51
|
Franco-Duarte R, Seabra CL, Rocha SM, Henriques M, Sampaio P, Teixeira JA, Botelho CM. Metabolic profile of Candida albicans and Candida parapsilosis interactions within dual-species biofilms. FEMS Microbiol Ecol 2022; 98:6550018. [PMID: 35298615 DOI: 10.1093/femsec/fiac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Within the oral cavity, the ability of Candida species to adhere and form biofilms is well recognized, especially when C. albicans is considered. Lately, a knowledge gap has been identified regarding dual-species communication of Candida isolates, as a way to increase virulence, with evidences being collected to support the existence of interactions between C. albicans and C. parapsilosis. The present work evaluated the synergistic effect of the two Candida species, and explored chemical interactions between cells, evaluating secreted extracellular alcohols and their relation with yeasts´ growth and matrix composition. Four clinical strains of C. albicans and C. parapsilosis species, isolated from single infections of different patients or from co-infections of a same patient, were tested. It was found that dual-species biofilms negatively impacted the growth of C. parapsilosis and their biofilm matrix, in comparison with mono-species biofilms, and had minor effects on the biofilm biomass. Alcohol secretion revealed to be species- and strain-dependent. However, some dual-species cultures produced much higher amounts of some alcohols (E-nerolidol and E, E-Farnesol) than the respective single cultures, which proves the existence of a synergy between species. These results show evidence that interactions between Candida species affect the biofilm matrix, which is a key element of oral biofilms.
Collapse
Affiliation(s)
- Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Catarina L Seabra
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Silvia M Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Sampaio
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Cláudia M Botelho
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
52
|
Yan K, Pei Z, Meng L, Zheng Y, Wang L, Feng R, Li Q, Liu Y, Zhao X, Wei Q, El-Sappah AH, Abbas M. Determination of Community Structure and Diversity of Seed-Vectored Endophytic Fungi in Alpinia zerumbet. Front Microbiol 2022; 13:814864. [PMID: 35295292 PMCID: PMC8918987 DOI: 10.3389/fmicb.2022.814864] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Endophytic fungi act as seed endosymbiont, thereby playing a very crucial role in the growth and development of seeds. Seed-vectored endophytic fungi establish an everlasting association with seeds and travel from generation to generation. To explore the composition and diversity of endophytic fungi in Alpinia zerumbet seeds, high-throughput Illumina MiSeq sequencing was employed for the following stages: fruit formation period (YSJ1), young fruit period (YSJ2), early mature period (YSJ3), middle mature period (YSJ4), and late mature period (YSJ5). A total of 906,694 sequence reads and 745 operational taxonomic units (OTUs) were obtained and further classified into 8 phyla, 30 classes, 73 orders, 163 families, 302 genera, and 449 species. The highest endophytic fungal diversity was observed at YSJ5. The genera with the highest abundance were Cladosporium, Kodamaea, Hannaella, Mycothermus, Gibberella, Sarocladium, and Neopestalotiopsis. Functional Guild (FUNGuild) analysis revealed that endophytic fungi were undefined saprotroph, plant pathogens, animal pathogen–endophyte–lichen parasite–plant pathogen–wood saprotroph, and soil saprotrophs. Alternaria, Fusarium, Cladosporium, and Sarocladium, which are potential probiotics and can be used as biocontrol agents, were also abundant. This study is part of the Sustainable Development Goals of United Nations Organization (UNO) to “Establish Good Health and Well-Being.”
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Zihao Pei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Yu Zheng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Lian Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Ruizhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Yang Liu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- Qin Wei,
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Ahmed H. El-Sappah,
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin University, Yibin, China
- *Correspondence: Manzar Abbas,
| |
Collapse
|
53
|
Abstract
Numerous studies have examined the composition of and factors shaping the oral bacterial microbiota in healthy adults; however, similar studies on the less dominant yet ecologically and clinically important fungal microbiota are scarce. In this study, we characterized simultaneously the oral bacterial and fungal microbiomes in a large cohort of systemically healthy Chinese adults by sequencing the bacterial 16S rRNA gene and fungal internal transcribed spacer. We showed that different factors shaped the oral bacterial and fungal microbiomes in healthy adults. Sex and age were associated with the alpha diversity of the healthy oral bacterial microbiome but not that of the fungal microbiome. Age was also a major factor affecting the beta diversity of the oral bacterial microbiome; however, it only exerted a small effect on the oral fungal microbiome when compared with other variables. After controlling for age and sex, the bacterial microbiota structure was most affected by marital status, recent oral conditions and oral hygiene-related factors, whereas the fungal microbiota structure was most affected by education level, fruits and vegetables, and bleeding gums. Bacterial-fungal interactions were limited in the healthy oral microbiota, with the strongest association existing between Pseudomonas sp. and Rhodotorula dairenensis. Several bacterial amplicon sequence variants (ASVs) belonging to Veillonella atypica and the genera Leptotrichia, Streptococcus and Prevotella_7 and fungal ASVs belonging to Candida albicans and the genus Blumeria were revealed as putative pivotal members of the healthy oral microbiota. Overall, our study has facilitated understanding of the determining factors and cross-kingdom interactions of the healthy human oral microbiome. IMPORTANCE Numerous studies have examined the bacterial community residing in our oral cavity; however, information on the less dominant yet ecologically and clinically important fungal members is limited. In this study, we characterized simultaneously the oral bacterial and fungal microbial communities in a large cohort of healthy Chinese adults, examined their associations with an array of host factors, and explored potential interactions between the two microbial groups. We showed that different factors shape the diversity and structure of the oral bacterial and fungal microbial communities in healthy adults, with, for instance, sex and age only associated with the diversity of the bacterial community but not that of the fungal community. Besides, we found that bacterial-fungal interactions are limited in the healthy oral cavity. Overall, our study has facilitated understanding of the determining factors and bacterial-fungal interactions of the healthy human oral microbial community.
Collapse
|
54
|
Liu H, Cheng J, Jin H, Xu Z, Yang X, Min D, Xu X, Shao X, Lu D, Qin B. Characterization of Rhizosphere and Endophytic Microbial Communities Associated with Stipa purpurea and Their Correlation with Soil Environmental Factors. PLANTS 2022; 11:plants11030363. [PMID: 35161345 PMCID: PMC8839079 DOI: 10.3390/plants11030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
This study was to explore the diversity of rhizosphere and endophytic microbial communities and the correlation with soil environmental factors of Stipa purpurea on the Qinghai-Tibetan Plateau. The bacterial phylum of Proteobacteria, Firmicutes and Bacteroidota, and the fungal phylum of Ascomycota, Basidiomycota and Zygomycota were dominant in microbial communities of S. purpurea in all three sampling sites. Multiple comparison analysis showed that there were significant differences in the composition of microbial communities in the roots, leaves and rhizosphere soil. Whether it is fungi or bacteria, the OTU abundance of rhizosphere soils was higher than that of leaves and roots at the same location, while the difference among locations was not obvious. Moreover, RDA analysis showed that Zygomycota, Cercozoa, Glomeromycota, Chytridiomycota and Rozellomycota possessed strongly positive associations with altitude, dehydrogenase, alkaline phosphatase, neutral phosphatase, available kalium and available phosphate, while Ascomycota was strongly negatively associated. Changes in ammonium nitrate, alkaline phosphatase, polyphenol oxidase, total phosphorus, and altitude had a significant impact on the bacterial communities in different habitats and altitudes. Taken together, we provide evidence that S. purpurea has abundant microbial communities in the alpine grassland of the Qinghai-Tibetan Plateau, whose composition and diversity are affected by various soil environmental factors.
Collapse
Affiliation(s)
- Haoyue Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (H.L.); (X.Y.); (D.M.); (X.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinan Cheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Hui Jin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (H.L.); (X.Y.); (D.M.); (X.X.)
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
- Correspondence: (H.J.); (B.Q.)
| | - Zhongxiang Xu
- Animal, Plant & Food Inspection Center of Nanjing Customs, Nanjing 210000, China;
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (H.L.); (X.Y.); (D.M.); (X.X.)
| | - Deng Min
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (H.L.); (X.Y.); (D.M.); (X.X.)
| | - Xinxin Xu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (H.L.); (X.Y.); (D.M.); (X.X.)
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China;
| | - Dengxue Lu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China;
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; (H.L.); (X.Y.); (D.M.); (X.X.)
- Correspondence: (H.J.); (B.Q.)
