51
|
Kovanen S, Rossi M, Pohja-Mykrä M, Nieminen T, Raunio-Saarnisto M, Sauvala M, Fredriksson-Ahomaa M, Hänninen ML, Kivistö R. Population Genetics and Characterization of Campylobacter jejuni Isolates from Western Jackdaws and Game Birds in Finland. Appl Environ Microbiol 2019; 85:e02365-18. [PMID: 30552190 PMCID: PMC6365822 DOI: 10.1128/aem.02365-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/08/2018] [Indexed: 01/18/2023] Open
Abstract
Poultry are considered a major reservoir and source of human campylobacteriosis, but the roles of environmental reservoirs, including wild birds, have not been assessed in depth. In this study, we isolated and characterized Campylobacter jejuni from western jackdaws (n = 91, 43%), mallard ducks (n = 82, 76%), and pheasants (n = 9, 9%). Most of the western jackdaw and mallard duck C. jejuni isolates represented multilocus sequence typing (MLST) sequence types (STs) that diverged from those previously isolated from human patients and various animal species, whereas all pheasant isolates represented ST-19, a common ST among human patients and other hosts worldwide. Whole-genome MLST revealed that mallard duck ST-2314 and pheasant ST-19 isolates represented bacterial clones that were genetically highly similar to human isolates detected previously. Further analyses revealed that in addition to a divergent ClonalFrame genealogy, certain genomic characteristics of the western jackdaw C. jejuni isolates, e.g., a novel cdtABC gene cluster and the type VI secretion system (T6SS), may affect their host specificity and virulence. Game birds may thus pose a risk for acquiring campylobacteriosis; therefore, hygienic measures during slaughter and meat handling warrant special attention.IMPORTANCE The roles of environmental reservoirs, including wild birds, in the molecular epidemiology of Campylobacter jejuni have not been assessed in depth. Our results showed that game birds may pose a risk for acquiring campylobacteriosis, because they had C. jejuni genomotypes highly similar to human isolates detected previously. Therefore, hygienic measures during slaughter and meat handling warrant special attention. On the contrary, a unique phylogeny was revealed for the western jackdaw isolates, and certain genomic characteristics identified among these isolates are hypothesized to affect their host specificity and virulence. Comparative genomics within sequence types (STs), using whole-genome multilocus sequence typing (wgMLST), and phylogenomics are efficient methods to analyze the genomic relationships of C. jejuni isolates.
Collapse
Affiliation(s)
- Sara Kovanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Pohja-Mykrä
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | - Timo Nieminen
- Ruralia Institute, Faculty of Agriculture and Forestry, University of Helsinki, Seinäjoki, Finland
| | | | - Mikaela Sauvala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
52
|
Karki AB, Marasini D, Oakey CK, Mar K, Fakhr MK. Campylobacter coli From Retail Liver and Meat Products Is More Aerotolerant Than Campylobacter jejuni. Front Microbiol 2018; 9:2951. [PMID: 30631306 PMCID: PMC6315125 DOI: 10.3389/fmicb.2018.02951] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Aerotolerance in the microaerophilic species Campylobacter was previously reported and could increase bacterial survival and transmission in foods during stressful processing and storage conditions. In this study, 167 Campylobacter isolates (76 C. jejuni and 91 C. coli) were screened for aerotolerance; these strains were previously isolated from retail chicken meat, chicken livers, chicken gizzards, turkey, pork, and beef liver samples. Bacterial cultures were incubated aerobically in Mueller Hinton broth with agitation and viable cell counts were taken at 0, 6, 12, and 24 h. Approximately 47% of the screened Campylobacter isolates were aerotolerant (viable after a 12-h aerobic incubation period), whereas 24% were hyper-aerotolerant (viable after a 24-h aerobic incubation). A greater prevalence of aerotolerant strains (80%) was found among C. coli isolates as compared to C. jejuni isolates (6%). Differences in the oxidative stress response related genes were detected among C. jejuni and C. coli isolates when comparative genomics was used to analyze 17 Whole Genome Sequenced (WGS) strains from our laboratory. Genes encoding putative transcriptional regulator proteins and a catalase-like heme binding protein were found in C. coli genomes, but were absent in the genomes of C. jejuni. PCR screening showed the presence of a catalase-like protein gene in 75% (68/91) of C. coli strains, which was absent in all tested C. jejuni strains. While about 79% (30/38) of the hyper-aerotolerant C. coli strains harbored the catalase-like protein gene, the gene was also present in a number of the aerosensitive strains. The Catalase like protein gene was found to be expressed in both aerobic and microaerobic conditions with a 2-fold higher gene expression detected in aerobic conditions for an aerosensitive strain. However, the exact function of the gene remains unclear and awaits further investigation. In conclusion, aerotolerant Campylobacter strains (especially C. coli) are prevalent in various retail meats. Further studies are needed to investigate whether the genes encoding catalase-like heme binding protein and putative transcriptional regulators in C. coli strains are involved in stress response.
