51
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
52
|
Soysa HSM, Aunkham A, Schulte A, Suginta W. Single-channel properties, sugar specificity, and role of chitoporin in adaptive survival of Vibrio cholerae type strain O1. J Biol Chem 2020; 295:9421-9432. [PMID: 32409576 PMCID: PMC7363139 DOI: 10.1074/jbc.ra120.012921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae is a Gram-negative, facultative anaerobic bacterial species that causes serious disease and can grow on various carbon sources, including chitin polysaccharides. In saltwater, its attachment to chitin surfaces not only serves as the initial step of nutrient recruitment but is also a crucial mechanism underlying cholera epidemics. In this study, we report the first characterization of a chitooligosaccharide-specific chitoporin, VcChiP, from the cell envelope of the V. cholerae type strain O1. We modeled the structure of VcChiP, revealing a trimeric cylinder that forms single channels in phospholipid bilayers. The membrane-reconstituted VcChiP channel was highly dynamic and voltage induced. Substate openings O1', O2', and O3', between the fully open states O1, O2, and O3, were polarity selective, with nonohmic conductance profiles. Results of liposome-swelling assays suggested that VcChiP can transport monosaccharides, as well as chitooligosaccharides, but not other oligosaccharides. Of note, an outer-membrane porin (omp)-deficient strain of Escherichia coli expressing heterologous VcChiP could grow on M9 minimal medium supplemented with small chitooligosaccharides. These results support a crucial role of chitoporin in the adaptive survival of bacteria on chitinous nutrients. Our findings also suggest a promising means of vaccine development based on surface-exposed outer-membrane proteins and the design of novel anticholera agents based on chitooligosaccharide-mimicking analogs.
Collapse
Affiliation(s)
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Rayong, Thailand
| |
Collapse
|
53
|
Xian TH, Sinniah K, Yean CY, Krishnamoorthy V, Bahari MB, Ravichandran M, Prabhakaran G. Immunogenicity and protective efficacy of a live, oral cholera vaccine formulation stored outside-the-cold-chain for 140 days. BMC Immunol 2020; 21:29. [PMID: 32450807 PMCID: PMC7249306 DOI: 10.1186/s12865-020-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 01/29/2023] Open
Abstract
Background Cholera, an acute watery diarrhoeal disease caused by Vibrio cholerae serogroup O1 and O139 across the continents. Replacing the existing WHO licensed killed multiple-dose oral cholera vaccines that demand ‘cold chain supply’ at 2–8 °C with a live, single-dose and cold chain-free vaccine would relieve the significant bottlenecks and cost determinants in cholera vaccination campaigns. In this direction, a prototype cold chain-free live attenuated cholera vaccine formulation (LACV) was developed against the toxigenic wild-type (WT) V. cholerae O139 serogroup. LACV was found stable and retained its viability (5 × 106 CFU/mL), purity and potency at room temperature (25 °C ± 2 °C, and 60% ± 5% relative humidity) for 140 days in contrast to all the existing WHO licensed cold-chain supply (2–8 °C) dependent killed oral cholera vaccines. Results The LACV was evaluated for its colonization potential, reactogenicity, immunogenicity and protective efficacy in animal models after its storage at room temperature for 140 days. In suckling mice colonization assay, the LACV recorded the highest recovery of (7.2 × 107 CFU/mL) compared to those of unformulated VCUSM14P (5.6 × 107 CFU/mL) and the WT O139 strain (3.5 × 107 CFU/mL). The LACV showed no reactogenicity even at an inoculation dose of 104–106 CFU/mL in a rabbit ileal loop model. The rabbits vaccinated with the LACV or unformulated VCUSM14P survived a challenge with WT O139 and showed no signs of diarrhoea or death in the reversible intestinal tie adult rabbit diarrhoea (RITARD) model. Vaccinated rabbits recorded a 275-fold increase in anti-CT IgG and a 15-fold increase in anti-CT IgA antibodies compared to those of rabbits vaccinated with unformulated VCUSM14P. Vibriocidal antibodies were increased by 31-fold with the LACV and 14-fold with unformulated VCUSM14P. Conclusion The vaccine formulation mimics a natural infection, is non-reactogenic and highly immunogenic in vivo and protects animals from lethal wild-type V. cholerae O139 challenge. The single dose LACV formulation was found to be stable at room temperature (25 ± 2 °C) for 140 days and it would result in significant cost savings during mass cholera vaccination campaigns.
Collapse
Affiliation(s)
- Tew Hui Xian
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Kurunathan Sinniah
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Mohd Baidi Bahari
- Faculty of Pharmacy, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Manickam Ravichandran
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Guruswamy Prabhakaran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia.
| |
Collapse
|
54
|
Vibrio cholerae Virulence Activator ToxR Regulates Manganese Transport and Resistance to Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00944-19. [PMID: 31871097 DOI: 10.1128/iai.00944-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Like many other pathogens, Vibrio cholerae, the causative agent of cholera, can modulate its gene expression to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. In this study, we found that another key virulence regulator, ToxR, was important for V. cholerae resistance to hydrogen peroxide. Through a genome-wide transposon screen, we discovered that a deletion in mneA, which encodes a manganese exporter, restored ROS resistance of the toxR mutant. We then showed that ToxR did not affect mneA transcription but that the ToxR-regulated major porin OmpU was critical for ROS resistance. The addition of manganese in culture medium restored ROS resistance in both the toxR and ompU mutants. Furthermore, elemental analysis indicated that the intracellular concentration of manganese in both the toxR and ompU mutants was reduced. This may result in intracellular ROS accumulation in these mutants. Our data suggest that ToxR plays an important role in the resistance to reactive oxygen species through the regulation of manganese transport.
