51
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
52
|
Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol 2021; 11:626183. [PMID: 33505389 PMCID: PMC7829456 DOI: 10.3389/fmicb.2020.626183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in research over the past few decades have greatly improved metabolomics-based approaches in studying parasite biology and disease etiology. This improves the investigation of varied metabolic requirements during life stages or when following transmission to their hosts, and fulfills the demand for improved diagnostics and precise therapeutics. Therefore, this review highlights the progress of metabolomics in malaria research, including metabolic mapping of Plasmodium vertebrate life cycle stages to investigate antimalarials mode of actions and underlying complex host-parasite interactions. Also, we discuss current limitations as well as make several practical suggestions for methodological improvements which could drive metabolomics progress for malaria from a comprehensive perspective.
Collapse
Affiliation(s)
- Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Medical College of Soochow University, Suzhou, China
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Qingfeng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
53
|
Giordana L, Nowicki C. Two phylogenetically divergent isocitrate dehydrogenases are encoded in Leishmania parasites. Molecular and functional characterization of Leishmania mexicana isoenzymes with specificity towards NAD + and NADP .. Mol Biochem Parasitol 2020; 240:111320. [PMID: 32980452 DOI: 10.1016/j.molbiopara.2020.111320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Leishmania parasites are of great relevance to public health because they are the causative agents of various long-term and health-threatening diseases in humans. Dependent on the manifestation, drugs either require difficult and lengthy administration, are toxic, expensive, not very effective or have lost efficacy due to the resistance developed by these pathogens against clinical treatments. The intermediary metabolism of Leishmania parasites is characterized by several unusual features, among which whether the Krebs cycle operates in a cyclic and/or in a non-cyclic mode is included. Our survey of the genomes of Leishmania species and monoxenous parasites such as those of the genera Crithidia and Leptomonas (http://www.tritrypdb.org) revealed that two genes encoding putative isocitrate dehydrogenases (IDHs) -with distantly related sequences- are strictly conserved among these parasites. Thus, in this study, we aimed to functionally characterize the two leishmanial IDH isoenzymes, for which we selected the genes LmxM10.0290 (Lmex_IDH-90) and LmxM32.2550 (Lmex_IDH-50) from L. mexicana. Phylogenetic analysis showed that Lmex_IDH-50 clustered with members of Subfamily I, which contains mainly archaeal and bacterial IDHs, and that Lmex_IDH-90 was a close relative of eukaryotic enzymes comprised within Subfamily II IDHs. 3-D homology modeling predicted that both IDHs exhibited the typical folding motifs recognized as canonical for prokaryotic and eukaryotic counterparts, respectively. Both IDH isoforms displayed dual subcellular localization, in the cytosol and the mitochondrion. Kinetic studies showed that Lmex_IDH-50 exclusively catalyzed the reduction of NAD+, while Lmex_IDH-90 solely used NADP+ as coenzyme. Besides, Lmex_IDH-50 differed from Lmex_IDH-90 by exhibiting a nearly 20-fold lower apparent Km value towards isocitrate (2.0 μM vs 43 μM). Our findings showed, for the first time, that the genus Leishmania differentiates not only from other trypanosomatids such as Trypanosoma cruzi and Trypanosoma brucei, but also from most living organisms, by exhibiting two functional homo-dimeric IDHs, highly specific towards NAD+ and NADP+, respectively. It is tempting to argue that any or both types of IDHs might be directly or indirectly linked to the Krebs cycle and/or to the de novo synthesis of glutamate. Our results about the biochemical and structural features of leishmanial IDHs show the relevance of deepening our knowledge of the metabolic processes in these pathogenic parasites to potentially identify new therapeutic targets.
Collapse
Affiliation(s)
- Lucila Giordana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Cristina Nowicki
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
54
|
Bodhale N, Ohms M, Ferreira C, Mesquita I, Mukherjee A, André S, Sarkar A, Estaquier J, Laskay T, Saha B, Silvestre R. Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine 2020; 147:155267. [PMID: 32917471 DOI: 10.1016/j.cyto.2020.155267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Leishmania, a protozoan parasite inflicting the complex of diseases called Leishmaniases, resides and replicates as amastigotes within mammalian macrophages. As macrophages are metabolically highly active and can generate free radicals that can destroy this parasite, Leishmania also devise strategies to modulate the host cell metabolism. However, the metabolic changes can also be influenced by the anti-leishmanial immune response mediated by cytokines. This bidirectional, dynamic and complex metabolic coupling established between Leishmania and its host is the result of a long co-evolutionary process. Due to the continuous alterations imposed by the host microenvironment, such metabolic coupling continues to be dynamically regulated. The constant pursuit and competition for nutrients in the host-Leishmania duet alter the host metabolic pathways with major consequences for its nutritional reserves, eventually affecting the phenotype and functionality of the host cell. Altered phenotype and functions of macrophages are particularly relevant to immune cells, as perturbed metabolic fluxes can crucially affect the activation, differentiation, and functions of host immune cells. All these changes can deterministically direct the outcome of an infection. Cytokines and metabolic fluxes can bidirectionally influence each other through molecular sensors and regulators to dictate the final infection outcome. Our studies along with those from others have now identified the metabolic nodes that can be targeted for therapy.
Collapse
Affiliation(s)
- Neelam Bodhale
- National Centre for Cell Science, 411007 Pune, India; Jagadis Bose National Science Talent Search (JBNSTS), Kolkata 700107 India
| | - Mareike Ohms
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM U1124, Université Paris Descartes, 75006 Paris, France
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Descartes, 75006 Paris, France; Centre de Recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
55
|
Saunders EC, McConville MJ. Immunometabolism of Leishmania granulomas. Immunol Cell Biol 2020; 98:832-844. [PMID: 32780446 DOI: 10.1111/imcb.12394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Leishmania are parasitic protists that cause a spectrum of diseases in humans characterized by the formation of granulomatous lesions in the skin or other tissues, such as liver and spleen. The extent to which Leishmania granulomas constrain or promote parasite growth is critically dependent on the host T-helper type 1/T-helper type 2 immune response and the localized functional polarization of infected and noninfected macrophages toward a classically (M1) or alternatively (M2) activated phenotype. Recent studies have shown that metabolic reprograming of M1 and M2 macrophages underpins the capacity of these cells to act as permissive or nonpermissive host reservoirs, respectively. In this review, we highlight the metabolic requirements of Leishmania amastigotes and the evidence that these parasites induce and/or exploit metabolic reprogramming of macrophage metabolism. We also focus on recent studies highlighting the role of key macrophage metabolic signaling pathways, such as mechanistic target of rapamycin, adenosine monophosphate-activated protein kinase and peroxisome proliferator receptor gamma in regulating the pathological progression of Leishmania granulomas. These studies highlight the intimate connectivity between Leishmania and host cell metabolism, the need to investigate these interactions in vivo and the potential to exploit host cell metabolic signaling pathways in developing new host-directed therapies.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
56
|
Zhang B, Zhang YH, Chen Y, Chen K, Jiang SX, Huang K, Liu ZQ, Zheng YG. Enhanced AmB Production in Streptomyces nodosus by Fermentation Regulation and Rational Combined Feeding Strategy. Front Bioeng Biotechnol 2020; 8:597. [PMID: 32760700 PMCID: PMC7373727 DOI: 10.3389/fbioe.2020.00597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Amphotericin B is a clinically important polyene macrolide antibiotic with a broad-spectrum antifungal activity. In this work, the addition of key precursors and differential metabolites, combined with staged fermentation process control strategies, was carried out to improve AmB production. Rationally designed addition strategies were proposed as follows: 4 mg/L isopropanol, 1 mM alanine, 1 g/L pyruvate, and 0.025 g/L nicotinamide were supplemented at 24 h. The AmB titer was ultimately enhanced to 6.63 g/L, with 28.5% increase in shake flasks fermentation. To further promote the biosynthesis of AmB, different glucose feeding strategies were investigated and the highest AmB titer (15.78 g/L) was obtained by constant speed fed-batch fermentation in a 5-L fermentor. Subsequently, compared with the batch fermentation (9.89 g/L), a novel combined feeding strategy was ultimately developed to improve the production of AmB by 85.9%, reaching 18.39 g/L that is the highest titer of AmB ever reported so far, in which the optimized components were fed at 24 h and the staged fermentation regulation strategies were used simultaneously. Moreover, the ratio of co-metabolite AmA decreased by 32.3%, from 3.1 to 2.1%. Through the detection of extracellular organic acids, the changes in α-ketoglutaric acid, pyruvate, and citric acid concentrations were identified as the most flexible metabolite nodes to further clarify the potential mechanism under different fermentation regulation strategies. These results demonstrated that the strategies above may provide new guidance for the industrial-scale production of AmB.