| |
Collapse
|
55
|
Fungi—A Component of the Oral Microbiome Involved in Periodontal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:113-138. [DOI: 10.1007/978-3-030-96881-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Begum N, Harzandi A, Lee S, Uhlen M, Moyes DL, Shoaie S. Host-mycobiome metabolic interactions in health and disease. Gut Microbes 2022; 14:2121576. [PMID: 36151873 PMCID: PMC9519009 DOI: 10.1080/19490976.2022.2121576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
57
|
Xie Y, Sun J, Hu C, Ruan B, Zhu B. Oral Microbiota Is Associated With Immune Recovery in Human Immunodeficiency Virus-Infected Individuals. Front Microbiol 2021; 12:794746. [PMID: 34956162 PMCID: PMC8696184 DOI: 10.3389/fmicb.2021.794746] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the oral microbiota in HIV-infected individuals deserves attention as either HIV infection or antiretroviral therapy (ART) may have effect on the diversity and the composition of the oral microbiome. However, few studies have addressed the oral microbiota and its interplay with different immune responses to ART in HIV-infected individuals. Salivary microbiota and immune activation were studied in 30 HIV-infected immunological responders (IR) and 34 immunological non-responders (INR) (≥500 and < 200 CD4 + T-cell counts/μl after 2 years of HIV-1 viral suppression, respectively) with no comorbidities. Metagenome sequencing revealed that the IR and the INR group presented similar salivary bacterial richness and diversity. The INR group presented a significantly higher abundance of genus Selenomonas_4, while the IR group manifested higher abundances of Candidatus_Saccharimonas and norank_p_Saccharimonas. Candidatus_Saccharimonas and norank_p_Saccharimonas were positively correlated with the current CD4 + T-cells. Candidatus_Saccharimonas was positively correlated with the markers of adaptive immunity CD4 + CD57 + T-cells, while negative correlation was found between norank _p_Saccharimonas and the CD8 + CD38 + T-cells as well as the CD4/CD8 + HLADR + CD38 + T-cells. The conclusions are that the overall salivary microbiota structure was similar in the immunological responders and immunological non-responders, while there were some taxonomic differences in the salivary bacterial composition. Selenomona_4, Candidatus_Saccharimonas, and norank _p_Saccharimonas might act as important factors of the immune recovery in the immunodeficiency patients, and Candidatus_Saccharimonas could be considered in the future as screening biomarkers for the immune responses in the HIV-infected individuals.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jia Sun
- Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
58
|
Chang S, Guo H, Li J, Ji Y, Jiang H, Ruan L, Du M. Comparative Analysis of Salivary Mycobiome Diversity in Human Immunodeficiency Virus-Infected Patients. Front Cell Infect Microbiol 2021; 11:781246. [PMID: 34926323 PMCID: PMC8671614 DOI: 10.3389/fcimb.2021.781246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Reports on alterations in the oral mycobiome of HIV-infected patients are still limited. This study was designed to compare the salivary mycobiome between 30 human immunodeficiency virus (HIV) infections and 30 healthy controls and explore the effect of antiretroviral therapy (ART) administration on the oral mycobiome of HIV infections. Results showed that the diversity and richness of salivary mycobiome in HIV-infected individuals were higher than those of controls (P < 0.05). After ART, the diversity and richness of salivary mycobiome in HIV-infected patients were reduced significantly (P < 0.05). Candida, Mortierella, Malassezia, Simplicillium, and Penicillium were significantly enriched in the HIV group and dramatically decreased after ART. While the relative abundance of Verticillium, Issatchenkia, and Alternaria significantly increased in patients with HIV after ART. Correlation analysis revealed that Mortierella, Malassezia, Simplicillium, and Chaetomium were positively correlated with viral load (VL), whereas Thyrostroma and Archaeorhizomyces were negatively related to VL and positively related to CD4+ T-cell counts. All results showed that HIV infection and ART administration affected the composition of salivary mycobiome communities. Furthermore, differences of salivary mycobiome in HIV infections after ART were complex and might mirror the immune state of the body.
Collapse
Affiliation(s)
- Shenghua Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lianguo Ruan
- Department of Infectious Diseases Treatment, Wuhan Medical Treatment Center, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
59
|
Guo Y, Huang X, Sun X, Yu Y, Wang Y, Zhang B, Cao J, Wen S, Li Y, Wang X, Cai S, Xia W, Wei F, Duan J, Dong H, Guo S, Zhang F, Zheng D, Sun Z. The Underrated Salivary Virome of Men Who Have Sex With Men Infected With HIV. Front Immunol 2021; 12:759253. [PMID: 34925329 PMCID: PMC8674211 DOI: 10.3389/fimmu.2021.759253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Salivary virome is important for oral ecosystem, but there are few reports on people living with HIV. We performed metagenomic sequencing to compare composition and functional genes of salivary virobiota between one HIV-negative and four HIV-positive groups in which participants were all men who have sex with men (MSM) with different immunosuppression statuses (five samples per group) to find the evidence that salivary virobiota plays a role in the pathogenesis of oral disease. Acute-stage subjects achieved a positive result of HIV RNA, but HIV antibody negative or indeterminate, whereas individuals with mild, moderate, and severe immunosuppression exhibited CD4+ T-lymphocyte counts of at least 500, 200–499, and less than 200 cells/μL or opportunistic infection, respectively. The results showed the composition of salivary virus genera in subjects with mild immunosuppression was the most similar to that in healthy people, followed by that in the acute stage; under severe immunosuppression, virus genera were suppressed and more similar to that under moderate immunosuppression. Furthermore, abnormally high abundance of Lymphocryptovirus was particularly obvious in MSM with HIV infection. Analysis of KEGG Pathway revealed that Caulobacter cell cycle, which affects cell duplication, became shorter in HIV-positive subjects. It is worth noting that in acute-stage participants, protein digestion and absorption related to the anti-HIV-1 activity of secretory leukocyte protease inhibitor was increased. Moreover, in the severely immunosuppressed subjects, glutathione metabolism, which is associated with the activation of lymphocytes, was enhanced. Nevertheless, the ecological dysbiosis in HIV-positive salivary virobiota possibly depended on the changes in blood viral load, and salivary dysfunction of MSM infected with HIV may be related to CD4 counts. Ribonucleoside diphosphate reductase subunit M1 in purine metabolism was negatively correlated, though weakly, to CD4 counts, which may be related to the promotion of HIV-1 DNA synthesis in peripheral blood lymphocytes. 7-Cyano-7-deazaguanine synthase in folate biosynthesis was weakly positively correlated with HIV viral load, suggesting that this compound was produced excessively to correct oral dysfunction for maintaining normal cell development. Despite the limited number of samples, the present study provided insight into the potential role of salivary virome in the oral function of HIV infected MSM.
Collapse
Affiliation(s)
- Ying Guo
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xintong Sun
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yixi Yu
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Baojin Zhang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jie Cao
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wen
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Li
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyi Duan
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haozhi Dong
- Department of Stomatology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fengqiu Zhang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dongxiang Zheng
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zheng Sun
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
60
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
61
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
62
|
Coker MO, Akhigbe P, Osagie E, Idemudia NL, Igedegbe O, Chukwumah N, Adebiyi R, Mann AE, O'Connell LM, Obuekwe O, Omoigberale A, Charurat ME, Richards VP. Dental caries and its association with the oral microbiomes and HIV in young children-Nigeria (DOMHaIN): a cohort study. BMC Oral Health 2021; 21:620. [PMID: 34863179 PMCID: PMC8642767 DOI: 10.1186/s12903-021-01944-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Background This study seeks to understand better the mechanisms underlying the increased risk of caries in HIV-infected school-aged Nigerian children by examining the relationship between the plaque microbiome and perinatal HIV infection and exposure. We also seek to investigate how perinatal HIV infection and exposure impact tooth-specific microbiomes' role on caries disease progression. Methods The participants in this study were children aged 4 to 11 years recruited from the University of Benin Teaching Hospital (UBTH), Nigeria, between May to November 2019. Overall, 568 children were enrolled in three groups: 189 HIV-infected (HI), 189 HIV-exposed but uninfected (HEU) and 190 HIV-unexposed and uninfected (HUU) as controls at visit 1 with a 2.99% and 4.90% attrition rate at visit 2 and visit 3 respectively. Data were obtained with standardized questionnaires. Blood samples were collected for HIV, HBV and HCV screening; CD4, CD8 and full blood count analysis; and plasma samples stored for future investigations; oral samples including saliva, buccal swabs, oropharyngeal swab, tongue swab, dental plaque were collected aseptically from participants at different study visits. Conclusions Results from the study will provide critical information on how HIV exposure, infection, and treatment, influence the oral microbiome and caries susceptibility in children. By determining the effect on community taxonomic structure and gene expression of dental microbiomes, we will elucidate mechanisms that potentially create a predisposition for developing dental caries. As future plans, the relationship between respiratory tract infections, immune and inflammatory markers with dental caries in perinatal HIV infection and exposure will be investigated. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01944-y.
Collapse
Affiliation(s)
- Modupe O Coker
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University, 110 Bergen Street, Room C-845, Newark, NJ, 07103, USA. .,Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria.
| | - Paul Akhigbe
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Esosa Osagie
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Nosakhare L Idemudia
- Medical Microbiology Division, Medical Laboratory Services, University of Benin Teaching Hospital, Benin City, Nigeria
| | - Oghenero Igedegbe
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Nneka Chukwumah
- Department of Preventive Dentistry, University of Benin, Benin City, Nigeria
| | - Ruxton Adebiyi
- Research Department, Institute of Human Virology, Nigeria, Abuja, Nigeria
| | - Allison E Mann
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | | | - Ozo Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin, Benin City, Nigeria
| | | | - Manhattan E Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
63
|
Wang D, Zheng Q, Lv Q, Cai Y, Zheng Y, Chen H, Zhang W. Analysis of Community Composition of Bacterioplankton in Changle Seawater in China by Illumina Sequencing Combined with Bacteria Culture. Orthop Surg 2021; 14:139-148. [PMID: 34816606 PMCID: PMC8755877 DOI: 10.1111/os.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES To characterize the abundance and relative composition of seawater bacterioplankton communities in Changle city using Illumina MiSeq sequencing and bacterial culture techniques. METHODS Seawater samples and physicochemical factors were collected from the coastal zone of Changle city on 8 September 2019. Nineteen filter membranes were obtained after using a suction filtration system. We randomly selected eight samples for total seawater bacteria (SWDNA group) sequencing and three samples for active seawater bacteria (SWRNA group) sequencing by Illumina MiSeq. The remaining eight samples were used for bacterial culture and identification. Alpha diversity including species coverage (Coverage), species diversity (Shannon-Wiener and Simpson index), richness estimators (Chao1), and abundance-based richness estimation (ACE) were calculated to assess biodiversity of seawater bacterioplankton. Beta diversity was used to evaluate the differences between samples. The species abundance differences were determined using the Wilcoxon rank-sum test. Statistical analyses were performed in R environment. RESULTS The Alpha diversity in the SWDNA group in each index was ACE 3206.99, Chao1 2615.12, Shannon 4.64, Simpson 0.05, and coverage 0.97; the corresponding index was ACE 1199.55, Chao1 934.75, Shannon 3.49, Simpson 0.09, and coverage 0.99. The sequencing results of seawater bacterial genes in the coastal waters of Changle city showed that the phyla of high-abundance bacteria of both the SWDNA and SWRNA groups included Cyanobacteria, Proteobacteria, and Bacteroidetes. The main classes included Oxyphotobacteria, Alphaproteobacteria, and Gammaproteobacteria. The main genera included Synechococcus CC9902, Chloroplast, and Cyanobium_PCC-6307. Beta diversity analysis showed a significant difference between the SWDNA and SWRNA groups (P < 0.05). The species abundance differences between SWDNA and SWRNA groups after Wilcoxon rank-sum test showed that, at the phylum level, Actinomycetes was more abundant in SWDNA group (9.17 vs 1.02%, P < 0.05); at the class level, Actinomycetes (δ- Proteus) was more abundant in SWDNA group (9.47% vs 1.01%, P < 0.05); and at the genus level, Chloroplast was more abundant in SWRNA group (13.07% vs 44.57%, P < 0.05). Nine species and 53 colonies were found by bacterial culture: 20 strains of Vibrio (37.74%), 22 strains of Enterobacter (41.51%), and 11 strains of non-fermentative bacteria (20.75%). CONCLUSION Illumi MiSeq sequencing of seawater bacteria revealed that the total bacterial community groups and the active bacterial community groups mainly comprised Cyanobacteria, Proteobacteria, and Bacteroides at the phylum level; Oxyphotobacteria, α-Proteobacteria, and γ-Proteobacteria at the class level; with Synechococcus_CC9902, Chloroplast, and Cyanobium_PCC-6307 comprising the predominant genera. Exploring the composition and differences of seawater bacteria assists understanding regarding the biodiversity and the infections related to seawater bacteria along the coast of the Changle, provides information that will aid in the diagnosis and treatment of such infections.