Collapse
Affiliation(s)
- Anand B Karki
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Daya Marasini
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Clark K Oakey
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Kaitlin Mar
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Mohamed K Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
53
|
Rokney A, Valinsky L, Moran-Gilad J, Vranckx K, Agmon V, Weinberger M. Genomic Epidemiology of Campylobacter jejuni Transmission in Israel. Front Microbiol 2018; 9:2432. [PMID: 30386311 PMCID: PMC6198274 DOI: 10.3389/fmicb.2018.02432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Objectives: Campylobacter jejuni is responsible for 80% of Campylobacter infections in Israel, a country with a high incidence reaching 91/100,000 population. We studied the phylogeny, diversity and prevalence of virulence factors using whole genome sequencing (WGS) of a national sample of C. jejuni clinical, food, and animal isolates collected over a 10-year period (2003-2012). Methods: C. jejuni isolates (n = 263) were subject to WGS using Illumina sequencing (PE 250bpx2). Raw reads and de novo assemblies were analyzed with the BioNumerics whole genome MLST (wgMLST) pipeline. Reads were screened for 71 virulence genes by the SRST2 script. Allelic profiles were analyzed to create minimum spanning trees and allelic core distances were investigated to determine a reliable cutoff for strain determination. Results: wgMLST analysis of 263 C. jejuni isolates indicated significant diversity among the prevalent clonal complexes (CCs) with CC-21 and CC-353 being the most diverse, and CC-574 the most clonal. Within CC-21, sequence type (ST)-1359 created a separate clade. Human, poultry and bovine isolates clustered together across the different STs. Forty four percent of studied isolates were assigned to 29 genetic clusters. Temporal and geographical relatedness were found among the minority of clusters, while most phylogenetically associated cases appeared diffuse and unassociated epidemiologically. The majority of virulence factors were highly prevalent across the dataset and not associated with genotype, source of isolation or invasiveness. Conversely, all 13 genes associated with type VI secretion system (T6SS) were lineage-related and identified in only 18% of the isolates. T6SS was detected in 95.2% of ST-1359, a common type in Israel. Conclusions: wgMLST supported the assessment that poultry and cattle are likely food sources of infection in Israel. Substantial genetic clustering among C. jejuni isolates suggested multiple point source and diffuse outbreaks that were previously unreported in Israel. The high prevalence of T6SS among ST-1359 isolates is unique to Israel, and requires further investigation. This study exemplifies the importance of studying foodborne pathogens using advanced genomic approaches across the entire spectrum of One Health.
Collapse
Affiliation(s)
- Assaf Rokney
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Lea Valinsky
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Jacob Moran-Gilad
- Public Health Services, Israel Ministry of Health, Jerusalem, Israel.,Department of Health Policy and Management, Faculty of Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.,ESCMID Study Group for Genomic and Molecular Diagnostics, Basel, Switzerland
| | | | - Vered Agmon
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Miriam Weinberger
- Infectious Diseases Unit, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
54
|
Wang X, Sun B, Xu M, Qiu S, Xu D, Ran T, He J, Wang W. Crystal structure of the periplasmic domain of TssL, a key membrane component of Type VI secretion system. Int J Biol Macromol 2018; 120:1474-1479. [PMID: 30266644 DOI: 10.1016/j.ijbiomac.2018.09.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
Abstract
Type VI secretion system (T6SS), as a macromolecular system, is commonly found in Gram-negative bacteria and responsible for exporting effectors. T6SS consists of 13 core proteins. TssL is a component of the membrane complex and plays a pivotal role in T6SS. Here, we report the crystal structure of the C-terminal periplasmic domain of TssL (TssLCter) from Serratia marcescens FS14. The TssLCter (310-503) contain a five-stranded anti-parallel β-sheet flanked by five α-helices and a short N-terminal helix. Structural comparisons revealed that it belongs to the OmpA-like family with a remarked difference in the conformation of the loop3-5. In OmpA-like family, the corresponding loop is located close to loop2-3, forming a cavity with a small opening together with the longest α5, whereas in TssLCter, loop3-5 flipped away from this cavity region. In addition, significant differences in the peptidoglycan (PG) binding site suggest that big conformational change must take place to accomplish the PG binding for TssLCter. Furthermore, a long flexible loop between helices α1 and α2 is unique in TssL. TssL would have a big conformational change during the delivery of the Hcp needle and effectors. So we speculate that the long flexible endows TssL the adaptation of its evolutionary new function.
Collapse
Affiliation(s)
- Xiangbei Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bo Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204 Shanghai, China
| | - Mengxue Xu
- Key Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shenshen Qiu
- Key Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Xu
- Key Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Key Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204 Shanghai, China.
| | - Weiwu Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
55
|
Noreen Z, Jobichen C, Abbasi R, Seetharaman J, Sivaraman J, Bokhari H. Structural basis for the pathogenesis of Campylobacter jejuni Hcp1, a structural and effector protein of the Type VI Secretion System. FEBS J 2018; 285:4060-4070. [PMID: 30194714 DOI: 10.1111/febs.14650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
The Type VI Secretion System (T6SS) provides enhanced virulence to Campylobacter jejuni and has been associated with a high incidence of bloody diarrhea. The hemolysin-coregulated protein (Hcp)-the hallmark of the T6SS-can act as a structural and effector protein. Unlike other T6SS-harboring bacteria, which possess multiple Hcp proteins each performing different functions, C. jejuni possesses only one Hcp protein, and its structural and functional role has not been elucidated previously. Here, we report the structure and functional studies of Hcp from C. jejuni. We found similarities between the hexameric ring structure of Hcp-Cj and that of Hcp3 from Pseudomonas aeruginosa. Through functional studies, we showed two roles for Hcp-Cj that is, in cytotoxicity toward HepG2 cells and in biofilm formation in C. jejuni. In structure-based mutational analyses, we showed that an Arg-to-Ala mutation at position 30 within the extended loop results in a significant decrease in cytotoxicity, suggesting a role for this loop in binding to the host cell. However, this mutation does not affect its biofilm formation function. Collectively, this study supports the dual role of Hcp-Cj as a structural and effector protein in C. jejuni.