Collapse
|
55
|
Chung IY, Kim BO, Jang HJ, Cho YH. Repositioning of a mucolytic drug to a selective antibacterial against Vibrio cholerae. J Microbiol 2020; 58:61-66. [DOI: 10.1007/s12275-020-9590-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022]
|
56
|
Toh YS, Yeoh SL, Yap IKS, Teh CSJ, Win TT, Thong KL, Chong CW. Role of coaggregation in the pathogenicity and prolonged colonisation of Vibrio cholerae. Med Microbiol Immunol 2019; 208:793-809. [PMID: 31263955 DOI: 10.1007/s00430-019-00628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Cholera is an acute diarrheal illness caused by the Gram-negative bacterium Vibrio cholerae. The pathogen is known for its ability to form biofilm that confers protection against harsh environmental condition and as part of the colonisation process during infection. Coaggregation is a process that facilitates the formation of biofilm. In a preliminary in vitro study, high coaggregation index and biofilm production were found between V. cholerae with human commensals namely Escherichia coli and Enterobacter cloacae. Building upon these results, the effects of coaggregation were further evaluated using adult BALB/c mouse model. The animal study showed no significant differences in mortality and fluid accumulation ratio between treatment groups infected with V. cholerae alone and those infected with coaggregation partnership (V. cholerae with E. coli or V. cholerae with E. cloacae). However, mild inflammation was detected in both partnering pairs. Higher density of V. cholerae was recovered from faecal samples of mice co-infected with E. coli and V. cholerae in comparison with other groups at 24 h post-infection. This partnership also elicited slightly higher levels of interleukin-5 (IL-5) and interleukin-10 (IL-10). Nonetheless, the involvement of autoinducer-2 (AI-2) as the signalling molecules in quorum sensing system is not evident in this study. Since E. coli is one of the common commensals, our result may suggest the involvement of commensals in cholera development.
Collapse
Affiliation(s)
- Yien Shin Toh
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Soo Ling Yeoh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Ivan Kok Seng Yap
- Sarawak Research and Development Council, Ministry of Education, Science, Technology and Research, Kuching, Sarawak, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Thin Thin Win
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
- Centre for Translational Research, Institute for Research, Development & Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
57
|
Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. REMOTE SENSING 2019. [DOI: 10.3390/rs11232763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The World Health Organization has estimated the burden of the on-going pandemic of cholera at 1.3 to 4 million cases per year worldwide in 2016, and a doubling of case-fatality-rate to 1.8% in 2016 from 0.8% in 2015. The disease cholera is caused by the bacterium Vibrio cholerae that can be found in environmental reservoirs, living either in free planktonic form or in association with host organisms, non-living particulate matter or in the sediment, and participating in various biogeochemical cycles. An increasing number of epidemiological studies are using land- and water-based remote-sensing observations for monitoring, surveillance, or risk mapping of Vibrio pathogens and cholera outbreaks. Although the Vibrio pathogens cannot be sensed directly by satellite sensors, remotely-sensed data can be used to infer their presence. Here, we review the use of ocean-color remote-sensing data, in conjunction with information on the ecology of the pathogen, to map its distribution and forecast risk of disease occurrence. Finally, we assess how satellite-based information on cholera may help support the Sustainable Development Goals and targets on Health (Goal 3), Water Quality (Goal 6), Climate (Goal 13), and Life Below Water (Goal 14).
Collapse
|
58
|
Herzog R, Peschek N, Fröhlich KS, Schumacher K, Papenfort K. Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. Nucleic Acids Res 2019; 47:3171-3183. [PMID: 30649554 PMCID: PMC6451090 DOI: 10.1093/nar/gky1320] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
Bacteria use quorum sensing to monitor cell density and coordinate group behaviours. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, quorum sensing is connected to virulence gene expression via the two autoinducer molecules, AI-2 and CAI-1. Both autoinducers share one signal transduction pathway to control the production of AphA, a key transcriptional activator of biofilm formation and virulence genes. In this study, we demonstrate that the recently identified autoinducer, DPO, also controls AphA production in V. cholerae. DPO, functioning through the transcription factor VqmA and the VqmR small RNA, reduces AphA levels at the post-transcriptional level and consequently inhibits virulence gene expression. VqmR-mediated repression of AphA provides an important link between the AI-2/CAI-1 and DPO-dependent quorum sensing pathways in V. cholerae. Transcriptome analyses comparing the effect of single autoinducers versus autoinducer combinations show that quorum sensing controls the expression of ∼400 genes in V. cholerae and that all three autoinducers are required for a full quorum sensing response. Together, our data provide a global view on autoinducer interplay in V. cholerae and highlight the importance of RNA-based gene control for collective functions in this major human pathogen.
