruses that replicate in the cytoplasm of cells of diverse species from arthropods to mammals. Many are important human pathogens such as DENV-1-4 (dengue virus types 1-4), WNV (West Nile virus), YFV (yellow fever virus), JEV (Japanese encephalitis virus) and TBEV (tick-borne encephalitis). Given their RNA genomes it is not surprising that flaviviral life cycles revolve around critical RNA transactions. It is these we highlight in the present article. First, we summarize the mechanisms governing flaviviral replication and the central role of conserved RNA elements and viral protein-RNA interactions in RNA synthesis, translation and packaging. Secondly, we focus on how host RNA-binding proteins both benefit and inhibit flaviviral replication at different stages of their life cycle in mammalian hosts. Thirdly, we cover recent studies on viral non-coding RNAs produced in flavivirus-infected cells and how these RNAs affect various aspects of cellular RNA metabolism. Together, the article puts into perspective the central role of flaviviral RNAs in modulating both viral and cellular functions.
Collapse
|
85
|
Heward JA, Lindsay MA. Long non-coding RNAs in the regulation of the immune response. Trends Immunol 2014; 35:408-19. [PMID: 25113636 PMCID: PMC7106471 DOI: 10.1016/j.it.2014.07.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 11/23/2022]
Abstract
Widespread changes in lncRNA expresssion are associated with the immune response. lncRNAs regulate the inflammatory response following activation of innate immunity. lncRNAs regulate T cell differentiation and migration. The action of long non-coding RNAs is mediated via diverse mechanisms.
It is increasingly clear that long non-coding RNAs (lncRNAs) regulate a variety biological responses, and that they do so by a diverse range of mechanisms. In the field of immunology, recent publications have shown widespread changes in the expression of lncRNAs during the activation of the innate immune response and T cell development, differentiation, and activation. These lncRNAs control important aspects of immunity such as production of inflammatory mediators, differentiation, and cell migration through regulating protein–protein interactions or via their ability to basepair with RNA and DNA. We review the current understanding of the mechanism of action of these immune-related lncRNAs, discuss their impact on physiological and pathological processes, and highlight important areas of inquiry at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
- James A Heward
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
86
|
Bidet K, Dadlani D, Garcia-Blanco MA. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog 2014; 10:e1004242. [PMID: 24992036 PMCID: PMC4081823 DOI: 10.1371/journal.ppat.1004242] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/27/2014] [Indexed: 01/17/2023] Open
Abstract
Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.
Collapse
Affiliation(s)
- Katell Bidet
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Dhivya Dadlani
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Mariano A. Garcia-Blanco
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Center for RNA Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
87
|
Cox JE, Sullivan CS. Balance and Stealth: The Role of Noncoding RNAs in the Regulation of Virus Gene Expression. Annu Rev Virol 2014; 1:89-109. [PMID: 26958716 DOI: 10.1146/annurev-virology-031413-085439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past two decades, our knowledge of gene regulation has been greatly expanded by the discovery of microRNAs (miRNAs). miRNAs are small (19-24 nt) noncoding RNAs (ncRNAs) found in metazoans, plants, and some viruses. They have been shown to regulate many cellular processes, including differentiation, maintenance of homeostasis, apoptosis, and the immune response. At present, there are over 300 known viral miRNAs encoded by diverse virus families. One well-characterized function of some viral miRNAs is the regulation of viral transcripts. Host miRNAs can also regulate viral gene expression. We propose that viruses take advantage of both host and viral ncRNA regulation to balance replication and infectious state (for example, latent versus lytic infection). As miRNA regulation can be reversed upon certain cellular stresses, we hypothesize that ncRNAs can serve viruses as barometers for cellular stress.