Collapse
Affiliation(s)
- Zobia Noreen
- Department of Biosciences, COMSATS University, Islamabad Campus, Islamabad, Pakistan
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | | | - J Sivaraman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Habib Bokhari
- Department of Biosciences, COMSATS University, Islamabad Campus, Islamabad, Pakistan
| |
Collapse
|
56
|
Iglesias-Torrens Y, Miró E, Guirado P, Llovet T, Muñoz C, Cerdà-Cuéllar M, Madrid C, Balsalobre C, Navarro F. Population Structure, Antimicrobial Resistance, and Virulence-Associated Genes in Campylobacter jejuni Isolated From Three Ecological Niches: Gastroenteritis Patients, Broilers, and Wild Birds. Front Microbiol 2018; 9:1676. [PMID: 30116225 PMCID: PMC6083060 DOI: 10.3389/fmicb.2018.01676] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the causal agent of the food-borne infection with the highest incidence in Europe. Both poultry and wild birds are a major reservoir. To gain insight into the population structure, virulence potential, and antimicrobial resistance (AMR), a collection of 150 isolates from three different ecological niches (broilers, wild birds, and human patients) was studied. Despite the high genetic diversity found, the population structure defined two distinct clusters, one formed mostly by broiler and human isolates and another one by most wild bird isolates. The ST-21 complex exhibits highest prevalence (in humans and broilers), followed by ST-1275 complex (only in wild birds). The ST-48, -45, and -354 complexes were found in all three niches, but represent only 22 out of 150 studied strains. A higher occurrence of AMR and multidrug resistance was detected among broiler and human isolates. Moreover, significant differences were found in the distribution of certain putative virulence genes. Remarkably, many wild bird strains were negative for either cdtA, cdtB, or cdtC from the canonical strain 81-176, whereas all broiler and human strains were positive. These data suggest that the different variants of the cdt genes might be relevant for the efficient colonization of certain hosts by C. jejuni. Our study contributes to the understanding of the role of the diverse Campylobacter reservoirs in the transmission of campylobacteriosis to humans.
Collapse
Affiliation(s)
- Yaidelys Iglesias-Torrens
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Pedro Guirado
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Llovet
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Muñoz
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Madrid
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Navarro
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
57
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
58
|
Alam A, Golovliov I, Javed E, Sjöstedt A. ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication. Sci Rep 2018; 8:11324. [PMID: 30054549 PMCID: PMC6063899 DOI: 10.1038/s41598-018-29745-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for the virulence of the bacterium. Recent data suggest that the HSP100 family member, ClpB, is involved in T6SS disassembly in the subspecies Francisella novicida. Here, we investigated the role of ClpB for the function of the T6SS and for phenotypic characteristics of the human pathogenic subspecies holarctica and tularensis. The ∆clpB mutants of the human live vaccine strain, LVS, belonging to subspecies holarctica, and the highly virulent SCHU S4 strain, belonging to subspecies tularensis, both showed extreme susceptibility to heat shock and low pH, severely impaired type VI secretion (T6S), and significant, but impaired intracellular replication compared to the wild-type strains. Moreover, they showed essentially intact phagosomal escape. Infection of mice demonstrated that both ΔclpB mutants were highly attenuated, but the SCHU S4 mutant showed more effective replication than the LVS strain. Collectively, our data demonstrate that ClpB performs multiple functions in the F. tularensis subspecies holarctica and tularensis and its function is important for T6S, intracellular replication, and virulence.
Collapse
Affiliation(s)
- Athar Alam
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Eram Javed
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden.
| |
Collapse
|
59
|
Clark CG, Chen CY, Berry C, Walker M, McCorrister SJ, Chong PM, Westmacott GR. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS One 2018; 13:e0190836. [PMID: 29293692 PMCID: PMC5749857 DOI: 10.1371/journal.pone.0190836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) has been used to assess the phylogenetic relationships, virulence and metabolic differences, and the relationship between gene carriage and host or niche differentiation among populations of C. jejuni isolates. We previously characterized the presence and expression of CJIE4 prophage proteins in four C. jejuni isolates using WGS and comparative proteomics analysis, but the isolates were not assessed further. In this study we compare the closed, finished genome sequences of these isolates to the total proteome. Genomes of the four isolates differ in phage content and location, plasmid content, capsular polysaccharide biosynthesis loci, a type VI secretion system, orientation of the ~92 kb invertible element, and allelic differences. Proteins with 99% sequence identity can be differentiated using isobaric tags for relative and absolute quantification (iTRAQ) comparative proteomic methods. GO enrichment analysis and the type of artefacts produced in comparative proteomic analysis depend on whether proteins are encoded in only one isolate or common to all isolates, whether different isolates have different alleles of the proteins analyzed, whether conserved and variable regions are both present in the protein group analyzed, and on how the analysis is done. Several proteins encoded by genes with very high levels of sequence identity in all four isolates exhibited preferentially higher protein expression in only one of the four isolates, suggesting differential regulation among the isolates. It is possible to analyze comparative protein expression in more distantly related isolates in the context of WGS data, though the results are more complex to interpret than when isolates are clonal or very closely related. Comparative proteomic analysis produced log2 fold expression data suggestive of regulatory differences among isolates, indicating that it may be useful as a hypothesis generation exercise to identify regulated proteins and regulatory pathways for more detailed analysis.
Collapse
Affiliation(s)
- Clifford G. Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Chih-yu Chen
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Matthew Walker
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stuart J. McCorrister
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Patrick M. Chong
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Garrett R. Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
60
|
Böck D, Medeiros JM, Tsao HF, Penz T, Weiss GL, Aistleitner K, Horn M, Pilhofer M. In situ architecture, function, and evolution of a contractile injection system. Science 2017; 357:713-717. [PMID: 28818949 DOI: 10.1126/science.aan7904] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 12/27/2022]
Abstract
Contractile injection systems mediate bacterial cell-cell interactions by a bacteriophage tail-like structure. In contrast to extracellular systems, the type 6 secretion system (T6SS) is defined by intracellular localization and attachment to the cytoplasmic membrane. Here we used cryo-focused ion beam milling, electron cryotomography, and functional assays to study a T6SS in Amoebophilus asiaticus The in situ architecture revealed three modules, including a contractile sheath-tube, a baseplate, and an anchor. All modules showed conformational changes upon firing. Lateral baseplate interactions coordinated T6SSs in hexagonal arrays. The system mediated interactions with host membranes and may participate in phagosome escape. Evolutionary sequence analyses predicted that T6SSs are more widespread than previously thought. Our insights form the basis for understanding T6SS key concepts and exploring T6SS diversity.