Collapse
Affiliation(s)
- Roman Herzog
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Nikolai Peschek
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany.,Munich Center for Integrated Protein Science (CIPSM), Germany
| | - Kathrin S Fröhlich
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Kai Papenfort
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany.,Munich Center for Integrated Protein Science (CIPSM), Germany
| |
Collapse
|
59
|
MacMillan JL, Vicaretti SD, Noyovitz B, Xing X, Low KE, Inglis GD, Zaytsoff SJ, Boraston AB, Smith SP, Uwiera RR, Selinger LB, Zandberg WF, Abbott DW. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poult Sci 2019; 98:5074-5088. [DOI: 10.3382/ps/pez297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
|
60
|
Lan H, Hosomi K, Kunisawa J. Clostridium perfringens enterotoxin-based protein engineering for the vaccine design and delivery system. Vaccine 2019; 37:6232-6239. [PMID: 31466706 DOI: 10.1016/j.vaccine.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens is a major cause of food poisoning worldwide, with its enterotoxin (CPE) being the major virulence factor. The C-terminus of CPE (C-CPE) is non-toxic and is the part of the toxin that binds to epithelial cells via the claudins in tight junctions; however, C-CPE has low antigenicity. To address this issue, we have used protein engineering technology to augment the antigenicity of C-CPE and have developed a C-CPE-based vaccine against C. perfringens-mediated food poisoning. Moreover, C-CPE has properties that make it potentially useful for the development of vaccines against other bacterial toxins that cause food poisoning. For example, we hypothesized that the ability of C-CPE to bind to claudins could be harnessed to deliver vaccine antigens directly to mucosa-associated lymphoid tissues, and we successfully developed a nasally administered C-CPE-based vaccine delivery system that promotes antigen-specific mucosal and systemic immune responses. In addition, our group has revealed the roles that the nasal mucus plays in lowering the efficacy of C-CPE-based nasal vaccines. Here, we review recent advances in the development of C-CPE-based vaccines against the major bacterial toxins that cause food poisoning and discuss our C-CPE-based nasal vaccine delivery system.
Collapse
Affiliation(s)
- Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Kobe University Graduate School of Medicine, Hyogo, Japan; Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
61
|
Li S, Peppelenbosch MP, Smits R. Bacterial biofilms as a potential contributor to mucinous colorectal cancer formation. Biochim Biophys Acta Rev Cancer 2019; 1872:74-79. [DOI: 10.1016/j.bbcan.2019.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
62
|
|
63
|
Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Front Microbiol 2019; 10:793. [PMID: 31057510 PMCID: PMC6479200 DOI: 10.3389/fmicb.2019.00793] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this state are an altered morphology, low metabolic activity, and lack of growth under standard laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae VBNC cells raised in natural waters was investigated using electron cryo-tomography. This was complemented by a comparison of the proteomes and the peptidoglycan composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell envelope, resulting in improper embedment of flagella and pili. Only minor changes of the peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes in VBNC cells included the production of cluster I chemosensory arrays and change of abundance of cluster II array proteins. Components involved in iron acquisition and storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells, while enzymes of the central carbon metabolism were found at lower levels. Finally, several pathogenicity factors of V. cholerae were less abundant in the VBNC state, potentially limiting their infectious potential. This study gives unprecedented insight into the physiology of VBNC cells and the drastically altered presence of their metabolic and structural proteins.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Lizah T. van der Aart
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gilles P. van Wezel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille Sciences et Technologies, Villeneuve d'Ascq, France
| | - Timo Glatter
- Facility for Bacterial Proteomics and Mass Spectrometry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
64
|
Cholera Toxin Encapsulated within Several Vibrio cholerae O1 Serotype Inaba Outer Membrane Vesicles Lacks a Functional B-Subunit. Toxins (Basel) 2019; 11:toxins11040207. [PMID: 30959895 PMCID: PMC6521164 DOI: 10.3390/toxins11040207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023] Open
Abstract
Cholera toxin (CT), the major virulence factor of Vibrio cholerae, is an AB5 toxin secreted through the type II secretion system (T2SS). Upon secretion, the toxin initiates endocytosis through the interaction of the B pentamer with the GM1 ganglioside receptor on small intestinal cells. In addition to the release of CT in the free form, the bacteria secrete CT in association with outer membrane vesicles (OMVs). Previously, we demonstrated that strain 569B releases OMVs that encapsulate CT and which interact with host cells in a GM1-independent mechanism. Here, we have demonstrated that OMV-encapsulated CT, while biologically active, does not exist in an AB5 form; rather, the OMVs encapsulate two enzymatic A-subunit (CTA) polypeptides. We further investigated the assembly and secretion of the periplasmic CT and found that a major fraction of periplasmic CTA does not participate in the CT assembly process and instead is continuously encapsulated within the OMVs. Additionally, we found that the encapsulation of CTA fragments in OMVs is conserved among several Inaba O1 strains. We further found that under conditions in which the amount of extracellularly secreted CT increases, the concentration of OMV-encapsulated likewise CTA increases. These results point to a secondary mechanism for the secretion of biologically active CT that does not depend on the CTB-GM1 interaction for endocytosis.
Collapse
|
65
|
Chen Y, Cai S, Jian J. Protection against Vibrio alginolyticus in pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) immunized with an acfA-deletion live attenuated vaccine. FISH & SHELLFISH IMMUNOLOGY 2019; 86:875-881. [PMID: 30572128 DOI: 10.1016/j.fsi.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Vibrio alginolyticus is well-known as an opportunistic Gram-negative pathogen, which endangers the development of global aquaculture as well as human health. In this study, a ΔacfA mutant strain and complementation of the ΔacfA mutant (C-acfA) were constructed. The ΔacfA mutant was tested in pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) to observe the changes in virulence and evaluate its potential as an attenuated live vaccine. The results showed that the ΔacfA mutant caused a high antibody titer and a significant reduction in the ability to colonize the intestine of pearl gentian grouper. Grouper vaccinated with ΔacfA mutant were more tolerant of the infection by virulent V. alginolyticus HY9901 without inducing clinical symptoms and obvious pathological changes. The relative percent survival value of pearl gentian grouper vaccinated with ΔacfA mutant intraperitoneal injection reached 81.1% after challenging with V. alginolyticus HY9901. The specific antibody titers immunized with ΔacfA was significantly higher than that in the PBS group. The antibody titer of ΔacfA group displayed the tendency of rising up from the first to fourth week and declining from fifth to eighth week and reached the peak at the fourth week. In the meanwhile, the expression level of genes associated with immunity, including IL-1β, TNF-α, IL-16, IgM, CD8α and MHC-Iα, was up-regulated after vaccination, indicating that the ΔacfA can induce effective and durable immune response in pearl gentian grouper and it may be an effective attenuated live vaccine candidate for the prevention of infections by V. alginolyticus.