Collapse
Affiliation(s)
- Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Han Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kai Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Sheng-Xian Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kai Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
57
|
Coxiella burnetii utilizes both glutamate and glucose during infection with glucose uptake mediated by multiple transporters. Biochem J 2020; 476:2851-2867. [PMID: 31527117 PMCID: PMC6792032 DOI: 10.1042/bcj20190504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
Coxiella burnetii is a Gram-negative bacterium which causes Q fever, a complex and life-threatening infection with both acute and chronic presentations. C. burnetii invades a variety of host cell types and replicates within a unique vacuole derived from the host cell lysosome. In order to understand how C. burnetii survives within this intracellular niche, we have investigated the carbon metabolism of both intracellular and axenically cultivated bacteria. Both bacterial populations were shown to assimilate exogenous [13C]glucose or [13C]glutamate, with concomitant labeling of intermediates in glycolysis and gluconeogenesis, and in the TCA cycle. Significantly, the two populations displayed metabolic pathway profiles reflective of the nutrient availabilities within their propagated environments. Disruption of the C. burnetii glucose transporter, CBU0265, by transposon mutagenesis led to a significant decrease in [13C]glucose utilization but did not abolish glucose usage, suggesting that C. burnetii express additional hexose transporters which may be able to compensate for the loss of CBU0265. This was supported by intracellular infection of human cells and in vivo studies in the insect model showing loss of CBU0265 had no impact on intracellular replication or virulence. Using this mutagenesis and [13C]glucose labeling approach, we identified a second glucose transporter, CBU0347, the disruption of which also showed significant decreases in 13C-label incorporation but did not impact intracellular replication or virulence. Together, these analyses indicate that C. burnetii may use multiple carbon sources in vivo and exhibits greater metabolic flexibility than expected.
Collapse
|
58
|
Bar Routaray C, Bhor R, Bai S, Kadam NS, Jagtap S, Doshi PJ, Sundar S, Sawant S, Kulkarni MJ, Pai K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii- Guggul and Amphotericin B on a clinical isolate of Leishmania donovani. J Proteomics 2020; 223:103800. [DOI: 10.1016/j.jprot.2020.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
59
|
Upegui Zapata YA, Echeverri F, Quiñones W, Torres F, Nacher M, Rivas LI, Meira CDS, Gedamu L, Escobar G, Archbold R, Vélez ID, Robledo SM. Mode of action of a formulation containing hydrazones and saponins against leishmania spp. Role in mitochondria, proteases and reinfection process. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:94-106. [PMID: 32734890 PMCID: PMC7334304 DOI: 10.1016/j.ijpddr.2020.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.
Collapse
Affiliation(s)
- Yulieth A Upegui Zapata
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia; Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia.
| | - Winston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Fernando Torres
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Montserrat Nacher
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Luis I Rivas
- Centro de Investigaciones Biológicas Margarita Salas (C.S.I.C) Ramiro de Maeztu 9, 28007, Madrid, Spain
| | - Camila Dos Santos Meira
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences. University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gustavo Escobar
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Rosendo Archbold
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Calle 70 # 52-21, Medellín, Colombia
| | - Iván D Vélez
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET, Facultad de Medicina, Universidad de Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
60
|
Leishmania Encodes a Bacterium-like 2,4-Dienoyl-Coenzyme A Reductase That Is Required for Fatty Acid β-Oxidation and Intracellular Parasite Survival. mBio 2020; 11:mBio.01057-20. [PMID: 32487758 PMCID: PMC7267886 DOI: 10.1128/mbio.01057-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid β-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the β-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR's role in β-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that β-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies.IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.
Collapse
|
61
|
Damianou A, Burge RJ, Catta-Preta CMC, Geoghegan V, Nievas YR, Newling K, Brown E, Burchmore R, Rodenko B, Mottram JC. Essential roles for deubiquitination in Leishmania life cycle progression. PLoS Pathog 2020; 16:e1008455. [PMID: 32544189 PMCID: PMC7319358 DOI: 10.1371/journal.ppat.1008455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.
Collapse
Affiliation(s)
- Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | | | - Vincent Geoghegan
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Y. Romina Nievas
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Katherine Newling
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Elaine Brown
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Richard Burchmore
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, The Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| |
Collapse
|
62
|
Kuba M, Neha N, Newton P, Lee YW, Bennett-Wood V, Hachani A, De Souza DP, Nijagal B, Dayalan S, Tull D, McConville MJ, Sansom FM, Newton HJ. EirA Is a Novel Protein Essential for Intracellular Replication of Coxiella burnetii. Infect Immun 2020; 88:e00913-19. [PMID: 32205404 PMCID: PMC7240097 DOI: 10.1128/iai.00913-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
The zoonotic bacterial pathogen Coxiella burnetii is the causative agent of Q fever, a febrile illness which can cause a serious chronic infection. C. burnetii is a unique intracellular bacterium which replicates within host lysosome-derived vacuoles. The ability of C. burnetii to replicate within this normally hostile compartment is dependent on the activity of the Dot/Icm type 4B secretion system. In a previous study, a transposon mutagenesis screen suggested that the disruption of the gene encoding the novel protein CBU2072 rendered C. burnetii incapable of intracellular replication. This protein, subsequently named EirA (essential for intracellular replication A), is indispensable for intracellular replication and virulence, as demonstrated by infection of human cell lines and in vivo infection of Galleria mellonella The putative N-terminal signal peptide is essential for protein function but is not required for localization of EirA to the bacterial inner membrane compartment and axenic culture supernatant. In the absence of EirA, C. burnetii remains viable but nonreplicative within the host phagolysosome, as coinfection with C. burnetii expressing native EirA rescues the replicative defect in the mutant strain. In addition, while the bacterial ultrastructure appears to be intact, there is an altered metabolic profile shift in the absence of EirA, suggesting that EirA may impact overall metabolism. Most strikingly, in the absence of EirA, Dot/Icm effector translocation was inhibited even when EirA-deficient C. burnetii replicated in the wild type (WT)-supported Coxiella containing vacuoles. EirA may therefore have a novel role in the control of Dot/Icm activity and represent an important new therapeutic target.
