51
|
|
52
|
Kohlmann F, Shima K, Rupp J, Solbach W, Hilgenfeld R, Hansen G. Production, crystallization and X-ray diffraction analysis of the protease CT441 from Chlamydia trachomatis. Acta Crystallogr F Struct Biol Commun 2015; 71:1454-8. [PMID: 26625285 PMCID: PMC4666471 DOI: 10.1107/s2053230x15020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022] Open
Abstract
The prokaryotic obligate intracellular pathogen Chlamydia trachomatis is the most prevalent cause of preventable blindness, affecting approximately six million people worldwide. In addition, C. trachomatis is the most commonly reported sexually transmitted pathogen in Europe and the US, causing pelvic inflammation, ectopic pregnancy and infertility. As in other intracellular pathogens, proteases play crucial roles during most stages of the complex life cycle of Chlamydia. CT441 is a chlamydial protease that has been reported to interfere with oestrogen signalling of the host cell. Here, the recombinant production, purification and crystallization of an inactive variant of CT441, designated CT441° (active-site Ser455 replaced by Ala), are described. CT441° was crystallized in space group P22121, with unit-cell parameters a = 86.7, b = 184.0, c = 209.6 Å. A complete diffraction data set was collected to a resolution of 2.95 Å.
Collapse
Affiliation(s)
- Friedrich Kohlmann
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Kensuke Shima
- Institute of Medical Microbiology and Hygiene, University Clinic of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Centre of Infection Research (DZIF), Hamburg–Lübeck–Borstel Site, Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology and Hygiene, University Clinic of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Centre of Infection Research (DZIF), Hamburg–Lübeck–Borstel Site, Lübeck, Germany
- Medical Clinic III, University Clinic of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Werner Solbach
- Institute of Medical Microbiology and Hygiene, University Clinic of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Centre of Infection Research (DZIF), Hamburg–Lübeck–Borstel Site, Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Centre of Infection Research (DZIF), Hamburg–Lübeck–Borstel Site, Lübeck, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
53
|
Abstract
UNLABELLED Chlamydia trachomatis is an obligate intracellular bacterium that is a globally important human pathogen. The chlamydial plasmid is an attenuating virulence factor, but the molecular basis for attenuation is not understood. Chlamydiae replicate within a membrane-bound vacuole termed an inclusion, where they undergo a biphasic developmental growth cycle and differentiate from noninfectious into infectious organisms. Late in the developmental cycle, the fragile chlamydia-laden inclusion retains its integrity by surrounding itself with scaffolds of host cytoskeletal proteins. The ability of chlamydiae to developmentally free themselves from this cytoskeleton network is a fundamental virulence trait of the pathogen. Here, we show that plasmidless chlamydiae are incapable of disrupting their cytoskeletal entrapment and remain intracellular as stable mature inclusions that support high numbers of infectious organisms. By using deletion mutants of the eight plasmid-carried genes (Δpgp1 to Δpgp8), we show that Pgp4, a transcriptional regulator of multiple chromosomal genes, is required for exit. Exit of chlamydiae is dependent on protein synthesis and is inhibited by the compound C1, an inhibitor of the type III secretion system (T3S). Exit of plasmid-free and Δpgp4 organisms, which failed to lyse infected cells, was rescued by latrunculin B, an inhibitor of actin polymerization. Our findings describe a genetic mechanism of chlamydial exit from host cells that is dependent on an unknown pgp4-regulated chromosomal T3S effector gene. IMPORTANCE Chlamydia's obligate intracellular life style requires both entry into and exit from host cells. Virulence factors that function in exiting are unknown. The chlamydial inclusion is stabilized late in the infection cycle by F-actin. A prerequisite of chlamydial exit is its ability to disassemble actin from the inclusion. We show that chlamydial plasmid-free organisms, and also a plasmid gene protein 4 (pgp4) null mutant, do not disassociate actin from the inclusion and fail to exit cells. We further provide evidence that Pgp4-regulated exit is dependent on the chlamydial type III secretion system. This study is the first to define a genetic mechanism that functions in chlamydial lytic exit from host cells. The findings also have practical implications for understanding why plasmid-free chlamydiae are highly attenuated and have the ability to elicit robust protective immune responses.
Collapse
|
54
|
Vicetti Miguel RD, Henschel KJ, Dueñas Lopez FC, Quispe Calla NE, Cherpes TL. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units. J Microbiol Methods 2015; 119:79-82. [PMID: 26453947 DOI: 10.1016/j.mimet.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify Chlamydia-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and Chlamydia trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units.
Collapse
Affiliation(s)
- Rodolfo D Vicetti Miguel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Kevin J Henschel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Fiorela C Dueñas Lopez
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Nirk E Quispe Calla
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas L Cherpes
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH 43210, USA; Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
55
|
Abstract
Regulation of gene expression ensures an organism responds to stimuli and undergoes proper development. Although the regulatory networks in bacteria have been investigated in model microorganisms, nearly nothing is known about the evolution and plasticity of these networks in obligate, intracellular bacteria. The phylum Chlamydiae contains a vast array of host-associated microbes, including several human pathogens. The Chlamydiae are unique among obligate, intracellular bacteria as they undergo a complex biphasic developmental cycle in which large swaths of genes are temporally regulated. Coupled with the low number of transcription factors, these organisms offer a model to study the evolution of regulatory networks in intracellular organisms. We provide the first comprehensive analysis exploring the diversity and evolution of regulatory networks across the phylum. We utilized a comparative genomics approach to construct predicted coregulatory networks, which unveiled genus- and family-specific regulatory motifs and architectures, most notably those of virulence-associated genes. Surprisingly, our analysis suggests that few regulatory components are conserved across the phylum, and those that are conserved are involved in the exploitation of the intracellular niche. Our study thus lends insight into a component of chlamydial evolution that has otherwise remained largely unexplored.
