51
|
Yang Y, Huang C, Hui L, Song Y, Fu Y, Li M, Yang H, Wu J, Sun J, Xu W, Wei L. Cathelicidins Target HSP60 To Restrict CVB3 Transmission via Disrupting the Exosome and Reducing Cardiomyocyte Apoptosis. J Virol 2023; 97:e0143322. [PMID: 36916989 PMCID: PMC10062171 DOI: 10.1128/jvi.01433-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Cathelicidin antimicrobial peptides (mouse, CRAMP; human, LL-37) have broad-spectrum antiviral activities against enveloped viruses, but their mechanisms of action against nonenveloped viruses remain to be elucidated. Coxsackievirus B3 (CVB3), a member of nonenveloped virus belonging to the Enterovirus genus of Picornaviridae, is an important pathogen of viral myocarditis and dilated cardiomyopathy. Here, we observed that cardiac CRAMP expression was significantly upregulated in mice after CVB3 infection. The administration of CRAMP or LL-37 markedly suppressed CVB3 infection in mice, and CRAMP deficiency increased the susceptibility of mice to CVB3. CRAMP and LL-37 inhibited CVB3 replication in primary cardiomyocytes. However, they did not inactivate CVB3 particles and did not regulate the response of cardiomyocytes against CVB3 infection. Intriguingly, they inhibited CVB3 transmission through the exosome, but not virus receptor. In detail, CRAMP and LL-37 directly induced the lysis of exosomes by interfering with exosomal heat shock protein 60 (HSP60) and then blocked the diffusion of exosomes to recipient cells and inhibited the establishment of productive infection by exosomes. In addition, the interaction of CRAMP and LL-37 with HSP60 simultaneously inhibited HSP60-induced apoptosis in cardiomyocytes and reduced HSP60-enhanced CVB3 replication. Our findings reveal a novel mechanism of cathelicidins against viral infection and provide a new therapeutic strategy for CVB3-induced viral myocarditis. IMPORTANCE The relative mechanisms that cathelicidin antimicrobial peptides use to influence nonenveloped virus infection are unclear. We show here that cathelicidin antimicrobial peptides (CRAMP and LL-37) directly target exosomal HSP60 to destroy exosomes, which in turn block the diffusion of exosomes to recipient cardiomyocytes and reduced HSP60-induced apoptosis, thus restricting coxsackievirus B3 infection. Our results provide new insights into the mechanisms cathelicidin antimicrobial peptides use against viral infection.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chunjing Huang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Li Hui
- The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yahui Song
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yuxuan Fu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
52
|
Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
53
|
Bryde RE, Cooper LT, Fairweather D, Di Florio DN, Martinez MW. Exercise After Acute Myocarditis: When and How to Return to Sports. Cardiol Clin 2023; 41:107-115. [PMID: 36368807 PMCID: PMC11164182 DOI: 10.1016/j.ccl.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myocarditis is an inflammatory disease of the myocardium secondary to infectious and noninfectious insults. The most feared consequence of myocarditis is sudden cardiac death owing to electrical instability and arrhythmia. Typical presenting symptoms include chest pain, dyspnea, palpitations and/or heart failure. Diagnosis is usually made with history, electrocardiogram, biomarkers, echocardiogram, and cardiac MRI (CMR). Application of the Lake Louise criteria to CMR results can help identify cases of myocarditis. Treatment is usually supportive with medical therapy, and patients are recommended to abstain from exercise for 3 to 6 months. Exercise restrictions may be lifted after normalization on follow-up testing.
Collapse
Affiliation(s)
- Robyn E Bryde
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55902, USA
| | - Damian N Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA; Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55902, USA
| | - Matthew W Martinez
- Chanin T. Mast Hypertrophic Cardiomyopathy Center and Sports Cardiology, Atlantic Health, Morristown Medical Center, 111 Madison Avenue, Morristown, NJ, USA.
| |
Collapse
|
54
|
Shirogane Y, Harada H, Hirai Y, Takemoto R, Suzuki T, Hashiguchi T, Yanagi Y. Collective fusion activity determines neurotropism of an en bloc transmitted enveloped virus. SCIENCE ADVANCES 2023; 9:eadf3731. [PMID: 36706187 PMCID: PMC9882980 DOI: 10.1126/sciadv.adf3731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/09/2023]
Abstract
Measles virus (MeV), which is usually non-neurotropic, sometimes persists in the brain and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection, serving as a model for persistent viral infections. The persisting MeVs have hyperfusogenic mutant fusion (F) proteins that likely enable cell-cell fusion at synapses and "en bloc transmission" between neurons. We here show that during persistence, F protein fusogenicity is generally enhanced by cumulative mutations, yet mutations paradoxically reducing the fusogenicity may be selected alongside the wild-type (non-neurotropic) MeV genome. A mutant F protein having SSPE-derived substitutions exhibits lower fusogenicity than the hyperfusogenic F protein containing some of those substitutions, but by the wild-type F protein coexpression, the fusogenicity of the former F protein is enhanced, while that of the latter is nearly abolished. These findings advance the understanding of the long-term process of MeV neuropathogenicity and provide critical insight into the genotype-phenotype relationships of en bloc transmitted viruses.
Collapse
Affiliation(s)
- Yuta Shirogane
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Hidetaka Harada
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yuichi Hirai
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Ryuichi Takemoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Yanagi
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
55
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
56
|
Chen T, Tu S, Ding L, Jin M, Chen H, Zhou H. The role of autophagy in viral infections. J Biomed Sci 2023; 30:5. [PMID: 36653801 PMCID: PMC9846652 DOI: 10.1186/s12929-023-00899-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Autophagy is an evolutionarily conserved catabolic cellular process that exerts antiviral functions during a viral invasion. However, co-evolution and co-adaptation between viruses and autophagy have armed viruses with multiple strategies to subvert the autophagic machinery and counteract cellular antiviral responses. Specifically, the host cell quickly initiates the autophagy to degrade virus particles or virus components upon a viral infection, while cooperating with anti-viral interferon response to inhibit the virus replication. Degraded virus-derived antigens can be presented to T lymphocytes to orchestrate the adaptive immune response. Nevertheless, some viruses have evolved the ability to inhibit autophagy in order to evade degradation and immune responses. Others induce autophagy, but then hijack autophagosomes as a replication site, or hijack the secretion autophagy pathway to promote maturation and egress of virus particles, thereby increasing replication and transmission efficiency. Interestingly, different viruses have unique strategies to counteract different types of selective autophagy, such as exploiting autophagy to regulate organelle degradation, metabolic processes, and immune responses. In short, this review focuses on the interaction between autophagy and viruses, explaining how autophagy serves multiple roles in viral infection, with either proviral or antiviral functions.
