51
|
Şenyuva İ, Koca C, Karabag Çoban F, Tarhan Ö. Salivary Histatin 5 Level in Women with Vaginal Candidiasis. Int J Clin Pract 2022; 2022:5279323. [PMID: 35832797 PMCID: PMC9252690 DOI: 10.1155/2022/5279323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Histatins (Hsts) are considered a prominent member of antimicrobial peptides rich in histidine, bearing antifungal activity against Candida species. Hst5 is the most effective among them. Although Hst5 is not found in the cervicovaginal fluid, it has been detected in the human serum. Saliva acts as a mirror, reflecting the cause and effect relationship between several diseases. We aimed to show the salivary Hst5 levels with vaginal candidiasis. Women in the reproductive age group (18-50 years) were enrolled in the study. Patients and controls were classified based on the presence or absence of vaginal discharge suggestive of candidiasis, respectively. Vaginal and salivary samples were collected from all the women. Vaginal samples were cultured for the growth of Candida species. Salivary samples were tested by protein electrophoresis to detect Hst5 levels, and the results were compared between the two groups. A total of 80 women were included in this study. The mean age of women in vaginal candidiasis and control groups was 34.25 ± 8.06 and 36.83 ± 7.29 years, respectively. Candida species were isolated from the vaginal samples of the patient group (34 C. albicans, 6 non-Candida albicans) but not from the control group. Hst5 levels in the patient and control group were found to be 0.0571 ± 0.003 ng/mL and 0.0641 ± 0,0031 ng/mL, respectively. Hst5 levels were found to be significantly lower in the vaginal candidiasis group (p=0.001). We conclude that decreased salivary Hst5 levels in women are associated with vaginal candidiasis. Candida infection is a cause or result of lower salivary Hst5 levels, and it may be an important finding for the etiopathogenesis, diagnosis, and treatment of the disease, but further analysis is needed.
Collapse
Affiliation(s)
- İrem Şenyuva
- Usak Training and Research Hospital, Department of Obstetrics and Gynecology, Usak, Turkey
| | - Cansu Koca
- University Faculty of Dentistry, Department of Maxillo Facial Surgery, Usak, Turkey
| | | | - Özgür Tarhan
- Usak University, Faculty of Engineering, Department of Food Engineering, Usak, Turkey
| |
Collapse
|
52
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
53
|
Muthu V, Rudramurthy SM, Chakrabarti A, Agarwal R. Epidemiology and Pathophysiology of COVID-19-Associated Mucormycosis: India Versus the Rest of the World. Mycopathologia 2021; 186:739-754. [PMID: 34414555 PMCID: PMC8375614 DOI: 10.1007/s11046-021-00584-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to a concerning resurgence of mucormycosis. More than 47,000 cases of mucormycosis were reported in three months from India. We update our systematic review on COVID-19-associated mucormycosis (CAM) till June 21st, 2021, comparing cases reported from India and elsewhere. We included individual patient details of 275 cases of CAM, of which 233 were reported from India and 42 from the rest of the world. Diabetes mellitus was the most common underlying risk factor for CAM in India than in other countries. The fatality rate of cases reported from India (36.5%) was less than the globally reported cases (61.9%), probably due to the predominance of rhino-orbital mucormycosis. On a multivariate analysis, we found that pulmonary or disseminated mucormycosis cases and admission to the intensive care unit were associated with increased mortality, while combination medical therapy improved survival. The paucity of pulmonary and disseminated mucormycosis cases from India suggests that these cases were either not diagnosed or reported, further supported by a trend of search data from the Google search engine. In this review, we discuss the factors explaining the substantial rise in cases of CAM. We also propose a hypothetical model describing the epidemiologic triad of CAM.
Collapse
Affiliation(s)
- Valliappan Muthu
- Department of Pulmonary Medicine, Department of Medical Microbiology, Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Pulmonary Medicine, Department of Medical Microbiology, Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Arunaloke Chakrabarti
- Department of Pulmonary Medicine, Department of Medical Microbiology, Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Department of Medical Microbiology, Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, 160012, India.
| |
Collapse
|
54
|
Wilson D. The role of zinc in the pathogenicity of human fungal pathogens. ADVANCES IN APPLIED MICROBIOLOGY 2021; 117:35-61. [PMID: 34742366 DOI: 10.1016/bs.aambs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fungal pathogens now account for an unprecedented burden on human health. Like all microorganisms, these fungi must successfully forage for essential micronutrients such as zinc in order to proliferate. However, pathogenic microbes face an additional hurdle in securing zinc from their environment: the action of host nutritional immunity which strictly manipulates microbial access to this essential, but also potentially toxic trace metal. This review introduces the relevant pathogenic species and goes on to cover the molecular mechanisms of zinc uptake by human fungal pathogens. Fungi scavenge zinc from their environment via two basic mechanisms: via a family of cellular zinc importers-the ZIP transporters; and via a unique secreted zinc binding protein-the zincophore. However the genetic requirement of these systems for fungal virulence is highly species-specific. As well as zinc scarcity, potential intoxification with this heavy metal can occur and, unlike bacteria, fungi deal with environmental insult this via intraorganellar compartmentalization. Zinc availability also modulates the morphogenic behavior of a subset of pathogenic yeast species. This chapter will cover these different aspects of zinc availability on the physiology of human fungal pathogens with emphasis on the major pathogenic species Candida albicans.
Collapse
Affiliation(s)
- Duncan Wilson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
55
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
56
|
Muthu V, Kumar M, Paul RA, Zohmangaihi D, Choudhary H, Rudramurthy SM, Panda NK, Pannu AK, Sharma N, Sharma S, Chakrabarti A, Agarwal R. Is there an association between zinc and COVID-19-associated mucormycosis? Results of an experimental and clinical study. Mycoses 2021; 64:1291-1297. [PMID: 34420245 PMCID: PMC8661931 DOI: 10.1111/myc.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The enormous increase in COVID-19-associated mucormycosis (CAM) in India lacks an explanation. Zinc supplementation during COVID-19 management is speculated as a contributor to mucormycosis. We conducted an experimental and clinical study to explore the association of zinc and mucormycosis. METHODS We inoculated pure isolates of Rhizopus arrhizus obtained from subjects with CAM on dichloran rose Bengal chloramphenicol (DRBC) agar enriched with (three different concentrations) and without zinc. At 24 h, we counted the viable colonies and measured the dry weight of colonies at 24, 48 and 72 h. We also compared the clinical features and serum zinc levels in 29 CAM cases and 28 COVID-19 subjects without mucormycosis (controls). RESULTS We tested eight isolates of R arrhizus and noted a visible increase in growth in zinc-enriched media. A viable count percentage showed a significantly increased growth in four of the eight isolates in zinc-augmented DRBC agar. A time- and concentration-dependent increase in the mean fungal biomass with zinc was observed in all three isolates tested. We enrolled 29 cases of CAM and 28 controls. The mean serum zinc concentration was below the reference range in all the subjects and was not significantly different between the cases and controls. CONCLUSIONS Half of the R arrhizus isolates grew better with zinc enrichment in vitro. However, our study does not conclusively support the hypothesis that zinc supplementation contributed to the pathogenesis of mucormycosis. More data, both in vitro and in vivo, may resolve the role of zinc in the pathogenesis of CAM.