Collapse
Affiliation(s)
- D Domman
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - M Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
56
|
Karunakaran K, Subbarayal P, Vollmuth N, Rudel T. Chlamydia-infected cells shed Gp96 to prevent chlamydial re-infection. Mol Microbiol 2015; 98:694-711. [PMID: 26235316 DOI: 10.1111/mmi.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2015] [Indexed: 12/29/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen with a biphasic developmental life cycle. The infectious elementary bodies (EBs) enter a host cell where they transform into reticulate bodies (RBs) that use cellular metabolites to multiply. Re-infection of an infected cell during the replicative phase of chlamydial development may prevent formation of infectious EBs, interrupting the infectious cycle. Here, we report that Glucose Regulated Protein 96 (Gp96), a chaperone for cell surface receptors, binds to and facilitates adherence and entry of C. trachomatis. Gp96 expression was increased early in infection in a MAP kinase-dependent way, thereby increasing chlamydial adherence and invasion. Gp96 co-precipitated with Protein Disulphide Isomerase (PDI), known to be involved in chlamydial host cell entry. During the replicative phase, Gp96 was depleted from infected cells and shed into the supernatant by activation of metalloproteinase TACE (ADAM17). Loss of Gp96 also reduced the activity of PDI on the cell surface. Reduced surface display of Gp96 prevented chlamydial re-infection in a TACE-dependent manner in cell lines but also in primary cells derived from human fimbriae, the natural site of chlamydial infection. Our data suggest a role of infection-induced Gp96 shedding in the protection of the chlamydial replicative niche.
Collapse
Affiliation(s)
- Karthika Karunakaran
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| | - Prema Subbarayal
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| | - Nadine Vollmuth
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, D-97074, Germany
| |
Collapse
|
57
|
In contrast to Chlamydia trachomatis, Waddlia chondrophila grows in human cells without inhibiting apoptosis, fragmenting the Golgi apparatus, or diverting post-Golgi sphingomyelin transport. Infect Immun 2015; 83:3268-80. [PMID: 26056386 DOI: 10.1128/iai.00322-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023] Open
Abstract
The Chlamydiales are an order of obligate intracellular bacteria sharing a developmental cycle inside a cytosolic vacuole, with very diverse natural hosts, from amoebae to mammals. The clinically most important species is Chlamydia trachomatis. Many uncertainties remain as to how Chlamydia organizes its intracellular development and replication. The discovery of new Chlamydiales species from other families permits the comparative analysis of cell-biological events and may indicate events that are common to all or peculiar to some species and more or less tightly linked to "chlamydial" development. We used this approach in the infection of human cells with Waddlia chondrophila, a species from the family Waddliaceae whose natural host is uncertain. Compared to C. trachomatis, W. chondrophila had slightly different growth characteristics, including faster cytotoxicity. The embedding in cytoskeletal structures was not as pronounced as for the C. trachomatis inclusion. C. trachomatis infection generates proteolytic activity by the protease Chlamydia protease-like activity factor (CPAF), which degrades host substrates upon extraction; these substrates were not cleaved in the case of W. chondrophila. Unlike Chlamydia, W. chondrophila did not protect against staurosporine-induced apoptosis. C. trachomatis infection causes Golgi apparatus fragmentation and redirects post-Golgi sphingomyelin transport to the inclusion; both were absent from W. chondrophila-infected cells. When host cells were infected with both species, growth of both species was reduced. This study highlights differences between bacterial species that both depend on obligate intracellular replication inside an inclusion. Some features seem principally dispensable for intracellular development of Chlamydiales in vitro but may be linked to host adaptation of Chlamydia and the higher virulence of C. trachomatis.
Collapse
|
58
|
Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 2015; 17:716-25. [PMID: 25920978 DOI: 10.1016/j.chom.2015.03.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/11/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.
Collapse
Affiliation(s)
- Marcela Kokes
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Joe Dan Dunn
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Joshua A Granek
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, 2424 Erwin Road, Suite 1102 Hock Plaza, Box 2721, Durham, NC 27710, USA
| | - Bidong D Nguyen
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Jeffrey R Barker
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA.
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology and Center for the Genomics of Microbial Systems, Duke University Medical Center, 268 CARL Building, Box 3054, Durham, NC 27710, USA.
| |
Collapse
|
59
|
Bavoil PM, Byrne GI. Analysis of CPAF mutants: new functions, new questions (the ins and outs of a chlamydial protease). Pathog Dis 2015; 71:287-91. [PMID: 24942261 DOI: 10.1111/2049-632x.12194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
The role of the chlamydial protease CPAF, previously described as a secreted serine protease processing a wealth of host and chlamydial proteins to promote chlamydial intracellular growth, has recently been questioned by studies from the groups of Tan and Sütterlin, who demonstrated that the reported proteolysis of almost a dozen substrates by CPAF occurred during preparation of cell lysates rather than in intact cells. Valdivia et al. have now compared near-isogenic pairs of CPAF-deficient and secretion-deficient mutants of Chlamydia trachomatis and their wild-type parent. Their report, published in this issue of Pathogens and Disease, is a landmark study in the emerging era of Chlamydia genetics. The results of Tan and Sütterlin are confirmed with a few additions. While CPAF's role in pathogenesis is diminished considerably from these studies, CPAF remains an important factor in chlamydial biology as (1) CPAF mutants produce less infectious yield than wild type; and (2) CPAF is responsible for proteolytic cleavage of vimentin and LAP-1, but only after lysis of the inclusion membrane, not upon CPAF secretion to the cytosol. Here, we briefly review the evidence in support of CPAF's active secretion from the mid-to-late inclusion and conclude that new experimentation to establish whether or not CPAF is actively secreted should precede any new investigation of CPAF's cellular activities during mid-to-late development.