Collapse
Affiliation(s)
- Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nitika Neha
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Patrice Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yi Wei Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Dedreia Tull
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J McConville
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Fiona M Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
63
|
Ferreira C, Mesquita I, Barbosa AM, Osório NS, Torrado E, Beauparlant CJ, Droit A, Cunha C, Carvalho A, Saha B, Estaquier J, Silvestre R. Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. PLoS Negl Trop Dis 2020; 14:e0008125. [PMID: 32214337 PMCID: PMC7138311 DOI: 10.1371/journal.pntd.0008125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 02/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background The disturbance of host metabolic pathways by Leishmania parasites has crucial consequences for the activation status of immune cells and the outcome of infection. Glutamine has been described as an immunomodulatory amino acid, yet its role during Leishmania infection is still unknown. Methods We performed transcriptomics in uninfected and L. donovani-infected macrophages 6 hours post-infection. Glutamine quantification by HPLC was assessed in the supernatant of macrophages throughout the infection course. For experimental L. donovani infections, mice were infected with 1.0 x 108 stationary L. donovani promastigotes. Glutaminase (GLS) chemical inhibition was performed using BPTES and glutamine was administered throughout infection. For combined therapy experiment, a daily administration of miltefosine and glutamine was performed by oral gavage. Parasite burden was determined using a Taqman-based assay. Immune cell phenotyping and cytotoxicity were performed in splenic cells using flow cytometry. Findings We show that glutamine is essential for the control of L. donovani infection. Transcriptomic analysis of L. donovani-infected macrophages demonstrated an upregulation of genes involved in glutamine metabolism. Pharmacological inhibition of glutaminolysis significantly increased the susceptibility to infection, accompanied by an increased recruitment of anti-inflammatory myeloid cells and impaired T cell responses. Remarkably, the supplementation of glutamine to mice infected with L. donovani during miltefosine treatment potentiates parasite clearance through the development of a more effective anti-Leishmania adaptive immune response. Conclusions Our data indicates that dietary glutamine supplementation may act as a promising adjuvant for the treatment of visceral leishmaniasis. Visceral leishmaniasis is a life threatening neglected tropical disease affecting around 500,000 and killing 50,000 individuals a year. Despite its obligatory dependence on host cell metabolism and the lack of effective, non-toxic, orally bioavailable anti-leishmanial drugs, Leishmania-perturbed host cell metabolomes and its relation to anti-leishmanial chemotherapy remains unexplored. Transcriptomic analysis performed on L. donovani-infected macrophages identified patterns of gene expression associated with glutamine metabolism. In vitro and in vivo pharmacological inhibition of glutaminase (GLS), which catalyzes the first reaction in the primary pathway for the catabolism of glutamine, significantly increased the susceptibility to infection demonstrating the role of glutamine metabolism to L. donovani infection. More importantly, we demonstrated that glutamine supplementation during miltefosine treatment potentiates L. donovani clearance through the development of a more effective anti-Leishmania innate and adaptive immune response. Overall, our work demonstrated that glutamine-miltefosine synergy is a novel combined host- and pathogen-directed treatment for combating visceral leishmaniasis.
Collapse
Affiliation(s)
- Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sampaio Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Charles-Joly Beauparlant
- Département de Médecine Moléculaire—Université Laval, Faculté de médecine, Québec, Canada
- Centre de Recherche du CHU de Québec—Université Laval, Québec, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire—Université Laval, Faculté de médecine, Québec, Canada
- Centre de Recherche du CHU de Québec—Université Laval, Québec, Canada
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, India
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India
| | - Jerôme Estaquier
- Centre de Recherche du CHU de Québec—Université Laval, Québec, Canada
- INSERM U1124, Université de Paris, Paris, France
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
64
|
Kumar V, Sushma Sri N, Tripathi N, Sharma VK, Bharatam PV, Garg P, Singh S. Structural exploration of glutamine synthetase from Leishmania donovani: Insights from in silico and in vitro analysis. Int J Biol Macromol 2020; 146:860-874. [DOI: 10.1016/j.ijbiomac.2019.09.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
65
|
Krishnan A, Kloehn J, Lunghi M, Chiappino-Pepe A, Waldman BS, Nicolas D, Varesio E, Hehl A, Lourido S, Hatzimanikatis V, Soldati-Favre D. Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism. Cell Host Microbe 2020; 27:290-306.e11. [PMID: 31991093 DOI: 10.1016/j.chom.2020.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
Abstract
To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Joachim Kloehn
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | - Damien Nicolas
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences Geneva-Lausanne (EPGL), Geneva 1211, Switzerland; Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, Geneva 1211, Switzerland
| | - Adrian Hehl
- Institute of Parasitology, University of Zürich, Zürich 8057, Switzerland
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
66
|
Padrón-Nieves M, Ponte-Sucre A. Cellular Markers for the Identification of Chemoresistant Isolates in Leishmania. Methods Mol Biol 2020; 2116:755-769. [PMID: 32221953 DOI: 10.1007/978-1-0716-0294-2_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Markers to diagnose chemoresistance in infecting Leishmania parasites are urgently required. This is fundamental for patients who do not heal during or after treatment, as they are unresponsive, or patients who relapse at the end of the therapy, suffering from therapeutic failure. Glucose utilization is an indicator of cell viability that closely associates with metabolic activity. In Leishmania, glucose is a source of carbon atoms and is imported into the cell through specific transporters. In experimentally developed chemoresistant Leishmania parasites a significant decrease of the expression of glucose transporters as well as in the cellular accumulation glucose has been described. Alternatively, the electrical membrane potential is an essential parameter for the formation of the electromotive force needed for the acquisition of important nutrients and solutes (e.g., glucose) by cells, and changes in glucose concentration are suggested to constitute a physiological adaptation associated with a chemoresistant phenotype of Leishmania parasites. Here we describe easy methods to measure glucose uptake and the membrane potential in isolates from patient suffering leishmaniasis. Correlation between both parameters might be helpful to identify chemoresistant parasites. Results suggest that the measured kinetics of glucose utilization rate can be correlated with the plasma membrane potential and together used to differentiate between the performance of wild-type and reference parasites on the one hand and parasites isolated from patients with therapeutic failure on the other.