Collapse
Affiliation(s)
- Valliappan Muthu
- Department of Pulmonary MedicinePost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Mohan Kumar
- Department of Internal MedicinePost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Raees A. Paul
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Deepy Zohmangaihi
- Department of BiochemistryPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Hansraj Choudhary
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | | | - Naresh K. Panda
- Department of Otolaryngology and Head and Neck SurgeryPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Ashok Kumar Pannu
- Department of Internal MedicinePost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Navneet Sharma
- Department of Internal MedicinePost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sadhna Sharma
- Department of BiochemistryPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Arunaloke Chakrabarti
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Ritesh Agarwal
- Department of Pulmonary MedicinePost Graduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
57
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
58
|
Zolin GVS, da Fonseca FH, Zambom CR, Garrido SS. Histatin 5 Metallopeptides and Their Potential against Candida albicans Pathogenicity and Drug Resistance. Biomolecules 2021; 11:biom11081209. [PMID: 34439875 PMCID: PMC8391865 DOI: 10.3390/biom11081209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Usually caused by Candida albicans, buccal candidiasis begins with the morphological transition between yeast and hyphal cells. Over time and without the correct treatment, it can be disseminated through the bloodstream becoming a systemic infection with high mortality rates. C. albicans already shows resistance against antifungals commonly used in treatments. Therefore, the search for new drugs capable of overcoming antifungal resistance is essential. Histatin 5 (Hst5) is an antimicrobial peptide of the Histatin family, that can be found naturally in human saliva. This peptide presents high antifungal activity against C. albicans. However, Hst5 action can be decreased for interaction with enzymes and metal ions present in the oral cavity. The current work aims to bring a brief review of relevant aspects of the pathogenesis and resistance mechanisms already reported for C. albicans. In addition, are also reported here the main immune responses of the human body and the most common antifungal drugs. Finally, the most important aspects regarding Histatin 5 and the benefits of its interaction with metals are highlighted. The intention of this review is to show the promising use of Hst5 metallopeptides in the development of effective drugs.
Collapse
|
59
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
60
|
Johns LE, Goldman GH, Ries LN, Brown NA. Nutrient sensing and acquisition in fungi: mechanisms promoting pathogenesis in plant and human hosts. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
61
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
62
|
Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, Rodriguez Rondon AV, Nev OA, Brown AJP. Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends Microbiol 2021; 29:416-427. [PMID: 33059975 DOI: 10.1016/j.tim.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.
Collapse
Affiliation(s)
- Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Leandro J de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alejandra V Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Olga A Nev
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
63
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
64
|
Hunsaker EW, Yu CHA, Franz KJ. Copper Availability Influences the Transcriptomic Response of Candida albicans to Fluconazole Stress. G3-GENES GENOMES GENETICS 2021; 11:6162163. [PMID: 33693623 PMCID: PMC8049437 DOI: 10.1093/g3journal/jkab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 01/16/2023]
Abstract
The ability of pathogens to maintain homeostatic levels of essential biometals is known to be important for survival and virulence in a host, which itself regulates metal availability as part of its response to infection. Given this importance of metal homeostasis, we sought to address how the availability of copper in particular impacts the response of the opportunistic fungal pathogen Candida albicans to treatment with the antifungal drug fluconazole. The present study reports whole transcriptome analysis via time-course RNA-seq of C. albicans cells exposed to fluconazole with and without 10 µM supplemental CuSO4 added to the growth medium. The results show widespread impacts of small changes in Cu availability on the transcriptional response of C. albicans to fluconazole. Of the 2359 genes that were differentially expressed under conditions of cotreatment, 50% were found to be driven uniquely by exposure to both Cu and fluconazole. The breadth of metabolic processes that were affected by cotreatment illuminates a fundamental intersectionality between Cu metabolism and fungal response to drug stress. More generally, these results show that seemingly minor fluctuations in Cu availability are sufficient to shift cells’ transcriptional response to drug stress. Ultimately, the findings may inform the development of new strategies that capitalize on drug-induced vulnerabilities in metal homeostasis pathways.
Collapse
Affiliation(s)
- Elizabeth W Hunsaker
- Department of Chemistry, French Family Science Center, Duke University, Durham, NC 27708, USA
| | | | - Katherine J Franz
- Department of Chemistry, French Family Science Center, Duke University, Durham, NC 27708, USA
| |
Collapse
|
65
|
Thanh Nguyen H, Zhang R, Inokawa N, Oura T, Chen X, Iwatani S, Niimi K, Niimi M, Holmes AR, Cannon RD, Kajiwara S. Candida albicans Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite. J Oral Microbiol 2021; 13:1879497. [PMID: 33628397 PMCID: PMC7889271 DOI: 10.1080/20002297.2021.1879497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Candida albicans is an opportunistic pathogen that causes oral candidiasis. A previous study showed that Bgl2p and Ecm33p may mediate the interaction between the yeast and saliva-coated hydroxyapatite (SHA; a model for the tooth surface). This study investigated the roles of these cell wall proteins in the adherence of C. albicans to SHA beads. Methods: C. albicans BGL2 and ECM33 null mutants were generated from wild-type strain SC5314 by using the SAT1-flipper gene disruption method. A novel method based on labelling the yeast with Nile red, was used to investigate the adherence. Results: Adhesion of bgl2Δ and ecm33Δ null mutants to SHA beads was 76.4% and 64.8% of the wild-type strain, respectively. Interestingly, the adhesion of the bgl2Δ, ecm33Δ double mutant (87.7%) was higher than that of both single mutants. qRT-PCR analysis indicated that the ALS1 gene was over-expressed in the bgl2Δ, ecm33Δ strain. The triple null mutant showed a significantly reduced adherence to the beads, (37.6%), compared to the wild-type strain. Conclusion: Bgl2p and Ecm33p contributed to the interaction between C. albicans and SHA beads. Deletion of these genes triggered overexpression of the ALS1 gene in the bgl2Δ/ecm33Δ mutant strain, and deletion of all three genes caused a significant decrease in adhesion.