Collapse
Affiliation(s)
- Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | |
Collapse
|
60
|
Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection. Infect Immun 2015; 83:2234-41. [PMID: 25776755 DOI: 10.1128/iai.00275-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
CPAF (chlamydial protease-like activity factor), a Chlamydia serine protease, is activated via proximity-induced intermolecular dimerization that triggers processing and removal of an inhibitory peptide occupying the CPAF substrate-binding groove. An active CPAF is a homodimer of two identical intramolecular heterodimers, each consisting of 29-kDa N-terminal and 35-kDa C-terminal fragments. However, critical residues for CPAF intermolecular dimerization, catalytic activity, and processing were defined in cell-free systems. Complementation of a CPAF-deficient chlamydial organism with a plasmid-encoded CPAF has enabled us to characterize CPAF during infection. The transformants expressing CPAF mutated at intermolecular dimerization, catalytic, or cleavage residues still produced active CPAF, although at a lower efficiency, indicating that CPAF can tolerate more mutations inside Chlamydia-infected cells than in cell-free systems. Only by simultaneously mutating both intermolecular dimerization and catalytic residues was CPAF activation completely blocked during infection, both indicating the importance of the critical residues identified in the cell-free systems and exploring the limit of CPAF's tolerance for mutations in the intracellular environment. We further found that active CPAF was always detected in the host cell cytoplasm while nonactive CPAF was restricted to within the chlamydial inclusions, regardless of how the infected cell samples were treated. Thus, CPAF translocation into the host cell cytoplasm correlates with CPAF enzymatic activity and is not altered by sample treatment conditions. These observations have provided new evidence for CPAF activation and translocation, which should encourage continued investigation of CPAF in chlamydial pathogenesis.
Collapse
|
61
|
Tang L, Chen J, Zhou Z, Yu P, Yang Z, Zhong G. Chlamydia-secreted protease CPAF degrades host antimicrobial peptides. Microbes Infect 2015; 17:402-8. [PMID: 25752416 DOI: 10.1016/j.micinf.2015.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/15/2022]
Abstract
Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.
Collapse
Affiliation(s)
- Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianlin Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
62
|
Tancharoen S, Matsuyama T, Kawahara KI, Tanaka K, Lee LJ, Machigashira M, Noguchi K, Ito T, Imamura T, Potempa J, Kikuchi K, Maruyama I. Cleavage of host cytokeratin-6 by lysine-specific gingipain induces gingival inflammation in periodontitis patients. PLoS One 2015; 10:e0117775. [PMID: 25688865 PMCID: PMC4331500 DOI: 10.1371/journal.pone.0117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/PURPOSE Lysine-specific gingipain (Kgp) is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis), a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F). We investigated the release of K6F and its induction of cytokine secretion. METHODS K6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay. RESULTS We identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359-378), in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt. CONCLUSION Kgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on release, induces invasion and cytokine secretion by human gingival fibroblasts. Thus, Kgp may contribute to the development of periodontal disease.
Collapse
Affiliation(s)
- Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Takashi Matsuyama
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ko-ichi Kawahara
- Laboratory of Functional Foods, Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Kenji Tanaka
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, Japan
| | - Lyang-Ja Lee
- Membrane Protein and Ligand Analysis Center, Protosera Inc., Amagasaki, Japan
| | - Miho Machigashira
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Takahisa Imamura
- Department of Molecular Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jan Potempa
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, Kentucky, United States of America
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kiyoshi Kikuchi
- Department of Physiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
63
|
Johnson KA, Lee JK, Chen AL, Tan M, Sütterlin C. Induction and inhibition of CPAF activity during analysis of Chlamydia-infected cells. Pathog Dis 2015; 73:1-8. [PMID: 25663342 DOI: 10.1093/femspd/ftv007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies of the chlamydial protease CPAF have been complicated by difficulties in distinguishing bona fide intracellular proteolysis from in vitro proteolysis. This confounding issue has been attributed to CPAF activity in lysates from Chlamydia-infected cells. We compared three methods that have been used to inhibit in vitro CPAF-mediated proteolysis: (1) pre-treatment of infected cells with the inhibitor clasto-lactacystin, (2) direct cell lysis in 8 M urea and (3) direct lysis in hot 1% SDS buffer. We identified a number of experimental conditions that reduce the effectiveness of each method in preventing CPAF activity during lysate preparation. The amount of in vitro proteolysis in a lysate was variable and depended on factors such as the specific substrate and the time in the intracellular infection. Additionally, we demonstrated for the first time that artifactual CPAF activity is induced before cell lysis by standard cell detachment methods, including trypsinization. Protein analysis of Chlamydia-infected cells therefore requires precautions to inhibit CPAF activity during both cell detachment and lysate preparation, followed by verification that the cell lysates do not contain residual CPAF activity. These concerns about artifactual proteolysis extend beyond studies of CPAF function because they have the potential to affect the analyses of host and chlamydial proteins from Chlamydia-infected cells.
Collapse
Affiliation(s)
- Kirsten A Johnson
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Jennifer K Lee
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Allan L Chen
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025, USA School of Medicine, UC Irvine, Irvine CA 92697-3950, USA
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
64
|
Branković I, van Ess EF, Noz MP, Wiericx WAJ, Spaargaren J, Morré SA, Ouburg S. NOD1 in contrast to NOD2 functional polymorphism influence Chlamydia trachomatis infection and the risk of tubal factor infertility. Pathog Dis 2015; 73:1-9. [PMID: 25854006 DOI: 10.1093/femspd/ftu028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Intracellular pattern-recognition receptors NOD1 and NOD2 are capable of sensing common structural units of bacterial walls. Recognition triggers specific immune signalling pathways and leads to pro-inflammatory cytokine upregulation and adequate immune response. We investigated whether two functional polymorphisms in NOD1 and NOD2 exert an effect on susceptibility to (STD patients) and severity of (female patients visiting the fertility clinic) Chlamydia trachomatis infection in 807 Dutch Caucasian women. A significant association of the NOD1 +32656 GG insertion variant with protection against infection with C. trachomatis has been detected [p: 0.0057; OR: 0.52]. When comparing C. trachomatis-positive women without symptoms to C. trachomatis-positive women with symptoms, and to C. trachomatis-positive women with TFI, we observed an increasing trend in carriage of the GG allele [Ptrend: 0.0003]. NOD2 1007fs failed to reveal an association. We hypothesize that the underlying mechanism might be a functional effect of the GG insertion on IFN-beta-dependent regulation of immune response in the genital tract. The research is part of an ongoing effort of identifying key polymorphisms that determine the risk of TFI and effectively translating them into the clinical setting for the purpose of optimizing diagnostic management of women at risk for developing TFI.