Collapse
Affiliation(s)
- Jennifer E Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| | - Christopher S Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| |
Collapse
|
88
|
Abstract
ABSTRACT: Human cytomegalovirus (HCMV) has a tremendous coding capacity within its dsDNA genome that has allowed it to coevolve with its host. Transcription of the virus genome is not limited to protein-coding genes; in fact, most of the transcription from the HCMV genome during lytic replication generates viral ncRNAs that are not translated into protein. Four long ncRNAs (RNA5.0, RNA4.9, RNA1.2 and RNA2.7) account for the majority of HCMV transcription during lytic replication. Here, we review the expression and function of these long ncRNAs in the context of virus replication and pathogenesis. Long ncRNAs may contribute to HCMV evasion of the host response and manipulate cellular and viral programs to successfully persist throughout the lifetime of its host.
Collapse
Affiliation(s)
- Toni M Schwarz
- University of Colorado School of Medicine, Department of Microbiology, MS8333, 12800 E 19th Ave, Aurora, CO 80045, USA
| | - Caroline A Kulesza
- University of Colorado School of Medicine, Department of Microbiology, MS8333, 12800 E 19th Ave, Aurora, CO 80045, USA
| |
Collapse
|
89
|
Abstract
Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. The fact that pervasive transcription produces functionally important RNAs has profound implications for design and interpretation of genetic studies in herpesviruses, since such studies often involve mutating both strands of the genome. This is a common potential problem; for example, a conservative estimate is that there are an additional 73,000 nucleotides transcribed antisense to annotated ORFs from the 119,450-bp MHV68 genome. Recognizing the importance of considering the function of each strand of the viral genome independently, we used strand-specific approaches to identify six regions of the genome encoding transcripts that promoted viral protein expression. For two of these regions, we mapped novel transcripts and determined that targeting transcripts from these regions reduced viral replication and the expression of other viral genes. This is the first description of a function for these RNAs and suggests that novel transcripts emanating from regions of pervasive transcription are critical for the viral life cycle.
Collapse
|
90
|
Amaral PP, Dinger ME, Mattick JS. Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief Funct Genomics 2013; 12:254-78. [PMID: 23709461 DOI: 10.1093/bfgp/elt016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells and organisms are subject to challenges and perturbations in their environment and physiology in all stages of life. The molecular response to such changes, including insulting conditions such as pathogen infections, involves coordinated modulation of gene expression programmes and has not only homeostatic but also ecological and evolutionary importance. Although attention has been primarily focused on signalling pathways and protein networks, non-coding RNAs (ncRNAs), which comprise a significant output of the genomes of prokaryotes and especially eukaryotes, are increasingly implicated in the molecular mechanisms of these responses. Long and short ncRNAs not only regulate development and cell physiology, they are also involved in disease states, including cancers, in host-pathogen interactions, and in a variety of stress responses. Indeed, regulatory RNAs are part of genetically encoded response networks and also underpin epigenetic processes, which are emerging as key mechanisms of adaptation and transgenerational inheritance. Here we present the growing evidence that ncRNAs are intrinsically involved in cellular and organismal adaptation processes, in both robustness and protection to stresses, as well as in mechanisms generating evolutionary change.
Collapse
|
91
|
Abstract
Latent Kaposi's sarcoma-associated herpesvirus (KSHV) episomes are coated with viral latency-associated nuclear antigen (LANA). In contrast, LANA rapidly disassociates from episomes during reactivation. Lytic KSHV expresses polyadenylated nuclear RNA (PAN RNA), a long noncoding RNA (lncRNA). We report that PAN RNA promotes LANA-episome disassociation through an interaction with LANA which facilitates LANA sequestration away from KSHV episomes during reactivation. These findings suggest that KSHV may have evolved an RNA aptamer to regulate latent protein function.