Collapse
Affiliation(s)
- Hoa Thanh Nguyen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Rouyu Zhang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Naoki Inokawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Takahiro Oura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kyoko Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Masakazu Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ann Rachel Holmes
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
66
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
67
|
Assunção LDP, Moraes D, Soares LW, Silva-Bailão MG, de Siqueira JG, Baeza LC, Báo SN, Soares CMDA, Bailão AM. Insights Into Histoplasma capsulatum Behavior on Zinc Deprivation. Front Cell Infect Microbiol 2020; 10:573097. [PMID: 33330123 PMCID: PMC7734293 DOI: 10.3389/fcimb.2020.573097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Histoplasma capsulatum is a thermodimorphic fungus that causes histoplasmosis, a mycosis of global incidence. The disease is prevalent in temperate and tropical regions such as North America, South America, Europe, and Asia. It is known that during infection macrophages restrict Zn availability to H. capsulatum as a microbicidal mechanism. In this way the present work aimed to study the response of H. capsulatum to zinc deprivation. In silico analyses showed that H. capsulatum has eight genes related to zinc homeostasis ranging from transcription factors to CDF and ZIP family transporters. The transcriptional levels of ZAP1, ZRT1, and ZRT2 were induced under zinc-limiting conditions. The decrease in Zn availability increases fungicidal macrophage activity. Proteomics analysis during zinc deprivation at 24 and 48 h showed 265 proteins differentially expressed at 24 h and 68 at 48 h. Proteins related to energy production pathways, oxidative stress, and cell wall remodeling were regulated. The data also suggested that low metal availability increases the chitin and glycan content in fungal cell wall that results in smoother cell surface. Metal restriction also induces oxidative stress triggered, at least in part, by reduction in pyridoxin synthesis.
Collapse
Affiliation(s)
- Leandro do Prado Assunção
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Dayane Moraes
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lucas Weba Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Mirelle Garcia Silva-Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Janaina Gomes de Siqueira
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Lilian Cristiane Baeza
- Laboratory of Experimental Microbiology, State University of Western Paraná (Unioeste), Cascavel, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Institute of Biological Sciences, Brasília University (UnB), Brasilia, Brazil
| | - Célia Maria de Almeida Soares
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| | - Alexandre Melo Bailão
- Molecular Biology and Biochemistry Laboratory, Institute of Biological Sciences II, Federal University of Goias (UFG), Goiania, Brazil
| |
Collapse
|
68
|
Hu J. Toward unzipping the ZIP metal transporters: structure, evolution, and implications on drug discovery against cancer. FEBS J 2020; 288:5805-5825. [PMID: 33296542 DOI: 10.1111/febs.15658] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The Zrt-/Irt-like protein (ZIP) family consists of divalent metal transporters, ubiquitous in all kingdoms of life. Since the discovery of the first ZIPs in the 1990s, the ZIP family has been expanding to contain tens of thousands of members playing key roles in uptake and homeostasis of life-essential trace elements, primarily zinc, iron and manganese. Some family members are also responsible for toxic metal (particularly cadmium) absorption and distribution. Their central roles in trace element biology, and implications in many human diseases, including cancers, have elicited interest across multiple disciplines for potential applications in biomedicine, agriculture and environmental protection. In this review and perspective, selected areas under rapid progress in the last several years, including structural biology, evolution, and drug discovery against cancers, are summarised and commented. Future research to address the most prominent issues associated with transport and regulation mechanisms are also discussed.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
69
|
Sprenger M, Brunke S, Hube B, Kasper L. A TRP1-marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in Candida glabrata. FEMS Yeast Res 2020; 20:6027539. [PMID: 33289831 PMCID: PMC7787354 DOI: 10.1093/femsyr/foaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 01/14/2023] Open
Abstract
Although less prevalent than its relative Candida albicans, the yeast Candida glabrata is a successful pathogen of humans, which causes life-threatening candidiasis. It is thus vital to understand the pathogenicity mechanisms and contributing genes in C. glabrata. However, gene complementation as a tool for restoring the function of a previously deleted gene is not standardized in C. glabrata, and it is less frequently used than in C. albicans. In this study, we established a gene complementation strategy using genomic integration at the TRP1 locus. We prove that our approach can not only be used for integration of complementation cassettes, but also for overexpression of markers like fluorescent proteins and the antigen ovalbumin, or of potential pathogenicity-related factors like the biotin transporter gene VHT1. With urea amidolyase Dur1,2 as an example, we demonstrate the application of the gene complementation approach for the expression of sequence-modified genes. With this approach, we found that a lysine-to-arginine mutation in the biotinylation motif of Dur1,2 impairs urea-dependent growth of C. glabrata and C. albicans. Taken together, the TRP1-based gene complementation approach is a valuable tool for investigating novel gene functions and for elucidating their role in the pathobiology of C. glabrata.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
70
|
Soares LW, Bailão AM, Soares CMDA, Bailão MGS. Zinc at the Host-Fungus Interface: How to Uptake the Metal? J Fungi (Basel) 2020; 6:jof6040305. [PMID: 33233335 PMCID: PMC7711662 DOI: 10.3390/jof6040305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential nutrient for all living organisms. However, firm regulation must be maintained since micronutrients also can be toxic in high concentrations. This notion is reinforced when we look at mechanisms deployed by our immune system, such as the use of chelators or membrane transporters that capture zinc, when threatened with pathogens, like fungi. Pathogenic fungi, on the other hand, also make use of a variety of transporters and specialized zinc captors to survive these changes. In this review, we sought to explain the mechanisms, grounded in experimental analysis and described to date, utilized by pathogenic fungi to maintain optimal zinc levels.
Collapse
|
71
|
König A, Müller R, Mogavero S, Hube B. Fungal factors involved in host immune evasion, modulation and exploitation during infection. Cell Microbiol 2020; 23:e13272. [PMID: 32978997 DOI: 10.1111/cmi.13272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
72
|
Riedelberger M, Penninger P, Tscherner M, Hadriga B, Brunnhofer C, Jenull S, Stoiber A, Bourgeois C, Petryshyn A, Glaser W, Limbeck A, Lynes MA, Schabbauer G, Weiss G, Kuchler K. Type I Interferons Ameliorate Zinc Intoxication of Candida glabrata by Macrophages and Promote Fungal Immune Evasion. iScience 2020; 23:101121. [PMID: 32428860 PMCID: PMC7232100 DOI: 10.1016/j.isci.2020.101121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Host and fungal pathogens compete for metal ion acquisition during infectious processes, but molecular mechanisms remain largely unknown. Here, we show that type I interferons (IFNs-I) dysregulate zinc homeostasis in macrophages, which employ metallothionein-mediated zinc intoxication of pathogens as fungicidal response. However, Candida glabrata can escape immune surveillance by sequestering zinc into vacuoles. Interestingly, zinc-loading is inhibited by IFNs-I, because a Janus kinase 1 (JAK1)-dependent suppression of zinc homeostasis affects zinc distribution in macrophages as well as generation of reactive oxygen species (ROS). In addition, systemic fungal infections elicit IFN-I responses that suppress splenic zinc homeostasis, thereby altering macrophage zinc pools that otherwise exert fungicidal actions. Thus, IFN-I signaling inadvertently increases fungal fitness both in vitro and in vivo during fungal infections. Our data reveal an as yet unrecognized role for zinc intoxication in antifungal immunity and suggest that interfering with host zinc homeostasis may offer therapeutic options to treat invasive fungal infections.