Collapse
Affiliation(s)
- Ivan Branković
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Eleanne F van Ess
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Marlies P Noz
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Wilhelmina Anke J Wiericx
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Joke Spaargaren
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Servaas A Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology (GROW), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands Dutch Chlamydia trachomatis Reference Laboratory, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
65
|
Armitage CW, O'Meara CP, Harvie MCG, Timms P, Wijburg OL, Beagley KW. Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections. Immunology 2015; 143:520-30. [PMID: 24827556 DOI: 10.1111/imm.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR(-/-) mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection.
Collapse
Affiliation(s)
- Charles W Armitage
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | | | | | | | | | | |
Collapse
|
66
|
Chlamydia infection depends on a functional MDM2-p53 axis. Nat Commun 2014; 5:5201. [PMID: 25392082 PMCID: PMC4243245 DOI: 10.1038/ncomms6201] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Chlamydia, a major human bacterial pathogen, assumes effective strategies to protect infected cells against death-inducing stimuli, thereby ensuring completion of its developmental cycle. Paired with its capacity to cause extensive host DNA damage, this poses a potential risk of malignant transformation, consistent with circumstantial epidemiological evidence. Here we reveal a dramatic depletion of p53, a tumor suppressor deregulated in many cancers, during Chlamydia infection. Using biochemical approaches and live imaging of individual cells, we demonstrate that p53 diminution requires phosphorylation of Murine Double Minute 2 (MDM2; a ubiquitin ligase) and subsequent interaction of phospho-MDM2 with p53 before induced proteasomal degradation. Strikingly, inhibition of the p53-MDM2 interaction is sufficient to disrupt intracellular development of Chlamydia and interferes with the pathogen's anti-apoptotic effect on host cells. This highlights the dependency of the pathogen on a functional MDM2-p53 axis and lends support to a potentially pro-carcinogenic effect of chlamydial infection.
Collapse
|
67
|
Structural basis of the proteolytic and chaperone activity of Chlamydia trachomatis CT441. J Bacteriol 2014; 197:211-8. [PMID: 25349155 DOI: 10.1128/jb.02140-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is the most prevalent cause of preventable blindness worldwide and a major reason for infectious infertility in females. Several bacterial factors have been implicated in the pathogenesis of C. trachomatis. Combining structural and mutational analysis, we have shown that the proteolytic function of CT441 depends on a conserved Ser/Lys/Gln catalytic triad and a functional substrate-binding site within a flexible PDZ (postsynaptic density of 95 kDa, discs large, and zonula occludens) domain. Previously, it has been suggested that CT441 is involved in modulating estrogen signaling responses of the host cell. Our results show that although in vitro CT441 exhibits proteolytic activity against SRAP1, a coactivator of estrogen receptor α, CT441-mediated SRAP1 degradation is not observed during the intracellular developmental cycle before host cells are lysed and infectious chlamydiae are released. Most compellingly, we have newly identified a chaperone activity of CT441, indicating a role of CT441 in prokaryotic protein quality control processes.
Collapse
|
68
|
Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion. mBio 2014; 5:e01802-14. [PMID: 25293760 PMCID: PMC4196233 DOI: 10.1128/mbio.01802-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal “coats” or “cages,” whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell.
Collapse
|
69
|
Knittler MR, Berndt A, Böcker S, Dutow P, Hänel F, Heuer D, Kägebein D, Klos A, Koch S, Liebler-Tenorio E, Ostermann C, Reinhold P, Saluz HP, Schöfl G, Sehnert P, Sachse K. Chlamydia psittaci: New insights into genomic diversity, clinical pathology, host–pathogen interaction and anti-bacterial immunity. Int J Med Microbiol 2014; 304:877-93. [DOI: 10.1016/j.ijmm.2014.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
70
|
Tan M, Sütterlin C. The Chlamydia protease CPAF: caution, precautions and function. Pathog Dis 2014; 72:7-9. [PMID: 25146758 DOI: 10.1111/2049-632x.12213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ming Tan
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, CA, USA; Department of Medicine, UC Irvine, Irvine, CA, USA.
| | | |
Collapse
|
71
|
Mueller KE, Wolf K. C. pneumoniae disrupts eNOS trafficking and impairs NO production in human aortic endothelial cells. Cell Microbiol 2014; 17:119-30. [PMID: 25131610 DOI: 10.1111/cmi.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) generated NO plays a crucial physiological role in the regulation of vascular tone. eNOS is a constitutively expressed synthase whose enzymatic function is regulated by dual acylation, phosphorylation, protein-protein interaction and subcellular localization. In endothelial cells, the enzyme is primarily localized to the Golgi apparatus (GA) and the plasma membrane where it binds to caveolin-1. Upon stimulation, the enzyme is translocated from the plasma membrane to the cytoplasm where it generates NO. When activation of eNOS ceases, the majority of the enzyme is recycled back to the membrane fraction. An inability of eNOS to cycle between the cytosol and the membrane leads to impaired NO production and vascular dysfunction. Chlamydia pneumoniae is a Gram-negative obligate intracellular bacterium that primarily infects epithelial cells of the human respiratory tract, but unlike any other chlamydial species, C. pneumoniae displays tropism toward atherosclerotic tissues. In this study, we demonstrate that C. pneumoniae inclusions colocalize with eNOS, and the microorganism interferes with trafficking of the enzyme from the GA to the plasma membrane in primary human aortic endothelial cells. This mislocation of eNOS results in significant inhibition of NO release by C. pneumoniae-infected cells. Furthermore, we show that the distribution of eNOS in C. pneumoniae-infected cells is altered due to an intimate association of the Golgi complex with chlamydial inclusions rather than by direct interaction of the enzyme with the chlamydial inclusion membrane.