Collapse
Affiliation(s)
- Yanyan Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China.
| |
Collapse
|
66
|
In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog 2019; 128:41-46. [DOI: 10.1016/j.micpath.2018.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/02/2017] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
|
67
|
Evolutionary Model of Cluster Divergence of the Emergent Marine Pathogen Vibrio vulnificus: From Genotype to Ecotype. mBio 2019; 10:mBio.02852-18. [PMID: 30782660 PMCID: PMC6381281 DOI: 10.1128/mbio.02852-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrio vulnificus is an emergent marine pathogen and is the cause of a deadly septicemia. However, the genetic factors that differentiate its clinical and environmental strains and its several biotypes remain mostly enigmatic. In this work, we investigated the underlying genomic properties and population dynamics of the V. vulnificus species to elucidate the traits that make these strains emerge as a human pathogen. The acquisition of different ecological determinants could have allowed the development of highly divergent clusters with different lifestyles within the same environment. However, we identified strains from both clusters in the mucosa of aquaculture species, indicating that manmade niches are bringing strains from the two clusters together, posing a potential risk of recombination and of emergence of novel variants. We propose a new evolutionary model that provides a perspective that could be broadly applicable to other pathogenic vibrios and facultative bacterial pathogens to pursue strategies to prevent their infections. Vibrio vulnificus, an opportunistic pathogen, is the causative agent of a life-threatening septicemia and a rising problem for aquaculture worldwide. The genetic factors that differentiate its clinical and environmental strains remain enigmatic. Furthermore, clinical strains have emerged from every clade of V. vulnificus. In this work, we investigated the underlying genomic properties and population dynamics of the V. vulnificus species from an evolutionary and ecological point of view. Genome comparisons and bioinformatic analyses of 113 V. vulnificus isolates indicate that the population of V. vulnificus is made up of four different clusters. We found evidence that recombination and gene flow between the two largest clusters (cluster 1 [C1] and C2) have drastically decreased to the point where they are diverging independently. Pangenome and phenotypic analyses showed two markedly different lifestyles for these two clusters, indicating commensal (C2) and bloomer (C1) ecotypes, with differences in carbohydrate utilization, defense systems, and chemotaxis, among other characteristics. Nonetheless, we identified frequent intra- and interspecies exchange of mobile genetic elements (e.g., antibiotic resistance plasmids, novel “chromids,” or two different and concurrent type VI secretion systems) that provide high levels of genetic diversity in the population. Surprisingly, we identified strains from both clusters in the mucosa of aquaculture species, indicating that manmade niches are bringing strains from the two clusters together. We propose an evolutionary model of V. vulnificus that could be broadly applicable to other pathogenic vibrios and facultative bacterial pathogens to pursue strategies to prevent their infections and emergence.
Collapse
|
68
|
Ghosh P, Sinha R, Samanta P, Saha DR, Koley H, Dutta S, Okamoto K, Ghosh A, Ramamurthy T, Mukhopadhyay AK. Haitian Variant Vibrio cholerae O1 Strains Manifest Higher Virulence in Animal Models. Front Microbiol 2019; 10:111. [PMID: 30804907 PMCID: PMC6370728 DOI: 10.3389/fmicb.2019.00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae causes fatal diarrheal disease cholera in humans due to consumption of contaminated water and food. To instigate the disease, the bacterium must evade the host intestinal innate immune system; penetrate the mucus layer of the small intestine, adhere and multiply on the surface of microvilli and produce toxin(s) through the action of virulence associated genes. V. cholerae O1 that has caused a major cholera outbreak in Haiti contained several unique genetic signatures. These novel traits are used to differentiate them from the canonical El Tor strains. Several studies reported the spread of these Haitian variant strains in different parts of the world including Asia and Africa, but there is a paucity of information on the clinical consequence of these genetic changes. To understand the impact of these changes, we undertook a study involving mice and rabbit models to evaluate the pathogenesis. The colonization ability of Haitian variant strain in comparison to canonical El Tor strain was found to be significantly more in both suckling mice and rabbit model. Adult mice also displayed the same results. Besides that, infection patterns of Haitian variant strains showed a completely different picture. Increased mucosal damaging, colonization, and inflammatory changes were observed through hematoxylin-eosin staining and transmission electron microscopy. Fluid accumulation ability was also significantly higher in rabbit model. Our study indicated that these virulence features of the Haitian variant strain may have some association with the severe clinical outcome of the cholera patients in different parts of the world.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Dhira Rani Saha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | - Amit Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - T. Ramamurthy
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
69
|
Levade I, Terrat Y, Leducq JB, Weil AA, Mayo-Smith LM, Chowdhury F, Khan AI, Boncy J, Buteau J, Ivers LC, Ryan ET, Charles RC, Calderwood SB, Qadri F, Harris JB, LaRocque RC, Shapiro BJ. Vibrio cholerae genomic diversity within and between patients. Microb Genom 2019; 3. [PMID: 29306353 PMCID: PMC5761273 DOI: 10.1099/mgen.0.000142] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed 'waves' of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics.