Collapse
Affiliation(s)
- Michael Riedelberger
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Michael Tscherner
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Bernhard Hadriga
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Carina Brunnhofer
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Sabrina Jenull
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Christelle Bourgeois
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andriy Petryshyn
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Walter Glaser
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, CT, USA
| | - Gernot Schabbauer
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, and Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Kuchler
- Medical University of Vienna, Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
73
|
Wehmeier S, Morrison E, Plato A, Raab A, Feldmann J, Bedekovic T, Wilson D, Brand AC. Multi trace element profiling in pathogenic and non-pathogenic fungi. Fungal Biol 2020; 124:516-524. [PMID: 32389315 PMCID: PMC7232024 DOI: 10.1016/j.funbio.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Maintaining appropriate levels of trace elements during infection of a host is essential for microbial pathogenicity. Here we compared the uptake of 10 trace elements from 3 commonly-used laboratory media by 3 pathogens, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, and a model yeast, Saccharomyces cerevisiae. The trace element composition of the yeasts, C. albicans, C. neoformans and S. cerevisiae, grown in rich (YPD) medium, differed primarily in P, S, Fe, Zn and Co. Speciation analysis of the intracellular fraction, which indicates the size of the organic ligands with which trace elements are complexed, showed that the ligands for S were similar in the three fungi but there were significant differences in binding partners for Fe and Zn between C. neoformans and S.cerevisiae. The profile for Cu varied across the 3 yeast species. In a comparison of C. albicans and A. fumigatus hyphae, the former showed higher Fe, Cu, Zn and Mn, while A. fumigatus contained higher P, S Ca and Mo. Washing C. albicans cells with the cell-impermeable chelator, EGTA, depleted 50–90 % of cellular Ca, suggesting that a large proportion of this cation is stored in the cell wall. Treatment with the cell wall stressor, Calcofluor White (CFW), alone had little effect on the elemental profile whilst combined Ca + CFW stress resulted in high cellular Cu and very high Ca. Together our data enhance our understanding of trace element uptake by pathogenic fungi and provide evidence for the cell wall as an important storage organelle for Ca.
Collapse
Affiliation(s)
- Silvia Wehmeier
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Emma Morrison
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anthony Plato
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Andrea Raab
- TESLA, School of Natural and Computing Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Jörg Feldmann
- TESLA, School of Natural and Computing Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Tina Bedekovic
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Alexandra C Brand
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
74
|
Alves R, Barata-Antunes C, Casal M, Brown AJP, Van Dijck P, Paiva S. Adapting to survive: How Candida overcomes host-imposed constraints during human colonization. PLoS Pathog 2020; 16:e1008478. [PMID: 32437438 PMCID: PMC7241708 DOI: 10.1371/journal.ppat.1008478] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Successful human colonizers such as Candida pathogens have evolved distinct strategies to survive and proliferate within the human host. These include sophisticated mechanisms to evade immune surveillance and adapt to constantly changing host microenvironments where nutrient limitation, pH fluctuations, oxygen deprivation, changes in temperature, or exposure to oxidative, nitrosative, and cationic stresses may occur. Here, we review the current knowledge and recent findings highlighting the remarkable ability of medically important Candida species to overcome a broad range of host-imposed constraints and how this directly affects their physiology and pathogenicity. We also consider the impact of these adaptation mechanisms on immune recognition, biofilm formation, and antifungal drug resistance, as these pathogens often exploit specific host constraints to establish a successful infection. Recent studies of adaptive responses to physiological niches have improved our understanding of the mechanisms established by fungal pathogens to evade the immune system and colonize the host, which may facilitate the design of innovative diagnostic tests and therapeutic approaches for Candida infections.
Collapse
Affiliation(s)
- Rosana Alves
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
| | - Cláudia Barata-Antunes
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
| | | | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S) University of Minho, Campus de Gualtar, Braga, Portugal
- * E-mail: mailto:
| |
Collapse
|
75
|
Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. mBio 2020; 11:mBio.00206-20. [PMID: 32345638 PMCID: PMC7188989 DOI: 10.1128/mbio.00206-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Candida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans. The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans. However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1. In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1. In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.
Collapse
|
76
|
Synergistic Antifungal Study of PEGylated Graphene Oxides and Copper Nanoparticles against Candida albicans. NANOMATERIALS 2020; 10:nano10050819. [PMID: 32344901 PMCID: PMC7281513 DOI: 10.3390/nano10050819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
The coupling reactions of polyethylene glycol (PEG) with two different nano-carbonaceous materials, graphene oxide (GO) and expanded graphene oxide (EGO), were achieved by amide bond formations. These reactions yielded PEGylated graphene oxides, GO-PEG and EGO-PEG. Whilst presence of the newly formed amide links (NH-CO) were confirmed by FTIR stretches observed at 1732 cm−1 and 1712 cm−1, the associated Raman D- and G-bands resonated at 1311/1318 cm−1 and 1584/1595 cm−1 had shown the carbonaceous structures in both PEGylated products remain unchanged. Whilst SEM images revealed the nano-sheet structures in all the GO derivatives (GO/EGO and GO-PEG/EGO-PEG), TEM images clearly showed the nano-structures of both GO-PEG and EGO-PEG had undergone significant morphological changes from their starting materials after the PEGylated processes. The successful PEGylations were also indicated by the change of pH values measured in the starting GO/EGO (pH 2.6–3.3) and the PEGylated GO-PEG/EGO-PEG (pH 6.6–6.9) products. Initial antifungal activities of selective metallic nanomaterials (ZnO and Cu) and the four GO derivatives were screened against Candida albicans using the in vitro cut-well method. Whilst the haemocytometer count indicated GO-PEG and copper nanoparticles (CuNPs) exhibited the best antifungal effects, the corresponding SEM images showed C. albicans had, respectively, undergone extensive shrinkage and porosity deformations. Synergistic antifungal effects all GO derivatives in various ratio of CuNPs combinations were determined by assessing C. albicans viabilities using broth dilution assays. The best synergistic effects were observed when a 30:70 ratio of GO/GO-PEG combined with CuNPs, where MIC50 185–225 μm/mL were recorded. Moreover, the decreased antifungal activities observed in EGO and EGO-PEG may be explained by their poor colloidal stability with increasing nanoparticle concentrations.