Collapse
Affiliation(s)
- Désirée Böck
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - João M Medeiros
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Han-Fei Tsao
- Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria
| | - Thomas Penz
- Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria
| | - Gregor L Weiss
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Karin Aistleitner
- Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria
| | - Matthias Horn
- Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria.
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.
| |
Collapse
|
61
|
Sainato R, ElGendy A, Poly F, Kuroiwa J, Guerry P, Riddle MS, Porter CK. Epidemiology of Campylobacter Infections among Children in Egypt. Am J Trop Med Hyg 2017; 98:581-585. [PMID: 29260646 DOI: 10.4269/ajtmh.17-0469] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a frequently isolated bacterial pathogen among children with diarrhea. Data are lacking on the distribution and spectrum of disease associated with Campylobacter species and Campylobacter jejuni capsular polysaccharide (CPS) types. This information is essential because current vaccine research seeks to target specific CPS types. An effective CPS-conjugate vaccine will need to cover CPS types that are both common and associated with severe disease. The US Naval Medical Research Unit-3 conducted several prospective cohort studies researching diarrheal disease in Egypt from 1995 to 2003. In total, 1,057 children were enrolled and followed to a maximum age of 36 months. We analyzed Campylobacter-positive stool samples that were collected while subjects were symptomatic, along with corresponding clinical data. Of 441 Campylobacter isolates, 322 represented primary infections (189 C. jejuni, 127 Campylobacter coli, six unspeciated). There were 19 C. jejuni CPS types identified; eight accounted for 63.5% of primary C. jejuni infections. We also screened for the presence of the type-6 secretion system (T6SS), a putative virulence determinant. The T6SS was found in 18.0% of C. coli isolates and 57.6% of C. jejuni isolates (P < 0.001), and was not uniformly distributed among CPS types (P < 0.001). Strains with the T6SS were not associated with more severe disease. Clinical presentations across species and CPS types appeared similar. This study adds to the growing epidemiological data and also provides some analysis of the clinical spectrum associated with infection by specific Campylobacter species, C. jejuni capsule types, and possible virulence determinants.
Collapse
Affiliation(s)
- Rebecca Sainato
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Atef ElGendy
- United States Naval Medical Research Unit-3, Cairo, Egypt
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Janelle Kuroiwa
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Mark S Riddle
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland
| |
Collapse
|
62
|
Javed S, Gul F, Javed K, Bokhari H. Helicobacter pullorum: An Emerging Zoonotic Pathogen. Front Microbiol 2017; 8:604. [PMID: 28443081 PMCID: PMC5385324 DOI: 10.3389/fmicb.2017.00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pullorum (H.pullorum) commonly colonizes the gastrointestinal tract of poultry causing gastroenteritis. The bacterium may be transmitted to humans through contaminated meat where it has been associated with colitis and hepatitis. Despite the high prevalence of H. pullorum observed in poultry, little is known about the mechanisms by which this bacterium establishes infection in host and its virulence determinants. In this article we aim to provide an overview of this emerging zoonotic pathogen; its general characteristics, hosts, prevalence, and transmission as well as its pathogenic potential. We also discuss possible control strategies and risk of disease emergence.
Collapse
Affiliation(s)
- Sundus Javed
- Department of BioSciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Farzana Gul
- Department of BioSciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Kashaf Javed
- Department of BioSciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| | - Habib Bokhari
- Department of BioSciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| |
Collapse
|
63
|
O’Kane PM, Connerton IF. Characterisation of Aerotolerant Forms of a Robust Chicken Colonizing Campylobacter coli. Front Microbiol 2017; 8:513. [PMID: 28396658 PMCID: PMC5366326 DOI: 10.3389/fmicb.2017.00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Campylobacter contaminated poultry meat is a major source of human foodborne illness. Campylobacter coli strain OR12 is a robust colonizer of chickens that was previously shown to outcompete and displace other Campylobacter strains from the chicken's gastrointestinal tract. This strain is capable of aerobic growth on blood agar. Serial aerobic passage increased this aerotolerance as assessed by quantitative assays for growth and survival on solid media. Aerotolerance was also associated with increased peroxide stress resistance. Aerobic passage did not alter cellular morphology or motility or hinder the microaerobic growth rate. Colonization of broiler chickens by aerotolerant C. coli OR12 was significantly lower than the wild-type strain at 3 days after challenge but not by 7 days, suggesting adaptation had occurred. Bacteria recovered from chickens had retained their aerotolerance, indicating this trait is stable. Whole genome sequencing enabled comparison with the wild-type sequence. Twenty-three point mutations were present, none of which were in genes known to affect oxidative stress resistance. Insertions or deletions caused frame shifts in several genes including, phosphoglycerate kinase and the b subunit of pyruvate carboxylase that suggest modification of central and carbohydrate metabolism in response to aerobic growth. Other genes affected include those encoding putative carbonic anhydrase, motility accessory factor, filamentous haemagglutinin, and aminoacyl dipeptidase proteins. Aerotolerance has the potential to affect environmental success and survival. Increased environmental survival outside of the host intestinal tract may allow opportunities for transmission between hosts. Resistance to oxidative stress may equate to increased virulence by virtue of reduced susceptibility to oxidative free radicals produced by host immune responses. Finally, resistance to ambient atmospheric oxygen may allow increased survival on chicken skin, and therefore constitutes an increased risk to public health.