Collapse
Affiliation(s)
- Maritza Padrón-Nieves
- Laboratorio de Fisiología Molecular, Facultad de Medicina, Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alicia Ponte-Sucre
- Laboratorio de Fisiología Molecular, Facultad de Medicina, Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
67
|
Kloehn J, McConville MJ. Analysis of the Physiological and Metabolic State of Leishmania Using Heavy Water Labeling. Methods Mol Biol 2020; 2116:587-609. [PMID: 32221944 DOI: 10.1007/978-1-0716-0294-2_35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This protocol describes the use of heavy water (2H2O) labeling to determine the growth rate and metabolic state of Leishmania parasites in culture and in infected animals. In vitro labeling studies are undertaken by cultivating defined parasite developmental stages in standard medium supplemented with 5% 2H2O, resulting in the incorporation of deuterium (2H) into a range of metabolic precursors used in macromolecule (DNA, RNA, protein, lipid, and glycan) synthesis. The rate of turnover of different parasite macromolecules can subsequently be determined by analysis of deuterium enrichment in the different constituents of these macromolecules by gas chromatography-mass spectrometry (GC-MS). To measure the growth rate and physiological state of parasite stages in lesion tissue, infected mice were provided with 9% 2H2O in their drinking water for various periods of time and 2H-enrichment in the macromolecular constituents of isolated lesion-derived parasite stages determined by GC-MS. This protocol provides quantitative information on key cellular processes, such as replication (DNA turnover), transcription (RNA turnover), translation (protein turnover), membrane biogenesis (lipid turnover), and central carbon metabolism (glycan turnover) that define the growth state and phenome of different parasite stages in vitro and in vivo. This approach can be used to assess the impact of host immune responses on parasite growth and physiology (using different Leishmania strains/species, mouse lines), characterize different parasite populations during chronic and acute infections, and assess parasite responses to drug treatments. It is also broadly applicable to other microbial pathogens.
Collapse
MESH Headings
- Animals
- DNA, Protozoan/analysis
- DNA, Protozoan/chemistry
- DNA, Protozoan/metabolism
- Deuterium Oxide/chemistry
- Disease Models, Animal
- Female
- Gas Chromatography-Mass Spectrometry/methods
- Humans
- Isotope Labeling/methods
- Leishmania mexicana/isolation & purification
- Leishmania mexicana/metabolism
- Leishmaniasis, Cutaneous/diagnosis
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/pathology
- Life Cycle Stages/physiology
- Metabolomics/methods
- Mice
- Polysaccharides/analysis
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Protozoan Proteins/analysis
- Protozoan Proteins/chemistry
- Protozoan Proteins/metabolism
- RNA, Protozoan/analysis
- RNA, Protozoan/chemistry
- RNA, Protozoan/metabolism
- Skin/parasitology
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
68
|
Nweze JA, Nweze EI, Onoja US. Nutrition, malnutrition, and leishmaniasis. Nutrition 2019; 73:110712. [PMID: 32078915 DOI: 10.1016/j.nut.2019.110712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a vector-borne infectious disease with a long history of infecting humans and other animals. It is a known emerging or resurging disease. The host nutritional state has an indispensable role in defense against pathogens. The host defense system disorganization as a result of undernutrition is responsible for asymptomatic infections and even severe diseases. Host susceptibility and pathophysiologic severity to infection can be aggravated owing to undernourishment in a number of pathways, and infection also may aggravate preexisting poor nutrition or further increase host susceptibility. This study suggests that there may be some relationship between malnutrition and the endemicity of the parasite. The susceptibility to and severity of leishmanial infection can be altered by the body weight and serum levels of micronutrients. Nutrition not only affects the vulnerability of the host but also may affect the desire of sandfly to bite a specific host. Apart from host defense mechanism, nutritional stress also greatly influences vector competence and host-seeking behavior, especially during larvae development. The host and sandfly vector nutritional states could also influence the evolution of the parasite. It is essential to elucidate the roles that diets and nutrition play in the leishmanial life cycle. The aim of this article is to review the influences of nutrition and diets on the host susceptibility and severity of infection, preemptive and therapeutic strategy feedback, parasite evolution, and vector competence.
Collapse
Affiliation(s)
- Justus Amuche Nweze
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Emeka Innocent Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Uwakwe Simon Onoja
- Department of Nutrition and Dietetics, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
69
|
Crepaldi F, de Toledo JS, do Carmo AO, Ferreira Marques Machado L, de Brito DDV, Serufo AV, Almeida APM, de Oliveira LG, Ricotta TQN, Moreira DDS, Murta SMF, Diniz AB, Menezes GB, López-Gonzálvez Á, Barbas C, Fernandes AP. Mapping Alterations Induced by Long-Term Axenic Cultivation of Leishmania amazonensis Promastigotes With a Multiplatform Metabolomic Fingerprint Approach. Front Cell Infect Microbiol 2019; 9:403. [PMID: 31867285 PMCID: PMC6904349 DOI: 10.3389/fcimb.2019.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; β-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
Collapse
Affiliation(s)
- Frederico Crepaldi
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Juliano Simões de Toledo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Anderson Oliveira do Carmo
- Laboratory of Biotechnology and Molecular Markers, General Biology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniela Diniz Viana de Brito
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angela Vieira Serufo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Martins Almeida
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Gonzaga de Oliveira
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Queiroga Nery Ricotta
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ariane Barros Diniz
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Ana Paula Fernandes
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
70
|
Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. Cell Rep 2019; 25:537-543.e3. [PMID: 30332635 PMCID: PMC6205838 DOI: 10.1016/j.celrep.2018.09.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists. Naegleria gruberi is a strict aerobe and needs oxygen for normal functioning and growth Unique among protists, N. gruberi prefers lipids over glucose as an energy source Lipid breakdown proceeds via a branched respiratory chain, both ends using oxygen N. fowleri, the fatal human brain amoeba, is predicted to have the same food preference
Collapse
|
71
|
Imidazo[2,1-a]isoindole scaffold as an uncharted structure active on Leishmania donovani. Eur J Med Chem 2019; 182:111568. [DOI: 10.1016/j.ejmech.2019.111568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/13/2023]
|
72
|
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17:607-620. [PMID: 31444481 PMCID: PMC7024564 DOI: 10.1038/s41579-019-0238-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
73
|
A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host Microbe 2019; 26:385-399.e9. [DOI: 10.1016/j.chom.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
|
74
|
Traven A, Naderer T. Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Rep 2019; 20:e47995. [PMID: 31267653 PMCID: PMC6607010 DOI: 10.15252/embr.201947995] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial drug resistance is threatening to take us to the "pre-antibiotic era", where people are dying from preventable and treatable diseases and the risk of hospital-associated infections compromises the success of surgery and cancer treatments. Development of new antibiotics is slow, and alternative approaches to control infections have emerged based on insights into metabolic pathways in host-microbe interactions. Central carbon metabolism of immune cells is pivotal in mounting an effective response to invading pathogens, not only to meet energy requirements, but to directly activate antimicrobial responses. Microbes are not passive players here-they remodel their metabolism to survive and grow in host environments. Sometimes, microbes might even benefit from the metabolic reprogramming of immune cells, and pathogens such as Candida albicans, Salmonella Typhimurium and Staphylococcus aureus can compete with activated host cells for sugars that are needed for essential metabolic pathways linked to inflammatory processes. Here, we discuss how metabolic interactions between innate immune cells and microbes determine their survival during infection, and ways in which metabolism could be manipulated as a therapeutic strategy.