Collapse
Affiliation(s)
- Inès Levade
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Yves Terrat
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Baptiste Leducq
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| | - Ana A Weil
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Leslie M Mayo-Smith
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Fahima Chowdhury
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jacques Boncy
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Josiane Buteau
- 5National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Louise C Ivers
- 3Department of Medicine, Harvard Medical School, Boston, MA, USA.,6Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA.,7Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,8Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Richelle C Charles
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA.,9Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Firdausi Qadri
- 4Center for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,10Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- 2Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,3Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - B Jesse Shapiro
- 1Department of Biological Sciences, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
70
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
71
|
Nsubuga F, Garang SC, Tut M, Oguttu D, Lubajo R, Lodiongo D, Lasuba M, Mpairwe A. Epidemiological description of a protracted cholera outbreak in Tonj East and Tonj North counties, former Warrap State, South Sudan, May-Oct 2017. BMC Infect Dis 2019; 19:4. [PMID: 30606126 PMCID: PMC6318988 DOI: 10.1186/s12879-018-3640-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND On 18th May 2017, State Ministry of Health of former Warrap State received a report from Tonj East County of an outbreak of acute watery diarrhoea and vomiting in Makuac payam. We conducted this investigation to confirm the causative organism and describe the epidemiology of the outbreak in order to support evidence-based control measures. METHODS We defined a suspected case as a resident of Tonj East or Tonj North County with sudden onset of acute watery diarrhoea and vomiting between May 1 and October 15, 2017. A probable case was defined as a suspected case with a positive rapid test for Vibrio cholerae; a confirmed case was a probable case with a positive stool culture for V. cholerae. We conducted systematic case finding by visiting health facilities and villages in the affected payams. We reviewed patient records from 1 May 2017 to 15 October 2017, to identify suspected cholera case-patients. We conducted a descriptive epidemiologic study, examining the distribution of the cases. We computed the attack rates by age, sex, and payam of residence. Case fatality rate was calculated as the ratio of the total number of suspected cholera death to the total number of cholera case-patients. We conducted an oral cholera vaccination campaign after the peak of the outbreak to control and prevent the spread to other payams. RESULTS We identified 1451 suspected cholera cases between May and October 2017. Of these, 81% (21/26) had a positive rapid diagnostic test for V. cholerae; out of the 16 rectal swabs transported to the National Public Laboratory, 88% (14/16) were confirmed to be V. cholerae O1 serotype Inaba. The epidemic curve shows continuous common source outbreak with several peaks. The mean age of the case-patients was 24 years (Range: 0.2-75y). The clinical presentations of the case-patients were consistent with cholera. Males had an attack rate of 9.9/10000. The highest attack rate was in ≥30y (14 per 10,000). Among the six payams affected, Makuac had the highest attack rate of 3/100. The case fatality rate (CFR) was 3.0% (44/1451). Paliang and Wunlit had an oral cholera vaccination coverage of ≥100%, while 4 payams had a vaccination coverage of < 90%. CONCLUSION This was a continuous common source cholera outbreak caused by V. cholerae 01 sero type Inaba. We recommended strengthening of the surveillance system to improve early detection and effective response.
Collapse
Affiliation(s)
- Fred Nsubuga
- World Health Organization Warrap Hub, Juba, South Sudan
| | | | - Mathew Tut
- Ministry of Health, Ministry Complex, Juba, South Sudan
| | | | - Robert Lubajo
- Ministry of Health, Public Health Laboratory, Juba, South Sudan
| | - Dennis Lodiongo
- Ministry of Health, Public Health Laboratory, Juba, South Sudan
| | - Michael Lasuba
- Ministry of Health, Public Health Laboratory, Juba, South Sudan
| | - Allan Mpairwe
- World Health Organization Country Office, Juba, South Sudan
| |
Collapse
|
72
|
Jemielita M, Wingreen NS, Bassler BL. Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 2018; 7:42057. [PMID: 30582742 PMCID: PMC6351105 DOI: 10.7554/elife.42057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate and collectively regulate gene expression using a process called quorum sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show that QS activates a new program of multicellularity in Vibrio cholerae. This program, which we term aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses. Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell division, features strikingly dissimilar from those characteristic of V. cholerae biofilm formation. Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen identifies genes required for aggregate formation, revealing proteins involved in V. cholerae intestinal colonization, stress response, and a protein that distinguishes the current V. cholerae pandemic strain from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for V. cholerae to successfully transit between the marine niche and the human host.
Collapse
Affiliation(s)
- Matthew Jemielita
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
73
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
74
|
Tabrizi NM, Amani J, Ebrahimzadeh M, Nazarian S, Kazemi R, Almasian P. Preparation and evaluation of chitosan nanoparticles containing CtxB antigen against Vibrio cholera. Microb Pathog 2018; 124:170-177. [DOI: 10.1016/j.micpath.2018.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/13/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023]
|
75
|
Xu T, Cao H, Zhu W, Wang M, Du Y, Yin Z, Chen M, Liu Y, Yang B, Liu B. RNA-seq-based monitoring of gene expression changes of viable but non-culturable state of Vibrio cholerae induced by cold seawater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:594-604. [PMID: 30058121 DOI: 10.1111/1758-2229.12685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the acute diarrheal disease cholera. Entry into a viable but non-culturable (VBNC) state is a survival strategy by which V. cholerae withstands natural stresses and is important for the transition between the aquatic and host environments during the V. cholerae life cycle. In this study, the formation of VBNC V. cholerae induced by cold seawater exposure was investigated using RNA sequencing (RNA-seq). The analysis revealed that the expression of 1420 genes was changed on VBNC state formation. In the VBNC cells, genes related to biofilm formation, chitin utilization and stress responses were upregulated, whereas those related to cell division, morphology and ribosomal activity were mainly downregulated. The concurrent acquisition of a carbon source and the arrest of cell division in cells with low metabolic activity help bacteria increase their resistance to unfavourable environments. Moreover, two transcriptional regulators, SlmA and MetJ, were found to play roles in both VBNC formation and intestinal colonization, suggesting that some genes may function in both processes. This acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance and may help control future cholera infections and outbreaks.