Collapse
Affiliation(s)
| | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of NottinghamSutton Bonington, UK
| |
Collapse
|
64
|
Whole genome sequencing and analysis of Campylobacter coli YH502 from retail chicken reveals a plasmid-borne type VI secretion system. GENOMICS DATA 2017; 11:128-131. [PMID: 28217442 PMCID: PMC5302137 DOI: 10.1016/j.gdata.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/05/2022]
Abstract
Campylobacter is a major cause of foodborne illnesses worldwide. Campylobacter infections, commonly caused by ingestion of undercooked poultry and meat products, can lead to gastroenteritis and chronic reactive arthritis in humans. Whole genome sequencing (WGS) is a powerful technology that provides comprehensive genetic information about bacteria and is increasingly being applied to study foodborne pathogens: e.g., evolution, epidemiology/outbreak investigation, and detection. Herein we report the complete genome sequence of Campylobacter coli strain YH502 isolated from retail chicken in the United States. WGS, de novo assembly, and annotation of the genome revealed a chromosome of 1,718,974 bp and a mega-plasmid (pCOS502) of 125,964 bp. GC content of the genome was 31.2% with 1931 coding sequences and 53 non-coding RNAs. Multiple virulence factors including a plasmid-borne type VI secretion system and antimicrobial resistance genes (beta-lactams, fluoroquinolones, and aminoglycoside) were found. The presence of T6SS in a mobile genetic element (plasmid) suggests plausible horizontal transfer of these virulence genes to other organisms. The C. coli YH502 genome also harbors CRISPR sequences and associated proteins. Phylogenetic analysis based on average nucleotide identity and single nucleotide polymorphisms identified closely related C. coli genomes available in the NCBI database. Taken together, the analyzed genomic data of this potentially virulent strain of C. coli will facilitate further understanding of this important foodborne pathogen most likely leading to better control strategies. The chromosome and plasmid sequences of C. coli YH502 have been deposited in GenBank under the accession numbers CP018900.1 and CP018901.1, respectively.
Collapse
|
65
|
Complete Annotated Genome Sequences of Three Campylobacter jejuni Strains Isolated from Naturally Colonized Farm-Raised Chickens. GENOME ANNOUNCEMENTS 2017; 5:5/4/e01407-16. [PMID: 28126931 PMCID: PMC5270690 DOI: 10.1128/genomea.01407-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Campylobacter jejuni is a leading cause of bacterially derived foodborne illness. Human illness is commonly associated with the handling and consumption of contaminated poultry products. Three C. jejuni strains were isolated from cecal contents of three different naturally colonized farm-raised chickens. The complete genomes of these three isolates are presented here.
Collapse
|
66
|
Freitag CM, Strijbis K, van Putten JPM. Host cell binding of the flagellar tip protein of Campylobacter jejuni. Cell Microbiol 2017; 19. [PMID: 28008697 DOI: 10.1111/cmi.12714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022]
Abstract
Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells. Live-cell imaging and confocal microscopy showed initial contact of the bacteria with epithelial cells via the flagella tip. Recombinant FliD protein bound to the surface of intestinal epithelial cells in a dose-dependent fashion. Search for the FliD binding site on the host cell using cells with defined glycosylation defects indicated glycosaminoglycans as a putative target. Heparinase treatment of wild type cells and an excess of soluble heparin abolished FliD binding. Binding assays showed direct and specific binding of FliD to heparin. Addition of an excess of purified FliD or heparin reduced the attachment of viable C. jejuni to the host cells. The host cell binding domain of FliD was mapped to the central region of the protein. Overall, our results indicate that the C. jejuni flagellar tip protein FliD acts as an attachment factor that interacts with cell surface heparan sulfate glycosaminoglycan receptors.
Collapse
Affiliation(s)
- Claudia M Freitag
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
67
|
Complete Genome Sequences of Campylobacter jejuni Strains OD267 and WP2202 Isolated from Retail Chicken Livers and Gizzards Reveal the Presence of Novel 116-Kilobase and 119-Kilobase Megaplasmids with Type VI Secretion Systems. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01060-16. [PMID: 27688318 PMCID: PMC5043566 DOI: 10.1128/genomea.01060-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genome sequences of Campylobacter jejuni strains OD267 and WP2202, isolated from chicken livers and gizzards, showed the presence of novel 116-kb and 119-kb megaplasmids, respectively. The two megaplasmids carry a type VI secretion system and tetracycline resistance genes. These are the largest sequenced Campylobacter plasmids to date.
Collapse
|
68
|
Bronnec V, Turoňová H, Bouju A, Cruveiller S, Rodrigues R, Demnerova K, Tresse O, Haddad N, Zagorec M. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions. Front Microbiol 2016; 7:1002. [PMID: 27446042 PMCID: PMC4927563 DOI: 10.3389/fmicb.2016.01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under aerobic atmosphere may result from the combination of insertions and mutations. In addition, the comparison of mRNA transcript levels of several genes targeted through genome analysis suggests the modification of regulatory processes in this strain.
Collapse
Affiliation(s)
| | - Hana Turoňová
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and MicrobiologyPrague, Czech Republic
| | | | - Stéphane Cruveiller
- CNRS-UMR 8030 and Commissariat à l’Energie Atomique et aux Energies Alternatives CEA/DRF/IG/Genoscope LABGeMEvry, France
| | | | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and MicrobiologyPrague, Czech Republic
| | | | | | | |
Collapse
|
69
|
Complete Genome Sequence of UV-Resistant Campylobacter jejuni RM3194, Including an 81.08-Kilobase Plasmid. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00305-16. [PMID: 27125483 PMCID: PMC4850854 DOI: 10.1128/genomea.00305-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,183 bp, with a G+C content of 30.5%.
Collapse
|
70
|
Rossi E, Longo F, Barbagallo M, Peano C, Consolandi C, Pietrelli A, Jaillon S, Garlanda C, Landini P. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol 2016; 11:335-49. [PMID: 26934424 DOI: 10.2217/fmb.15.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM Acinetobacter baumannii can cause sepsis with high mortality rates. We investigated whether glucose sensing might play a role in A. baumannii pathogenesis. MATERIALS & METHODS We carried out transcriptome analysis and extracellular polysaccharide determination in an A. baumannii clinical isolate grown on complex medium with or without glucose supplementation, and assessed its ability to induce production of inflammatory cytokines in human macrophages. RESULTS Growth in glucose-supplemented medium strongly enhanced A. baumannii sugar anabolism, resulting in increasing lipopolysaccharide biosynthesis. In addition, glucose induced active shedding of lipopolysaccharide, in turn triggering a strong induction of inflammatory cytokines in human macrophages. Finally, hemolytic activity was strongly enhanced by growth in glucose-supplemented medium. CONCLUSION We propose that sensing of exogenous glucose might trigger A. baumannii pathogenesis during sepsis.