Collapse
Affiliation(s)
- Tong Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Shaoyu Tu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Ling Ding
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Meilin Jin
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| | - Hongbo Zhou
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430030 China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430030 China
| |
Collapse
|
57
|
Fu Y, Xiong S. Exosomes mediate Coxsackievirus B3 transmission and expand the viral tropism. PLoS Pathog 2023; 19:e1011090. [PMID: 36634130 PMCID: PMC9888687 DOI: 10.1371/journal.ppat.1011090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/31/2023] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Specific virus-receptor interactions are important determinants in viral host range, tropism and pathogenesis, influencing the location and initiation of primary infection as well as viral spread to other target organs/tissues in the postviremic phase. Coxsackieviruses of Group B (CVB) and its six serotypes (CVB1-6) specifically interact with two receptor proteins, coxsackievirus-adenovirus receptor (CAR) and decay-accelerating factor (DAF), and cause various lesions in most permissive tissues. However, our previous data and other studies revealed that virus receptor-negative cells or tissues can be infected with CVB type 3 (CVB3), which can also effectively replicate. To study this interesting finding, we explored the possibility that exosomes are involved in CVB3 tropism and that exosomes functionally enhance CVB3 transmission. We found that exosomes carried and delivered CVB3 virions, resulting in efficient infection in receptor-negative host cells. We also found that delivery of CVB3 virions attached to exosomes depended on the virus receptor CAR. Importantly, exosomes carrying CVB3 virions exhibited greater infection efficiency than free virions because they accessed various entry routes, overcoming restrictions to viral tropism. In vivo experiments demonstrated that inhibition of exosome coupling with virions attenuated CVB3-induced immunological system dysfunction and reduced mortality. Our study describes a new mechanism in which exosomes contribute to viral tropism, spread, and pathogenesis.
Collapse
Affiliation(s)
- Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
58
|
Mamana J, Humber GM, Espinal ER, Seo S, Vollmuth N, Sin J, Kim BJ. Coxsackievirus B3 infects and disrupts human induced-pluripotent stem cell derived brain-like endothelial cells. Front Cell Infect Microbiol 2023; 13:1171275. [PMID: 37139492 PMCID: PMC10149843 DOI: 10.3389/fcimb.2023.1171275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.
Collapse
Affiliation(s)
- Julia Mamana
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Gabrielle M. Humber
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Eric R. Espinal
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Soojung Seo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Nadine Vollmuth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jon Sin, ; Brandon J. Kim,
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa, AL, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Jon Sin, ; Brandon J. Kim,
| |
Collapse
|
59
|
Wu C, Zeng L, Yi W, Miao Y, Liu Y, Wang Q, Liu S, Peng G, Zheng Z, Xia J. Echovirus induces autophagy to promote viral replication via regulating mTOR/ULK1 signaling pathway. Front Immunol 2023; 14:1162208. [PMID: 37114059 PMCID: PMC10126370 DOI: 10.3389/fimmu.2023.1162208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Among enteroviruses, echovirus can cause severe illnesses in neonates or infants, with high morbidity and mortality. Autophagy, a central component of host defense mechanisms, can function against diverse infections. In the present study, we investigated the interplay between echovirus and autophagy. We demonstrated that echovirus infection increases LC3-II expression dose-dependently, accompanied by an increased intracellular LC3 puncta level. In addition, echovirus infection induces the formation of autophagosome. These results suggest that echovirus infection induces autophagy machinery. Furthermore, phosphorylated mTOR and ULK1 were both decreased upon echovirus infection. In contrast, both levels of the vacuolar protein sorting 34 (VPS34) and Beclin-1, the downstream molecules which play essential roles in promoting the formation of autophagic vesicles, increased upon virus infection. These results imply that the signaling pathways involved in autophagosome formation were activated by echovirus infection. Moreover, induction of autophagy promotes echovirus replication and viral protein VP1 expression, while inhibition of autophagy impairs VP1 expression. Our findings suggest that autophagy can be induced by echovirus infection via regulating mTOR/ULK1 signaling pathway and exhibits a proviral function, revealing the potential role of autophagy in echovirus infection.
Collapse
Affiliation(s)
- Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luzhi Zeng
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenfu Yi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuanjiu Miao
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yihan Liu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guoping Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianbo Xia,
| |
Collapse
|
60
|
Shirasaki T, González-López O, McKnight KL, Xie L, Shiota T, Chen X, Feng H, Lemon SM. Nonlytic Quasi-Enveloped Hepatovirus Release Is Facilitated by pX Protein Interaction with the E3 Ubiquitin Ligase ITCH. J Virol 2022; 96:e0119522. [PMID: 36286484 PMCID: PMC9645215 DOI: 10.1128/jvi.01195-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tomoyuki Shiota
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
61
|
Dahmane S, Kerviel A, Morado DR, Shankar K, Ahlman B, Lazarou M, Altan-Bonnet N, Carlson LA. Membrane-assisted assembly and selective secretory autophagy of enteroviruses. Nat Commun 2022; 13:5986. [PMID: 36216808 PMCID: PMC9550805 DOI: 10.1038/s41467-022-33483-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Enteroviruses are non-enveloped positive-sense RNA viruses that cause diverse diseases in humans. Their rapid multiplication depends on remodeling of cytoplasmic membranes for viral genome replication. It is unknown how virions assemble around these newly synthesized genomes and how they are then loaded into autophagic membranes for release through secretory autophagy. Here, we use cryo-electron tomography of infected cells to show that poliovirus assembles directly on replication membranes. Pharmacological untethering of capsids from membranes abrogates RNA encapsidation. Our data directly visualize a membrane-bound half-capsid as a prominent virion assembly intermediate. Assembly progression past this intermediate depends on the class III phosphatidylinositol 3-kinase VPS34, a key host-cell autophagy factor. On the other hand, the canonical autophagy initiator ULK1 is shown to restrict virion production since its inhibition leads to increased accumulation of virions in vast intracellular arrays, followed by an increased vesicular release at later time points. Finally, we identify multiple layers of selectivity in virus-induced autophagy, with a strong selection for RNA-loaded virions over empty capsids and the segregation of virions from other types of autophagosome contents. These findings provide an integrated structural framework for multiple stages of the poliovirus life cycle.
Collapse
Affiliation(s)
- Selma Dahmane
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Adeline Kerviel
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dustin R Morado
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Kasturika Shankar
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Björn Ahlman
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden. .,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden. .,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| |
Collapse
|
62
|
Ruan Z, Liang Y, Chen Z, Yin J, Li C, Pan P, Zhang Q, Wu J, Luo Z. Enterovirus 71 non-structural protein 3A hijacks vacuolar protein sorting 25 to boost exosome biogenesis to facilitate viral replication. Front Microbiol 2022; 13:1024899. [PMID: 36274707 PMCID: PMC9581156 DOI: 10.3389/fmicb.2022.1024899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Human enterovirus 71 (EV71) is one of the major agents of the hand, foot, and mouth disease (HFMD), and occasionally causes severe neurological complications. There is clinical evidence that EV71 infection increases the exosomes in the serum of severe HFMD patients, suggesting a role of exosomes in EV71 pathogenesis. However, the relationship between exosomes and EV71 replication remains elusive. In this study, we initially found that EV71 infection elevated exosome biogenesis in the cultured cells. Among EV71 non-structural proteins, we identified EV71 3A, but not 3B, constitutively promoted exosome secretion. In detail, EV71 3A protein interacted with vacuolar protein sorting 25 (VPS25), while knock-down of VPS25 reduced EV71 3A protein- and EV71-induced exosome production. Further studies revealed VPS25 located on exosomes and its expression correlated to the exosome production. During EV71 infection, knock-down of VPS25 decreased exosome biogenesis to attenuate viral replication. Consistently, GW4869, an exosome inhibitor, exerted an obviously antiviral activity against EV71 replication companied with the decrease of exosome secretion or formation. These findings suggest the binding of EV71 3A and VPS25 benefited exosome biogenesis, thereby boosting viral replication. This study uncovers a novel mechanism underlying EV71-mediated exosomes in the regulation of viral replication, which provides potential anti-viral strategies against the EV71 infection and transmission in HFMD.