Collapse
Affiliation(s)
- Du Wang
- Department of Joint Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Yuanqing Cai
- Department of Joint Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Huidong Chen
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wenming Zhang
- Department of Joint Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
64
|
Ren H, Wang H, Yu Z, Zhang S, Qi X, Sun L, Wang Z, Zhang M, Ahmed T, Li B. Effect of Two Kinds of Fertilizers on Growth and Rhizosphere Soil Properties of Bayberry with Decline Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112386. [PMID: 34834750 PMCID: PMC8624721 DOI: 10.3390/plants10112386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Decline disease causes severe damage to bayberry. However, the cause of this disease remains unclear. Interestingly, our previous studies found that the disease severity is related with the level of soil fertilizer. This study aims to explore the effect and mechanism of compound fertilizer (CF) and bio-organic fertilizer (OF) in this disease by investigating the vegetative growth, fruit characters, soil property, rhizosphere microflora and metabolites. Results indicated that compared with the disease control, CF and OF exhibited differential effect in plant healthy and soil quality, together with the increase in relative abundance of Burkholderia and Mortierella, and the reduction in that of Rhizomicrobium and Acidibacter, Trichoderma, and Cladophialophora reduced. The relative abundance of Geminibasidium were increased by CF (251.79%) but reduced by OF (13.99%). In general, the composition of bacterial and fungal communities in rhizosphere soil was affected significantly at genus level by exchangeable calcium, available phosphorus, and exchangeable magnesium, while the former two variables had a greater influence in bacterial communities than fungal communities. Analysis of GC-MS metabonomics indicated that compared to the disease control, CF and OF significantly changed the contents of 31 and 45 metabolites, respectively, while both fertilizers changed C5-branched dibasic acid, galactose, and pyrimidine metabolic pathway. Furthermore, a significant correlation was observed at the phylum, order and genus levels between microbial groups and secondary metabolites of bayberry rhizosphere soil. In summary, the results provide a new way for rejuvenation of this diseased bayberry trees.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.W.); (B.L.)
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
- Correspondence: (Z.W.); (B.L.)
| |
Collapse
|
65
|
Mohamed N, Litlekalsøy J, Ahmed IA, Martinsen EMH, Furriol J, Javier-Lopez R, Elsheikh M, Gaafar NM, Morgado L, Mundra S, Johannessen AC, Osman TAH, Nginamau ES, Suleiman A, Costea DE. Analysis of Salivary Mycobiome in a Cohort of Oral Squamous Cell Carcinoma Patients From Sudan Identifies Higher Salivary Carriage of Malassezia as an Independent and Favorable Predictor of Overall Survival. Front Cell Infect Microbiol 2021; 11:673465. [PMID: 34712619 PMCID: PMC8547610 DOI: 10.3389/fcimb.2021.673465] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Background Microbial dysbiosis and microbiome-induced inflammation have emerged as important factors in oral squamous cell carcinoma (OSCC) tumorigenesis during the last two decades. However, the “rare biosphere” of the oral microbiome, including fungi, has been sparsely investigated. This study aimed to characterize the salivary mycobiome in a prospective Sudanese cohort of OSCC patients and to explore patterns of diversities associated with overall survival (OS). Materials and Methods Unstimulated saliva samples (n = 72) were collected from patients diagnosed with OSCC (n = 59) and from non-OSCC control volunteers (n = 13). DNA was extracted using a combined enzymatic–mechanical extraction protocol. The salivary mycobiome was assessed using a next-generation sequencing (NGS)-based methodology by amplifying the ITS2 region. The impact of the abundance of different fungal genera on the survival of OSCC patients was analyzed using Kaplan–Meier and Cox regression survival analyses (SPPS). Results Sixteen genera were identified exclusively in the saliva of OSCC patients. Candida, Malassezia, Saccharomyces, Aspergillus, and Cyberlindnera were the most relatively abundant fungal genera in both groups and showed higher abundance in OSCC patients. Kaplan–Meier survival analysis showed higher salivary carriage of the Candida genus significantly associated with poor OS of OSCC patients (Breslow test: p = 0.043). In contrast, the higher salivary carriage of Malassezia showed a significant association with favorable OS in OSCC patients (Breslow test: p = 0.039). The Cox proportional hazards multiple regression model was applied to adjust the salivary carriage of both Candida and Malassezia according to age (p = 0.029) and identified the genus Malassezia as an independent predictor of OS (hazard ratio = 0.383, 95% CI = 0.16–0.93, p = 0.03). Conclusion The fungal compositional patterns in saliva from OSCC patients were different from those of individuals without OSCC. The fungal genus Malassezia was identified as a putative prognostic biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Nazar Mohamed
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery/Department of Basic Sciences, University of Khartoum, Khartoum, Sudan
| | - Jorunn Litlekalsøy
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Israa Abdulrahman Ahmed
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Operative Dentistry, University of Science & Technology, Omdurman, Sudan
| | | | - Jessica Furriol
- Department of Nephrology, Haukeland University Hospital, Bergen, Norway
| | - Ruben Javier-Lopez
- Department of Biological Sciences, The Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Mariam Elsheikh
- Department of Oral and Maxillofacial Surgery/Department of Basic Sciences, University of Khartoum, Khartoum, Sudan.,Department of Oral & Maxillofacial Surgery, Khartoum Dental Teaching Hospital, Khartoum, Sudan
| | - Nuha Mohamed Gaafar
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery/Department of Basic Sciences, University of Khartoum, Khartoum, Sudan
| | - Luis Morgado
- Section for Genetics and Evolutionary Biology (EvoGene), Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sunil Mundra
- Section for Genetics and Evolutionary Biology (EvoGene), Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Biology, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Anne Christine Johannessen
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Pathology, Laboratory Clinic, Haukeland University Hospital, Bergen, Norway
| | - Tarig Al-Hadi Osman
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| | - Elisabeth Sivy Nginamau
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Pathology, Laboratory Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ahmed Suleiman
- Department of Oral and Maxillofacial Surgery/Department of Basic Sciences, University of Khartoum, Khartoum, Sudan.,Department of Oral & Maxillofacial Surgery, Khartoum Dental Teaching Hospital, Khartoum, Sudan
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway.,Department of Pathology, Laboratory Clinic, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
66
|
Li H, Sun J, Wang X, Shi J. Oral microbial diversity analysis among atrophic glossitis patients and healthy individuals. J Oral Microbiol 2021; 13:1984063. [PMID: 34676060 PMCID: PMC8526005 DOI: 10.1080/20002297.2021.1984063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Atrophic glossitis is a common disease in oral mucosal diseases. The Current studies have found the human oral cavity contains numerous and diverse microorganisms, their composition and diversity can be changed by various oral diseases. To understand the composition and diversity of oral microbiome in atrophic glossitis is better to explore the cause and mechanism of atrophic glossitis. The salivary microbiome is comprised of indigenous oral microorganisms that are specific to each person, exhibits long-term stability. We used llumina MiSeq high-throughput sequencing based on the V3-V4 region of the bacterial 16S rRNA gene and the internal transcribed spacer (ITS) region of fungal rRNA genes from saliva in atrophic glossitis patients and healthy individuals to explore the composition and diversity of oral microbiome. In our reports, it showed a lower diversity of bacteria and fungi in atrophic glossitis patients than in healthy individuals. The data further suggests that Lactobacillus and Saccharomycetales were potential indicators for the initiation and development of atrophic glossitis. Moreover, we also discuss the relationship between the oral microbial ecology and atrophic glossitis.