Collapse
Affiliation(s)
- Konrad E Mueller
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | | |
Collapse
|
72
|
Gurumurthy RK, Chumduri C, Karlas A, Kimmig S, Gonzalez E, Machuy N, Rudel T, Meyer TF. Dynamin-mediated lipid acquisition is essential for Chlamydia trachomatis development. Mol Microbiol 2014; 94:186-201. [PMID: 25116793 DOI: 10.1111/mmi.12751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for a high burden of human disease. Here, a loss-of-function screen using a set of lentivirally transduced shRNAs identified 14 human host cell factors that modulate C. trachomatis infectivity. Notably, knockdown of dynamin, a host GTPase, decreased C. trachomatis infectivity. Dynamin functions in multiple cytoplasmic locations, including vesicle formation at the plasma membrane and the trans-Golgi network. However, its role in C. trachomatis infection remains unclear. Here we report that dynamin is essential for homotypic fusion of C. trachomatis inclusions but not for C. trachomatis internalization into the host cell. Further, dynamin activity is necessary for lipid transport into C. trachomatis inclusions and for normal re-differentiation from reticulate to elementary bodies. Fragmentation of the Golgi apparatus is proposed to be an important strategy used by C. trachomatis for efficient lipid acquisition and replication within the host. Here we show that a subset of C. trachomatis-infected cells displayed Golgi fragmentation, which was concurrent with increased mitotic accumulation. Golgi fragmentation was dispensable for dynamin-mediated lipid acquisition into C. trachomatis inclusions, irrespective of the cell cycle phase. Thus, our study reveals a critical role of dynamin in host-derived lipid acquisition for C. trachomatis development.
Collapse
|
73
|
Grieshaber SS, Grieshaber NA. The role of the chlamydial effector CPAF in the induction of genomic instability. Pathog Dis 2014; 72:5-6. [PMID: 25082267 DOI: 10.1111/2049-632x.12207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
74
|
Golgi fragmentation and sphingomyelin transport to Chlamydia trachomatis during penicillin-induced persistence do not depend on the cytosolic presence of the chlamydial protease CPAF. PLoS One 2014; 9:e103220. [PMID: 25068694 PMCID: PMC4113379 DOI: 10.1371/journal.pone.0103220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Abstract
Chlamydia grows inside a cytosolic vacuole (the inclusion) that is supplied with nutrients by the host through vesicular and non-vesicular transport. It is unclear in many respects how Chlamydia organizes this transport. One model posits that the Chlamydia-induced fragmentation of the Golgi-apparatus is required for normal transport processes to the inclusion and for chlamydial development, and the chlamydial protease CPAF has been controversially implicated in Golgi-fragmentation. We here use a model of penicillin-induced persistence of infection with Chlamydia trachomatis to test this link. Under penicillin-treatment the inclusion grew in size for the first 24 h but after that growth was severely reduced. Penicillin did not reduce the number of infected cells with fragmented Golgi-apparatus, and normal Golgi-fragmentation was found in a CPAF-deficient mutant. Surprisingly, sphingomyelin transport into the inclusion and into the bacteria, as measured by fluorescence accumulation upon addition of labelled ceramide, was not reduced during penicillin-treatment. Thus, both Golgi-fragmentation and transport of sphingomyelin to C. trachomatis still occurred in this model of persistence. The portion of cells in which CPAF was detected in the cytosol, either by immunofluorescence or by immune-electron microscopy, was drastically reduced in cells cultured in the presence of penicillin. These data argue against an essential role of cytosolic CPAF for Golgi-fragmentation or for sphingomyelin transport in chlamydial infection.
Collapse
|
75
|
Arango Duque G, Fukuda M, Turco SJ, Stäger S, Descoteaux A. Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of synaptotagmin XI. THE JOURNAL OF IMMUNOLOGY 2014; 193:2363-72. [PMID: 25063865 DOI: 10.4049/jimmunol.1303043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this study, we show that Syt XI is directly degraded by the zinc metalloprotease GP63 and excluded from Leishmania parasitophorous vacuoles by the promastigotes surface glycolipid lipophosphoglycan. Infected macrophages were found to release TNF and IL-6 in a GP63-dependent manner. To demonstrate that cytokine release was dependent on GP63-mediated degradation of Syt XI, small interfering RNA-mediated knockdown of Syt XI before infection revealed that the effects of small interfering RNA knockdown and GP63 degradation were not cumulative. In mice, i.p. injection of GP63-expressing parasites led to an increase in TNF and IL-6 secretion and to an augmented influx of neutrophils and inflammatory monocytes to the inoculation site. Both of these cell types have been shown to be infection targets and aid in the establishment of infection. In sum, our data revealed that GP63 induces proinflammatory cytokine release and increases infiltration of inflammatory phagocytes. This study provides new insight on how Leishmania exploits the immune response to establish infection.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; and
| | - Salvatore J Turco
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|
76
|
Snavely EA, Kokes M, Dunn JD, Saka HA, Nguyen BD, Bastidas RJ, McCafferty DG, Valdivia RH. Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches. Pathog Dis 2014; 71:336-51. [PMID: 24838663 DOI: 10.1111/2049-632x.12179] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 12/30/2022] Open
Abstract
The secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of postlysis degradation. Here, we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. Using reverse genetic approaches, we identified two C. trachomatis strains possessing nonsense, loss-of-function mutations in cpa (CT858) and a third strain containing a mutation in type II secretion (T2S) machinery that inhibited CPAF activity by blocking zymogen secretion and subsequent proteolytic maturation into the active hydrolase. HeLa cells infected with T2S(-) or CPAF(-) C. trachomatis mutants lacked detectable in vitro CPAF proteolytic activity and were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, Golgi fragmentation, altered NFκB-dependent gene expression, and resistance to reinfection. However, CPAF-deficient mutants did display impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. In addition, we provide compelling evidence in live cells that CPAF-mediated protein processing of at least two host protein targets, vimentin filaments and the nuclear envelope protein lamin-associated protein-1 (LAP1), occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. CPAF-dependent processing of host proteins correlates with a loss of inclusion membrane integrity, and so we propose that CPAF plays a role late in infection, possibly during the stages leading to the dismantling of the infected cell prior to the release of EBs during cell lysis.