Collapse
|
92
|
Conrad NK. The emerging role of triple helices in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:15-29. [PMID: 24115594 DOI: 10.1002/wrna.1194] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 12/19/2022]
Abstract
The ability of RNA to form sophisticated secondary and tertiary structures enables it to perform a wide variety of cellular functions. One tertiary structure, the RNA triple helix, was first observed in vitro over 50 years ago, but biological activities for triple helices are only beginning to be appreciated. The recent determination of several RNA structures has implicated triple helices in distinct biological functions. For example, the SAM-II riboswitch forms a triple helix that creates a highly specific binding pocket for S-adenosylmethionine. In addition, a triple helix in the conserved pseudoknot domain of the telomerase-associated RNA TER is essential for telomerase activity. A viral RNA cis-acting RNA element called the ENE contributes to the nuclear stability of a viral noncoding RNA by forming a triple helix with the poly(A) tail. Finally, a cellular noncoding RNA, MALAT1, includes a triple helix at its 3'-end that contributes to RNA stability, but surprisingly also supports translation. These examples highlight the diverse roles that RNA triple helices play in biology. Moreover, the dissection of triple helix mechanisms has the potential to uncover fundamental pathways in cell biology.
Collapse
Affiliation(s)
- Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
93
|
Capocefalo A, Mangia C, Franceschi V, Jacca S, van Santen VL, Donofrio G. Efficient heterologous antigen gene delivery and expression by a replication-attenuated BoHV-4-based vaccine vector. Vaccine 2013; 31:3906-14. [PMID: 23830977 DOI: 10.1016/j.vaccine.2013.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/20/2013] [Accepted: 06/19/2013] [Indexed: 01/16/2023]
Abstract
Bovine Herpesvirus 4 (BoHV-4) is a gammaherpesvirus belonging to the Rhadinovirus genus and due to its biological characteristics has been proposed as a vaccine vector for veterinary vaccines. Because viral vector-associated risk is a major concern for viral vector applications, attenuation is a desirable feature. Therefore, efforts are directed toward the development of highly attenuated viral vectors. BoHV-4 naturally exhibits limited pathogenicity and a further attenuation, in terms of replication, was obtained by disrupting the late gene encoding the 1.7-kb polyadenylated RNA (L1.7). An L1.7 deleted mutant BoHV-4 (BoHV-4-A-KanaGalKΔL1.7), as well as its revertant (BoHV-4-A-Rev), was generated by homologous recombination from the genome of a BoHV-4 isolate (BoHV-4-A) cloned as a bacterial artificial chromosome (BAC). BoHV-4-A-KanaGalKΔL1.7 showed attenuation in terms of competence to reconstitute infectious virus, viral replication, and plaque size when compared to BoHV-4-A, BoHV-4-A-Rev, and BoHV-4-A-KanaGalKΔTK, a recombinant control virus where the KanaGalK selectable marker was inserted into the thymidine kinase open reading frame. The capability of BoHV-4-A-KanaGalKΔL1.7 to deliver and express a heterologous antigen was investigated by replacing the KanaGalK cassette with a vesicular stomatitis virus glycoprotein (VSVg) expression cassette to generate BoHV-4-A-EF1αVSVgΔL1.7. BoHV-4-A-EF1αVSVgΔL1.7 infected cells robustly expressed VSVg, thus confirming that the replication deficiency resulting from L1.7 disruption did not prevent heterologous gene delivery and expression. Although further work is needed to identify the specific function of the BoHV-4 L1.7 gene, the L1.7 gene may represent an ideal targeting locus for the integration of a heterologous antigen expression cassette, resulting in attenuation of the viral vector.