Collapse
Affiliation(s)
- Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zicong Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chengcheng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- Jianguo Wu,
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Zhen Luo,
| |
Collapse
|
63
|
Nadkarni R, Chu WC, Lee CQ, Mohamud Y, Yap L, Toh GA, Beh S, Lim R, Fan YM, Zhang YL, Robinson K, Tryggvason K, Luo H, Zhong F, Ho L. Viral proteases activate the CARD8 inflammasome in the human cardiovascular system. J Exp Med 2022; 219:e20212117. [PMID: 36129453 PMCID: PMC9499823 DOI: 10.1084/jem.20212117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NBD), leucine-rich repeat (LRR) containing protein family (NLRs) are intracellular pattern recognition receptors that mediate innate immunity against infections. The endothelium is the first line of defense against blood-borne pathogens, but it is unclear which NLRs control endothelial cell (EC) intrinsic immunity. Here, we demonstrate that human ECs simultaneously activate NLRP1 and CARD8 inflammasomes in response to DPP8/9 inhibitor Val-boro-Pro (VbP). Enterovirus Coxsackie virus B3 (CVB3)-the most common cause of viral myocarditis-predominantly activates CARD8 in ECs in a manner that requires viral 2A and 3C protease cleavage at CARD8 p.G38 and proteasome function. Genetic deletion of CARD8 in ECs and human embryonic stem cell-derived cardiomyocytes (HCMs) attenuates CVB3-induced pyroptosis, inflammation, and viral propagation. Furthermore, using a stratified endothelial-cardiomyocyte co-culture system, we demonstrate that deleting CARD8 in ECs reduces CVB3 infection of the underlying cardiomyocytes. Our study uncovers the unique role of CARD8 inflammasome in endothelium-intrinsic anti-viral immunity.
Collapse
Affiliation(s)
- Rhea Nadkarni
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Wern Cui Chu
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Cheryl Q.E. Lee
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Yasir Mohamud
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lynn Yap
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Sheryl Beh
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Radiance Lim
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Yiyun Michelle Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yizhuo Lyanne Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kim Robinson
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Karl Tryggvason
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Franklin Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - Lena Ho
- Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
64
|
Sawaged S, Mota T, Piplani H, Thakur R, Lall D, McCabe E, Seo S, Sutterwala FS, Feuer R, Gottlieb RA, Sin J. TBK1 and GABARAP family members suppress Coxsackievirus B infection by limiting viral production and promoting autophagic degradation of viral extracellular vesicles. PLoS Pathog 2022; 18:e1010350. [PMID: 36044516 PMCID: PMC9469980 DOI: 10.1371/journal.ppat.1010350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy. Coxsackievirus B (CVB) is a significant human enterovirus that can cause myocarditis, meningitis, and pancreatitis. The subversion of host immunity and mechanisms of viral dissemination are critical factors which promote pathogenesis. We had previously reported that following infection, CVB becomes engulfed by autophagosomes which evade lysosomal degradation and instead get released as infectious extracellular vesicles (EVs). In this current study, we report that in addition to its traditional role in interferon-mediated antiviral signaling, TANK-binding kinase (TBK1) is crucial in limiting viral production and EV-based viral egress through the autophagy pathway. Indeed, in the absence of TBK1, we observe (i) a disruption in autophagic flux, (ii) significant increases in intracellular viral burden and viral EV release, and (iii) elevated viral load in both in vitro and in vivo models of infection. EVs isolated from TBK1-deficient cells or mice treated with the TBK1-inhibitor Amlexanox were more infectious compared to controls. In all, the dual role TBK1 plays in suppressing viral escape in addition to mediating antiviral immunity makes it a promising therapeutic target for the treatment of CVB infection.
Collapse
Affiliation(s)
- Savannah Sawaged
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Thomas Mota
- The Center for Neural Science and Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Honit Piplani
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Reetu Thakur
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Deepti Lall
- The Center for Neural Science and Medicine, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Elizabeth McCabe
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Soojung Seo
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Fayyaz S. Sutterwala
- Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ralph Feuer
- The Integrated Regenerative Research Institute at San Diego State University, San Diego, California, United States of America
| | - Roberta A. Gottlieb
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jon Sin
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States of America
- * E-mail:
| |
Collapse
|
65
|
Li J, Wang M, Zhou S, Cheng A, Ou X, Sun D, Wu Y, Yang Q, Gao Q, Huang J, Tian B, Mao S, Zhang S, Zhao X, Jia R, Liu M, Zhu D, Chen S, Liu Y, Yu Y, Zhang L, Pan L. The DHAV-1 protein VP1 interacts with PI3KC3 to induce autophagy through the PI3KC3 complex. Vet Res 2022; 53:64. [PMID: 35978392 PMCID: PMC9387016 DOI: 10.1186/s13567-022-01081-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the main pathogens responsible for death in ducklings. Autophagy is a catabolic process that maintains cellular homeostasis, and the PI3KC3 protein plays an important role in the initiation of autophagy. DHAV-1 infection induces autophagy in duck embryo fibroblasts (DEFs) but the molecular mechanism between it and autophagy has not been reported. First, we determined that DHAV-1 infection induces autophagy in DEFs and that autophagy induction is dependent on the integrity of viral proteins by infecting DEFs with UV-inactivated or heat-inactivated DHAV-1. Then, in experiments using the pharmacological autophagy inducer rapamycin and the autophagy inhibitor chloroquine, autophagy inhibition was shown to reduce intracellular and extracellular DHAV-1 genome copies and viral titres. These results suggest that autophagy activated by DHAV-1 infection in DEFs affects DHAV-1 proliferation and extracellular release. Next, we screened the autophagy-inducing effects of the DHAV-1 structural proteins VP0, VP3, and VP1 and found that all DHAV-1 structural proteins could induce autophagy in DEFs but not the full autophagic flux. Finally, we found that VP1 promotes protein expression of PI3KC3 and Beclin1 by western blot experiments and that VP1 interacts with PI3KC3 by co-immunoprecipitation experiments; moreover, 3-MA-induced knockdown of PI3KC3 inhibited VP1 protein-induced autophagy in DEFs. In conclusion, the DHAV-1 structural protein VP1 regulates the PI3KC3 complex by interacting with PI3KC3 to induce autophagy in DEFs.
Collapse
Affiliation(s)
- Juan Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shan Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
66
|
A Single Mutation in the Cryptic AUG (cAUG) Affects In Vitro Translation and Replication Efficiencies and In Vivo Virulence of Coxsackievirus B3 (CVB3). Curr Microbiol 2022; 79:288. [PMID: 35972696 DOI: 10.1007/s00284-022-02986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
The 5'UTR of the genomic RNA of CVB3, unusually long and rich on highly structured secondary structure, contains a conserved cis acting RNA element named the cryptic AUG (cAUG), where the cellular 48S complex is formed. In this study, we investigate the role of this cAUG in CVB3 translation, replication, and virulence. Mutant viral sub-genomic replicon RNA was constructed by site-directed mutagenesis. We characterize in vitro translation and replication efficiencies and in vivo virulence of a cAUG mutant in comparison with wild-type strain. UV-cross-linking assay and Real-Time PCR were used, respectively, to detect binding host proteins and to quantify viral production. Secondary structures of domain containing the cAUG site were studied and compared. The results suggest that introduced mutation in the CVB3 5'UTR affects in vitro and ex vivo viral translation which cannot be rescued by compensatory mutations. A reduced interaction of the La and PCBP2 translation initiation factors with cAUG residue of mutant was revealed. Decreasing production of viral mutant RNA was also demonstrated. Furthermore, secondary structure prediction reveals changes in the ribosome binding sites of the cAUG moiety of mutant sense strand RNA and no alterations in the structure of wild type, suggesting that cAUG mutation specifically affects the secondary structure of the sense RNA strand. Taken together, AUG integrity influences the efficiency of ribosome recruitment through IRES element and the capacity of replication.