Collapse
Affiliation(s)
- Emily A Snavely
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Hanski L, Vuorela PM. Recent advances in technologies for developing drugs againstChlamydia pneumoniae. Expert Opin Drug Discov 2014; 9:791-802. [DOI: 10.1517/17460441.2014.915309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
Zhu H, Li H, Wang P, Chen M, Huang Z, Li K, Li Y, He J, Han J, Zhang Q. Persistent and acute chlamydial infections induce different structural changes in the Golgi apparatus. Int J Med Microbiol 2014; 304:577-85. [PMID: 24780199 DOI: 10.1016/j.ijmm.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/15/2022] Open
Abstract
Chlamydia trachomatis causes a wide range of diseases that have a significant impact on public health. Acute chlamydial infections can cause fragmentation of the Golgi compartment ensuring the lipid transportation from the host cell. However, the changes that occur in the host cell Golgi apparatus after persistent infections are unclear. Here, we examined Golgi-associated gene (golga5) transcription and expression along with the structure of the Golgi apparatus in cells persistently infected with Chlamydia trachomatis. The results showed that persistent infections caused little fragmentation of the Golgi. The results also revealed that Golgi fragmentation might be associated with the suppression of transcription of the gene golga5.
Collapse
Affiliation(s)
- Huiling Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongmei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mukai Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zengwei Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Kunpeng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinyin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiande Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qinfen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Department of Dermatology in the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
79
|
The chlamydial protease CPAF: important or not, important for what? Microbes Infect 2014; 16:367-70. [PMID: 24607702 DOI: 10.1016/j.micinf.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
Abstract
The protease CPAF is only found in Chlamydiales and in at least most bacteria that share with Chlamydia the biphasic life-style in a cytosolic inclusion. CPAF is intriguing: it appears to be secreted from the inclusion across the inclusion membrane into the cytosol. A bacterial protease ravaging in the cytosol of a human cell may cause a plethora of effects. Curiously, very few are known. The current discussion is bogged down by a focus on experimental artifact, while proposed functions of CPAF remain speculative. I here make the attempt to summarize what we know about CPAF.
Collapse
|
80
|
Roberts CH, Molina S, Makalo P, Joof H, Harding-Esch EM, Burr SE, Mabey DCW, Bailey RL, Burton MJ, Holland MJ. Conjunctival scarring in trachoma is associated with the HLA-C ligand of KIR and is exacerbated by heterozygosity at KIR2DL2/KIR2DL3. PLoS Negl Trop Dis 2014; 8:e2744. [PMID: 24651768 PMCID: PMC3961204 DOI: 10.1371/journal.pntd.0002744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is globally the predominant infectious cause of blindness and one of the most common bacterial causes of sexually transmitted infection. Infections of the conjunctiva cause the blinding disease trachoma, an immuno-pathological disease that is characterised by chronic conjunctival inflammation and fibrosis. The polymorphic Killer-cell Immunoglobulin-like Receptors (KIR) are found on Natural Killer cells and have co-evolved with the Human Leucocyte Antigen (HLA) class I system. Certain genetic constellations of KIR and HLA class I polymorphisms are associated with a number of diseases in which modulation of the innate responses to viral and intracellular bacterial pathogens is central. METHODOLOGY A sample of 134 Gambian pedigrees selected to contain at least one individual with conjunctival scarring in the F1 generation was used. Individuals (n = 830) were genotyped for HLA class I and KIR gene families. Family Based Association Tests and Case Pseudo-control tests were used to extend tests for transmission disequilibrium to take full advantage of the family design, genetic model and phenotype. PRINCIPLE FINDINGS We found that the odds of trachomatous scarring increased with the number of genome copies of HLA-C2 (C1/C2 OR = 2.29 BHP-value = 0.006; C2/C2 OR = 3.97 BHP-value = 0.0004) and further increased when both KIR2DL2 and KIR2DL3 (C2/C2 OR = 5.95 BHP-value = 0.006) were present. CONCLUSIONS To explain the observations in the context of chlamydial infection and trachoma we propose a two-stage model of response and disease that balances the cytolytic response of KIR expressing NK cells with the ability to secrete interferon gamma, a combination that may cause pathology. The data presented indicate that HLA-C genotypes are important determinants of conjunctival scarring in trachoma and that KIR2DL2/KIR2DL3 heterozygosity further increases risk of conjunctival scarring in individuals carrying HLA-C2.
Collapse
Affiliation(s)
- Chrissy h. Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Molina
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pateh Makalo
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Hassan Joof
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Emma M. Harding-Esch
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah E. Burr
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - David C. W. Mabey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin L. Bailey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin J. Holland
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
81
|
Chlamydia trachomatis-infected epithelial cells and fibroblasts retain the ability to express surface-presented major histocompatibility complex class I molecules. Infect Immun 2013; 82:993-1006. [PMID: 24343651 DOI: 10.1128/iai.01473-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is the causative agent of a variety of infectious diseases such as trachoma and sexually transmitted diseases. In infected target cells, C. trachomatis replicates within parasitophorous vacuoles and expresses the protease-like activity factor CPAF. Previous studies have suggested that CPAF degrades the host transcription factors RFX5 and NF-κB p65, which are involved in the regulation of constitutive and inducible expression of major histocompatibility complex class I (MHC I). It was speculated that Chlamydia suppresses the surface presentation of MHC I in order to evade an effective immune response. Nevertheless, a recent study suggested that RFX5 and NF-κB p65 may not serve as target substrates for CPAF-mediated degradation, raising concerns about the proposed MHC I subversion by Chlamydia. Hence, we investigated the direct influence of Chlamydia on MHC I expression and surface presentation in infected host cells. By using nine different human cells and cell lines infected with C. trachomatis (serovar D or LGV2), we demonstrate that chlamydial infection does not interfere with expression, maturation, transport, and surface presentation of MHC I, suggesting functional antigen processing in bacterium-infected cells. Our findings provide novel insights into the interaction of chlamydiae with their host cells and should be taken into consideration for the design of future therapies and vaccines.