Collapse
|
77
|
Eide DJ. Transcription factors and transporters in zinc homeostasis: lessons learned from fungi. Crit Rev Biochem Mol Biol 2020; 55:88-110. [PMID: 32192376 DOI: 10.1080/10409238.2020.1742092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a critical structural or catalytic cofactor for many proteins. These zinc-dependent proteins are abundant in the cytosol as well as within organelles of eukaryotic cells such as the nucleus, mitochondria, endoplasmic reticulum, Golgi, and storage compartments such as the fungal vacuole. Therefore, cells need zinc transporters so that they can efficiently take up the metal and move it around within cells. In addition, because zinc levels in the environment can vary drastically, the activity of many of these transporters and other components of zinc homeostasis is regulated at the level of transcription by zinc-responsive transcription factors. Mechanisms of post-transcriptional control are also important for zinc homeostasis. In this review, the focus will be on our current knowledge of zinc transporters and their regulation by zinc-responsive transcription factors and other mechanisms in fungi because these organisms have served as useful paradigms of zinc homeostasis in all organisms. With this foundation, extension to other organisms will be made where warranted.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
78
|
Garcia-Santamarina S, Probst C, Festa RA, Ding C, Smith AD, Conklin SE, Brander S, Kinch LN, Grishin NV, Franz KJ, Riggs-Gelasco P, Lo Leggio L, Johansen KS, Thiele DJ. A lytic polysaccharide monooxygenase-like protein functions in fungal copper import and meningitis. Nat Chem Biol 2020; 16:337-344. [PMID: 31932719 PMCID: PMC7036007 DOI: 10.1038/s41589-019-0437-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Infection by the fungal pathogen Cryptococcus neoformans causes lethal meningitis, primarily in immune-compromised individuals. Colonization of the brain by C. neoformans is dependent on copper (Cu) acquisition from the host, which drives critical virulence mechanisms. While C. neoformans Cu+ import and virulence are dependent on the Ctr1 and Ctr4 proteins, little is known concerning extracellular Cu ligands that participate in this process. We identified a C. neoformans gene, BIM1, that is strongly induced during Cu limitation and which encodes a protein related to lytic polysaccharide monooxygenases (LPMOs). Surprisingly, bim1 mutants are Cu deficient, and Bim1 function in Cu accumulation depends on Cu2+ coordination and cell-surface association via a glycophosphatidyl inositol anchor. Bim1 participates in Cu uptake in concert with Ctr1 and expression of this pathway drives brain colonization in mouse infection models. These studies demonstrate a role for LPMO-like proteins as a critical factor for Cu acquisition in fungal meningitis.
Collapse
Affiliation(s)
- Sarela Garcia-Santamarina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Genome Biology Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Corinna Probst
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Richard A Festa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Irvine Scientific, Santa Ana, CA, USA
| | - Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Aaron D Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Steven E Conklin
- Department of Chemistry, Duke University, Durham, NC, USA
- Division of Clinical Chemistry, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Søren Brander
- Department of Geoscience and Natural Resource, University of Copenhagen, Copenhagen, Denmark
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Katja Salomon Johansen
- Department of Geoscience and Natural Resource, University of Copenhagen, Copenhagen, Denmark
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
79
|
Hecel A, Kola A, Valensin D, Kozlowski H, Rowinska-Zyrek M. Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from Escherichia coli. Inorg Chem 2020; 59:1947-1958. [PMID: 31970989 PMCID: PMC7467640 DOI: 10.1021/acs.inorgchem.9b03298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The crystal structure of ZnZnuA from Escherichia coli reveals two metal binding sites. (i) The primary binding site, His143, is located close the His-rich loop (residues 116-138) and plays a significant role in Zn(II) acquisition. (ii) The secondary binding site involves His224. In this work, we focus on understanding the interactions of two metal ions, Zn(II) and Cu(II), with two regions of ZnuA, which are possible anchoring sites for Zn(II): Ac-115MKSIHGDDDDHDHAEKSDEDHHHGDFNMHLW145-NH2 (primary metal binding site) and Ac-223GHFTVNPEIQPGAQRLHE240-NH2 (secondary metal binding site). The histidine-rich loop (residues 116-138) has a role in the capture of zinc(II), which is then further delivered into other regions of the protein. For both Zn(II) complexes, histidine residues constitute the main anchoring donors. In the longer, His-rich fragment, a tetrahedral complex with four His residues is formed, while in the second ligand, two imidazole nitrogens are involved in zinc(II) binding. In both cases, so-called loop structures are formed. One consists of a 125HxHxExxxExHxH137 motif with seven amino acid residues in the loop between the two central histidines, while the other is formed by a 224HFTVNPEIQPGAQRLH239 motif with 14 amino acid residues in the loop between the two nearest coordinating histidines. The number of available imidazoles also strongly affects the structure of copper(II) complexes; the more histidines in the studied region, the higher the pH in which amide nitrogens will participate in Cu(II) binding.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry , University of Wroclaw , F. Joliot-Curie 14 , 50-383 Wroclaw , Poland
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Henryk Kozlowski
- Faculty of Chemistry , University of Wroclaw , F. Joliot-Curie 14 , 50-383 Wroclaw , Poland.,Public Higher Medical Professional School in Opole , Katowicka 68 , 45-060 Opole , Poland
| | | |
Collapse
|
80
|
Hofmann M, Retamal-Morales G, Tischler D. Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 2020; 37:1262-1283. [DOI: 10.1039/c9np00058e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallophores can chelate many different metal and metalloid ions next to iron, make them valuable for many applications.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences
- Chemistry and Physics Faculty
- TU Bergakademie Freiberg
- 09599 Freiberg
- Germany
| | - Gerardo Retamal-Morales
- Laboratorio de Microbiología Básica y Aplicada
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Dirk Tischler
- Microbial Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
81
|
Identification and characterization of the ZRT, IRT-like protein (ZIP) family genes reveal their involvement in growth and kojic acid production in Aspergillus oryzae. ACTA ACUST UNITED AC 2019; 46:1769-1780. [DOI: 10.1007/s10295-019-02236-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022]
Abstract
Abstract
The ZRT, IRT-like protein (ZIP) family exists in many species and plays an important role in many biological processes, but little is known about ZIP genes in Aspergillus oryzae. Here, 10 ZIP genes in A. oryzae were identified and these were classified into four groups based on phylogenetic analysis. The structures of these AoZip genes were determined, which indicated a great divergence of AoZip members from different groups. Synteny analysis revealed that AoZip7, AoZip8, and AoZip10 are conserved among Aspergillus species. We also found that the promoter regions of AoZip2, AoZip7, AoZip8, and AoZip10 contain multiple conserved response elements. Expression analysis revealed that AoZips exhibited different expression patterns in response to different metal treatments. Moreover, overexpression and RNA-interference (RNAi) of AoZip2 led to a decrease in mycelium growth diameter and inhibited conidia formation. AoZip2 overexpression and RNAi strains showed distinct sensitivity to severely Zn/Mn-depleted stress. In addition, kojic acid production was markedly lower in AoZip2 overexpression and RNAi strains than in the control strains, and the expression of kojA, kojR, and kojT was down-regulated in AoZip2 overexpression and RNAi strains. This study provides new insights into our understanding of ZIP genes and lays a foundation for further investigation of their roles in Aspergillus oryzae.