Collapse
Affiliation(s)
- Antonio Capocefalo
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio 10, 43126 Parma, Italy
| | | | | | | | | | | |
Collapse
|
94
|
Krug LT. Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Curr Opin Virol 2013; 3:276-84. [PMID: 23684513 DOI: 10.1016/j.coviro.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
Abstract
Technological advances in genome-wide transcript analysis, referred to as the transcriptome, using microarrays and deep RNA sequencing methodologies are rapidly extending our understanding of the genetic content of the gammaherpesviruses (γHVs). These vast transcript analyses continue to uncover the complexity of coding transcripts due to alternative splicing, translation initiation and termination, as well as regulatory RNAs of the γHVs. A full assessment of the transcriptome requires that our analysis be extended to the virion and exosomes of infected cells since viral and host mRNAs, miRNAs, and other noncoding RNAs seem purposefully incorporated to exert function upon delivery to naïve cells. Understanding the regulation, biogenesis and function of the recently discovered transcripts will extend beyond pathogenesis and oncogenic events to offer key insights for basic RNA processes of the cell.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
95
|
Eilebrecht S, Schwartz C, Rohr O. Non-coding RNAs: novel players in chromatin-regulation during viral latency. Curr Opin Virol 2013; 3:387-93. [PMID: 23660570 DOI: 10.1016/j.coviro.2013.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Chromatin structure plays an essential role during gene expression regulation not only in the case of the host cellular genome, but also during the viral life cycle. Epigenetic chromatin marks thereby define, whether a gene promoter is accessible for the transcription machinery or whether a repressive heterochromatin state is established. The heterochromatin-mediated repression of lytic viral genes results in viral latency, enabling the virus to persist dormant without being recognized by the host immune system, but keeping the potential for reactivation. Arising new systems biology approaches are starting to uncover an unexpected multiplicity and variety of non-coding (nc)RNAs playing important roles during chromatin structure control, likely constituting a novel layer in epigenetic regulation. In this review we give an overview of chromatin-regulatory viral and host cellular ncRNAs and their links to viral latency.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Vaccine Research Institute, INSERM U955, 8 rue du Général Sarrail, 94010 Créteil, France.
| | | | | |
Collapse
|
96
|
Abstract
The passage of mRNA molecules from the site of synthesis, through the nucleoplasm and the nuclear pore, en route to the cytoplasm, might appear straightforward. Nonetheless, several decades of detailed examination of this pathway, from high resolution electron microscopy in fixed specimens, through the development of immuno-detection techniques and fluorescence toolkits, to the current era of live-cell imaging, show this to be an eventful journey. In addition to mRNAs, several species of noncoding RNAs travel and function in the nucleus, some being retained within throughout their lifetime. This review will highlight the nucleoplasmic paths taken by mRNAs and noncoding RNAs in eukaryotic cells with special focus on live-cell data and in concurrence with the biophysical nature of the nucleus.
Collapse
Affiliation(s)
- Jonathan Sheinberger
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
97
|
Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA. J Virol 2013; 87:5540-53. [PMID: 23468496 DOI: 10.1128/jvi.03111-12] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the cause of Kaposi's sarcoma and body cavity lymphoma. In cell culture, KSHV results in a latent infection, and lytic reactivation is usually induced with the expression of K-Rta or by treatment with phorbol 12-myristate 13-acetate (TPA) and/or n-butyrate. Lytic infection is marked by the activation of the entire viral genomic transcription cascade and the production of infectious virus. KSHV-infected cells express a highly abundant, long, noncoding transcript referred to as polyadenylated nuclear RNA (PAN RNA). PAN RNA interacts with specific demethylases and physically binds to the KSHV genome to mediate activation of viral gene expression. A recombinant BACmid lacking the PAN RNA locus fails to express K-Rta and does not produce virus. We now show that the lack of PAN RNA expression results in the failure of the initiation of the entire KSHV transcription program. In addition to previous findings of an interaction with demethylases, we show that PAN RNA binds to protein components of Polycomb repression complex 2 (PRC2). RNA-Seq analysis using cell lines that express PAN RNA shows that transcription involving the expression of proteins involved in cell cycle, immune response, and inflammation is dysregulated. Expression of PAN RNA in various cell types results in an enhanced growth phenotype, higher cell densities, and increased survival compared to control cells. Also, PAN RNA expression mediates a decrease in the production of inflammatory cytokines. These data support a role for PAN RNA as a major global regulator of viral and cellular gene expression.
Collapse
|
98
|
Abstract
The 3' ends of two large noncoding RNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and MEN β, are formed by cleavage by RNase P and are capped but not polyadenylated. In the November 1, 2012, issue of Genes & Development, Wilusz and colleagues (pp. 2392-2407) show that when these 3' ends are formed on a GFP reporter, the resulting mRNA is exported to the cytoplasm and translated. The 3' end forms a novel triple-helical structure that supports export and translation as well as a poly(A) tail does.