Collapse
Affiliation(s)
- Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Francesca Longo
- Department of Biosciences, Università degli Studi di Milano, Italy
| | | | - Clelia Peano
- Institute of of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Clarissa Consolandi
- Institute of of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Alessandro Pietrelli
- Institute of of Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | - Sebastian Jaillon
- Humanitas Clinical & Research Center Institute, Rozzano, Milan, Italy
| | - Cecilia Garlanda
- Humanitas Clinical & Research Center Institute, Rozzano, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Italy
| |
Collapse
|
71
|
Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2015; 29:81-93. [PMID: 26722980 DOI: 10.1016/j.mib.2015.11.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Secretion systems play a central role in infectious diseases by enabling pathogenic bacteria to deliver virulence factors into target cells. The type VI secretion system (T6SS) mediates bacterial antagonism in various environments including eukaryotic niches, such as the gut. This molecular machine injects lethal toxins directly in target bacterial cells. It provides an advantage to pathogens encountering the commensal flora of the host and indirectly contributes to colonization and persistence. Yet, the T6SS is not employed for the sole purpose of bacterial killing and several T6SS effectors are dedicated to the subversion of eukaryotic cells. As described for type III and type IV secretion systems, these effectors impede host cell functions and promote immune evasion, thereby enabling successful infection.
Collapse
Affiliation(s)
- Abderrahman Hachani
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom; Department of Pathogen Molecular Biology, Faculty of Infection and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | - Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, SW72AZ London, United Kingdom.
| |
Collapse
|
72
|
Skarp CPA, Akinrinade O, Nilsson AJE, Ellström P, Myllykangas S, Rautelin H. Comparative genomics and genome biology of invasive Campylobacter jejuni. Sci Rep 2015; 5:17300. [PMID: 26603914 PMCID: PMC4658567 DOI: 10.1038/srep17300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/28/2015] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is a major pathogen in bacterial gastroenteritis worldwide and can cause bacteremia in severe cases. C. jejuni is highly structured into clonal lineages of which the ST677CC lineage has been overrepresented among C. jejuni isolates derived from blood. In this study, we characterized the genomes of 31 C. jejuni blood isolates and 24 faecal isolates belonging to ST677CC in order to study the genome biology related to C. jejuni invasiveness. We combined the genome analyses with phenotypical evidence on serum resistance which was associated with phase variation of wcbK; a GDP-mannose 4,6-dehydratase involved in capsular biosynthesis. We also describe the finding of a Type III restriction-modification system unique to the ST-794 sublineage. However, features previously considered to be related to pathogenesis of C. jejuni were either absent or disrupted among our strains. Our results refine the role of capsule features associated with invasive disease and accentuate the possibility of methylation and restriction enzymes in the potential of C. jejuni to establish invasive infections. Our findings underline the importance of studying clinically relevant well-characterized bacterial strains in order to understand pathogenesis mechanisms important in human infections.
Collapse
Affiliation(s)
- C. P. A. Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - O. Akinrinade
- Institute of Clinical Medicine, University of Helsinki,
Helsinki, Finland
- Institute of Biomedicine, University of Helsinki,
Helsinki, Finland
| | - A. J. E. Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - P. Ellström
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
| | - S. Myllykangas
- Institute of Biomedicine, University of Helsinki,
Helsinki, Finland
| | - H. Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala
University, Uppsala, Sweden
- Department of Bacteriology and Immunology, University of
Helsinki, Helsinki, Finland
| |
Collapse
|
73
|
Helicobacter pullorum isolated from fresh chicken meat: antibiotic resistance and genomic traits of an emerging foodborne pathogen. Appl Environ Microbiol 2015; 81:8155-63. [PMID: 26386065 DOI: 10.1128/aem.02394-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
Meat and meat products are important sources of human intestinal infections. We report the isolation of Helicobacter pullorum strains from chicken meat. Bacteria were isolated from 4 of the 17 analyzed fresh chicken meat samples, using a membrane filter method. MIC determination revealed that the four strains showed acquired resistance to ciprofloxacin; one was also resistant to erythromycin, and another one was resistant to tetracycline. Whole-genome sequencing of the four strains and comparative genomics revealed important genetic traits within the H. pullorum species, such as 18 highly polymorphic genes (including a putative new cytotoxin gene), plasmids, prophages, and a complete type VI secretion system (T6SS). The T6SS was found in three out of the four isolates, suggesting that it may play a role in H. pullorum pathogenicity and diversity. This study suggests that the emerging pathogen H. pullorum can be transmitted to humans by chicken meat consumption/contact and constitutes an important contribution toward a better knowledge of the genetic diversity within the H. pullorum species. In addition, some genetic traits found in the four strains provide relevant clues to how this species may promote adaptation and virulence.