Collapse
|
82
|
Greub G. Pathogenesis and cell corruption by intracellular bacteria. Microbes Infect 2013; 15:969-70. [DOI: 10.1016/j.micinf.2013.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022]
|
83
|
Cunha LD, Zamboni DS. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:76. [PMID: 24324933 PMCID: PMC3840304 DOI: 10.3389/fcimb.2013.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP) Ribeirão Preto, Brazil
| | | |
Collapse
|
84
|
A Conrad T, Yang Z, Ojcius D, Zhong G. A path forward for the chlamydial virulence factor CPAF. Microbes Infect 2013; 15:1026-32. [PMID: 24141088 DOI: 10.1016/j.micinf.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
CPAF is a conserved and secreted protease from obligate intracellular bacteria of the order Chlamydiales. Recently, it was demonstrated that most of its host targets are an artifact of inaccurate methods. This review aims to summarize key features of CPAF and propose new approaches for evaluating its role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Turner A Conrad
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
85
|
Romano JD, Coppens I. Host Organelle Hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathog Dis 2013; 69:72-86. [PMID: 23821471 DOI: 10.1111/2049-632x.12057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/27/2022] Open
Abstract
The bacterium Chlamydia trachomatis and the protozoan parasite Toxoplasma gondii are the causative agents of chlamydiosis and toxoplasmosis in humans, respectively. Both microorganisms are obligate intracellular pathogens and notorious for extensively modifying the cytoskeletal architecture and the endomembrane system of their host cells to establish productive infections. This review highlights the similar tactics developed by these two pathogens to manipulate their host cell despite their genetic unrelatedness. Using an in vitro cell culture model whereby single fibroblasts are infected by C. trachomatis and T. gondii simultaneously, thus setting up an intracellular competition, we demonstrate that the solutions to the problem of intracellular survival deployed by the parasite and the bacterium may represent an example of convergent evolution, driven by the necessity to acquire nutrients in a hostile environment.
Collapse
Affiliation(s)
- Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
86
|
Gloeckl S, Ong VA, Patel P, Tyndall JDA, Timms P, Beagley KW, Allan JA, Armitage CW, Turnbull L, Whitchurch CB, Merdanovic M, Ehrmann M, Powers JC, Oleksyszyn J, Verdoes M, Bogyo M, Huston WM. Identification of a serine protease inhibitor which causes inclusion vacuole reduction and is lethal to Chlamydia trachomatis. Mol Microbiol 2013; 89:676-89. [PMID: 23796320 DOI: 10.1111/mmi.12306] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2013] [Indexed: 12/22/2022]
Abstract
The mechanistic details of the pathogenesis of Chlamydia, an obligate intracellular pathogen of global importance, have eluded scientists due to the scarcity of traditional molecular genetic tools to investigate this organism. Here we report a chemical biology strategy that has uncovered the first essential protease for this organism. Identification and application of a unique CtHtrA inhibitor (JO146) to cultures of Chlamydia resulted in a complete loss of viable elementary body formation. JO146 treatment during the replicative phase of development resulted in a loss of Chlamydia cell morphology, diminishing inclusion size, and ultimate loss of inclusions from the host cells. This completely prevented the formation of viable Chlamydia elementary bodies. In addition to its effect on the human Chlamydia trachomatis strain, JO146 inhibited the viability of the mouse strain, Chlamydia muridarum, both in vitro and in vivo. Thus, we report a chemical biology approach to establish an essential role for Chlamydia CtHtrA. The function of CtHtrA for Chlamydia appears to be essential for maintenance of cell morphology during replicative the phase and these findings provide proof of concept that proteases can be targeted for antimicrobial therapy for intracellular pathogens.
Collapse
Affiliation(s)
- Sarina Gloeckl
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Qld, 4059, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 2013; 3:24. [PMID: 23847769 PMCID: PMC3705551 DOI: 10.3389/fcimb.2013.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Center of Isotopologue Profiling, Technische Universität München Garching, Germany
| | | | | | | |
Collapse
|
88
|
Abstract
Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that preferentially infects epithelial cells. Professional phagocytes provide C. trachomatis only a limited ability to survive and are proficient killers of chlamydiae. We present evidence herein that identifies a novel host defense protein, perforin-2, that plays a significant role in the eradication of C. trachomatis during the infection of macrophages. Knockdown of perforin-2 in macrophages did not alter the invasion of host cells but did result in chlamydial growth that closely mirrored that detected in HeLa cells. C trachomatis L2, serovar B, and serovar D and C. muridarum were all equally susceptible to perforin-2-mediated killing. Interestingly, induction of perforin-2 expression in epithelial cells is blocked during productive chlamydial growth, thereby protecting chlamydiae from bactericidal attack. Ectopic expression of perforin-2 in HeLa cells, however, does result in killing. Overall, our data implicate a new innate resistance protein in the control of chlamydial infection and may help explain why the macrophage environment is hostile to chlamydial growth.