Collapse
|
67
|
Yang Y, Li W, You B, Zhou C. Advances in cell death mechanisms involved in viral myocarditis. Front Cardiovasc Med 2022; 9:968752. [PMID: 36017100 PMCID: PMC9395613 DOI: 10.3389/fcvm.2022.968752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Viral myocarditis is an acute inflammatory disease of the myocardium. Although many etiopathogenic factors exist, coxsackievirus B3 is a the leading cause of viral myocarditis. Abnormal cardiomyocyte death is the underlying problem for most cardiovascular diseases and fatalities. Various types of cell death occur and are regulated to varying degrees. In this review, we discuss the different cell death mechanisms in viral myocarditis and the potential interactions between them. We also explore the role and mechanism of cardiomyocyte death with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exploring the mechanisms may help in the early identification and the development of effective treatments, thus improving the quality of life of patients with viral myocarditis. We believe that the inhibition of cardiomyocyte death has immense therapeutic potential in increasing the longevity and health of the heart.
Collapse
Affiliation(s)
- Yang Yang
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- *Correspondence: Yang Yang,
| | - Wang Li
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
| | - Benshuai You
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- Chenglin Zhou,
| |
Collapse
|
68
|
Shirasaki T, Feng H, Duyvesteyn HME, Fusco WG, McKnight KL, Xie L, Boyce M, Kumar S, Barouch-Bentov R, González-López O, McNamara R, Wang L, Hertel-Wulff A, Chen X, Einav S, Duncan JA, Kapustina M, Fry EE, Stuart DI, Lemon SM. Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX. PLoS Pathog 2022; 18:e1010543. [PMID: 35969644 PMCID: PMC9410543 DOI: 10.1371/journal.ppat.1010543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - William G. Fusco
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Boyce
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sathish Kumar
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Li Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adriana Hertel-Wulff
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan-Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joseph A. Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth E. Fry
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
69
|
Peischard S, Möller M, Disse P, Ho HT, Verkerk AO, Strutz-Seebohm N, Budde T, Meuth SG, Schweizer PA, Morris S, Mücher L, Eisner V, Thomas D, Klingel K, Busch K, Seebohm G. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci 2022; 79:440. [PMID: 35864219 PMCID: PMC9304080 DOI: 10.1007/s00018-022-04435-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Melina Möller
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Huyen Tran Ho
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, Amsterdam, The Netherlands
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute of Physiology I, Westfälische-Wilhems Universität Münster, 48149, Münster, Germany
| | - Sven G Meuth
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Silke Morris
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tuebingen, 72076, Tübingen, Germany
| | - Karin Busch
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany. .,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
70
|
van der Grein SG, Defourny KAY, Rabouw HH, Goerdayal SS, van Herwijnen MJC, Wubbolts RW, Altelaar M, van Kuppeveld FJM, Nolte-'t Hoen ENM. The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy. Nat Commun 2022; 13:3625. [PMID: 35750662 PMCID: PMC9232559 DOI: 10.1038/s41467-022-31181-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Naked viruses can escape host cells before the induction of lysis via release in extracellular vesicles (EVs). These nanosized EVs cloak the secreted virus particles in a host-derived membrane, which alters virus-host interactions that affect infection efficiency and antiviral immunity. Currently, little is known about the viral and host factors regulating this form of virus release. Here, we assessed the role of the encephalomyocarditis virus (EMCV) Leader protein, a 'viral security protein' that subverts the host antiviral response. EV release upon infection with wildtype virus or a Leader-deficient mutant was characterized at the single particle level using high-resolution flow cytometry. Inactivation of the Leader abolished EV induction during infection and strongly reduced EV-enclosed virus release. We demonstrate that the Leader promotes the release of virions within EVs by stimulating a secretory arm of autophagy. This newly discovered role of the EMCV Leader adds to the variety of mechanisms via which this protein affects virus-host interactions. Moreover, these data provide first evidence for a crucial role of a non-structural viral protein in the non-lytic release of picornaviruses via packaging in EVs.
Collapse
Affiliation(s)
- Susanne G van der Grein
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Kyra A Y Defourny
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Huib H Rabouw
- Virology Section, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Soenita S Goerdayal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Martijn J C van Herwijnen
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Richard W Wubbolts
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Esther N M Nolte-'t Hoen
- Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
71
|
Chen D, Zhao YG, Zhang H. Endomembrane remodeling in SARS-CoV-2 infection. CELL INSIGHT 2022; 1:100031. [PMID: 37193051 PMCID: PMC9112566 DOI: 10.1016/j.cellin.2022.100031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the viral proteins intimately interact with host factors to remodel the endomembrane system at various steps of the viral lifecycle. The entry of SARS-CoV-2 can be mediated by endocytosis-mediated internalization. Virus-containing endosomes then fuse with lysosomes, in which the viral S protein is cleaved to trigger membrane fusion. Double-membrane vesicles generated from the ER serve as platforms for viral replication and transcription. Virions are assembled at the ER-Golgi intermediate compartment and released through the secretory pathway and/or lysosome-mediated exocytosis. In this review, we will focus on how SARS-CoV-2 viral proteins collaborate with host factors to remodel the endomembrane system for viral entry, replication, assembly and egress. We will also describe how viral proteins hijack the host cell surveillance system-the autophagic degradation pathway-to evade destruction and benefit virus production. Finally, potential antiviral therapies targeting the host cell endomembrane system will be discussed.
Collapse
Affiliation(s)
- Di Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan G. Zhao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
72
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
73
|
Perdoncini Carvalho C, Ren R, Han J, Qu F. Natural Selection, Intracellular Bottlenecks of Virus Populations, and Viral Superinfection Exclusion. Annu Rev Virol 2022; 9:121-137. [PMID: 35567296 DOI: 10.1146/annurev-virology-100520-114758] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural selection acts on cellular organisms by ensuring the genes responsible for an advantageous phenotype consistently reap the phenotypic advantage. This is possible because reproductive cells of these organisms are almost always haploid, separating the beneficial gene from its rival allele at every generation. How natural selection acts on plus-strand RNA viruses is unclear because these viruses frequently load host cells with numerous genome copies and replicate thousands of progeny genomes in each cell. Recent studies suggest that these viruses encode the Bottleneck, Isolate, Amplify, Select (BIAS) mechanism that blocks all but a few viral genome copies from replication, thus creating the environment in which the bottleneck-escaping viral genome copies are isolated from each other, allowing natural selection to reward beneficial mutations and purge lethal errors. This BIAS mechanism also blocks the genomes of highly homologous superinfecting viruses, thus explaining cellular-level superinfection exclusion. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Ruifan Ren
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| | - Junping Han
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| |
Collapse
|
74
|
Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines (Basel) 2022; 10:vaccines10050770. [PMID: 35632526 PMCID: PMC9143164 DOI: 10.3390/vaccines10050770] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses have now been shown to persist in cell cultures and in vivo by a novel mechanism involving the deletion of varying amounts of the 5′ terminal genomic region termed domain I (also known as the cloverleaf). Molecular clones of coxsackievirus B3 (CVB3) genomes with 5′ terminal deletions (TD) of varying length allow the study of these mutant populations, which are able to replicate in the complete absence of wildtype virus genomes. The study of TD enteroviruses has revealed numerous significant differences from canonical enteroviral biology. The deletions appear and become the dominant population when an enterovirus replicates in quiescent cell populations, but can also occur if one of the cis-acting replication elements of the genome (CRE-2C) is artificially mutated in the element’s stem and loop structures. This review discusses how the TD genomes arise, how they interact with the host, and their effects on host biology.