Collapse
Affiliation(s)
- Ana Traven
- Infection and Immunity Program and the Department of Biochemistry & Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
| | - Thomas Naderer
- Infection and Immunity Program and the Department of Biochemistry & Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVic.Australia
| |
Collapse
|
75
|
Masukagami Y, Nijagal B, Mahdizadeh S, Tseng CW, Dayalan S, Tivendale KA, Markham PF, Browning GF, Sansom FM. A combined metabolomic and bioinformatic approach to investigate the function of transport proteins of the important pathogen Mycoplasma bovis. Vet Microbiol 2019; 234:8-16. [PMID: 31213276 DOI: 10.1016/j.vetmic.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
Mycoplasma bovis is an economically important pathogen of the cattle industry worldwide, and there is an urgent need for a more effective vaccine to control the diseases caused by this organism. Although the M. bovis genome sequence is available, very few gene functions of M. bovis have been experimentally determined, and a better understanding of the genes involved in pathogenesis are required for vaccine development. In this study, we compared the metabolite profiles of wild type M. bovis to a number of strains that each contained a transposon insertion into a putative transporter gene. Transport systems are thought to play an important role in survival of mycoplasmas, as they rely on the host for many nutrients. We also performed 13C-stable isotope labelling on strains with transposon insertions into putative glycerol transporters. Integration of metabolomic and bioinformatic analyses revealed unexpected results (when compared to genome annotation) for two mutants, with a putative amino acid transporter (MBOVPG45_0533) appearing more likely to transport nucleotide sugars, and a second mutant, a putative dicarboxylate/amino acid:cation (Na+ or H+) symporter (DAACS), more likely to function as a biopterin/folate transporter. This study also highlighted the apparent redundancy in some transport and metabolic pathways, such as the glycerol transport systems, even in an organism with a reduced genome. Overall, this study highlights the value of metabolomics for revealing the likely function of a number of transporters of M. bovis.
Collapse
Affiliation(s)
- Yumiko Masukagami
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sara Mahdizadeh
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Chi-Wen Tseng
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Fiona M Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
76
|
Staderini M, Piquero M, Abengózar MÁ, Nachér-Vázquez M, Romanelli G, López-Alvarado P, Rivas L, Bolognesi ML, Menéndez JC. Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4-aminostyrylquinoline scaffold. Eur J Med Chem 2019; 171:38-53. [DOI: 10.1016/j.ejmech.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
77
|
Mukherjee S, Basu S, Zhang K. Farnesyl pyrophosphate synthase is essential for the promastigote and amastigote stages in Leishmania major. Mol Biochem Parasitol 2019; 230:8-15. [PMID: 30926449 DOI: 10.1016/j.molbiopara.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/24/2023]
Abstract
Isoprenoid synthesis provides a diverse class of biomolecules including sterols, dolichols, ubiquinones and prenyl groups. The enzyme farnesyl pyrophosphate synthase (FPPS) catalyzes the formation of farnesyl pyrophosphate, a key intermediate for the biosynthesis of all isoprenoids. In Leishmania, FPPS is considered the main target of nitrogen containing bisphosphonates, yet the essentiality of this enzyme remains untested. Using a facilitated knockout approach, we carried out the genetic analysis of FPPS in Leishmania major. Our data indicated that chromosomal null mutants for FPPS could only be generated in presence of an episomally expressed FPPS. Long-term retention of the episome by the chromosomal FPPS-null mutants in culture and in infected BALB/c mice suggests that FPPS is indispensable. In addition, applying negative selection pressure failed to induce the loss of ectopic FPPS in the chromosomal FPPS-null mutants, although it led to significant growth delay in culture and in mice. Together, our findings have confirmed the essentiality of FPPS in both promastigotes and amastigotes in L. major and thus validate its potential as a drug target for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
78
|
Abstract
Parasites undergo complex life cycles that comprise a wide variety of cellular differentiation events in different host compartments and transmission across multiple hosts. As parasites depend on host resources, it is not surprising they have developed efficient mechanisms to sense alterations and adapt to the available resources in a wide range of environments. Here we provide an overview of the nutritional needs of different parasites throughout their diverse life stages and highlight recent insights into strategies that both hosts and parasites have developed to meet these nutritional requirements needed for defense, survival, and replication. These studies will provide the foundation for a systems-level understanding of host-parasite interactions, which will require the integration of molecular, epidemiologic, and mechanistic data and the application of interdisciplinary approaches to model parasite regulatory networks that are triggered by alterations in host resources.
Collapse
|
79
|
Mukherjee S, Xu W, Hsu FF, Patel J, Huang J, Zhang K. Sterol methyltransferase is required for optimal mitochondrial function and virulence in Leishmania major. Mol Microbiol 2019; 111:65-81. [PMID: 30260041 PMCID: PMC6351164 DOI: 10.1111/mmi.14139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/24/2022]
Abstract
Limited knowledge on the exact functions of ergostane-based sterols has hampered the application of sterol synthesis inhibitors against trypanosomatid parasites. Sterol methyltransferase (SMT) is directly involved in the synthesis of parasite-specific C24-methylated sterols, including ergosterol and 5-dehydroepisterol. While pharmacological studies hint at its potential as a drug target against trypanosomatids, direct evidence for the cellular function and essentiality of SMT is lacking. Here, we characterized the SMT knockout mutants and their complemented strains in Leishmania major, the causative agent for cutaneous leishmaniasis. Deletion of SMT alleles led to a complete loss of C24-methylated sterols, which were replaced by cholestane-based sterols. SMT-null mutants were fully viable and replicative in culture but showed increased sensitivity to sphingolipid synthesis inhibition. They were not particularly vulnerable to heat, acidic pH, nitrosative or oxidative stress, yet exhibited high mitochondrial membrane potential and increased superoxide generation indicating altered physiology of the mitochondria. Despite possessing high levels of GPI-anchored glycoconjugates, SMT-null mutants showed significantly attenuated virulence in mice. In total, our study reveals that the biosynthesis of ergostane-based sterols is crucial for the proper function of mitochondria and the proliferation of Leishmania parasites in mammals.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Current address: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jigesh Patel
- Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
80
|
Landfear SM. Protean permeases: Diverse roles for membrane transport proteins in kinetoplastid protozoa. Mol Biochem Parasitol 2018; 227:39-46. [PMID: 30590069 DOI: 10.1016/j.molbiopara.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 11/26/2022]
Abstract
Kinetoplastid parasites such as Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species rely upon their insect and vertebrate hosts to provide a plethora of nutrients throughout their life cycles. Nutrients and ions critical for parasite survival are taken up across the parasite plasma membrane by transporters and channels, polytopic membrane proteins that provide substrate-specific pores across the hydrophobic barrier. However, transporters and channels serve a wide range of biological functions beyond uptake of nutrients. This article highlights the diversity of activities that these integral membrane proteins serve and underscores the emerging complexity of their functions.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
81
|
Subramanian A, Sarkar RR. Perspectives on Leishmania Species and Stage-specific Adaptive Mechanisms. Trends Parasitol 2018; 34:1068-1081. [DOI: 10.1016/j.pt.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022]
|
82
|
Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Antimicrob Agents Chemother 2018; 62:AAC.01928-18. [PMID: 30297370 DOI: 10.1128/aac.01928-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing affords the implementation of new treatments at a moderate cost and under a faster time-scale. Most of the clinical drugs against Leishmania share this origin. The antidepressant sertraline has been successfully assayed in a murine model of visceral leishmaniasis. Nevertheless, sertraline targets in Leishmania were poorly defined. In order to get a detailed insight into the leishmanicidal mechanism of sertraline on Leishmania infantum, unbiased multiplatform metabolomics and transmission electron microscopy were combined with a focused insight into the sertraline effects on the bioenergetics metabolism of the parasite. Sertraline induced respiration uncoupling, a significant decrease of intracellular ATP level, and oxidative stress in L. infantum promastigotes. Metabolomics evidenced an extended metabolic disarray caused by sertraline. This encompasses a remarkable variation of the levels of thiol-redox and polyamine biosynthetic intermediates, as well as a shortage of intracellular amino acids used as metabolic fuel by Leishmania Sertraline killed Leishmania through a multitarget mechanism of action, tackling essential metabolic pathways of the parasite. As such, sertraline is a valuable candidate for visceral leishmaniasis treatment under a drug repurposing strategy.