Collapse
|
82
|
Optimizing and Evaluating the Antihelminthic Activity of the Biocompatible Zinc Oxide Nanoparticles Against the Ascaridid Nematode, Parascaris equorum In Vitro. Acta Parasitol 2019; 64:873-886. [PMID: 31478140 DOI: 10.2478/s11686-019-00111-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/21/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE In the present study, the effect of different biocompatible concentrations from ZnO nanoparticles (ZnO NPs) on the physiological state and surface topography of the nematode P. equorum was determined in vitro. METHODS Different concentrations of ZnO NPs (100, 200, 300 and 400 mg/l) synthesized using the egg white were prepared followed by the incubation of parasitic worms with these concentrations in vitro. The physiological state of treated worms such as oxidative stress markers, enzymatic activities and biochemical parameters in addition to the surface topography was determined and compared with control untreated worms. RESULTS In comparison to control worms, it was observed that at high concentrations of ZnO NPs, most of the treated worms showed an increase in the levels of ALT, AST and ALP (worm muscle damage, and gonad injury); enhancement of the total protein content (worm cellular dysfunction); significant increase in MDA level (free radical-mediated worm cell membrane damage); depletion in GST and GSH activities (reduced ability to clear toxic compounds like lipid peroxides); CAT depletion (superoxide dismutase and hydrogen peroxide toxicity) and NO increase (detoxification activity and stressful conditions on worms). SEM showed that there was a modified morphological appearance in the surface of treated worms; lips were wrinkled with irregularly arranged denticles, weathering of cuticle, bursts of cuticle layers, disruption of surface annulations and erosion of surface papillae of male around the cloacal opening. CONCLUSION ZnO NPs at environmentally relevant concentrations achieved a significant antihelminthic activity against P. equorum which represents a successful model used in parasite control experiments.
Collapse
|
83
|
Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun 2019; 10:5315. [PMID: 31757950 PMCID: PMC6876565 DOI: 10.1038/s41467-019-13298-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023] Open
Abstract
To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), β-glucan. Certain nutrients, stresses and antifungal drugs trigger β-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce β-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced β-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation. The authors show that the fungal pathogen Candida albicans exploits diverse host-associated signals, including specific nutrients and stresses, to promote immune evasion by masking cell wall β-glucan, a major pathogen-associated molecular pattern.
Collapse
|
84
|
The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. Infect Immun 2019; 87:IAI.00746-19. [PMID: 31548324 DOI: 10.1128/iai.00746-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterial pathogen capable of causing a variety of infections, including pneumonia, sepsis, wound, and burn infections. A. baumannii is an increasing threat to public health due to the prevalence of multidrug-resistant strains, leading the World Health Organization to declare A. baumannii a "Priority 1: Critical" pathogen, for which the development of novel antimicrobials is desperately needed. Zinc (Zn) is an essential nutrient that pathogenic bacteria, including A. baumannii, must acquire from their hosts in order to survive. Consequently, vertebrate hosts have defense mechanisms to sequester Zn from invading bacteria through a process known as nutritional immunity. Here, we describe a Zn uptake (Znu) system that enables A. baumannii to overcome this host-imposed Zn limitation. The Znu system consists of an inner membrane ABC transporter and an outer membrane TonB-dependent receptor. Strains of A. baumannii lacking any individual Znu component are unable to grow in Zn-starved conditions, including in the presence of the host nutritional immunity protein calprotectin. The Znu system contributes to Zn-limited growth by aiding directly in the uptake of Zn into A. baumannii cells and is important for pathogenesis in murine models of A. baumannii infection. These results demonstrate that the Znu system allows A. baumannii to subvert host nutritional immunity and acquire Zn during infection.
Collapse
|
85
|
Veerapandian R, Vediyappan G. Gymnemic Acids Inhibit Adhesive Nanofibrillar Mediated Streptococcus gordonii-Candida albicans Mono-Species and Dual-Species Biofilms. Front Microbiol 2019; 10:2328. [PMID: 31681200 PMCID: PMC6797559 DOI: 10.3389/fmicb.2019.02328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Dental caries and periodontitis are the most common oral disease of all age groups, affecting billions of people worldwide. These oral diseases are mostly associated with microbial biofilms in the oral cavity. Streptococcus gordonii, an early tooth colonizing bacterium and Candida albicans, an opportunistic pathogenic fungus, are the two abundant oral microbes that form mixed biofilms with augmented virulence, affecting oral health negatively. Understanding the molecular mechanisms of the pathogen interactions and identifying non-toxic compounds that block the growth of biofilms are important steps in the development of effective therapeutic approaches. In this in vitro study we report the inhibition of mono-species or dual-species biofilms of S. gordonii and C. albicans, and decreased levels of biofilm extracellular DNA (eDNA), when biofilms were grown in the presence of gymnemic acids (GAs), a non-toxic small molecule inhibitor of fungal hyphae. Scanning electron microscopic images of biofilms on saliva-coated hydroxyapatite (sHA) surfaces revealed attachment of S. gordonii cells to C. albicans hyphae and to sHA surfaces via nanofibrils only in the untreated control, but not in the GAs-treated biofilms. Interestingly, C. albicans produced fibrillar adhesive structures from hyphae when grown with S. gordonii as a mixed biofilm; addition of GAs abrogated the nanofibrils and reduced the growth of both hyphae and the biofilm. To our knowledge, this is the first report that C. albicans produces adhesive fibrils from hyphae in response to S. gordonii mixed biofilm growth. Semi-quantitative PCR of selected genes related to biofilms from both microbes showed differential expression in control vs. treated biofilms. Further, GAs inhibited the activity of recombinant S. gordonii glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Taken together, our results suggest that S. gordonii stimulates the expression of adhesive materials in C. albicans by direct interaction and/or signaling, and the adhesive material expression can be inhibited by GAs.
Collapse
Affiliation(s)
- Raja Veerapandian
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
86
|
Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of Candida glabrata. Int J Mol Sci 2019; 20:ijms20133172. [PMID: 31261727 PMCID: PMC6651560 DOI: 10.3390/ijms20133172] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022] Open
Abstract
Flexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of Candida albicans. Over the last decade, Candida glabrata has emerged as one of the most common and problematic causes of invasive candidiasis. Despite this, the links between carbon metabolism, fitness, and pathogenicity in C. glabrata are largely unexplored. Therefore, this study has investigated the impact of alternative carbon metabolism on the fitness and pathogenic attributes of C. glabrata. We confirm our previous observation that growth on carbon sources other than glucose, namely acetate, lactate, ethanol, or oleate, attenuates both the planktonic and biofilm growth of C. glabrata, but that biofilms are not significantly affected by growth on glycerol. We extend this by showing that C. glabrata cells grown on these alternative carbon sources undergo cell wall remodeling, which reduces the thickness of their β-glucan and chitin inner layer while increasing their outer mannan layer. Furthermore, alternative carbon sources modulated the oxidative stress resistance of C. glabrata as well as the resistance of C. glabrata to an antifungal drug. In short, key fitness and pathogenic attributes of C. glabrata are shown to be dependent on carbon source. This reaffirms the perspective that the nature of the carbon sources available within specific host niches is crucial for C. glabrata pathogenicity during infection.