Collapse
|
75
|
Yu K, Zhou L, Wang Y, Yu C, Wang Z, Liu H, Wei H, Han L, Cheng J, Wang F, Wang DW, Zhao C. Mechanisms and Therapeutic Strategies of Viral Myocarditis Targeting Autophagy. Front Pharmacol 2022; 13:843103. [PMID: 35479306 PMCID: PMC9035591 DOI: 10.3389/fphar.2022.843103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Viral myocarditis is caused by infection with viruses or bacteria, including coxsackievirus B3 (CVB3), and is characterized by acute or chronic inflammatory responses in the heart. The mortality associated with severe viral myocarditis is considerable. In some patients, viral myocarditis may develop into dilated cardiomyopathy or heart failure. Autophagy is involved in a wide range of physiological processes, including viral infection and replication. In the present review, we focus on the responses of cardiac tissues, cardiomyocytes, and cardiac fibroblasts to CVB3 infection. Subsequently, the effects of altered autophagy on the development of viral myocarditis are discussed. Finally, this review also examined and assessed the use of several popular autophagy modulating drugs, such as metformin, resveratrol, rapamycin, wortmannin, and 3-methyladenine, as alternative treatment strategies for viral myocarditis.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhui Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jia Cheng
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunxia Zhao,
| |
Collapse
|
76
|
Silva RCMC, Ribeiro JS, da Silva GPD, da Costa LJ, Travassos LH. Autophagy Modulators in Coronavirus Diseases: A Double Strike in Viral Burden and Inflammation. Front Cell Infect Microbiol 2022; 12:845368. [PMID: 35433503 PMCID: PMC9010404 DOI: 10.3389/fcimb.2022.845368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto Duarte da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
77
|
Münz C. Canonical and Non-Canonical Functions of the Autophagy Machinery in MHC Restricted Antigen Presentation. Front Immunol 2022; 13:868888. [PMID: 35309359 PMCID: PMC8931038 DOI: 10.3389/fimmu.2022.868888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 01/29/2023] Open
Abstract
Macroautophagy delivers cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) class II molecules sample peptides after lysosomal degradation for presentation to CD4+ T cells, it was originally described that these peptides can also originate from macroautophagy substrates. In recent years it has become clear that in addition to this canonical function of the macroautophagy machinery during MHC class II restricted antigen presentation at least parts of this machinery are also used to regulate phagocytosis of antigens, degradation of MHC class I molecules, and unconventional secretion of antigens in extracellular vesicles, including virus particles. This review discusses how both canonical and non-canonical functions of the macroautophagy machinery influence antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells. A better understanding of the molecular mechanisms by which the macroautophagy machinery is distributed between its canonical and non-canonical functions should allow targeting of antigens to these different pathways to influence MHC restricted presentation during vaccination against infectious diseases and tumors.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
78
|
Rudy MJ, Coughlan C, Hixon AM, Clarke P, Tyler KL. Density Analysis of Enterovirus D68 Shows Viral Particles Can Associate with Exosomes. Microbiol Spectr 2022; 10:e0245221. [PMID: 35170992 PMCID: PMC8849102 DOI: 10.1128/spectrum.02452-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen which causes respiratory disease and is associated with an acute flaccid myelitis that predominately affects children. EV-D68 can infect motor neurons, causing cell death and a loss of motor control leading to flaccid paralysis. However, it remains unknown how viral particles gain entry into the central nervous system (CNS). Here, we show that three distinct densities of EV-D68 particle can be isolated from infected muscle and neural cell lines (RD and SH-SY5Y) using high-speed density centrifugation to separate cell supernatant. The lowest-density peak is composed of viral particles, which have adhered to the exterior surface of a small extracellular vesicle called an exosome. Analysis of prototypic (historic) and contemporary EV-D68 strains suggests that binding to exosomes is a ubiquitous characteristic of EV-D68. We further show that interaction with exosomes increases viral infectivity in a neural cell line. Analysis of the two higher-density peaks, which are not associated with exosomes, revealed that a significant amount of viral titer in the modern (2014) EV-D68 strains is found at 1.20 g/cm3, whereas this density has a very low viral titer in the prototypic Fermon strain. IMPORTANCE Despite the strong causal link between enterovirus D68 (EV-D68) and acute flaccid myelitis (AFM), it remains unclear how EV-D68 gains entry into the central nervous system and what receptors enable it to infect motor neurons. We show that EV-D68 particles can adhere to exosomes, placing EV-D68 among a handful of other picornaviruses which are known to interact with extracellular vesicles. Uptake and infection of permissive cells by virally contaminated exosomes would have major implications in the search for the EV-D68 receptor, as well as providing a possible route for viral entry into motor neurons. This work identifies a novel cellular entry route for EV-D68 and may facilitate the identification of genetic risk factors for development of AFM.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- University of Colorado Alzheimer’s and Cognition Center, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Alison M. Hixon
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
79
|
Viral Aggregation: The Knowns and Unknowns. Viruses 2022; 14:v14020438. [PMID: 35216031 PMCID: PMC8879382 DOI: 10.3390/v14020438] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Viral aggregation is a complex and pervasive phenomenon affecting many viral families. An increasing number of studies have indicated that it can modulate critical parameters surrounding viral infections, and yet its role in viral infectivity, pathogenesis, and evolution is just beginning to be appreciated. Aggregation likely promotes viral infection by increasing the cellular multiplicity of infection (MOI), which can help overcome stochastic failures of viral infection and genetic defects and subsequently modulate their fitness, virulence, and host responses. Conversely, aggregation can limit the dispersal of viral particles and hinder the early stages of establishing a successful infection. The cost–benefit of viral aggregation seems to vary not only depending on the viral species and aggregating factors but also on the spatiotemporal context of the viral life cycle. Here, we review the knowns of viral aggregation by focusing on studies with direct observations of viral aggregation and mechanistic studies of the aggregation process. Next, we chart the unknowns and discuss the biological implications of viral aggregation in their infection cycle. We conclude with a perspective on harnessing the therapeutic potential of this phenomenon and highlight several challenging questions that warrant further research for this field to advance.