Collapse
|
89
|
Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 2013; 3:a010256. [PMID: 23637308 DOI: 10.1101/cshperspect.a010256] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host-cellular functions to invade host cells and maintain a replicative niche.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
90
|
Romano JD, Sonda S, Bergbower E, Smith ME, Coppens I. Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell 2013; 24:1974-95. [PMID: 23615442 PMCID: PMC3681701 DOI: 10.1091/mbc.e12-11-0827] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The obligate intracellular protozoan Toxoplasma gondii actively invades mammalian cells and, upon entry, forms its own membrane-bound compartment, named the parasitophorous vacuole (PV). Within the PV, the parasite replicates and scavenges nutrients, including lipids, from host organelles. Although T. gondii can synthesize sphingolipids de novo, it also scavenges these lipids from the host Golgi. How the parasite obtains sphingolipids from the Golgi remains unclear, as the PV avoids fusion with host organelles. In this study, we explore the host Golgi-PV interaction and evaluate the importance of host-derived sphingolipids for parasite growth. We demonstrate that the PV preferentially localizes near the host Golgi early during infection and remains closely associated with this organelle throughout infection. The parasite subverts the structure of the host Golgi, resulting in its fragmentation into numerous ministacks, which surround the PV, and hijacks host Golgi-derived vesicles within the PV. These vesicles, marked with Rab14, Rab30, or Rab43, colocalize with host-derived sphingolipids in the vacuolar space. Scavenged sphingolipids contribute to parasite replication since alterations in host sphingolipid metabolism are detrimental for the parasite's growth. Thus our results reveal that T. gondii relies on host-derived sphingolipids for its development and scavenges these lipids via Golgi-derived vesicles.
Collapse
Affiliation(s)
- Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
91
|
Heymann J, Rejman Lipinski A, Bauer B, Meyer TF, Heuer D. Chlamydia trachomatis infection prevents front-rear polarity of migrating HeLa cells. Cell Microbiol 2013; 15:1059-69. [PMID: 23351274 DOI: 10.1111/cmi.12114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/20/2012] [Accepted: 01/12/2013] [Indexed: 01/26/2023]
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that cause trachoma, sexually transmitted diseases and respiratory infections in humans. Fragmentation of the host cell Golgi apparatus (GA) is essential for chlamydial development, whereas the consequences for host cell functions, including cell migration are not well understood. We could show that Chlamydia trachomatis-infected cells display decelerated migration and fail to repopulate monolayer scratch wounds. Furthermore, infected cells lost the ability to reorient the fragmented GA or the microtubule organization centre (MTOC) after a migratory stimulus. Silencing of golgin-84 phenocopied this defect in the absence of the infection. Interestingly, GA stabilization via knockdown of Rab6A and Rab11A improved its reorientation in infected cells and it was fully rescued after inhibition of Golgi fragmentation with WEHD-fmk. These results show that C. trachomatis infection perturbs host cell migration on multiple levels, including the alignment of GA and MTOC.
Collapse
Affiliation(s)
- Julia Heymann
- Robert Koch-Institute, Junior Research Group 5 Sexually Transmitted Bacterial Pathogens, Nordufer 20, 13353, Berlin, Germany
| | | | | | | | | |
Collapse
|
92
|
Matsuo J, Nakamura S, Ito A, Yamazaki T, Ishida K, Hayashi Y, Yoshida M, Takahashi K, Sekizuka T, Takeuchi F, Kuroda M, Nagai H, Hayashida K, Sugimoto C, Yamaguchi H. Protochlamydia induces apoptosis of human HEp-2 cells through mitochondrial dysfunction mediated by chlamydial protease-like activity factor. PLoS One 2013; 8:e56005. [PMID: 23409113 PMCID: PMC3569409 DOI: 10.1371/journal.pone.0056005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive chlamydiae.
Collapse
Affiliation(s)
- Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hayashi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Takahashi
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
93
|
Wolf K, Fields KA. Chlamydia pneumoniae impairs the innate immune response in infected epithelial cells by targeting TRAF3. THE JOURNAL OF IMMUNOLOGY 2013; 190:1695-701. [PMID: 23303668 DOI: 10.4049/jimmunol.1202443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type I IFNs are induced during microbial infections and have well-characterized antiviral activities. TRAF3 is a signaling molecule crucial for type I IFN production and, therefore, represents a potential target for disarming immune responses. Chlamydia pneumoniae is a human pathogen that primarily infects respiratory epithelial cells; the onset of symptoms takes several weeks, and the course of infection is protracted. C. pneumoniae has also been associated with a variety of chronic inflammatory conditions. Thus, typical C. pneumoniae infections of humans are consistent with an impairment in inflammatory responses to the microorganism. We demonstrate that infection of epithelial cells with C. pneumoniae does not lead to IFN-β production. Instead, infected cells are prevented from activating IFN regulatory factor 3. This effect is mediated by C. pneumoniae-dependent degradation of TRAF3, which is independent of a functional proteasome. Hence, it is likely that C. pneumoniae expresses a unique protease targeting TRAF3-dependent immune effector mechanisms.
Collapse
Affiliation(s)
- Katerina Wolf
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | |
Collapse
|
94
|
Chlamydia trachomatis outer membrane complex protein B (OmcB) is processed by the protease CPAF. J Bacteriol 2012; 195:951-7. [PMID: 23222729 DOI: 10.1128/jb.02087-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that the Chlamydia trachomatis outer membrane complex protein B (OmcB) was partially processed in Chlamydia-infected cells. We have now confirmed that the OmcB processing occurred inside live cells during chlamydial infection and was not due to proteolysis during sample harvesting. OmcB processing was preceded by the generation of active CPAF, a serine protease known to be able to cross the inner membrane via a Sec-dependent pathway, suggesting that active CPAF is available for processing OmcB in the periplasm. In a cell-free system, CPAF activity is both necessary and sufficient for processing OmcB. Both depletion of CPAF from Chlamydia-infected cell lysates with a CPAF-specific antibody and blocking CPAF activity with a CPAF-specific inhibitory peptide removed the OmcB processing ability of the lysates. A highly purified wild-type CPAF but not a catalytic residue-substituted mutant CPAF was sufficient for processing OmcB. Most importantly, in chlamydial culture, inhibition of CPAF with a specific inhibitory peptide blocked OmcB processing and reduced the recovery of infectious organisms. Thus, we have identified OmcB as a novel authentic target for the putative chlamydial virulence factor CPAF, which should facilitate our understanding of the roles of CPAF in chlamydial biology and pathogenesis.
Collapse
|