Collapse
|
87
|
Yang L, Liu X, Sui Y, Ma Z, Feng X, Wang F, Ma T. Lycorine Hydrochloride Inhibits the Virulence Traits of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1851740. [PMID: 31275963 PMCID: PMC6582861 DOI: 10.1155/2019/1851740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 11/24/2022]
Abstract
The human opportunistic fungal pathogen Candida albicans causes a severe health burden while the biofilms formed by C. albicans present a kind of infections that are hard to cure, highlighting the pressing need for new antifungal drugs against C. albicans. This study was to explore the antifungal activities of lycorine hydrochloride (LH) against C. albicans. The minimal inhibitory concentration (MIC) of LH against C. albicans SC5314 was 64 μM. Below its MIC, LH demonstrated antivirulence property by suppressing adhesion, filamentation, biofilm formation, and development, as well as the production of extracellular phospholipase and exopolymeric substances (EPS). The cytotoxicity of LH against mammalian cells was low, with half maximal inhibitory concentrations (IC50) above 256 μM. Moreover, LH showed a synergistic effect with AmB, although its interaction with fluconazole, as well as caspofungin, was indifferent. Thus, our study reports the potential use of LH, alone or in combination with current antifungal drugs, to fight C. albicans infections.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Yujie Sui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xuechao Feng
- College of Life Science, Northeast Normal University, Changchun 130024, China
| | - Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
88
|
Wilson D, Deepe GS. The intersection of host and fungus through the zinc lens. Curr Opin Microbiol 2019; 52:35-40. [PMID: 31132743 DOI: 10.1016/j.mib.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
In this review, we summarize data regarding the influence of zinc on host defenses to human pathogenic fungi and how the fungus acquires zinc to sustain biological functions. Mammals have evolved several extracellular and intracellular mechanisms to withhold zinc from the fungus. Specific immune cells release zinc binding proteins such as calprotectin to capture the metal and deny it to the fungus. Intracellularly, several zinc binding proteins such as metallothioneins starve the fungus of zinc. The net result in both situations is depriving the fungus of a crucial micronutrient. To combat this struggle, fungi have developed means to capture zinc and store it. The mechanisms of transport for various fungi are discussed herein.
Collapse
Affiliation(s)
- Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
89
|
Llopis-Torregrosa V, Vaz C, Monteoliva L, Ryman K, Engstrom Y, Gacser A, Gil C, Ljungdahl PO, Sychrová H. Trk1-mediated potassium uptake contributes to cell-surface properties and virulence of Candida glabrata. Sci Rep 2019; 9:7529. [PMID: 31101845 PMCID: PMC6525180 DOI: 10.1038/s41598-019-43912-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022] Open
Abstract
The absence of high-affinity potassium uptake in Candida glabrata, the consequence of the deletion of the TRK1 gene encoding the sole potassium-specific transporter, has a pleiotropic effect. Here, we show that in addition to changes in basic physiological parameters (e.g., membrane potential and intracellular pH) and decreased tolerance to various cell stresses, the loss of high affinity potassium uptake also alters cell-surface properties, such as an increased hydrophobicity and adherence capacity. The loss of an efficient potassium uptake system results in diminished virulence as assessed by two insect host models, Drosophila melanogaster and Galleria mellonella, and experiments with macrophages. Macrophages kill trk1Δ cells more effectively than wild type cells. Consistently, macrophages accrue less damage when co-cultured with trk1Δ mutant cells compared to wild-type cells. We further show that low levels of potassium in the environment increase the adherence of C. glabrata cells to polystyrene and the propensity of C. glabrata cells to form biofilms.
Collapse
Affiliation(s)
- Vicent Llopis-Torregrosa
- Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Catarina Vaz
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Lucia Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ylva Engstrom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Attila Gacser
- Department of Microbiology, University of Szeged Interdisciplinary Excellence Centre, Szeged, Hungary.,MTA-SZTE "Lendület" "Mycobiome" Research Group, University of Szeged, Szeged, Hungary
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.
| |
Collapse
|
90
|
Candida albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens 2019; 8:pathogens8020053. [PMID: 31013590 PMCID: PMC6631630 DOI: 10.3390/pathogens8020053] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Flexible adaptation to the host environment is a critical trait that underpins the success of numerous microbes. The polymorphic fungus Candida albicans has evolved to persist in the numerous challenging niches of the human body. The interaction of C. albicans with a mucosal surface is an essential prerequisite for fungal colonisation and epitomises the complex interface between microbe and host. C. albicans exhibits numerous adaptations to a healthy host that permit commensal colonisation of mucosal surfaces without provoking an overt immune response that may lead to clearance. Conversely, fungal adaptation to impaired immune fitness at mucosal surfaces enables pathogenic infiltration into underlying tissues, often with devastating consequences. This review will summarise our current understanding of the complex interactions that occur between C. albicans and the mucosal surfaces of the human body.
Collapse
|
91
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
92
|
Wang W, Deng Z, Wu H, Zhao Q, Li T, Zhu W, Wang X, Tang L, Wang C, Cui SZ, Xiao H, Chen J. A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nat Commun 2019; 10:1015. [PMID: 30833559 PMCID: PMC6399272 DOI: 10.1038/s41467-019-08950-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/17/2019] [Indexed: 11/09/2022] Open
Abstract
Candida albicans can switch from commensal to pathogenic mode, causing mucosal or disseminated candidiasis. The host relies on pattern-recognition receptors including Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) to sense invading fungal pathogens and launch immune defense mechanisms. However, the complex interplay between fungus and host innate immunity remains incompletely understood. Here we report that C. albicans upregulates expression of a small secreted cysteine-rich protein Sel1 upon encountering limited nitrogen and abundant serum. Sel1 activates NF-κB and MAPK signaling pathways, leading to expression of proinflammatory cytokines and chemokines. Comprehensive genetic and biochemical analyses reveal both TLR2 and TLR4 are required for the recognition of Sel1. Further, SEL1-deficient C. albicans display an impaired immune response in vivo, causing increased morbidity and mortality in a bloodstream infection model. We identify a critical component in the Candida-host interaction that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Hongyu Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xiongjun Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Longhai Tang
- Suzhou Blood Center, Suzhou, Jiangsu, 215000, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
93
|
Brown AJP, Gow NAR, Warris A, Brown GD. Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection. Trends Microbiol 2019; 27:219-230. [PMID: 30509563 DOI: 10.1016/j.tim.2018.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
By analogy with Pavlov's dogs, certain pathogens have evolved anticipatory behaviours that exploit specific signals in the human host to prepare themselves against imminent host challenges. This adaptive prediction, a type of history-dependent microbial behaviour, represents a primitive form of microbial memory. For fungal pathogens, adaptive prediction helps them circumvent nutritional immunity, protects them against phagocytic killing, and activates immune evasion strategies. We describe how these anticipatory responses, and the contrasting lifestyles and evolutionary trajectories of fungal pathogens, have influenced the evolution of such adaptive behaviours, and how these behaviours affect host colonisation and infection.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; Current Address: School of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
94
|
Childers DS, Avelar GM, Bain JM, Larcombe DE, Pradhan A, Budge S, Heaney H, Brown AJP. Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance. Curr Top Microbiol Immunol 2019; 425:297-330. [PMID: 31781866 DOI: 10.1007/82_2019_182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.