Collapse
|
80
|
Buchacher T, Honkimaa A, Välikangas T, Lietzén N, Hirvonen MK, Laiho JE, Sioofy-Khojine AB, Eskelinen EL, Hyöty H, Elo LL, Lahesmaa R. Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. iScience 2022; 25:103653. [PMID: 35024587 PMCID: PMC8728469 DOI: 10.1016/j.isci.2021.103653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses, particularly the group B coxsackieviruses (CVBs), have been associated with the development of type 1 diabetes. Several CVB serotypes establish chronic infections in human cells in vivo and in vitro. However, the mechanisms leading to enterovirus persistency and, possibly, beta cell autoimmunity are not fully understood. We established a carrier-state-type persistent infection model in human pancreatic cell line PANC-1 using two distinct CVB1 strains and profiled the infection-induced changes in cellular transcriptome. In the current study, we observed clear changes in the gene expression of factors associated with the pancreatic microenvironment, the secretory pathway, and lysosomal biogenesis during persistent CVB1 infections. Moreover, we found that the antiviral response pathways were activated differently by the two CVB1 strains. Overall, our study reveals extensive transcriptional responses in persistently CVB1-infected pancreatic cells with strong opposite but also common changes between the two strains.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Anni Honkimaa
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Niina Lietzén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - M. Karoliina Hirvonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Jutta E. Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | | | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere FI-33520, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
81
|
Sadri Nahand J, Salmaninejad A, Mollazadeh S, Tamehri Zadeh SS, Rezaee M, Sheida AH, Sadoughi F, Dana PM, Rafiyan M, Zamani M, Taghavi SP, Dashti F, Mirazimi SMA, Bannazadeh Baghi H, Moghoofei M, Karimzadeh M, Vosough M, Mirzaei H. Virus, Exosome, and MicroRNA: New Insights into Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:97-162. [DOI: 10.1007/5584_2022_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Affiliation(s)
- Zach Troyer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, USA
| | - John C. Tilton
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
83
|
Non-canonical roles of autophagy proteins in endocytosis and exocytosis. Biochem Soc Trans 2021; 49:2841-2851. [PMID: 34783341 DOI: 10.1042/bst20210811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy, the pathways that degrade cytoplasmic constituents in lysosomes, contribute to most biological processes from aging and neurodegeneration to pathogen restriction and immunity. In recent years, it was realized that the autophagy machinery serves additional functions, primarily in endo- and exocytosis. In this review, I summarize recent advances in our understanding on how these non-canonical functions differ from canonical macroautophagy, and contribute to immune activation and viral replication. Understanding these pathways will allow us to harness them for the treatment of human diseases, as well as appreciate how cells use modules of membrane remodeling and trafficking for multiple biological functions.
Collapse
|
84
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. Autophagy Modulation by Viral Infections Influences Tumor Development. Front Oncol 2021; 11:743780. [PMID: 34745965 PMCID: PMC8569469 DOI: 10.3389/fonc.2021.743780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a self-degradative process important for balancing cellular homeostasis at critical times in development and/or in response to nutrient stress. This is particularly relevant in tumor model in which autophagy has been demonstrated to have an important impact on tumor behavior. In one hand, autophagy limits tumor transformation of precancerous cells in early stage, and in the other hand, it favors the survival, proliferation, metastasis, and resistance to antitumor therapies in more advanced tumors. This catabolic machinery can be induced by an important variety of extra- and intracellular stimuli. For instance, viral infection has often been associated to autophagic modulation, and the role of autophagy in virus replication differs according to the virus studied. In the context of tumor development, virus-modulated autophagy can have an important impact on tumor cells' fate. Extensive analyses have shed light on the molecular and/or functional complex mechanisms by which virus-modulated autophagy influences precancerous or tumor cell development. This review includes an overview of discoveries describing the repercussions of an autophagy perturbation during viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Sophie Sibéril
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Marco Alifano
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Thoracic Surgery, Hospital Cochin Assistance Publique Hopitaux de Paris, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Pierre-Emmanuel Joubert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| |
Collapse
|
85
|
Wang T, Zhang L, Liang W, Liu S, Deng W, Liu Y, Liu Y, Song M, Guo K, Zhang Y. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture. Autophagy 2021; 18:1433-1449. [PMID: 34740307 DOI: 10.1080/15548627.2021.1987673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Free spread is a classical mode for mammalian virus transmission. However, the efficiency of this transmission approach is generally low as there are structural barriers or immunological surveillances in the extracellular environment under physiological conditions. In this study, we systematically analyzed the spreading of classical swine fever virus (CSFV) using multiple viral replication analysis in combination with antibody neutralization, transwell assay, and electron microscopy, and identified an extracellular vesicle (EV)-mediated spreading of CSFV in cell cultures. In this approach, intact CSFV virions are enclosed within EVs and transferred into uninfected cells with the movement of EVs, leading to an antibody-resistant infection of the virus. Using fractionation assays, immunostaining, and electron microscopy, we characterized the CSFV-containing EVs and demonstrated that the EVs originated from macroautophagy/autophagy. Taken together, our results showed a new spreading mechanism for CSFV and demonstrated that the EVs in CSFV spreading are closely related to autophagy. These findings shed light on the immune evasion mechanisms of CSFV transmission, as well as new functions of cellular vesicles in virus lifecycles.Abbreviations: 3-MA: 3-methyladenine; CCK-8: Cell Counting Kit-8; CSF: classical swine fever; CQ: chloroquine; CSFV: classical swine fever virus; DAPI, 4-,6-diamidino-2-phenylindole; EVs: extracellular vesicles; hpi: h post infection; IEM: immunoelectron microscopy; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MOI: multiplicity of infection; MVs: microvesicles; ND50: half neutralizing dose; PCR: polymerase chain reaction; PBS: phosphate-buffered saline; SEC: size-exclusion chromatography; siRNA: small interfering RNA; TEM: transmission electron microscopy.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Liang Zhang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China.,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanchuan Liu
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Wen Deng
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Yangruiyu Liu
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Yaru Liu
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Mengzhao Song
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&f University, Yangling, China
| |
Collapse
|
86
|
Park SJ, Jin U, Park SM. Interaction between coxsackievirus B3 infection and α-synuclein in models of Parkinson's disease. PLoS Pathog 2021; 17:e1010018. [PMID: 34695168 PMCID: PMC8568191 DOI: 10.1371/journal.ppat.1010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/04/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. PD is pathologically characterized by the death of midbrain dopaminergic neurons and the accumulation of intracellular protein inclusions called Lewy bodies or Lewy neurites. The major component of Lewy bodies is α-synuclein (α-syn). Prion-like propagation of α-syn has emerged as a novel mechanism in the progression of PD. This mechanism has been investigated to reveal factors that initiate Lewy pathology with the aim of preventing further progression of PD. Here, we demonstrate that coxsackievirus B3 (CVB3) infection can induce α-syn-associated inclusion body formation in neurons which might act as a trigger for PD. The inclusion bodies contained clustered organelles, including damaged mitochondria with α-syn fibrils. α-Syn overexpression accelerated inclusion body formation and induced more concentric inclusion bodies. In CVB3-infected mice brains, α-syn aggregates were observed in the cell body of midbrain neurons. Additionally, α-syn overexpression favored CVB3 replication and related cytotoxicity. α-Syn transgenic mice had a low survival rate, enhanced CVB3 replication, and exhibited neuronal cell death, including that of dopaminergic neurons in the substantia nigra. These results may be attributed to distinct autophagy-related pathways engaged by CVB3 and α-syn. This study elucidated the mechanism of Lewy body formation and the pathogenesis of PD associated with CVB3 infection. Prion-like propagation of α-syn has emerged as a novel mechanism involved in the progression of Parkinson’s disease (PD). This process has been extensively investigated to identify the factors that initiate Lewy pathology to prevent further progression of PD. Nevertheless, initial triggers of Lewy body (LB) formation leading to the acceleration of the process still remain elusive. Infection is increasingly recognized as a risk factor for PD. In particular, several viruses have been reported to be associated with both acute and chronic parkinsonism. It has been proposed that peripheral infections including viral infections accompanying inflammation may trigger PD. In the present study, we explored whether coxsackievirus B3 (CVB3) interacts with α-syn to induce aggregation and further Lewy body formation, thereby acting as a trigger and whether α-syn affects the replication of coxsackievirus. It is important to identify the factors that initiate Lewy pathology to understand the pathogenesis of PD. Our findings clarify the mechanism of LB formation and the pathogenesis of PD associated with CVB3 infection.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Uram Jin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
- * E-mail:
| |
Collapse
|
87
|
Knyazev E, Nersisyan S, Tonevitsky A. Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Front Immunol 2021; 12:636966. [PMID: 34557180 PMCID: PMC8452982 DOI: 10.3389/fimmu.2021.636966] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Since 2003, the world has been confronted with three new betacoronaviruses that cause human respiratory infections: SARS-CoV, which causes severe acute respiratory syndrome (SARS), MERS-CoV, which causes Middle East respiratory syndrome (MERS), and SARS-CoV-2, which causes Coronavirus Disease 2019 (COVID-19). The mechanisms of coronavirus transmission and dissemination in the human body determine the diagnostic and therapeutic strategies. An important problem is the possibility that viral particles overcome tissue barriers such as the intestine, respiratory tract, blood-brain barrier, and placenta. In this work, we will 1) consider the issue of endocytosis and the possibility of transcytosis and paracellular trafficking of coronaviruses across tissue barriers with an emphasis on the intestinal epithelium; 2) discuss the possibility of antibody-mediated transcytosis of opsonized viruses due to complexes of immunoglobulins with their receptors; 3) assess the possibility of the virus transfer into extracellular vesicles during intracellular transport; and 4) describe the clinical significance of these processes. Models of the intestinal epithelium and other barrier tissues for in vitro transcytosis studies will also be briefly characterized.