Collapse
|
74
|
Corcionivoschi N, Gundogdu O, Moran L, Kelly C, Scates P, Stef L, Cean A, Wren B, Dorrell N, Madden RH. Virulence characteristics of hcp (+) Campylobacter jejuni and Campylobacter coli isolates from retail chicken. Gut Pathog 2015. [PMID: 26207145 PMCID: PMC4511981 DOI: 10.1186/s13099-015-0067-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Recently the Type VI secretion
system (T6SS), which can play a significant role in bacterial survival and pathogenesis, was reported in Campylobacter spp., having the hcp gene as a key component. Methods Campylobacteriosis is associated with the consumption of infected chicken meat. Our study aimed to explore the presence of T6SS in C. jejuni (n = 59) and C. coli (n = 57) isolates, from retail raw chicken and to investigate their pathogenic potential. The hcp gene was used as an indicator for the T6SS presence. Results Using multiplex PCR we have identified a significantly higher prevalence of hcp in C. coli isolates (56.1%) than in C. jejuni (28.8%) and AFLP analysis of the isolates showed a high degree of genetic similarity between the isolates carrying the hcp gene. Genome sequencing data showed that 84.3% of the C. coli and 93.7% of the C. jejuni isolates had all 13 T6SS open reading frames. Moreover, the virulence characteristics of hcp + isolates, including motility and the ability to invade human intestinal epithelial cells in vitro, were significantly greater than in the control strain C. jejuni 12502; a human isolate which is hcp positive. Conclusion Overall, it was discovered that hcp+C. coli and C. jejuni isolated from retail chicken isolates posses genetic and phenotypic properties associated with enhanced virulence. However, since human infections with C. coli are significantly less frequent than those of C. jejuni, the relationship between virulence factors and pathogenesis requires further study.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Agri-Food and Biosciences Institute, Food Microbiology, Newforge Lane, Belfast, BT9 5PX UK ; School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania, Calea Aradului nr. 119, Timisoara, Romania
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, London, UK
| | - Lynn Moran
- Agri-Food and Biosciences Institute, Food Microbiology, Newforge Lane, Belfast, BT9 5PX UK
| | - Carmel Kelly
- Agri-Food and Biosciences Institute, Food Microbiology, Newforge Lane, Belfast, BT9 5PX UK
| | - Pam Scates
- Agri-Food and Biosciences Institute, Food Microbiology, Newforge Lane, Belfast, BT9 5PX UK
| | - Lavinia Stef
- School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania, Calea Aradului nr. 119, Timisoara, Romania
| | - Ada Cean
- School of Animal Science and Biotechnology, Banat University of Animal Sciences and Veterinary Medicine-King Michael I of Romania, Calea Aradului nr. 119, Timisoara, Romania
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- London School of Hygiene and Tropical Medicine, London, UK
| | - Robert H Madden
- Agri-Food and Biosciences Institute, Food Microbiology, Newforge Lane, Belfast, BT9 5PX UK
| |
Collapse
|
75
|
The Type VI Secretion System Modulates Flagellar Gene Expression and Secretion in Citrobacter freundii and Contributes to Adhesion and Cytotoxicity to Host Cells. Infect Immun 2015; 83:2596-604. [PMID: 25870231 DOI: 10.1128/iai.03071-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) as a virulence factor-releasing system contributes to virulence development of various pathogens and is often activated upon contact with target cells. Citrobacter freundii strain CF74 has a complete T6SS genomic island (GI) that contains clpV, hcp-2, and vgr T6SS genes. We constructed clpV, hcp-2, vgr, and T6SS GI deletion mutants in CF74 and analyzed their effects on the transcriptome overall and, specifically, on the flagellar system at the levels of transcription and translation. Deletion of the T6SS GI affected the transcription of 84 genes, with 15 and 69 genes exhibiting higher and lower levels of transcription, respectively. Members of the cell motility class of downregulated genes of the CF74ΔT6SS mutant were mainly flagellar genes, including effector proteins, chaperones, and regulators. Moreover, the production and secretion of FliC were also decreased in clpV, hcp-2, vgr, or T6SS GI deletion mutants in CF74 and were restored upon complementation. In swimming motility assays, the mutant strains were found to be less motile than the wild type, and motility was restored by complementation. The mutant strains were defective in adhesion to HEp-2 cells and were restored partially upon complementation. Further, the CF74ΔT6SS, CF74ΔclpV, and CF74Δhcp-2 mutants induced lower cytotoxicity to HEp-2 cells than the wild type. These results suggested that the T6SS GI in CF74 regulates the flagellar system, enhances motility, is involved in adherence to host cells, and induces cytotoxicity to host cells. Thus, the T6SS plays a wide-ranging role in C. freundii.
Collapse
|
76
|
Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AHM. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS One 2015; 10:e0121680. [PMID: 25803828 PMCID: PMC4372405 DOI: 10.1371/journal.pone.0121680] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.
Collapse
Affiliation(s)
- Helen L. Brown
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | - Mark Reuter
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | - Kate Hanman
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | - Roy P. Betts
- Campden BRI, Station Road, Chipping Campden, Gloucestershire, GL55 6LD, United Kingdom
| | - Arnoud H. M. van Vliet
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, United Kingdom
- * E-mail:
| |
Collapse
|
77
|
Siddiqui F, Champion O, Akram M, Studholme D, Eqani SAMAS, Wren BW, Titball R, Bokhari H. Molecular detection identified a type six secretion system in Campylobacter jejuni from various sources but not from human cases. J Appl Microbiol 2015; 118:1191-8. [PMID: 25580664 DOI: 10.1111/jam.12748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
AIM To determine the presence of the T6SS in Campylobacter jejuni from diverse sources. METHODS AND RESULTS The recently identified type VI secretion system (T6SS) is a bacterial injection machinery that plays a role in virulence, symbiosis, bacterial interactions and environmental stress responses. This system has been recently discovered in the major enteric pathogen Camp. jejuni. In this study, we used multiplex PCR (mPCR), based on conserved genetic markers of the T6SS, to screen 366 Pakistani Camp. jejuni isolates from humans, poultry, cattle, wildlife or waste-water sources. We identified the T6SS in isolates from all of these sources except humans. The overall prevalence of the T6SS among the isolates was 17/366 (4·6%) and the T6SS positive isolates clustered into four different groups. Transcription of the T6SS genes, determined using RT-PCR, was observed in bacteria cultured at 37 or 42°C but not in 37°C cultures adjusted to pH3. CONCLUSIONS Campylobacter jejuni isolates harbouring T6SS markers genes were identified in livestock and non-livestock sources but in this study we did not identify human diarrhoeal isolates which possessed the T6SS. We demonstrated down-regulation of T6SS in an acidic environment. SIGNIFICANCE AND IMPACT OF THE STUDY This study questions the role of the T6SS in human diarrhoeal disease. Moreover this study did not identify a clear association of Camp. jejuni isolates harbouring T6SS with any of the niches tested. Our study highlights the need to establish the role of the T6SS in environmental survival or virulence.