Collapse
Affiliation(s)
- Tingting Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Hengchun Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Wei Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Yuhui Du
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Zhiqiu Yin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Min Chen
- Lab of Microbiology, Shanghai Municipal Center for Disease Control & Prevention, Shanghai, People's Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Repubilc of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People's Republic of China
| |
Collapse
|
76
|
Zhao X, Zhang Y, Huang X. Pathogenicity-island-encoded regulatory RNAs regulate bacterial virulence and pathogenesis. Microb Pathog 2018; 125:196-204. [PMID: 30227229 DOI: 10.1016/j.micpath.2018.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Bacterial regulatory RNAs (regRNAs) have been widely studied for decades and shown to be involved in various aspects of bacterial survival, including their virulence and pathogenesis. Recently, many regRNAs have been found to be encoded within bacterial pathogenicity islands (PAIs). These PAI-encoded regRNAs also play important regulatory roles in bacterial virulence and pathogenesis. In this review, we introduce the reported PAI-encoded regRNAs individually, focusing on their types, target genes, regulatory roles, regulatory mechanisms and significance. We also summarize the virulence and pathogenesis of the pathogens concerned.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
77
|
Reddi G, Pruss K, Cottingham KL, Taylor RK, Almagro-Moreno S. Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PLoS One 2018; 13:e0201383. [PMID: 30048543 PMCID: PMC6062102 DOI: 10.1371/journal.pone.0201383] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022] Open
Abstract
Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V. cholerae in the presence of some of its environmental reservoirs. We found that, from the several oligosaccharides found in mucin, two specifically triggered motility of V. cholerae O1: N-acetylneuraminic acid (Neu5Ac) and N-acetylglucosamine (GlcNAc). We determined that the compounds need to be internally catabolized in order to trigger motility of V. cholerae. Interestingly, the catabolism of Neu5Ac and GlcNAc converges and the production of one molecule common to both pathways, glucosamine-6-phosphate (GlcN-6P), is essential to induce motility in the presence of both compounds. Mutants unable to produce GlcN-6P show greatly reduced motility towards mucin. Furthermore, we determined that the production of GlcN-6P is necessary to induce motility of V. cholerae in the presence of some of its environmental reservoirs such as crustaceans or cyanobacteria, revealing a molecular link between the two distinct modes of the complex life cycle of V. cholerae. Finally, cross-species comparisons revealed varied chemotactic responses towards mucin, GlcNAc, and Neu5Ac for environmental (non-pathogenic) strains of V. cholerae, clinical and environmental isolates of the human pathogens Vibrio vulnificus and Vibrio parahaemolyticus, and fish and squid isolates of the symbiotic bacterium Vibrio fischeri. The data presented here suggest nuance in convergent strategies across species of the same bacterial family for motility towards suitable substrates for colonization.
Collapse
Affiliation(s)
- Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Kali Pruss
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford University, Palo Alto, California, United States of America
| | - Kathryn L. Cottingham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
78
|
Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP, Bythell JC, Burgess JG. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes 2018; 4:14. [PMID: 30002868 PMCID: PMC6031612 DOI: 10.1038/s41522-018-0057-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/05/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Mucus layers often provide a unique and multi-functional hydrogel interface between the epithelial cells of organisms and their external environment. Mucus has exceptional properties including elasticity, changeable rheology and an ability to self-repair by re-annealing, and is therefore an ideal medium for trapping and immobilising pathogens and serving as a barrier to microbial infection. The ability to produce a functional surface mucosa was an important evolutionary step, which evolved first in the Cnidaria, which includes corals, and the Ctenophora. This allowed the exclusion of non-commensal microbes and the subsequent development of the mucus-lined digestive cavity seen in higher metazoans. The fundamental architecture of the constituent glycoprotein mucins is also evolutionarily conserved. Although an understanding of the biochemical interactions between bacteria and the mucus layer are important to the goal of developing new antimicrobial strategies, they remain relatively poorly understood. This review summarises the physicochemical properties and evolutionary importance of mucus, which make it so successful in the prevention of bacterial infection. In addition, the strategies developed by bacteria to counteract the mucus layer are also explored.