Collapse
|
83
|
ROS regulate differentiation of visceralizing Leishmania species into the virulent amastigote form. ACTA ACUST UNITED AC 2018; 4. [PMID: 31093331 DOI: 10.1017/pao.2018.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leishmania virulence and disease development critically depends on the ability of Leishmania promastigotes to infect, differentiate into amastigote forms and replicate inside mammalian host macrophages. Understanding changes associated with amastigote differentiation in axenic culture conditions is key to identifying virulence factors. Here we compared efficiency of the conventional pH-temperature-dependent shift method to induce amastigote differentiation with the recently identified trigger for differentiation mediated by mitochondrial reactive oxygen species (ROS). Using two different visceral leishmaniasis species, L. infantum and. L. donovani, we show that ROS-generating methods such as iron deprivation or exposure to sub-lethal concentrations of H2O2 or menadione are significantly more effective in promoting promastigoteamastigote differentiation than the low pH-high temperature shift, leading to higher survival rates, morphological changes and gene expression patterns characteristic of the amastigote stage. Notably, both H2O2 and menadione-mediated differentiation did not require up-regulation of the mitochondrial electron transport chain (ETC)-associated protein p27, suggesting that treatment with oxidants bypasses the necessity to upregulate mitochondrial activity, a precondition for mROS generation. Our findings confirm that ROS-induced differentiation occurs in multiple Leishmania species, including the medically important visceralizing species, and provide mechanistic rationale for earlier reports demonstrating markedly increased virulence of L. infantum promastigotes pre-treated with oxidative reagents.
Collapse
|
84
|
Alonso A, Larraga V, Alcolea PJ. The contribution of DNA microarray technology to gene expression profiling in Leishmania spp.: A retrospective view. Acta Trop 2018; 187:129-139. [PMID: 29746872 DOI: 10.1016/j.actatropica.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/15/2023]
Abstract
The first completed genome project of any living organism, excluding viruses, was of the gammaproteobacteria Haemophilus influenzae in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid, and artificial chromosome genome libraries had to be sequenced and assembled in silico. No genome is completely assembled because gaps and unassembled contigs are always remaining. However, most represent an organism's whole genome from a practical point of view. The first genome sequencing projects of trypanosomatid parasites Leishmania major, Trypanosoma cruzi, and T. brucei were completed in 2005 following those strategies. The functional genomics era developed on the basis of microarray technology and has been continuously evolving. In the case of the genus Leishmania, substantial information about differentiation in the digenetic life cycle of the parasite has been obtained. More recently, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive and accurate results by using much fewer resources. Though this new technology is more advantageous, it does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found by means of microarray-based screening and preliminary proof-of-concept tests.
Collapse
|
85
|
Abstract
Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana. However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals. Glucose transporters are important for viability and infectivity of the disease-causing amastigote stages of Leishmania mexicana. The Δgt1-3 null mutant, in which the 3 clustered glucose transporter genes, GT1, GT2, and GT3, have been deleted, is strongly impaired in growth inside macrophages in vitro. We have now demonstrated that this null mutant is also impaired in virulence in the BALB/c murine model of infection and forms lesions considerably more slowly than wild-type parasites. Previously, we established that amplification of the PIFTC3 gene, which encodes an intraflagellar transport protein, both facilitated and accompanied the isolation of the original Δgt1-3 null mutant generated in extracellular insect-stage promastigotes. We have now isolated Δgt1-3 null mutants without coamplification of PIFTC3. These amplicon-negative null mutants are further impaired in growth as promastigotes, compared to the previously described null mutants containing the PIFTC3 amplification. In contrast, the GT3 glucose transporter plays an especially important role in promoting amastigote viability. A line that expresses only the single glucose transporter GT3 grows as well inside macrophages and induces lesions in animals as robustly as do wild-type amastigotes, but lines expressing only the GT1 or GT2 transporters replicate poorly in macrophages. Strikingly, GT3 is restricted largely to the endoplasmic reticulum in intracellular amastigotes. This observation raises the possibility that GT3 may play an important role as an intracellular glucose transporter in the infectious stage of the parasite life cycle. IMPORTANCE Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana. However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals.
Collapse
|
86
|
Evolutionary Perspectives of Genotype-Phenotype Factors in Leishmania Metabolism. J Mol Evol 2018; 86:443-456. [PMID: 30022295 DOI: 10.1007/s00239-018-9857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
The sandfly midgut and the human macrophage phagolysosome provide antagonistic metabolic niches for the endoparasite Leishmania to survive and populate. Although these environments fluctuate across developmental stages, the relative changes in both these environments across parasite generations might remain gradual. Such environmental restrictions might endow parasite metabolism with a choice of specific genotypic and phenotypic factors that can constrain enzyme evolution for successful adaptation to the host. With respect to the available cellular information for Leishmania species, for the first time, we measure the relative contribution of eight inter-correlated predictors related to codon usage, GC content, gene expression, gene length, multi-functionality, and flux-coupling potential of an enzyme on the evolutionary rates of singleton metabolic genes and further compare their effects across three Leishmania species. Our analysis reveals that codon adaptation, multi-functionality, and flux-coupling potential of an enzyme are independent contributors of enzyme evolutionary rates, which can together explain a large variation in enzyme evolutionary rates across species. We also hypothesize that a species-specific occurrence of duplicated genes in novel subcellular locations can create new flux routes through certain singleton flux-coupled enzymes, thereby constraining their evolution. A cross-species comparison revealed both common and species-specific genes whose evolutionary divergence was constrained by multiple independent factors. Out of these, previously known pharmacological targets and virulence factors in Leishmania were identified, suggesting their evolutionary reasons for being important survival factors to the parasite. All these results provide a fundamental understanding of the factors underlying adaptive strategies of the parasite, which can be further targeted.