Collapse
Affiliation(s)
- Evgeny Knyazev
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| | - Alexander Tonevitsky
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
88
|
Kumar S, Jia J, Deretic V. Atg8ylation as a general membrane stress and remodeling response. Cell Stress 2021; 5:128-142. [PMID: 34527862 PMCID: PMC8404385 DOI: 10.15698/cst2021.09.255] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Atg8 protein and its paralogs in mammals, mammalian Atg8s (mAtg8s), have been primarily appreciated for their participation in autophagy. However, lipidated mAtg8s, including the most frequently used autophagosomal membrane marker LC3B, are found on cellular membranes other than autophagosomes. Here we put forward a hypothesis that the lipidation of mAtg8s, termed 'Atg8ylation', is a general membrane stress and remodeling response analogous to the role that ubiquitylation plays in tagging proteins. Ubiquitin and mAtg8s are related in sequence and structure, and the lipidation of mAtg8s occurs on its C-terminal glycine, akin to the C-terminal glycine of ubiquitin. Conceptually, we propose that mAtg8s and Atg8ylation are to membranes what ubiquitin and ubiquitylation are to proteins, and that, like ubiquitylation, Atg8ylation has a multitude of downstream effector outputs, one of which is autophagy.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
89
|
Pregnolato F, Cova L, Doretti A, Bardelli D, Silani V, Bossolasco P. Exosome microRNAs in Amyotrophic Lateral Sclerosis: A Pilot Study. Biomolecules 2021; 11:biom11081220. [PMID: 34439885 PMCID: PMC8394507 DOI: 10.3390/biom11081220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease, remains undisclosed. Mutations in ALS related genes have been identified, albeit the majority of cases are unmutated. Clinical pathology of ALS suggests a prion-like cell-to-cell diffusion of the disease possibly mediated by exosomes, small endocytic vesicles involved in the propagation of RNA molecules and proteins. In this pilot study, we focused on exosomal microRNAs (miRNAs), key regulators of many signaling pathways. We analyzed serum-derived exosomes from ALS patients in comparison with healthy donors. Exosomes were obtained by a commercial kit. Purification of miRNAs was performed using spin column chromatography and RNA was reverse transcribed into cDNA. All samples were run on the miRCURY LNATM Universal RT miRNA PCR Serum/Plasma Focus panel. An average of 29 miRNAs were detectable per sample. The supervised analysis did not identify any statistically significant difference among the groups indicating that none of the miRNA of our panel has a strong pathological role in ALS. However, selecting samples with the highest miRNA content, six biological processes shared across miRNAs through the intersection of the GO categories were identified. Our results, combined to those reported in the literature, indicated that further investigation is needed to elucidate the role of exosome-derived miRNA in ALS.
Collapse
Affiliation(s)
- Francesca Pregnolato
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, Cusano Milanino, 20095 Milan, Italy;
| | - Lidia Cova
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
| | - Alberto Doretti
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
| | - Donatella Bardelli
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
- “Dino Ferrari” Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Patrizia Bossolasco
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, 20149 Milan, Italy; (L.C.); (A.D.); (D.B.); (V.S.)
- Correspondence:
| |
Collapse
|
90
|
Kerviel A, Zhang M, Altan-Bonnet N. A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations. Annu Rev Cell Dev Biol 2021; 37:171-197. [PMID: 34270326 DOI: 10.1146/annurev-cellbio-040621-032416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Adeline Kerviel
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mengyang Zhang
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
91
|
Oh SJ, Lim BK, Yun J, Shin OS. CVB3-Mediated Mitophagy Plays an Important Role in Viral Replication via Abrogation of Interferon Pathways. Front Cell Infect Microbiol 2021; 11:704494. [PMID: 34295842 PMCID: PMC8292102 DOI: 10.3389/fcimb.2021.704494] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common enterovirus that causes systemic inflammatory diseases, such as myocarditis, meningitis, and encephalitis. CVB3 has been demonstrated to subvert host cellular responses via autophagy to support viral replication in neural stem cells. Mitophagy, a specialized form of autophagy, contributes to mitochondrial quality control via degrading damaged mitochondria. Here, we show that CVB3 infection induces mitophagy in human neural progenitor cells, HeLa and H9C2 cardiomyocytes. In particular, CVB3 infection triggers mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin/LC3 translocation to the mitochondria. Rapamycin or carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to increased CVB3 RNA copy number in a dose-dependent manner, suggesting enhanced viral replication via autophagy/mitophagy activation, whereas knockdown of PTEN-induced putative kinase protein 1(PINK1) led to impaired mitophagy and subsequent reduction in viral replication. Furthermore, CCCP treatment inhibits the interaction between mitochondrial antiviral signaling protein (MAVS) and TANK-binding kinase 1(TBK1), thus contributing to the abrogation of type I and III interferon (IFN) production, suggesting that mitophagy is essential for the inhibition of interferon signaling. Our findings suggest that CVB3-mediated mitophagy suppresses IFN pathways by promoting fragmentation and subsequent sequestration of mitochondria by autophagosomes.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, South Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, South Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
92
|
Teo QW, van Leur SW, Sanyal S. Escaping the Lion's Den: redirecting autophagy for unconventional release and spread of viruses. FEBS J 2021; 288:3913-3927. [PMID: 33044763 DOI: 10.1111/febs.15590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
Autophagy is an evolutionarily conserved process, designed to maintain cellular homeostasis during a range of internal and external stimuli. Conventionally, autophagy is known for coordinated degradation and recycling of intracellular components and removal of cytosolic pathogens. More recently, several lines of evidence have indicated an unconventional, nondegradative role of autophagy for secretion of cargo that lacks a signal peptide. This process referred to as secretory autophagy has also been implicated in the infection cycle of several virus species. This review focuses on the current evidence available on the nondegradative features of autophagy, emphasizing its potential role and unresolved questions in the release and spread of (-) and (+) RNA viruses.