Collapse
Affiliation(s)
- Cassie R Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ana L Morales-Garcia
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mike Althaus
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew D Wilcox
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
79
|
Gao H, Xu J, Lu X, Li J, Lou J, Zhao H, Diao B, Shi Q, Zhang Y, Kan B. Expression of Hemolysin Is Regulated Under the Collective Actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor Serogroup O1. Front Microbiol 2018; 9:1310. [PMID: 29971055 PMCID: PMC6018088 DOI: 10.3389/fmicb.2018.01310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
The biotype El Tor of serogroup O1 and most of the non-O1/non-O139 strains of Vibrio cholerae can produce an extracellular pore-forming toxin known as cholera hemolysin (HlyA). Expression of HlyA has been previously reported to be regulated by the quorum sensing (QS) and the regulatory proteins HlyU and Fur, but lacks the direct evidence for their binding to the promoter of hlyA. In the present work, we showed that the QS regulator HapR, along with Fur and HlyU, regulates the transcription of hlyA in V. cholerae El Tor biotype. At the late mid-logarithmic growth phase, HapR binds to the three promoters of fur, hlyU, and hlyA to repress their transcription. At the early mid-logarithmic growth phase, Fur binds to the promoters of hlyU and hlyA to repress their transcription; meanwhile, HlyU binds to the promoter of hlyA to activate its transcription, but it manifests direct inhibition of its own gene. The highest transcriptional level of hlyA occurs at an OD600 value of around 0.6–0.7, which may be due to the subtle regulation of HapR, Fur, and HlyU. The complex regulation of HapR, Fur, and HlyU on hlyA would be beneficial to the invasion and pathogenesis of V. cholerae during the different infection stages.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
80
|
Zanetti C, Gallina A, Fabbri A, Parisi S, Palermo A, Fecchi K, Boussadia Z, Carollo M, Falchi M, Pasquini L, Fiani ML, Sargiacomo M. Cell Propagation of Cholera Toxin CTA ADP-Ribosylating Factor by Exosome Mediated Transfer. Int J Mol Sci 2018; 19:E1521. [PMID: 29783743 PMCID: PMC5983816 DOI: 10.3390/ijms19051521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, we report how the cholera toxin (CT) A subunit (CTA), the enzyme moiety responsible for signaling alteration in host cells, enters the exosomal pathway, secretes extracellularly, transmits itself to a cell population. The first evidence for long-term transmission of CT's toxic effect via extracellular vesicles was obtained in Chinese hamster ovary (CHO) cells. To follow the CT intracellular route towards exosome secretion, we used a novel strategy for generating metabolically-labeled fluorescent exosomes that can be counted by flow cytometry assay (FACS) and characterized. Our results clearly show the association of CT with exosomes, together with the heat shock protein 90 (HSP90) and Protein Disulfide Isomerase (PDI) molecules, proteins required for translocation of CTA across the ER membrane into the cytoplasm. Confocal microscopy showed direct internalization of CT containing fluorescent exo into CHO cells coupled with morphological changes in the recipient cells that are characteristic of CT action. Moreover, Me665 cells treated with CT-containing exosomes showed an increase in Adenosine 3',5'-Cyclic Monophosphate (cAMP) level, reaching levels comparable to those seen in cells exposed directly to CT. Our results prompt the idea that CT can exploit an exosome-mediated cell communication pathway to extend its pathophysiological action beyond an initial host cell, into a multitude of cells. This finding could have implications for cholera disease pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angelo Gallina
- Department of Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Alessia Fabbri
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Sofia Parisi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Palermo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Katia Fecchi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Zaira Boussadia
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Carollo
- Core Facilities⁻Cytometry Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luca Pasquini
- Core Facilities⁻Cytometry Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Luisa Fiani
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Massimo Sargiacomo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
81
|
Abstract
Noncoding RNAs (ncRNAs) regulating virulence have been identified in most pathogens. This review discusses RNA-mediated mechanisms exploited by bacterial pathogens to successfully infect and colonize their hosts. It discusses the most representative RNA-mediated regulatory mechanisms employed by two intracellular [Listeria monocytogenes and Salmonella enterica serovar Typhimurium (S. Typhimurium)] and two extracellular (Vibrio cholerae and Staphylococcus aureus) bacterial pathogens. We review the RNA-mediated regulators (e.g., thermosensors, riboswitches, cis- and trans-encoded RNAs) used for adaptation to the specific niches colonized by these bacteria (intestine, blood, or the intracellular environment, for example) in the framework of the specific pathophysiological aspects of the diseases caused by these microorganisms. A critical discussion of the newest findings in the field of bacterial ncRNAs shows how examples in model pathogens could pave the way for the discovery of new mechanisms in other medically important bacterial pathogens.
Collapse
Affiliation(s)
- Juan J Quereda
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; , .,Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France.,Institut National de la Recherche Agronomique, USC2020, Paris F-75015, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; , .,Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France.,Institut National de la Recherche Agronomique, USC2020, Paris F-75015, France
| |
Collapse
|
82
|
Kaur S, Sharma P, Kalia N, Singh J, Kaur S. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Vibrio spp. Front Cell Infect Microbiol 2018; 8:120. [PMID: 29740541 PMCID: PMC5928150 DOI: 10.3389/fcimb.2018.00120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrheal disease caused by Vibrio cholerae is endemic in developing countries including India and is associated with high rate of mortality especially in children. V. cholerae is known to form biofilms on the gut epithelium, and the biofilms once formed are resistant to the action of antibiotics. Therefore agents that prevent the biofilm formation and disperse the preformed biofilms are associated with therapeutic benefits. The use of antibiotics for the treatment of cholera is associated with side effects such as gut dysbiosis due to depletion of gut microflora, and the increasing problem of antibiotic resistance. Thus search for safe alternative therapeutic agents is warranted. Herein, we screened the lactobacilli spp. isolated from the fecal samples of healthy children for their abilities to prevent biofilm formation and to disperse the preformed biofilms of V. cholerae and V. parahaemolyticus by using an in vitro assay. The results showed that the culture supernatant (CS) of all the seven isolates of Lactobacillus spp. used in the study inhibited the biofilm formation of V. cholerae by more than 90%. Neutralization of pH of CS completely abrogated their antimicrobial activities against V. cholera, but had negligible effects on their biofilm inhibitory potential. Further, CS of all the lactobacilli isolates caused the dispersion of preformed V. cholerae biofilms in the range 62–85%; however, pH neutralization of CS reduced the biofilm dispersal potential of the 4 out of 7 isolates by 19–57%. Furthermore, the studies showed that CS of none of the lactobacilii isolates had antimicrobial activity against V. parahaemolyticus, but 5 out of 7 isolates inhibited the formation of its biofilm in the range 62–82%. However, none of the CS dispersed the preformed biofilms of V. parahaemolyticus. The ability of CS to inhibit the adherence of Vibrio spp. to the epithelial cell line was also determined. Thus, we conclude that the biofilm dispersive action of CS of lactobacilli is strain-specific and pH-dependent. As Vibrio is known to form biofilms in the intestinal niche having physiological pH in the range 6–7, the probiotic strains that have dispersive action at high pH may have better therapeutic potential.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
83
|
The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci U S A 2018; 115:E3779-E3787. [PMID: 29610339 DOI: 10.1073/pnas.1720133115] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Host-associated microbiota help defend against bacterial pathogens; however, the mechanisms by which pathogens overcome this defense remain largely unknown. We developed a zebrafish model and used live imaging to directly study how the human pathogen Vibrio cholerae invades the intestine. The gut microbiota of fish monocolonized by symbiotic strain Aeromonas veronii was displaced by V. cholerae expressing its type VI secretion system (T6SS), a syringe-like apparatus that deploys effector proteins into target cells. Surprisingly, displacement was independent of T6SS-mediated killing of A. veronii, driven instead by T6SS-induced enhancement of zebrafish intestinal movements that led to expulsion of the resident microbiota by the host. Deleting an actin cross-linking domain from the T6SS apparatus returned intestinal motility to normal and thwarted expulsion, without weakening V. cholerae's ability to kill A. veronii in vitro. Our finding that bacteria can manipulate host physiology to influence intermicrobial competition has implications for both pathogenesis and microbiome engineering.