Collapse
Affiliation(s)
- Hong Li
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| | - Jing Sun
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| | - Xiaoyan Wang
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| | - Jing Shi
- Department of Oral Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan Shanxi Province, China
| |
Collapse
|
67
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
68
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
69
|
Ren H, Wang H, Qi X, Yu Z, Zheng X, Zhang S, Wang Z, Zhang M, Ahmed T, Li B. The Damage Caused by Decline Disease in Bayberry Plants through Changes in Soil Properties, Rhizosphere Microbial Community Structure and Metabolites. PLANTS (BASEL, SWITZERLAND) 2021; 10:2083. [PMID: 34685892 PMCID: PMC8540645 DOI: 10.3390/plants10102083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 05/03/2023]
Abstract
Decline disease causes serious damage and rapid death in bayberry, an important fruit tree in south China, but the cause of this disease remains unclear. The aim of this study was to investigate soil quality, microbial community structure and metabolites of rhizosphere soil samples from healthy and diseased trees. The results revealed a significant difference between healthy and diseased bayberry in soil properties, microbial community structure and metabolites. Indeed, the decline disease caused a 78.24% and 78.98% increase in Rhizomicrobium and Cladophialophora, but a 28.60%, 57.18%, 38.84% and 68.25% reduction in Acidothermus, Mortierella, Trichoderma and Geminibasidium, respectively, compared with healthy trees, based on 16S and ITS amplicon sequencing of soil microflora. Furthermore, redundancy discriminant analysis of microbial communities and soil properties indicated that the main variables of bacterial and fungal communities included pH, organic matter, magnesium, available phosphorus, nitrogen and calcium, which exhibited a greater influence in bacterial communities than in fungal communities. In addition, there was a high correlation between the changes in microbial community structure and secondary metabolites. Indeed, GC-MS metabolomics analysis showed that the healthy and diseased samples differed over six metabolic pathways, including thiamine metabolism, phenylalanine-tyrosine-tryptophan biosynthesis, valine-leucine-isoleucine biosynthesis, phenylalanine metabolism, fatty acid biosynthesis and fatty acid metabolism, where the diseased samples showed a 234.67% and 1007.80% increase in palatinitol and cytidine, respectively, and a 17.37-8.74% reduction in the other 40 metabolites compared to the healthy samples. Overall, these results revealed significant changes caused by decline disease in the chemical properties, microbiota and secondary metabolites of the rhizosphere soils, which provide new insights for understanding the cause of this bayberry disease.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
- School of Horticulture and Landscape architecture, Yangtze University, Jingzhou 434023, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| |
Collapse
|
70
|
Zhang L, Zhan H, Xu W, Yan S, Ng SC. The role of gut mycobiome in health and diseases. Therap Adv Gastroenterol 2021; 14:17562848211047130. [PMID: 34589139 PMCID: PMC8474302 DOI: 10.1177/17562848211047130] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome comprised of microbes from multiple kingdoms, including bacteria, fungi, and viruses. Emerging evidence suggests that the intestinal fungi (the gut "mycobiome") play an important role in host immunity and inflammation. Advances in next generation sequencing methods to study the fungi in fecal samples and mucosa tissues have expanded our understanding of gut fungi in intestinal homeostasis and systemic immunity in health and their contribution to different human diseases. In this review, the current status of gut mycobiome in health, early life, and different diseases including inflammatory bowel disease, colorectal cancer, and metabolic diseases were summarized.
Collapse
Affiliation(s)
| | | | - Wenye Xu
- Center for Gut Microbiota Research, Faculty of
Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China,Li Ka Shing Institute of Health Science, The
Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for Digestive disease,
Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin,
Hong Kong, China,Department of Medicine and Therapeutics,
Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China
| | - Shuai Yan
- Center for Gut Microbiota Research, Faculty of
Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China,Li Ka Shing Institute of Health Science, The
Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for Digestive disease,
Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin,
Hong Kong, China,Department of Anaesthesia and Intensive Care
and Peter Hung Pain Research Institute, The Chinese University of Hong Kong,
Shatin, Hong Kong, China
| | | |
Collapse
|
71
|
Yan K, Yan L, Meng L, Cai H, Duan A, Wang L, Li Q, El-Sappah AH, Zhao X, Abbas M. Comprehensive Analysis of Bacterial Community Structure and Diversity in Sichuan Dark Tea ( Camellia sinensis). Front Microbiol 2021; 12:735618. [PMID: 34566939 PMCID: PMC8462664 DOI: 10.3389/fmicb.2021.735618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria and fungi present during pile-fermentation of Sichuan dark tea play a key role in the development of its aesthetic properties, such as color, taste, and fragrance. In our previous study, high-throughput sequencing of dark tea during fermentation revealed Aspergillus was abundant, but scarce knowledge is available about bacterial communities during pile-fermentation. In this study, we rigorously explored bacterial diversity in Sichuan dark tea at each specific stage of piling. Analysis of cluster data revealed 2,948 operational taxonomic units, which were divided into 42 phyla, 98 classes, 247 orders, 461 families, 1,052 genera, and 1,888 species. Certain members of the family Enterobacteriaceae were dominant at early stages of fermentation YC, W1, and W2; Pseudomonas at middle stage W3; and the highest bacterial diversity was observed at the final quality-determining stage W4. Noticeably, probiotics, such as Bacillus, Lactobacillus, Bifidobacterium, and Saccharopolyspora were also significantly higher at the quality-determining stage W4. Our findings might help in precise bacterial inoculation for probiotic food production by increasing the health benefits of Sichuan dark tea. This research also falls under the umbrella of the "Establish Good Health and Well-Being" Sustainable Development Goals of the United Nations Organization.
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Linfeng Yan
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Hongbing Cai
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Ailing Duan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Lian Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
72
|
Loos D, Zhang L, Beemelmanns C, Kurzai O, Panagiotou G. DAnIEL: A User-Friendly Web Server for Fungal ITS Amplicon Sequencing Data. Front Microbiol 2021; 12:720513. [PMID: 34484161 PMCID: PMC8416086 DOI: 10.3389/fmicb.2021.720513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023] Open
Abstract
Trillions of microbes representing all kingdoms of life are resident in, and on, humans holding essential roles for the host development and physiology. The last decade over a dozen online tools and servers, accessible via public domain, have been developed for the analysis of bacterial sequences; however, the analysis of fungi is still in its infancy. Here, we present a web server dedicated to the comprehensive analysis of the human mycobiome for (i) translating raw sequencing reads to data tables and high-standard figures, (ii) integrating statistical analysis and machine learning with a manually curated relational database and (iii) comparing the user’s uploaded datasets with publicly available from the Sequence Read Archive. Using 1,266 publicly available Internal transcribed spacers (ITS) samples, we demonstrated the utility of DAnIEL web server on large scale datasets and show the differences in fungal communities between human skin and soil sites.
Collapse
Affiliation(s)
- Daniel Loos
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Lu Zhang
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections NRZMyk, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, China
| |
Collapse
|
73
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
74
|
Tian GL, Bi YM, Jiao XL, Zhang XM, Li JF, Niu FB, Gao WW. Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng. Appl Microbiol Biotechnol 2021; 105:6977-6991. [PMID: 34436649 DOI: 10.1007/s00253-021-11464-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
Soil sterilization integrated with agronomic measures is an effective method to reduce soilborne replant diseases. However, the effect of vermicompost or biochar application after soil sterilization on soilborne diseases is poorly understood. A pot experiment was conducted in American ginseng to investigate the effects of vermicompost (VF), biochar (BF), and a combination of vermicompost and biochar (VBF) applied after soil sterilization on the incidence of Fusarium root rot using natural recovery (F) as control. After one growing season, the disease index of root rot, the phenolic acids, and the microbial communities of American ginseng rhizosphere soil were analyzed. The disease index of VF, BF, and VBF decreased by 33.32%, 19.03%, and 80.96%, respectively, compared with F. The highest bacterial richness and diversity were observed in the rhizosphere soil of VBF. Besides, VF and VBF significantly increased the relative abundance of beneficial bacteria (Pseudomonas, Lysobacter, and Chryseolinea) in the rhizosphere soil. Higher concentrations of vanillin, one of the phenolic acids in the roots exudates, were recorded in the rhizosphere soils of BF and VBF. The vanillin concentration showed a significant negative correlation with the disease index. To conclude, vermicompost improved the beneficial bacteria of the rhizosphere soil, while biochar regulated the allelopathic effect of the phenolic acids. The study proposes a combined application of biochar and vermicompost to the rhizosphere soil to control Fusarium root rot of replanted American ginseng effectively. KEY POINTS: Vermicompost improves the relative abundance of rhizosphere beneficial bacteria. Biochar inhibits the degradation of phenolic acids by adsorption. The combination of vermicompost and biochar enhances the disease control effect.
Collapse
Affiliation(s)
- Gei-Lin Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- College of Agricultural and Biological Engineering, Heze University, Shandong Province, Heze, 274000, China
| | - Yan-Meng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Xiao-Lin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xi-Mei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jun-Fei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fang-Bing Niu
- College of Business Administration, Heze University, Shandong Province, Heze, 274000, China
| | - Wei-Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
75
|
Yan K, Abbas M, Meng L, Cai H, Peng Z, Li Q, El-Sappah AH, Yan L, Zhao X. Analysis of the Fungal Diversity and Community Structure in Sichuan Dark Tea During Pile-Fermentation. Front Microbiol 2021; 12:706714. [PMID: 34421866 PMCID: PMC8375752 DOI: 10.3389/fmicb.2021.706714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
The fungi present during pile-fermentation of Sichuan dark tea play a pivotal role in the development of its aroma and physical characteristics. Samples of tea leaves were collected on days 0 (YC-raw material), 8 (W1-first turn), 16 (W2-second turn), 24 (W3-third turn), and 32 (W4-out of pile) during pile-fermentation. High-throughput sequencing revealed seven phyla, 22 classes, 41 orders, 85 families, 128 genera, and 184 species of fungi. During fermentation, the fungal diversity index declined from the W1 to W3 stages and then increased exponentially at the W4 stage. A bar plot and heatmap revealed that Aspergillus, Thermomyces, Candida, Debaryomyces, Rasamsonia, Rhizomucor, and Thermoascus were abundant during piling, of which Aspergillus was the most abundant. Cluster analysis revealed that the W4 stage of fermentation is critical for fungal growth, diversity, and the community structure in Sichuan dark tea. This study revealed the role of fungi during pile-fermentation in the development of the essence and physical characteristics of Sichuan dark tea. This study comes under one of the Sustainable Development Goals of United Nations Organization (UNO) to "Establish Good Health and Well-Being."