Collapse
|
87
|
Armitage EG, Alqaisi AQI, Godzien J, Peña I, Mbekeani AJ, Alonso-Herranz V, López-Gonzálvez Á, Martín J, Gabarro R, Denny PW, Barrett MP, Barbas C. Complex Interplay between Sphingolipid and Sterol Metabolism Revealed by Perturbations to the Leishmania Metabolome Caused by Miltefosine. Antimicrob Agents Chemother 2018; 62:e02095-17. [PMID: 29463533 PMCID: PMC5923112 DOI: 10.1128/aac.02095-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/21/2018] [Indexed: 12/24/2022] Open
Abstract
With the World Health Organization reporting over 30,000 deaths and 200,000 to 400,000 new cases annually, visceral leishmaniasis is a serious disease affecting some of the world's poorest people. As drug resistance continues to rise, there is a huge unmet need to improve treatment. Miltefosine remains one of the main treatments for leishmaniasis, yet its mode of action (MoA) is still unknown. Understanding the MoA of this drug and parasite response to treatment could help pave the way for new and more successful treatments for leishmaniasis. A novel method has been devised to study the metabolome and lipidome of Leishmania donovani axenic amastigotes treated with miltefosine. Miltefosine caused a dramatic decrease in many membrane phospholipids (PLs), in addition to amino acid pools, while sphingolipids (SLs) and sterols increased. Leishmania major promastigotes devoid of SL biosynthesis through loss of the serine palmitoyl transferase gene (ΔLCB2) were 3-fold less sensitive to miltefosine than wild-type (WT) parasites. Changes in the metabolome and lipidome of miltefosine-treated L. major mirrored those of L. donovani A lack of SLs in the ΔLCB2 mutant was matched by substantial alterations in sterol content. Together, these data indicate that SLs and ergosterol are important for miltefosine sensitivity and, perhaps, MoA.
Collapse
Affiliation(s)
- Emily G Armitage
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences & Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Amjed Q I Alqaisi
- Department of Biosciences, Durham University, Lower Mountjoy, Durham, United Kingdom
- University of Baghdad, College of Science, Biology Department, Baghdad, Iraq
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Imanol Peña
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Alison J Mbekeani
- Department of Biosciences, Durham University, Lower Mountjoy, Durham, United Kingdom
| | - Vanesa Alonso-Herranz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Julio Martín
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Raquel Gabarro
- GSK I+D Diseases of the Developing World (DDW), Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Paul W Denny
- Department of Biosciences, Durham University, Lower Mountjoy, Durham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences & Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
88
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
89
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
90
|
Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana. PLoS Pathog 2018; 14:e1006953. [PMID: 29554142 PMCID: PMC5882173 DOI: 10.1371/journal.ppat.1006953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/03/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not virulent in mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both. Leishmania parasites endanger over 1 billion people worldwide, infecting 300,000 people and causing 20,000 deaths annually. In this study, we scrutinized metabolism in Leishmania mexicana after deletion of the gene encoding transketolase (TKT), an enzyme involved in sugar metabolism via the pentose phosphate pathway which plays key roles in creating ribose 5-phosphate for nucleotide synthesis and also defence against oxidative stress. The insect stage of the parasite, grown in culture medium, did not suffer from any obvious growth defect after the gene was deleted. However, its metabolism changed dramatically, with metabolomics indicating profound changes to flux through the pentose phosphate pathway: decreased glucose consumption, and generally enhanced efficiency in using metabolic substrates with reduced secretion of partially oxidised end products of metabolism. This ‘stringent’ metabolism is reminiscent of the mammalian stage parasites. The cells were also more sensitive to oxidative stress inducing agents and leishmanicidal drugs. Crucially, mice inoculated with the TKT knock-out parasites did not develop an infection pointing to the enzyme playing a key role in allowing the parasites to remain viable in the host, indicating that TKT may be considered a useful target for development of new drugs against leishmaniasis.
Collapse
|
91
|
Sarkar A, Khan YA, Laranjeira-Silva MF, Andrews NW, Mittra B. Quantification of Intracellular Growth Inside Macrophages is a Fast and Reliable Method for Assessing the Virulence of Leishmania Parasites. J Vis Exp 2018. [PMID: 29608175 DOI: 10.3791/57486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lifecycle of Leishmania, the causative agent of leishmaniasis, alternates between promastigote and amastigote stages inside the insect and vertebrate hosts, respectively. While pathogenic symptoms of leishmaniasis can vary widely, from benign cutaneous lesions to highly fatal visceral disease forms depending on the infective species, all Leishmania species reside inside host macrophages during the vertebrate stage of their lifecycle. Leishmania infectivity is therefore directly related to its ability to invade, survive and replicate within parasitophorous vacuoles (PVs) inside macrophages. Thus, assessing the parasite's ability to replicate intracellularly serves as a dependable method for determining virulence. Studying leishmaniasis development using animal models is time-consuming, tedious and often difficult, particularly with the pathogenically important visceral forms. We describe here a methodology to follow the intracellular development of Leishmania in bone marrow-derived macrophages (BMMs). Intracellular parasite numbers are determined at 24 h intervals for 72 - 96 h following infection. This method allows for a reliable determination of the effects of various genetic factors on Leishmania virulence. As an example, we show how a single allele deletion of the Leishmania Mitochondrial Iron Transporter gene (LMIT1) impairs the ability of the Leishmania amazonensis mutant strain LMIT1/ΔLmit1 to grow inside BMMs, reflecting a drastic reduction in virulence compared to wild-type. This assay also allows precise control of experimental conditions, which can be individually manipulated to analyze the influence of various factors (nutrients, reactive oxygen species, etc.) on the host-pathogen interaction. Therefore, the appropriate execution and quantification of BMM infection studies provide a non-invasive, rapid, economical, safe and reliable alternative to conventional animal model studies.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | - Yousuf A Khan
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | | | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland
| | - Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland;
| |
Collapse
|
92
|
Saunders EC, Naderer T, Chambers J, Landfear SM, McConville MJ. Leishmania mexicana can utilize amino acids as major carbon sources in macrophages but not in animal models. Mol Microbiol 2018; 108:143-158. [PMID: 29411460 DOI: 10.1111/mmi.13923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1-3 mutant which lacks the major glucose transporters LmxGT1-3. We identified a novel suppressor line (Δlmxgt1-3s2 ) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1-3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non-essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia
| | - Jenny Chambers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
93
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
94
|
Mahanta A, Ganguli P, Barah P, Sarkar RR, Sarmah N, Phukan S, Bora M, Baruah S. Integrative Approaches to Understand the Mastery in Manipulation of Host Cytokine Networks by Protozoan Parasites with Emphasis on Plasmodium and Leishmania Species. Front Immunol 2018. [PMID: 29527208 PMCID: PMC5829655 DOI: 10.3389/fimmu.2018.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diseases by protozoan pathogens pose a significant public health concern, particularly in tropical and subtropical countries, where these are responsible for significant morbidity and mortality. Protozoan pathogens tend to establish chronic infections underscoring their competence at subversion of host immune processes, an important component of disease pathogenesis and of their virulence. Modulation of cytokine and chemokine levels, their crosstalks and downstream signaling pathways, and thereby influencing recruitment and activation of immune cells is crucial to immune evasion and subversion. Many protozoans are now known to secrete effector molecules that actively modulate host immune transcriptome and bring about alterations in host epigenome to alter cytokine levels and signaling. The complexity of multi-dimensional events during interaction of hosts and protozoan parasites ranges from microscopic molecular levels to macroscopic ecological and epidemiological levels that includes disrupting metabolic pathways, cell cycle (Toxoplasma and Theileria sp.), respiratory burst, and antigen presentation (Leishmania spp.) to manipulation of signaling hubs. This requires an integrative systems biology approach to combine the knowledge from all these levels to identify the complex mechanisms of protozoan evolution via immune escape during host-parasite coevolution. Considering the diversity of protozoan parasites, in this review, we have focused on Leishmania and Plasmodium infections. Along with the biological understanding, we further elucidate the current efforts in generating, integrating, and modeling of multi-dimensional data to explain the modulation of cytokine networks by these two protozoan parasites to achieve their persistence in host via immune escape during host-parasite coevolution.