Collapse
Affiliation(s)
- F Siddiqui
- Microbiology Laboratory, Biosciences Department, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. MICROBIOLOGY-SGM 2015; 161:933-947. [PMID: 25757600 DOI: 10.1099/mic.0.000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa Acanthamoeba. The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between Campylobacter and Acanthamoeba are not well understood. Whilst some studies suggest the ability of C. jejuni to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between Campylobacter and Acanthamoeba, address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen-protozoa interaction will assist in a better understanding of Campylobacter lifestyle and in the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Ana Vieira
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Alan M Seddon
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Andrey V Karlyshev
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
79
|
Harrison JW, Dung TTN, Siddiqui F, Korbrisate S, Bukhari H, Tra MPV, Hoang NVM, Carrique-Mas J, Bryant J, Campbell JI, Studholme DJ, Wren BW, Baker S, Titball RW, Champion OL. Identification of possible virulence marker from Campylobacter jejuni isolates. Emerg Infect Dis 2015; 20:1026-9. [PMID: 24856088 PMCID: PMC4036754 DOI: 10.3201/eid2006.130635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS. The marker was most prevalent in human and chicken isolates from Vietnam.
Collapse
|
80
|
Ugarte-Ruiz M, Stabler RA, Domínguez L, Porrero MC, Wren BW, Dorrell N, Gundogdu O. Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health 2014; 62:497-500. [PMID: 25496466 DOI: 10.1111/zph.12176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Indexed: 11/27/2022]
Abstract
Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a number of loci to be identified, which encode virulence factors that aid survival and pathogenicity. Recently, a Type VI secretion system (T6SS) consisting of 13 conserved genes was described in C. jejuni strains and recognised to promote pathogenicity and adaptation to the environment. In this study, we determined the presence of this T6SS in 63 Spanish C. jejuni isolates from the food chain and urban effluents using whole-genome sequencing. Our findings demonstrated that nine (14%) strains harboured the 13 ORFs found in prototype strain C. jejuni 108. Further studies will be necessary to determine the prevalence and importance of T6SS-positive C. jejuni strains.
Collapse
Affiliation(s)
- M Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria. Universidad Complutense Madrid, Madrid, Spain
| | - R A Stabler
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - L Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - M C Porrero
- VISAVET Health Surveillance Centre, Universidad Complutense Madrid, Madrid, Spain
| | - B W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - N Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - O Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
81
|
Durand E, Cambillau C, Cascales E, Journet L. VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 2014; 22:498-507. [DOI: 10.1016/j.tim.2014.06.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022]
|
82
|
Ménard A, Péré-Védrenne C, Haesebrouck F, Flahou B. Gastric and enterohepatic helicobacters other than Helicobacter pylori. Helicobacter 2014; 19 Suppl 1:59-67. [PMID: 25167947 DOI: 10.1111/hel.12162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During the past year, research on non-Helicobacter pylori species has intensified. H. valdiviensis was isolated from wild birds, and putative novel species have been isolated from Bengal tigers and Australian marsupials. Various genomes have been sequenced: H. bilis, H. canis, H. macacae, H. fennelliae, H. cetorum, and H. suis. Several studies highlighted the virulence of non-H. pylori species including H. cinaedi in humans and hyperlipidemic mice or H. macacae in geriatric rhesus monkeys with intestinal adenocarcinoma. Not surprisingly, increased attention has been paid to the position of Helicobacter species in the microbiota of children and animal species (mice, chickens, penguins, and migrating birds). A large number of experimental studies have been performed in animal models of Helicobacter induced typhlocolitis, showing that the gastrointestinal microbial community is involved in modulation of host pathways leading to chronic inflammation. Animal models of H. suis, H. heilmannii, and H. felis infection have been used to study the development of severe inflammation-related pathologies, including gastric MALT lymphoma and adenocarcinoma.
Collapse
Affiliation(s)
- Armelle Ménard
- Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et Hélicobacters, Université de Bordeaux, F33076, Bordeaux, France; INSERM U853, F33076, Bordeaux, France
| | | | | | | |
Collapse
|
83
|
van Alphen LB, Wenzel CQ, Richards MR, Fodor C, Ashmus RA, Stahl M, Karlyshev AV, Wren BW, Stintzi A, Miller WG, Lowary TL, Szymanski CM. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni. PLoS One 2014; 9:e87051. [PMID: 24498018 PMCID: PMC3907429 DOI: 10.1371/journal.pone.0087051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/18/2013] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81-176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity.
Collapse
Affiliation(s)
- Lieke B. van Alphen
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cory Q. Wenzel
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Fodor
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roger A. Ashmus
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America
| | - Todd L. Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M. Szymanski
- Alberta Glycomics Centre, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
84
|
Abstract
The bacterial type VI secretion system (T6SS) is an organelle that is structurally and mechanistically analogous to an intracellular membrane-attached contractile phage tail. Recent studies determined that a rapid conformational change in the structure of a sheath protein complex propels T6SS spike and tube components along with antibacterial and antieukaryotic effectors out of predatory T6SS(+) cells and into prey cells. The contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at transcriptional and posttranslational levels, the latter involving detection of membrane perturbation in some species. In addition to directly targeting eukaryotic cells, the T6SS can also target other bacteria coinfecting a mammalian host, highlighting the importance of the T6SS not only for bacterial survival in environmental ecosystems, but also in the context of infection and disease. This review highlights these and other advances in our understanding of the structure, mechanical function, assembly, and regulation of the T6SS.
Collapse
Affiliation(s)
- Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tao G Dong
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|