Collapse
Affiliation(s)
- Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Lina Meng
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Hongbing Cai
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Zhang Peng
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Linfeng Yan
- Sichuan Province Tea Industry Group Co., Ltd., Yibin, China
| | - Xianming Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
76
|
Li S, Zhu J, Su B, Wei H, Chen F, Liu H, Wei J, Yang X, Zhang Q, Xia W, Wu H, He Q, Zhang T. Alteration in Oral Microbiome Among Men Who Have Sex With Men With Acute and Chronic HIV Infection on Antiretroviral Therapy. Front Cell Infect Microbiol 2021; 11:695515. [PMID: 34336719 PMCID: PMC8317457 DOI: 10.3389/fcimb.2021.695515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the antiretroviral therapy (ART), human immunodeficiency virus (HIV)-related oral disease remains a common problem for people living with HIV (PLWH). Evidence suggests that impairment of immune function in HIV infection might lead to the conversion of commensal bacteria to microorganisms with increased pathogenicity. However, limited information is available about alteration in oral microbiome in PLWH on ART. We performed a longitudinal comparative study on men who have sex with men (MSM) with acute HIV infection (n=15), MSM with chronic HIV infection (n=15), and HIV-uninfected MSM controls (n=15). Throat swabs were collected when these subjects were recruited (W0) and 12 weeks after ART treatment (W12) from the patients. Genomic DNAs were extracted and 16S rRNA gene sequencing was performed. Microbiome diversity was significantly decreased in patients with acute and chronic HIV infections compared with those in controls at the sampling time of W0 and the significant difference remained at W12. An increased abundance of unidentified Prevotellaceae was found in patients with acute and chronic HIV infections. Moreover, increased abundances of Prevotella in subjects with acute HIV infection and Streptococcus in subjects with chronic HIV infection were observed. In contrast, greater abundance in Lactobacillus, Rothia, Lautropia, and Bacteroides was found in controls. After effective ART, Bradyrhizobium was enriched in both acute and chronic HIV infections, whereas in controls, Lactobacillus, Rothia, Clostridia, Actinobacteria, and Ruminococcaceae were enriched. In addition, we found that lower CD4+ T-cell counts (<200 cells/mm3) were associated with lower relative abundances of Haemophilus, Actinomyces, unidentified Ruminococcaceae, and Rothia. This study has shown alteration in oral microbiome resulting from HIV infection and ART. The results obtained warrant further studies in a large number of subjects with different ethnics. It might contribute to improved oral health in HIV-infected individuals.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan Wei
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Fei Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Hongshan Liu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiuyue Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku, Finland
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
77
|
Chen J, Huang X, Tong B, Wang D, Liu J, Liao X, Sun Q. Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiol 2021; 21:206. [PMID: 34229615 PMCID: PMC8259389 DOI: 10.1186/s12866-021-02216-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study examined how rhizosphere fungi influence the accumulation of chemical components in fruits of a small population species of Cinnamomum migao. RESULTS Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao. Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria, Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol accumulation. CONCLUSION The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main driver of the chemical composition of C. migao fruit. The control of the production of biologically active compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and medicinal value of the fruit of C. migao.
Collapse
Affiliation(s)
- Jingzhong Chen
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Xiaolong Huang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Bingli Tong
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Deng Wang
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China
| | - Jiming Liu
- Forest Ecology Research Center, College of Forestry, Guizhou University, Guiyang, 550025, Guihzou Province, China.
| | - Xiaofeng Liao
- Guizhou province Institute of Mountain Resources, Guiyang, 550025, China
| | - Qingwen Sun
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
78
|
Vallianou N, Kounatidis D, Christodoulatos GS, Panagopoulos F, Karampela I, Dalamaga M. Mycobiome and Cancer: What Is the Evidence? Cancers (Basel) 2021; 13:cancers13133149. [PMID: 34202433 PMCID: PMC8269322 DOI: 10.3390/cancers13133149] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Although comprising a much smaller proportion of the human microbiome, the fungal community has gained much more attention lately due to its multiple and yet undiscovered interactions with the human bacteriome and the host. Head and neck cancer carcinoma, colorectal carcinoma, and pancreatic ductal adenocarcinoma have been associated with dissimilarities in the composition of the mycobiome between cases with cancer and non-cancer subjects. In particular, an abundance of Malassezia has been associated with the onset and progression of colorectal carcinoma and pancreatic adenocarcinoma, while the genera Schizophyllum, a member of the oral mycobiome, is suggested to exhibit anti-cancer potential. The use of multi-omics will further assist in establishing whether alterations in the human mycobiome are causal or a consequence of specific types of cancers. Abstract Background: To date, most researchhas focused on the bacterial composition of the human microbiota. In this review, we synopsize recent data on the human mycobiome and cancer, highlighting specific cancer types based on current available evidence, presenting interesting perspectives and limitations of studies and laboratory methodologies. Recent findings: Head and neck cancer carcinoma (HNCC), colorectal carcinoma (CRC) and pancreatic ductal adenocarcinoma (PDA) have been associated with dissimilarities in the composition of mycobiota between cancer cases and non-cancer participants. Overall, fungal dysbiosis with decreased fungal richness and diversity was common in cancer patients; however, a specific mycobiotic signature in HNSCC or CRC has not emerged. Different strains of Candida albicans have been identified among cases with HNCC, whilst Lichtheimia corymbifera, a member of the Mucoraceae family, has been shown to predominate among patients with oral tongue cancer. Virulence factors of Candida spp. include the formation of biofilm and filamentation, and the secretion of toxins and metabolites. CRC patients present a dysregulated ratio of Basidiomycota/Ascomycota. Abundance of Malassezia has been linked to the occurrence and progression of CRC and PDA, particularly in animal models of PDA. Interestingly, Schizophyllum, a component of the oral mycobiome, may exhibit anti-cancer potential. Conclusion: The human mycobiome, per se, along with its interactions with the human bacteriome and the host, may be implicated in the promotion and progression of carcinogenesis. Fungi may be used as diagnostic and prognostic/predictive tools or treatment targets for cancer in the coming years. More large-scale, prospective, multicentric and longitudinal studies with an integrative multi-omics methodology are required to examine the precise contribution of the mycobiome in the etiopathogenesis of cancer, and to delineate whether changes that occur in the mycobiome are causal or consequent of cancer.
Collapse
Affiliation(s)
- Natalia Vallianou
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
- Correspondence: (N.V.); (M.D.)
| | - Dimitris Kounatidis
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
| | - Fotis Panagopoulos
- First Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str., 10676 Athens, Greece; (D.K.); (F.P.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 11527 Athens, Greece;
- Correspondence: (N.V.); (M.D.)
| |
Collapse
|
79
|
Soffritti I, D’Accolti M, Fabbri C, Passaro A, Manfredini R, Zuliani G, Libanore M, Franchi M, Contini C, Caselli E. Oral Microbiome Dysbiosis Is Associated With Symptoms Severity and Local Immune/Inflammatory Response in COVID-19 Patients: A Cross-Sectional Study. Front Microbiol 2021; 12:687513. [PMID: 34248910 PMCID: PMC8261071 DOI: 10.3389/fmicb.2021.687513] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
The human oral microbiome (HOM) is the second largest microbial community after the gut and can impact the onset and progression of several localized and systemic diseases, including those of viral origin, especially for viruses entering the body via the oropharynx. However, this important aspect has not been clarified for the new pandemic human coronavirus SARS-CoV-2, causing COVID-19 disease, despite it being one of the many respiratory viruses having the oropharynx as the primary site of replication. In particular, no data are available about the non-bacterial components of the HOM (fungi, viruses), which instead has been shown to be crucial for other diseases. Consistent with this, this study aimed to define the HOM in COVID-19 patients, to evidence any association between its profile and the clinical disease. Seventy-five oral rinse samples were analyzed by Whole Genome Sequencing (WGS) to simultaneously identify oral bacteria, fungi, and viruses. To correlate the HOM profile with local virus replication, the SARS-CoV-2 amount in the oral cavity was quantified by digital droplet PCR. Moreover, local inflammation and secretory immune response were also assessed, respectively by measuring the local release of pro-inflammatory cytokines (L-6, IL-17, TNFα, and GM-CSF) and the production of secretory immunoglobulins A (sIgA). The results showed the presence of oral dysbiosis in COVID-19 patients compared to matched controls, with significantly decreased alpha-diversity value and lower species richness in COVID-19 subjects. Notably, oral dysbiosis correlated with symptom severity (p = 0.006), and increased local inflammation (p < 0.01). In parallel, a decreased mucosal sIgA response was observed in more severely symptomatic patients (p = 0.02), suggesting that local immune response is important in the early control of virus infection and that its correct development is influenced by the HOM profile. In conclusion, the data presented here suggest that the HOM profile may be important in defining the individual susceptibility to SARS-CoV-2 infection, facilitating inflammation and virus replication, or rather, inducing a protective IgA response. Although it is not possible to determine whether the alteration in the microbial community is the cause or effect of the SARS-CoV-2 replication, these parameters may be considered as markers for personalized therapy and vaccine development.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Fabbri
- Section of Dentistry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Angela Passaro
- Unit of Internal Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto Manfredini
- Medical Clinic Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Unit of Internal Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Libanore
- Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy
| | - Maurizio Franchi
- Section of Dentistry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlo Contini
- Section of Infectious Diseases and Dermatology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
80
|