Collapse
Affiliation(s)
- Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Helen Heaney
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
95
|
Bellotti D, Tocchio C, Guerrini R, Rowińska-Żyrek M, Remelli M. Thermodynamic and spectroscopic study of Cu(ii) and Zn(ii) complexes with the (148–156) peptide fragment of C4YJH2, a putative metal transporter of Candida albicans. Metallomics 2019; 11:1988-1998. [DOI: 10.1039/c9mt00251k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linker sequence between the two main Cu(ii) and Zn(ii) coordination sites of C4YJH2, a putative metal transporter of Candida albicans, contributes in a non-negligible way to the protein chelating capability.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Ferrara
- Italy
- Faculty of Chemistry
| | - Cinzia Tocchio
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Ferrara
- Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Ferrara
- Italy
| | | | - Maurizio Remelli
- Department of Chemical and Pharmaceutical Sciences
- University of Ferrara
- Ferrara
- Italy
| |
Collapse
|
96
|
Emerging Mechanisms of Drug Resistance in Candida albicans. YEASTS IN BIOTECHNOLOGY AND HUMAN HEALTH 2019; 58:135-153. [DOI: 10.1007/978-3-030-13035-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
97
|
Wang Y, Weisenhorn E, MacDiarmid CW, Andreini C, Bucci M, Taggart J, Banci L, Russell J, Coon JJ, Eide DJ. The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 2018; 10:1755-1776. [PMID: 30358795 PMCID: PMC6291366 DOI: 10.1039/c8mt00269j] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zinc is an essential cofactor for many proteins. A key mechanism of zinc homeostasis during deficiency is "zinc sparing" in which specific zinc-binding proteins are repressed to reduce the cellular requirement. In this report, we evaluated zinc sparing across the zinc proteome of Saccharomyces cerevisiae. The yeast zinc proteome of 582 known or potential zinc-binding proteins was identified using a bioinformatics analysis that combined global domain searches with local motif searches. Protein abundance was determined by mass spectrometry. In zinc-replete cells, we detected over 2500 proteins among which 229 were zinc proteins. Based on copy number estimates and binding stoichiometries, a replete cell contains ∼9 million zinc-binding sites on proteins. During zinc deficiency, many zinc proteins decreased in abundance and the zinc-binding requirement decreased to ∼5 million zinc atoms per cell. Many of these effects were due at least in part to changes in mRNA levels rather than simply protein degradation. Measurements of cellular zinc content showed that the level of zinc atoms per cell dropped from over 20 million in replete cells to only 1.7 million in deficient cells. These results confirmed the ability of replete cells to store excess zinc and suggested that the majority of zinc-binding sites on proteins in deficient cells are either unmetalated or mismetalated. Our analysis of two abundant zinc proteins, Fba1 aldolase and Met6 methionine synthetase, supported that hypothesis. Thus, we have discovered widespread zinc sparing mechanisms and obtained evidence of a high accumulation of zinc proteins that lack their cofactor during deficiency.
Collapse
Affiliation(s)
- Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Pathogens often face zinc restriction due to the action of nutritional immunity - host processes which restrict microbial access to key micronutrients such as zinc and iron. Candida albicans scavenges environmental zinc via two pathways. The plasma membrane transporter Zrt2 is essential for zinc uptake and growth in acidic environments. Neutralisation to pH 7 severely decreases the solubility of ionic Zn2+; this increase in pH triggers expression and activity of a second zinc scavenging system, the zincophore. This fungus-specific system consists of a secreted zinc-binding protein, Pra1, which captures zinc and returns to the cell via a syntenically expressed receptor, Zrt1. If present in excess, zinc is detoxified via a Zrc1-dependent mechanism. In C. albicans Zrc1 plays an important role in the generation of zincosomes. C. albicans faces both low and high zinc bottlenecks in vivo as Zrt2 and Zrc1 are required for kidney and liver colonisation, respectively, in a murine infection model.
Collapse
|
99
|
Shen Q, Beucler MJ, Ray SC, Rappleye CA. Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathog 2018; 14:e1007444. [PMID: 30452484 PMCID: PMC6277122 DOI: 10.1371/journal.ppat.1007444] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022] Open
Abstract
Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition. Control of primary pathogens that infect phagocytes often requires adaptive immunity, but the mechanisms that convert host cells from permissive to antimicrobial states are only partially understood. The intracellular fungal pathogen Histoplasma capsulatum resides and proliferates within the macrophage phagosome. During innate immunity, macrophages which normally control fungi prove ineffective against H. capsulatum yeasts. At this stage, the phagosome of unactivated macrophages has ample copper that facilitates intracellular growth of Histoplasma but does not cause copper toxicity. However, the onset of adaptive immunity and the subsequent activation of macrophages decreases phagosomal copper and macrophages become less permissive to Histoplasma proliferation. IFN-γ acts as a key cytokine for switching the macrophage strategy by changing phagosomes from a copper-sufficient to a copper-depleted state in order to control intracellular pathogens. In such activated macrophages, H. capsulatum yeasts upregulate expression of the Ctr3 copper transporter to enable continued acquisition of essential copper.
Collapse
Affiliation(s)
- Qian Shen
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Matthew J. Beucler
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Stephanie C. Ray
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Chad A. Rappleye
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
100
|
Kurakado S, Arai R, Sugita T. Association of the hypha-related protein Pra1 and zinc transporter Zrt1 with biofilm formation by the pathogenic yeast Candida albicans. Microbiol Immunol 2018; 62:405-410. [PMID: 29704397 DOI: 10.1111/1348-0421.12596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
Bloodstream infection by the pathogenic fungus Candida albicans is a major health problem. Candidemia is often associated with medical devices, which can act as substrates for biofilm development. Biofilm-related infections are relatively difficult to treat because of their resistance to antimicrobial agents. It is therefore important to explore the mechanisms of biofilm formation. Dimorphism is a major contributor to biofilm formation in C. albicans. To determine whether the hypha-related proteins Pra1 (pH-regulated antigen) and Zrt1 (zinc transporter) are responsible for biofilm formation, the ability of pra1 and zrt1 deletion mutants to form biofilms was investigated. Biofilm formation by both deletion mutants was less than that of the wild-type strain. Because Pra1 and Zrt1 are also related to the zinc homeostasis system, the effects of adding zinc on biofilm formation were also examined. Biofilm formation was increased in the presence of zinc. These data suggest that Pra1 and Zrt1 regulate biofilm formation through zinc homeostasis.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Rika Arai
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|