Collapse
Affiliation(s)
- William F Marzluff
- Program in Molecular Biology, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
99
|
Lee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 noncoding RNA of Epstein-Barr virus. RNA (NEW YORK, N.Y.) 2012; 18:2073-82. [PMID: 23012480 PMCID: PMC3479396 DOI: 10.1261/rna.034900.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epstein-Barr virus (EBV)-infected cells express two noncoding RNAs called EBV-encoded RNA (EBER) 1 and EBER2. Despite their high abundance in the nucleus (about 10(6) copies), the molecular function of these noncoding RNAs has remained elusive. Here, we report that the insertion into EBER1 of an RNA aptamer that binds the bacteriophage MS2 coat protein allows the isolation of EBER1 and associated protein partners. By combining MS2-mediated selection with stable isotope labeling of amino acids in cell culture (SILAC) and analysis by mass spectrometry, we identified AUF1 (AU-rich element binding factor 1)/hnRNP D (heterogeneous nuclear ribonucleoprotein D) as an interacting protein of EBER1. AUF1 exists as four isoforms generated by alternative splicing and is best known for its role in destabilizing mRNAs upon binding to AU-rich elements (AREs) in their 3' untranslated region (UTR). Using UV crosslinking, we demonstrate that predominantly the p40 isoform of AUF1 interacts with EBER1 in vivo. Electrophoretic mobility shift assays show that EBER1 can compete for the binding of the AUF1 p40 isoform to ARE-containing RNA. Given the high abundance of EBER1 in EBV-positive cells, EBER1 may disturb the normal homeostasis between AUF1 and ARE-containing mRNAs or compete with other AUF1-interacting targets in cells latently infected by EBV.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Genaro Pimienta
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Corresponding authorE-mail
| |
Collapse
|
100
|
Interplay between polyadenylate-binding protein 1 and Kaposi's sarcoma-associated herpesvirus ORF57 in accumulation of polyadenylated nuclear RNA, a viral long noncoding RNA. J Virol 2012; 87:243-56. [PMID: 23077296 DOI: 10.1128/jvi.01693-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polyadenylate-binding protein cytoplasmic 1 (PABPC1) is a cytoplasmic-nuclear shuttling protein important for protein translation initiation and both RNA processing and stability. We report that PABPC1 forms a complex with the Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 protein, which allows ORF57 to interact with a 9-nucleotide (nt) core element of KSHV polyadenylated nuclear (PAN) RNA, a viral long noncoding RNA (lncRNA), and increase PAN stability. The N-terminal RNA recognition motifs (RRMs) of PABPC1 are necessary for the direct interaction with ORF57. During KSHV lytic infection, the expression of viral ORF57 leads to a substantial decrease in overall PABPC1 expression, along with a shift in the cellular distribution of the remaining PABPC1 to the nucleus. Interestingly, PABPC1 and ORF57 have opposing functions in modulating PAN steady-state accumulation. The suppressive effect of PABPC1 specific to PAN expression is alleviated by small interfering RNA knockdown of PABPC1 or by overexpression of ORF57. Conversely, ectopic PABPC1 reduces ORF57 steady-state protein levels and induces aberrant polyadenylation of PAN and thereby indirectly inhibits ORF57-mediated PAN accumulation. However, E1B-AP5 (heterogeneous nuclear ribonucleoprotein U-like 1), which interacts with a region outside the 9-nt core to stimulate PAN expression, does not interact or even colocalize with ORF57. Unlike PABPC1, the nuclear distribution of E1B-AP5 remains unchanged by viral lytic infection or overexpression of ORF57. Together, these data indicate that PABPC1 is an important cellular target of viral ORF57 to directly upregulate PAN accumulation during viral lytic infection, and the ability of host PABPC1 to disrupt ORF57 expression is a strategic host counterbalancing mechanism.
Collapse
|