Lin YC, Chen EHL, Chen RPY, Dunny GM, Hu WS, Lee KT. Probiotic Bacillus Affects Enterococcus faecalis Antibiotic Resistance Transfer by Interfering with Pheromone Signaling Cascades. Appl Environ Microbiol 2021; 87:e0044221. [PMID: 33893118 PMCID: PMC8316027 DOI: 10.1128/aem.00442-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Enterococcus faecalis, a member of the commensal flora in the human gastrointestinal tract, has become a threatening nosocomial pathogen because it has developed resistance to many known antibiotics. More concerningly, resistance gene-carrying E. faecalis cells may transfer antibiotic resistance to resistance-free E. faecalis cells through their unique quorum sensing-mediated plasmid transfer system. Therefore, we investigated the role of probiotic bacteria in the transfer frequency of the antibiotic resistance plasmid pCF10 in E. faecalis populations to mitigate the spread of antibiotic resistance. Bacillus subtilis subsp. natto is a probiotic strain isolated from Japanese fermented soybean foods, and its culture fluid potently inhibited pCF10 transfer by suppressing peptide pheromone activity from chromosomally encoded CF10 (cCF10) without inhibiting E. faecalis growth. The inhibitory effect was attributed to at least one 30- to 50-kDa extracellular protease present in B. subtilis subsp. natto. Nattokinase of B. subtilis subsp. natto was involved in the inhibition of pCF10 transfer and cleaved cCF10 (LVTLVFV) into LVTL plus VFV fragments. Moreover, the cleavage product LVTL (L peptide) interfered with the conjugative transfer of pCF10. In addition to cCF10, faecalis-cAM373 and gordonii-cAM373, which are mating inducers of vancomycin-resistant E. faecalis, were also cleaved by nattokinase, indicating that B. subtilis subsp. natto can likely interfere with vancomycin resistance transfer in E. faecalis. Our work shows the feasibility of applying fermentation products of B. subtilis subsp. natto and L peptide to mitigate E. faecalis antibiotic resistance transfer. IMPORTANCE Enterococcus faecalis is considered a leading cause of hospital-acquired infections. Treatment of these infections has become a major challenge for clinicians because some E. faecalis strains are resistant to multiple clinically used antibiotics. Moreover, antibiotic resistance genes can undergo efficient intra- and interspecies transfer via E. faecalis peptide pheromone-mediated plasmid transfer systems. Therefore, this study provided the first experimental demonstration that probiotics are a feasible approach for interfering with conjugative plasmid transfer between E. faecalis strains to stop the transfer of antibiotic resistance. We found that the extracellular protease(s) of Bacillus subtilis subsp. natto cleaved peptide pheromones without affecting the growth of E. faecalis, thereby reducing the frequency of conjugative plasmid transfer. In addition, a specific cleaved pheromone fragment interfered with conjugative plasmid transfer. These findings provide a potential probiotic-based method for interfering with the transfer of antibiotic resistance between E. faecalis strains.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Eric H.-L. Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Rita P.-Y. Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
81
|
Azad A, Ranjbaran A, Zareshahrabadi Z, Mehrabani D, Zahed Zahedani M, Talebanpour A, Zomorodian K. Protective Effects of the Probiotic Bacterium Streptococcus thermophilus on Candida albicans Morphogenesis and a Murine Model of Oral Candidiasis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:207-217. [PMID: 34083853 PMCID: PMC8163705 DOI: 10.30476/ijms.2020.82080.0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 11/19/2022]
Abstract
Background Oral candidiasis is a frequent form of candidiasis, caused by Candida species, in particular, Candida albicans (C. albicans). The transition of C. albicans from yeast to hyphae allows its attachment to epithelial cells, followed by biofilm formation, invasion, and tissue damage. Hence, we investigated the effect of Streptococcus salivarius subspecies thermophilus (S thermophilus) on the growth as well as biofilm and germ-tube formation of C. albicans both in vitro and in vivo in a murine model. Methods This experimental study was performed in the Department of Medical Mycology and Parasitology, School of Medicine, in collaboration with the Central Research Laboratory and the Comparative Biomedical Center, Shiraz University of Medical Sciences, Shiraz, Iran (2017 to 2018). The inhibitory activity of S. thermophilus against Candida species growth was evaluated using the broth microdilution method, and the inhibition of C. albicans biofilm formation was measured using the XTT assay. The inhibition of C. albicans germ-tube formation by S. thermophilus was evaluated using the plate assay and fluorescence microscopy. The experimental activity of the probiotic bacterium was assessed by culture and histopathological methods in six groups of five mice, comprising those treated with four concentrations of probiotics, fluconazole, and distilled water. The one-way analysis of variance, followed by a Tukey post hoc test, was used and a P value of less than 0.05 was considered significant. Results S. thermophilus inhibited Candida species growth at concentrations of 16 to 512 µg/mL. This probiotic inhibited the formation of C. albicans biofilms and germ tubes in a dose-dependent manner. S. thermophilus significantly reduced the colony-forming units in the mice receiving 30 mg/mL of this probiotic treatment compared with the control group (P=0.024). The histopathological analysis showed that Candida colonization was diminished in the mice following the administration of the probiotic. Conclusion Given the inhibitory activity of S. thermophilus against the growth, transition, and biofilm formation of C. albicans, it could be used in the management of oral candidiasis.
Collapse
Affiliation(s)
- Azita Azad
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ranjbaran
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zahed Zahedani
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asana Talebanpour
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
82
|
Salivary microbial diversity at different stages of human immunodeficiency virus infection. Microb Pathog 2021; 155:104913. [PMID: 33915204 DOI: 10.1016/j.micpath.2021.104913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) disrupts the host microbial balance. During disease progression, the oral microbial environment is altered in untreated people living with HIV/AIDS (PLWHA); however, no studies have reported changes in salivary microbial diversity during different stages of HIV infection. Therefore, in this study, we aimed to assess the relationships between immune dysfunction and changes in saliva microbiota. To this end, we collected saliva samples from 11 HIV-negative individuals and 44 PLWHA during different stages based on the Centers for Disease Control and Prevention criteria (stage 0, early stage during the first 6 months after infection; stages 1, 2, and 3 associated with CD4+ T-lymphocyte counts of ≥500, 200-499, and ≤200 or opportunistic infection, respectively). We analyzed salivary microbial community diversity using polymerase chain reaction amplification and Illumina MiSeq sequencing. We found that HIV-positive individuals had significantly greater alpha-diversity in the microbial community composition compared with HIV-negative controls (P < 0.05) except for AIDS (stage 3); however, the predominant salivary microbiota in the five groups remained similar. Porphyromonas in the four positive groups was the only genus that was significantly less abundant in the HIV-positive groups than in the control group (P < 0.05). There were some consistencies between the general abundance of salivary microbiota and AIDS disease progression. Lots of bacterial abundances in the saliva increased dramatically during the acute HIV infection (stage 0), and some of the negligible and abnormally proliferating bacteria in the asymptomatic stage showed a downward trend. Additionally, in the AIDS stage, partial inhibition was observed. Notably, Porphyromonas was closely related to the immune activation of HIV, showing a decline in abundance once infected with HIV. Solobacterium, which induces inflammation, was negatively correlated with CD4 counts. Overall, our findings provided important insights into changes in salivary microbial diversity in PLWHA.
Collapse
|
83
|
Martinsen EMH, Eagan TML, Leiten EO, Haaland I, Husebø GR, Knudsen KS, Drengenes C, Sanseverino W, Paytuví-Gallart A, Nielsen R. The pulmonary mycobiome-A study of subjects with and without chronic obstructive pulmonary disease. PLoS One 2021; 16:e0248967. [PMID: 33826639 PMCID: PMC8026037 DOI: 10.1371/journal.pone.0248967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.
Collapse
Affiliation(s)
| | - Tomas M. L. Eagan
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise O. Leiten
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Haaland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar R. Husebø
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristel S. Knudsen
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christine Drengenes
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Rune Nielsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
84
|
Abstract
The oral microbiome is likely a key element of homeostasis in the oral cavity. With >600 bacterial species and >160 fungal species comprising the oral microbiome, influences on its composition can have an impact on both local and systemic health. The oral microbiome is considered an important factor in health and disease. We recently reported significant effects of HIV and several other clinical variables on the oral bacterial communities in a large cohort of HIV-positive and -negative individuals. The purpose of the present study was to similarly analyze the oral mycobiome in the same cohort. To identify fungi, the internal transcribed spacer 2 (ITS2) of the fungal rRNA genes was sequenced using oral rinse samples from 149 HIV-positive and 88 HIV-negative subjects that had previously undergone bacterial amplicon sequencing. Quantitative PCR was performed for total fungal content and total bacterial content. Interestingly, samples often showed predominance of a single fungal species with four major clusters predominated by Candida albicans, Candida dubliniensis, Malassezia restricta, or Saccharomyces cerevisiae. Quantitative PCR analysis showed the Candida-dominated sample clusters had significantly higher total fungal abundance than the Malassezia or Saccharomyces species. Of the 25 clinical variables evaluated for potential influences on the oral mycobiome, significant effects were associated with caries status, geographical site of sampling, sex, HIV under highly active antiretroviral therapy (HAART), and missing teeth, in rank order of statistical significance. Investigating specific interactions between fungi and bacteria in the samples often showed Candida species positively correlated with Firmicutes or Actinobacteria and negatively correlated with Fusobacteria, Proteobacteria, and Bacteroidetes. Our data suggest that the oral mycobiome, while diverse, is often dominated by a limited number of species per individual; is affected by several clinical variables, including HIV positivity and HAART; and shows genera-specific associations with bacterial groups.
Collapse
|
85
|
Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease. Infect Immun 2021; 89:IAI.00648-20. [PMID: 33526565 PMCID: PMC8090948 DOI: 10.1128/iai.00648-20] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. The term “microbiota” invokes images of mucosal surfaces densely populated with bacteria. These surfaces and the luminal compartments they form indeed predominantly harbor bacteria. However, research from this past decade has started to complete the picture by focusing on important but largely neglected constituents of the microbiota: fungi, viruses, and archaea. The community of commensal fungi, also called the mycobiota, interacts with commensal bacteria and the host. It is thus not surprising that changes in the mycobiota have significant impact on host health and are associated with pathological conditions such as inflammatory bowel disease (IBD). In this review we will give an overview of why the mycobiota is an important research area and different mycobiota research tools. We will specifically focus on distinguishing transient and actively colonizing fungi of the oral and gut mycobiota and their roles in health and disease. In addition to correlative and observational studies, we will discuss mechanistic studies on specific cross-kingdom interactions of fungi, bacteria, and the host.
Collapse
|
86
|
Xu CY, Du C, Jian JS, Hou L, Wang ZK, Wang Q, Geng ZC. The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Sci Rep 2021; 11:5002. [PMID: 33654125 PMCID: PMC7925553 DOI: 10.1038/s41598-021-84217-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Soil labile organic carbon (LOC) responds rapidly to environmental changes and plays an important role in carbon cycle. In this study, the seasonal fluctuations in LOC, the activities of carbon-cycle related enzymes, and the bacterial and fungal communities were analyzed for soils collected from two forests, namely Betula albosinensis (Ba) and Picea asperata Mast. (Pa), in the Qinling Mountains of China. Results revealed that the seasonal average contents of microbial biomass carbon (MBC), easily oxidized organic carbon (EOC), and dissolved organic carbon (DOC) of Pa forest soil were 13.5%, 30.0% and 15.7% less than those in Ba soil. The seasonal average enzyme activities of β-1,4-glucosidase (βG), and β-1,4-xylosidase (βX) of Ba forest soils were 30.0% and 32.3% higher than those of Pa soil while the enzyme activity of cellobiohydrolase (CBH) was 19.7% lower. Furthermore, the relative abundance of Acidobacteria was significantly higher in summer than in winter, whereas the relative abundance of Bacteroidetes was higher in winter. Regarding the fungal communities, the relative abundance of Basidiomycota was lowest in winter, whereas Ascomycota predominated in the same season. In addition, the soil LOC was significantly positively correlated with the CBH, βG and βX activities. Changes in LOC were significantly correlated with Acidobacteria, Bacteroidetes and Basidiomycota. We conclude that the seasonal fluctuations in forest soil LOC fractions relied on carbon cycle-associated enzymatic activities and microorganisms, which in turn were affected by climatic conditions.