Collapse
Affiliation(s)
- Anusree Mahanta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India.,Institute of Stem Cell Biology and Regenerative Medicine, Bengaluru, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development, CSIR- National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR- National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, India
| | - Neelanjana Sarmah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Saurav Phukan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Mayuri Bora
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Shashi Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
95
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
96
|
The role of membrane transporters in Leishmania virulence. Emerg Top Life Sci 2017; 1:601-611. [DOI: 10.1042/etls20170119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 11/17/2022]
Abstract
Leishmania are parasitic protozoa which infect humans and cause severe morbidity and mortality. Leishmania parasitise as extracellular promastigotes in the insect vector and as intracellular amastigotes in the mammalian host. Cycling between hosts involves implementation of stringent and co-ordinated responses to shifting environmental conditions. One of the key dynamic aspects of Leishmania biology is substrate acquisition and metabolism. Genomic analyses have revealed that Leishmania encode many putative membrane transporters, many of which are differentially expressed during the parasite life cycle. Only a small fraction of these transporters, however, have been functionally characterised. Currently, most information is available about nutrient transporters, mainly involved in carbohydrate, amino acid, nucleobase and nucleoside, cofactor, and ion acquisition. Several have apparent roles in Leishmania virulence and will be discussed in this perspective.
Collapse
|
97
|
Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations. mSystems 2017; 2:mSystems00055-17. [PMID: 29034329 PMCID: PMC5634790 DOI: 10.1128/msystems.00055-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/11/2017] [Indexed: 11/25/2022] Open
Abstract
Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms. Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum, which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum, which may reflect differing host nutrient availabilities. The 13C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis. This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.
Collapse
|
98
|
Kirby LE, Koslowsky D. Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl Trop Dis 2017; 11:e0005989. [PMID: 28991908 PMCID: PMC5650466 DOI: 10.1371/journal.pntd.0005989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/20/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma brucei is transmitted between mammalian hosts by the tsetse fly. In the mammal, they are exclusively extracellular, continuously replicating within the bloodstream. During this stage, the mitochondrion lacks a functional electron transport chain (ETC). Successful transition to the fly, requires activation of the ETC and ATP synthesis via oxidative phosphorylation. This life cycle leads to a major problem: in the bloodstream, the mitochondrial genes are not under selection and are subject to genetic drift that endangers their integrity. Exacerbating this, T. brucei undergoes repeated population bottlenecks as they evade the host immune system that would create additional forces of genetic drift. These parasites possess several unique genetic features, including RNA editing of mitochondrial transcripts. RNA editing creates open reading frames by the guided insertion and deletion of U-residues within the mRNA. A major question in the field has been why this metabolically expensive system of RNA editing would evolve and persist. Here, we show that many of the edited mRNAs can alter the choice of start codon and the open reading frame by alternative editing of the 5’ end. Analyses of mutational bias indicate that six of the mitochondrial genes may be dual-coding and that RNA editing allows access to both reading frames. We hypothesize that dual-coding genes can protect genetic information by essentially hiding a non-selected gene within one that remains under selection. Thus, the complex RNA editing system found in the mitochondria of trypanosomes provides a unique molecular strategy to combat genetic drift in non-selective conditions. In African trypanosomes, many of the mitochondrial mRNAs require extensive RNA editing before they can be translated. During this process, each edited transcript can undergo hundreds of cleavage/ligation events as U-residues are inserted or deleted to generate a translatable open reading frame. A major paradox has been why this incredibly metabolically expensive process would evolve and persist. In this work, we show that many of the mitochondrial genes in trypanosomes are dual-coding, utilizing different reading frames to potentially produce two very different proteins. Access to both reading frames is made possible by alternative editing of the 5’ end of the transcript. We hypothesize that dual-coding genes may work to protect the mitochondrial genes from mutations during growth in the mammalian host, when many of the mitochondrial genes are not being used. Thus, the complex RNA editing system may be maintained because it provides a unique molecular strategy to combat genetic drift.
Collapse
Affiliation(s)
- Laura E. Kirby
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Donna Koslowsky
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
99
|
|
100
|
Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum. Sci Rep 2017; 7:10262. [PMID: 28860532 PMCID: PMC5579285 DOI: 10.1038/s41598-017-10743-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Human macrophage phagolysosome and sandfly midgut provide antagonistic ecological niches for Leishmania parasites to survive and proliferate. Parasites optimize their metabolism to utilize the available inadequate resources by adapting to those environments. Lately, a number of metabolomics studies have revived the interest to understand metabolic strategies utilized by the Leishmania parasite for optimal survival within its hosts. For the first time, we propose a reconstructed genome-scale metabolic model for Leishmania infantum JPCM5, the analyses of which not only captures observations reported by metabolomics studies in other Leishmania species but also divulges novel features of the L. infantum metabolome. Our results indicate that Leishmania metabolism is organized in such a way that the parasite can select appropriate alternatives to compensate for limited external substrates. A dynamic non-essential amino acid motif exists within the network that promotes a restricted redistribution of resources to yield required essential metabolites. Further, subcellular compartments regulate this metabolic re-routing by reinforcing the physiological coupling of specific reactions. This unique metabolic organization is robust against accidental errors and provides a wide array of choices for the parasite to achieve optimal survival.
Collapse
|