Collapse
Affiliation(s)
- Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong
| | - Sophie Wilhelmina van Leur
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong.,Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
93
|
Münz C. Non-canonical functions of autophagy proteins in immunity and infection. Mol Aspects Med 2021; 82:100987. [PMID: 34147281 DOI: 10.1016/j.mam.2021.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
The molecular machinery of macroautophagy, a catabolic pathway for cytoplasmic constituent degradation in lysosomes, remodels membranes by lipid phosphorylation and conjugation of LC3 and GABARAP proteins. In recent year it has become clear that these membrane modifications also regulate endo- and exocytosis. Here I will discuss recent evidence of how such non-canonical functions of the macroautophagy machinery with its autophagy related gene (atg) products influences infectious viral particle secretion, inflammation, and MHC restricted antigen presentation. Especially LC3-Associated Phagocytosis and ATG supported exocytosis will be high-lighted during immunity and infection.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland.
| |
Collapse
|
94
|
Liu Z, Ye Q, Cheng A, Ou X, Mao S, Sun D, Zhang S, Zhao X, Yang Q, Wu Y, Huang J, Gao Q, Tian B, Wang M. A viroporin-like 2B protein of duck hepatitis A virus 1 that induces incomplete autophagy in DEF cells. Poult Sci 2021; 100:101331. [PMID: 34403988 PMCID: PMC8368021 DOI: 10.1016/j.psj.2021.101331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Duck hepatitis A virus 1 (DHAV-1) can cause high morbidity and fatal acute infectious hepatitis in ducklings, which seriously endangers animal husbandry. Viroporin is a small molecular weight hydrophobic transmembrane protein encoded by the virus, that has been suggested to induce autophagy in host cells by increasing the membrane permeability through disturbing the ion balance. In this study, we aimed to investigate whether the DHAV-1 2B protein can induce autophagy in DEF cells with a viroporin-like function. Bioinformatics analysis has indicated that the 2B protein is characterized by a viroporin domain, which is consistent with the type IA viroporin transmembrane protein. We experimentally confirmed that the 2B protein disturbed the Ca2+ balance of infected cells by elevating the intracellular Ca2+ concentration. Eukaryotic expression of the 2B protein upregulates the expression of microtubule-associated protein 1 light chain 3 II (LC3-II) and the number of autophagosomes in the cell. Interestingly, the Western Blot (WB) results showed that 2B protein expression induced less protein degradation of the autophagic substrate sequestosome 1 (SQSTM1/p62) than the positive control, while microscopy observations showed that the autophagosomes did not colocalize with the lysosomes. In summary, 2B protein expression induced autophagy in host cells, but the autophagic flow was incomplete. The results of this experiment are expected to provide reference scientific data for elucidating the infective and pathogenic mechanism of DHAV-1.
Collapse
Affiliation(s)
- Zezheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qian Ye
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| |
Collapse
|
95
|
Development of Group B Coxsackievirus as an Oncolytic Virus: Opportunities and Challenges. Viruses 2021; 13:v13061082. [PMID: 34198859 PMCID: PMC8227215 DOI: 10.3390/v13061082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.
Collapse
|
96
|
Su YS, Hwang LH, Chen CJ. Heat Shock Protein A6, a Novel HSP70, Is Induced During Enterovirus A71 Infection to Facilitate Internal Ribosomal Entry Site-Mediated Translation. Front Microbiol 2021; 12:664955. [PMID: 34025620 PMCID: PMC8137988 DOI: 10.3389/fmicb.2021.664955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot, and mouth disease (HFMD) in children. Its infection can lead to severe neurological diseases or even death in some cases. While being produced in a large quantity during infection, viral proteins often require the assistance from cellular chaperones for proper folding. In this study, we found that heat shock protein A6 (HSPA6), whose function in viral life cycle is scarcely studied, was induced and functioned as a positive regulator for EV-A71 infection. Depletion of HSPA6 led to the reductions of EV-A71 viral proteins, viral RNA and virions as a result of the downregulation of internal ribosomal entry site (IRES)-mediated translation. Unlike other HSP70 isoforms such as HSPA1, HSPA8, and HSPA9, which regulate all phases of the EV-A71 life, HSPA6 was required for the IRES-mediated translation only. Unexpectedly, the importance of HSPA6 in the IRES activity could be observed in the absence of viral proteins, suggesting that HSPA6 facilitated IRES activity through cellular factor(s) instead of viral proteins. Intriguingly, the knockdown of HSPA6 also caused the reduction of luciferase activity driven by the IRES from coxsackievirus A16, echovirus 9, encephalomyocarditis virus, or hepatitis C virus, supporting that HSPA6 may assist the function of a cellular protein generally required for viral IRES activities.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
97
|
Nunez Lopez YO, Casu A, Pratley RE. Investigation of Extracellular Vesicles From SARS-CoV-2 Infected Specimens: A Safety Perspective. Front Immunol 2021; 12:617042. [PMID: 33968019 PMCID: PMC8100059 DOI: 10.3389/fimmu.2021.617042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, is wreaking havoc around the world. Considering that extracellular vesicles (EVs) released from SARS-CoV-2 infected cells might play a role in a viremic phase contributing to disease progression and that standard methods for EV isolation have been reported to co-isolate viral particles, we would like to recommend the use of heightened laboratory safety measures during the isolation of EVs derived from SARS-CoV-2 infected tissue and blood from COVID-19 patients. Research needs to be conducted to better understand the role of EVs in SARS-CoV-2 infectivity, disease progression, and transmission. EV isolation procedures should include approaches for protection from SARS-CoV-2 contamination. We recommend the EV and virology scientific communities develop collaborative projects where relationships between endogenous EVs and potentially lethal enveloped viruses are addressed to better understand the risks and pathobiology involved.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Anna Casu
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| | - Richard E Pratley
- Translational Research Institute, AdventHealth, Orlando, FL, United States
| |
Collapse
|
98
|
Dey R, Folkins MA, Ashbolt NJ. Extracellular amoebal-vesicles: potential transmission vehicles for respiratory viruses. NPJ Biofilms Microbiomes 2021; 7:25. [PMID: 33731696 PMCID: PMC7969602 DOI: 10.1038/s41522-021-00201-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and immunocompromised adults worldwide. Here we report that amoebae-release respirable-sized vesicles containing high concentrations of infectious RSV that persisted for the duration of the experiment. Given the ubiquity of amoebae in moist environments, our results suggest that extracellular amoebal-vesicles could contribute to the environmental persistence of respiratory viruses, including potential resistance to disinfection processes and thereby offering novel pathways for viral dissemination and transmission.
Collapse
Affiliation(s)
- Rafik Dey
- School of Public Health, University of Alberta, Edmonton, AB, Canada. .,Dept. Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| | - Melanie A Folkins
- Dept. Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, AB, Canada.,Dept. Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
99
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
100
|
Hernandez-Gonzalez M, Larocque G, Way M. Viral use and subversion of membrane organization and trafficking. J Cell Sci 2021; 134:jcs252676. [PMID: 33664154 PMCID: PMC7610647 DOI: 10.1242/jcs.252676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking is an essential cellular process conserved across all eukaryotes, which regulates the uptake or release of macromolecules from cells, the composition of cellular membranes and organelle biogenesis. It influences numerous aspects of cellular organisation, dynamics and homeostasis, including nutrition, signalling and cell architecture. Not surprisingly, malfunction of membrane trafficking is linked to many serious genetic, metabolic and neurological disorders. It is also often hijacked during viral infection, enabling viruses to accomplish many of the main stages of their replication cycle, including entry into and egress from cells. The appropriation of membrane trafficking by viruses has been studied since the birth of cell biology and has helped elucidate how this integral cellular process functions. In this Review, we discuss some of the different strategies viruses use to manipulate and take over the membrane compartments of their hosts to promote their replication, assembly and egress.
Collapse
Affiliation(s)
- Miguel Hernandez-Gonzalez
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gabrielle Larocque
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|