Collapse
Affiliation(s)
- Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China.,Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Can Du
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China.,Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jin-Shi Jian
- Pacific Northwest National Laboratory-University of Maryland Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, MD, USA
| | - Lin Hou
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhi-Kang Wang
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China.,Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China.,Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
87
|
The Role of Bacterial and Fungal Human Respiratory Microbiota in COVID-19 Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6670798. [PMID: 33681368 PMCID: PMC7907751 DOI: 10.1155/2021/6670798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/04/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic with millions of infected patients. Alteration in humans' microbiota was also reported in COVID-19 patients. The alteration in human microbiota may contribute to bacterial or viral infections and affect the immune system. Moreover, human's microbiota can be altered due to SARS-CoV-2 infection, and these microbiota changes can indicate the progression of COVID-19. While current studies focus on the gut microbiota, it seems necessary to pay attention to the lung microbiota in COVID-19. This study is aimed at reviewing respiratory microbiota dysbiosis among COVID-19 patients to encourage further studies on the field for assessment of SARS-CoV-2 and respiratory microbiota interaction.
Collapse
|
88
|
Teles F, Wang Y, Hajishengallis G, Hasturk H, Marchesan JT. Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 2021; 85:126-160. [PMID: 33226693 DOI: 10.1111/prd.12356] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since 2010, next-generation sequencing platforms have laid the foundation to an exciting phase of discovery in oral microbiology as it relates to oral and systemic health and disease. Next-generation sequencing has allowed large-scale oral microbial surveys, based on informative marker genes, such as 16S ribosomal RNA, community gene inventories (metagenomics), and functional analyses (metatranscriptomics), to be undertaken. More specifically, the availability of next-generation sequencing has also paved the way for studying, in greater depth and breadth, the effect of systemic factors on the periodontal microbiome. It was natural to investigate systemic diseases, such as diabetes, in such studies, along with systemic conditions or states, , pregnancy, menopause, stress, rheumatoid arthritis, and systemic lupus erythematosus. In addition, in recent years, the relevance of systemic "variables" (ie, factors that are not necessarily diseases or conditions, but may modulate the periodontal microbiome) has been explored in detail. These include ethnicity and genetics. In the present manuscript, we describe and elaborate on the new and confirmatory findings unveiled by next-generation sequencing as it pertains to systemic factors that may shape the periodontal microbiome. We also explore the systemic and mechanistic basis for such modulation and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Julie T Marchesan
- Department of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
89
|
Tejesvi MV, Tapiainen T, Vänni P, Uhari M, Suokas M, Lantto U, Koivunen P, Renko M. Tonsil Mycobiome in PFAPA (Periodic Fever, Aphthous Stomatitis, Pharyngitis, Adenitis) Syndrome: A Case-Control Study. Front Cell Infect Microbiol 2021; 10:616814. [PMID: 33585283 PMCID: PMC7873641 DOI: 10.3389/fcimb.2020.616814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022] Open
Abstract
Periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome (PFAPA) is the most common periodic fever syndrome in children with unknown etiology, effectively treated with tonsillectomy. Earlier we have shown that tonsil microbiome is different in patients with PFAPA as compared to that in controls. Recently, fungal microbiome, mycobiome, has been linked to the pathogenesis of inflammatory diseases. We now investigated the role of mycobiome of tonsils in PFAPA. Random forest classification, a machine learning approach, was used for the analysis of mycobiome data. We examined tonsils from 30 children with PFAPA and 22 control children undergoing tonsillectomy for non-infectious reasons. We identified 103 amplicon sequence variants, mainly from two fungal phyla, Ascomycota and Basidiomycota. The mean relative abundance of Candida albicans in the tonsil mycobiome was 11% (95% CI: 19 to 27%) in cases and 3.4 % (95% CI: -0.8% to 8%) in controls, p =0.104. Mycobiome data showed no statistical difference in differentiating between PFAPA cases and controls compared to a random chance classifier (area under the curve (AUC) = 0.47, SD = 0.05, p = 0.809). In conclusion, in this controlled study, tonsillar mycobiome in children with PFAPA syndrome did not differ from that of the controls.
Collapse
Affiliation(s)
- Mysore V Tejesvi
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Genobiomics LLC, Oulu, Finland
| | - Terhi Tapiainen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Paediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Petri Vänni
- Genobiomics LLC, Oulu, Finland.,PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Matti Uhari
- Biocenter Oulu, University of Oulu, Oulu, Finland.,PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Marko Suokas
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Ulla Lantto
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Otorhinolaryngology, Oulu University Hospital, Oulu, Finland
| | - Petri Koivunen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Otorhinolaryngology, Oulu University Hospital, Oulu, Finland
| | - Marjo Renko
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Paediatrics, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
90
|
Rawling M, Leclercq E, Foey A, Castex M, Merrifield D. A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss). PLoS One 2021; 16:e0245021. [PMID: 33434201 PMCID: PMC7802930 DOI: 10.1371/journal.pone.0245021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to evaluate the mucosal immune responses of rainbow trout when supplementing an experimental formulated feed with multi-strain yeast fraction product (Saccharomyces cerevisiae and Cyberlindnera jardinii). In total, 360 fish (initial BW 23.1 ± 0.2 g) were randomly allotted into three dietary treatments in an 8-week feeding trial. The dietary treatments included basal diet (control) and control + 1.5 g/kg multi-strain yeast fraction product (MsYF) fed continuously and pulsed every two weeks between control and MsYF diet. No negative effects on growth performance of feeding the MsYF supplemented diet were observed. SGR and FCR averaged 2.30 ± 0.03%/day and 1.03 ± 0.03, respectively, across experimental groups. Muscularis thickness in the anterior intestine after 8 weeks of feeding was significantly elevated by 44.3% in fish fed the MsYF continuously, and by 14.4% in fish fed the MsYF pulsed (P < 0.02). Significant elevations in goblet cell density in the anterior and posterior (>50% increase) intestine were observed after 8 weeks of feeding the MsYF supplemented diet (P< 0.03). In contrast, lamina propria width was significantly lower in fish fed the experimental diets (>10% reduction). The gene expression analysis of the intestine revealed significant elevations in expression of tlr2, il1r1, irak4, and tollip2 after 4 weeks of feeding the MsYF. Significant elevations in effector cytokines tnfα, il10 and tgfβ were observed after 4 weeks of feeding the MsYF regime. After 8 weeks significant elevations in the gene expression levels of il1β, ifnγ, and il12 were observed in fish fed the MsYF. Likewise, the expression of the transcription factor gata3 was significantly elevated (P<0.01). Supplementation of the multi-strain yeast fraction product positively modulates the intestinal mucosal response of rainbow trout through interaction with toll-like receptor two signalling pathway and potential for increased capacity of delivery of antigens to the underlying mucosal associated lymphoid tissue.
Collapse
Affiliation(s)
- Mark Rawling
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Andrew Foey
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Daniel Merrifield
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
91
|
Recent Advances and Novel Approaches in Laboratory-Based Diagnostic Mycology. J Fungi (Basel) 2021; 7:jof7010041. [PMID: 33440757 PMCID: PMC7827937 DOI: 10.3390/jof7010041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
What was once just culture and microscopy the field of diagnostic mycology has significantly advanced in recent years and continues to incorporate novel assays and strategies to meet the changes in clinical demand. The emergence of widespread resistance to antifungal therapy has led to the development of a range of molecular tests that target mutations associated with phenotypic resistance, to complement classical susceptibility testing and initial applications of next-generation sequencing are being described. Lateral flow assays provide rapid results, with simplicity allowing the test to be performed outside specialist centres, potentially as point-of-care tests. Mycology has responded positively to an ever-diversifying patient population by rapidly identifying risk and developing diagnostic strategies to improve patient management. Nowadays, the diagnostic repertoire of the mycology laboratory employs classical, molecular and serological tests and should be keen to embrace diagnostic advancements that can improve diagnosis in this notoriously difficult field.
Collapse
|
92
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
93
|
Dirajlal-Fargo S, El-Kamari V, Weiner L, Shan L, Sattar A, Kulkarni M, Funderburg N, Nazzinda R, Karungi C, Kityo C, Musiime V, McComsey GA. Altered Intestinal Permeability and Fungal Translocation in Ugandan Children With Human Immunodeficiency Virus. Clin Infect Dis 2021; 70:2413-2422. [PMID: 31260509 DOI: 10.1093/cid/ciz561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Children with perinatally acquired human immunodeficiency virus (HIV; PHIVs) face a lifelong cumulative exposure to HIV and antiretroviral therapy (ART). The relationship between gut integrity, microbial translocation, and inflammation in PHIV is poorly understood. METHODS This is a cross-sectional study in 57 PHIVs, 59 HIV-exposed but uninfected children, and 56 HIV-unexposed and -uninfected children aged 2-10 years old in Uganda. PHIVs were on stable ART with HIV-1 RNA <400 copies/mL. We measured markers of systemic inflammation, monocyte activation, and gut integrity. Kruskal-Wallis tests were used to compare markers by group and the Spearman correlation was used to assess correlations between biomarkers. RESULTS The mean age of all participants was 7 years and 55% were girls. Among PHIVs, the mean CD4 % was 34%, 93% had a viral load ≤20 copies/mL, and 79% were on a nonnucleoside reverse transcriptase inhibitor regimen. Soluble cluster of differentiation 14 (sCD14), beta-D-glucan (BDG), and zonulin were higher in the PHIV group (P ≤ .01). Intestinal fatty acid binding protein (I-FABP) and lipopolysaccharide binding protein (LBP) did not differ between groups (P > .05). Among PHIVs who were breastfed, levels of sCD163 and interleukin 6 (IL6) were higher than levels in PHIV who were not breastfed (P < .05). Additionally, in PHIVs with a history of breastfeeding, sCD14, BDG, LBP, zonulin, and I-FABP correlated with several markers of systemic inflammation, including high-sensitivity C-reactive protein, IL6, d-dimer, and systemic tumor necrosis factor receptors I and II (P ≤ .05). CONCLUSIONS Despite viral suppression, PHIVs have evidence of altered gut permeability and fungal translocation. Intestinal damage and the resultant bacterial and fungal translocations in PHIVs may play a role in the persistent inflammation that leads to many end-organ diseases in adults.Despite viral suppression, children with perinatally acquired human immunodeficiency virus (HIV) in Uganda have evidence of alterations in intestinal permeability and fungal translocation, compared to HIV-exposed but uninfected and HIV-unexposed children, which may play a role in HIV-associated chronic inflammation.
Collapse
Affiliation(s)
- Sahera Dirajlal-Fargo
- University Hospitals Cleveland Medical Center, Columbus.,Rainbow Babies and Children's Hospital, Columbus.,Case Western Reserve University, Columbus
| | | | | | | | | | - Manjusha Kulkarni
- Ohio State University School of Health and Rehabilitation Sciences, Columbus
| | - Nicholas Funderburg
- Ohio State University School of Health and Rehabilitation Sciences, Columbus
| | | | | | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda.,Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center, Columbus.,Rainbow Babies and Children's Hospital, Columbus.,Case Western Reserve University, Columbus
| |
Collapse
|
94
|
Dong K, Wu K, Zheng T, Yue J, Wang W, Luo R, You L, He X, Li J, Hong Z, Zuo H, Pei X. Comparative Study of Oral Bacteria and Fungi Microbiota in Tibetan and Chinese Han Living at Different Altitude. TOHOKU J EXP MED 2021; 254:129-139. [PMID: 34193764 DOI: 10.1620/tjem.254.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Knowledge about the impact of altitude and ethnicity on human oral microbiota is currently limited. To obtain the baseline of normal salivary microbiota, we analyzed the bacteria and fungi composition in Tibetan (HY group) and Han population (CD group) living at different altitudes by using next-generation sequencing (NGS) technology combined with PICRUSt and FUNGuild analyses. There were significant differences in oral microbiota composition between the two groups at phylum and genus levels. At the phylum level, the HY group had higher relative abundances of Firmicutes and Ascomycota, whereas the Bacteroidetes and Basidiomycota in the CD group were richer. These changes at the phylum level reflected different dominant genus compositions. Compared with the Han population, Candida, Fusarium, Zopfiella, Streptococcus, Veillonella and Rothia in Tibetan were higher. Surprisingly, the Zopfiella was found almost exclusively in the Tibetan. The PICRUSt and FUNGuild analysis also indicated that the function of the bacterial and fungal communities was altered between the two groups. In conclusion, our results suggest that there are significant differences in oral microbial structure and metabolic characteristics and trophic modes among Tibetan and Han population living at different altitudes. We first established the oral microbiota framework and represented a critical step for determining the diversity of oral microbiota in the Tibetan and Han population.
Collapse
Affiliation(s)
- Ke Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Kunpeng Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Ji Yue
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Weipeng Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Ruocheng Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Lan You
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Xun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Jingjing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Zehui Hong
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province
| |
Collapse
|
95
|
Keystone salivary mycobiome in postpartum period in health and disease conditions. J Mycol Med 2020; 31:101101. [PMID: 33321299 DOI: 10.1016/j.mycmed.2020.101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
Despite of known pathogenic potential of human mycobiome in initiation and progression of oral disorders, it is poorly characterized and understudied due to its small number in oral cavity. In the present study, salivary mycobiome of three postpartum females along with one healthy non-pregnant female was investigated by targeting ITS region. A total of 55 genera and 92 species were detected with predominant genera: Candida (12.2%) followed by Saccharomyces (9.27%), Phialosimplex (9.19%), Termitomyces (6.96%), Penicillium (6.85%), Aspergillus (6.56%), Olpidium (5.15%), Cochliobolus (4.78%), Malassezia (4.61%), Neurospora (4.3%), and Cristinia (3.04%) in all samples. Diversity increase was observed in postpartum group as compared to non-pregnant female. Stachybotrys, Geotrichum, Talaromyces, Leucosporidium, Acremonium, Wallemia, Eupenicillium, Septoria, Zymoseptoria, Coniosporium, Phialophora, and Mycosphaerella were genera detected only in postpartum group. Postpartum female with gingivitis and dental caries showed greater abundance of genus Saccharomyces, Phialosimplex, Candida, Olpidium, Cochliobolus, Malaseezia, Hyphodontia, Debaryomyces, Mrakia, and Nakaseomyces as compared to those postpartum females with good oral health. Among postpartum group female with oral health issues as well as who had preterm low weight birth (PLWB), showed reduced richness, evenness with elevated levels of Saccharomyces, Candida, Hyphodontia and Malassezia compared to the female having full term birth (FTB). These findings showed that, pregnancy with or without oral health issues is associated with oral microbial diversity change and there might be an association of changing fungal diversity with adverse pregnancy outcomes (APOs) like pre-term birth (PTB) and low weight birth (LWB).
Collapse
|
96
|
Gut mycobiomes are altered in people with type 2 Diabetes Mellitus and Diabetic Retinopathy. PLoS One 2020; 15:e0243077. [PMID: 33259537 PMCID: PMC7707496 DOI: 10.1371/journal.pone.0243077] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/14/2020] [Indexed: 01/14/2023] Open
Abstract
Studies have documented dysbiosis in the gut mycobiome in people with Type 2 diabetes mellitus (T2DM). However, it is not known whether dysbiosis in the gut mycobiome of T2DM patients would be reflected in people with diabetic retinopathy (DR) and if so, is the observed mycobiome dysbiosis similar in people with T2DM and DR. Gut mycobiomes were generated from healthy controls (HC), people with T2DM and people with DR through Illumina sequencing of ITS2 region. Data were analysed using QIIME and R software. Dysbiotic changes were observed in people with T2DM and DR compared to HC at the phyla and genera level. Mycobiomes of HC, T2DM and DR could be discriminated by heat map analysis, Beta diversity analysis and LEfSE analysis. Spearman correlation of fungal genera indicated more negative correlation in HC compared to T2DM and DR mycobiomes. This study demonstrates dysbiosis in the gut mycobiomes in people with T2DM and DR compared to HC. These differences were significant both at the phyla and genera level between people with T2DM and DR as well. Such studies on mycobiomes may provide new insights and directions to identification of specific fungi associated with T2DM and DR and help developing novel therapies for Diabetes Mellitus and DR.
Collapse
|
97
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
98
|
Li J, Chang S, Guo H, Ji Y, Jiang H, Ruan L, Du M. Altered Salivary Microbiome in the Early Stage of HIV Infections among Young Chinese Men Who Have Sex with Men (MSM). Pathogens 2020; 9:pathogens9110960. [PMID: 33228000 PMCID: PMC7699166 DOI: 10.3390/pathogens9110960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections are spiking in Chinese young men who have sex with men (MSM). To explore alterations in the salivary microbiome and its correlation with demographic characteristics, CD4+ T cell count and viral load (VL) in HIV infections, samples of unstimulated whole saliva were analyzed by 16S rRNA gene sequencing using the Illumina MiSeq platform in 20 HIV newly infected patients before the initiation of antiretroviral therapy (ART) and at three and six months after, and in 20 age- and gender-paired healthy Chinese people. The results showed that the alpha diversity of salivary microbiota in HIV infections did not show differences from the healthy controls, but was reduced after six months under ART treatment. Comparative analysis revealed that Streptococcus was enriched in HIV-infected individuals, while Neisseria was enriched in the healthy control group. After effective ART, the salivary microbiota composition was not completely restored, although some microbiota recovered. In addition, we found Provotella_7, Neisseria and Haemophilus were correlated negatively with CD4+ T cell count, while Neisseria was correlated positively with VL. We conclude that HIV infections experience a dysbiosis of the salivary microbiome. The salivary microbiome test could be a substitute for the blood tests in the diagnosis and prognosis of diseases.
Collapse
Affiliation(s)
- Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Shenghua Chang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Haiying Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Han Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
| | - Lianguo Ruan
- Department of Infectious Diseases, Jin Yin-tan Hospital, Wuhan 430023, China
- Correspondence: (L.R.); (M.D.)
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.L.); (S.C.); (H.G.); (Y.J.); (H.J.)
- Correspondence: (L.R.); (M.D.)
| |
Collapse
|
99
|
Fidel PL, Moyes D, Samaranayake L, Hagensee ME. Interplay between oral immunity in HIV and the microbiome. Oral Dis 2020; 26 Suppl 1:59-68. [PMID: 32862522 DOI: 10.1111/odi.13515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This Basic Science Workshop addressed the oral microbiome. At the 7th World Workshop on Oral Health & Disease in HIV/AIDS in India in 2014, some aspects of the human microbiome were discussed, and research questions formulated. Since that time, there have been major advances in technology, which have stimulated a number of publications on many aspects of the human microbiome, including the oral cavity. This workshop aimed to summarize current understanding of the "normal" microbiome of the oral cavity compared to that during HIV infection, and how oral immune factors and other clinical variables alter or control the oral microbiome. An important question is whether successful treatment with anti-retroviral therapy, which leads to a significant drop in viral loads and immune reconstitution, is associated with any change or recovery of the oral microbiome. Additionally, the workshop addressed the issue of which parameters are most appropriate/correct to evaluate the oral microbiome and how clinically relevant are shifts/changes in the oral microbiome. The workshop evaluated current knowledge in five research areas related to five basic questions and identified further topics where further research is required.
Collapse
Affiliation(s)
- Paul L Fidel
- LSU Health School of Dentistry, New Orleans, LA, USA
| | - David Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | | | | |
Collapse
|
100
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|