Collapse
|
84
|
Sakib SN, Reddi G, Almagro-Moreno S. Environmental role of pathogenic traits in Vibrio cholerae. J Bacteriol 2018; 200:e00795-17. [PMID: 29581410 PMCID: PMC6040180 DOI: 10.1128/jb.00795-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems. Some strains of V. cholerae can colonize the human host and cause cholera, a profuse watery diarrhea. The major pathogenicity factors and virulence regulators of V. cholerae are either encoded in mobile genetic elements acquired in the environment (e.g. pathogenicity islands or lysogenic phages) or in the core genome. Several lines of evidence indicate that the emergence of numerous virulence traits of V. cholerae occurred in its natural environment due to biotic and abiotic pressures. Here, we discuss the connection between the human host and the potential ecological role of these virulent traits. Unraveling these connections will help us understand the emergence of this organism and other facultative bacterial pathogens.
Collapse
Affiliation(s)
- S Nazmus Sakib
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
85
|
Jers C, Ravikumar V, Lezyk M, Sultan A, Sjöling Å, Wai SN, Mijakovic I. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators. Front Cell Infect Microbiol 2018; 7:537. [PMID: 29376036 PMCID: PMC5768985 DOI: 10.3389/fcimb.2017.00537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 01/16/2023] Open
Abstract
Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine acetylome analyses have been carried out in various bacteria, but thus far there have been no reports of lysine acetylation taking place in the important human pathogen Vibrio cholerae. In this study, we analyzed the lysine acetylproteome of the human pathogen V. cholerae V52. By applying a combination of immuno-enrichment of acetylated peptides and high resolution mass spectrometry, we identified 3,402 acetylation sites on 1,240 proteins. Of the acetylated proteins, more than half were acetylated on two or more sites. As reported for other bacteria, we observed that many of the acetylated proteins were involved in metabolic and cellular processes and there was an over-representation of acetylated proteins involved in protein synthesis. Of interest, we demonstrated that many global transcription factors such as CRP, H-NS, IHF, Lrp and RpoN as well as transcription factors AphB, TcpP, and PhoB involved in direct regulation of virulence in V. cholerae were acetylated. In conclusion, this is the first global protein lysine acetylome analysis of V. cholerae and should constitute a valuable resource for in-depth studies of the impact of lysine acetylation in pathogenesis and other cellular processes.
Collapse
Affiliation(s)
- Carsten Jers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vaishnavi Ravikumar
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mateusz Lezyk
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Abida Sultan
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sun N Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ivan Mijakovic
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
86
|
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 2018; 13:241-262. [PMID: 29319341 DOI: 10.2217/fmb-2017-0172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.
Collapse
Affiliation(s)
- John Osei Sekyere
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Jonathan Asante
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| |
Collapse
|
87
|
Barszcz M, Taciak M, Skomiał J. Influence of different inclusion levels and chain length of inulin on microbial ecology and the state of mucosal protective barrier in the large intestine of young pigs. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the study was to examine the effect of inulin level, in regard to its degree of polymerisation (DP), on microbial activity and mucosal immune system of the large intestine of pigs. A total of 56 castrated male piglets (PIC × Penarlan P76) were allocated to seven groups and fed from the 10th day of life cereal-based diets without the addition of inulin or with 1%, 2% or 3% of inulin with an average DP of 10 (IN10) or 23 (IN23). Pigs were sacrificed at the age of 50 days. Feeding IN10 diets increased fructan concentration in the large intestine compared with IN23 diets, but did not affect microbial activity, except for digesta pH and mucinase activity in the middle colon, which were greater at the 1% level compared with the control group and other IN10 diets, respectively. The concentration of secretory immunoglobulin A in the caecum and middle colon was reduced by the 1% IN10 diet compared with the control group. Pigs fed the 2% IN23 diet had a higher butyric acid concentration in the caecum and proximal colon and greater isoacid concentrations in the middle and distal colon in comparison to the control. Dietary level of IN23 did not affect secretory immunoglobulin A concentration but the count of caecal intraepithelial lymphocytes was higher in pigs on the 1% IN23 diet than on the control diet. Neither IN10 nor IN23 diets affected populations of Bifidobacterium or Lactobacillus spp. In conclusion, the effects of inulin in the large intestine of pigs depended on dietary level and DP. IN23 increased short-chain fatty acid production at the 2% level and slightly activated mucosal immune status at the 1% level.
Collapse
|
88
|
Hall CL, Lee VT. Cyclic-di-GMP regulation of virulence in bacterial pathogens. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:10.1002/wrna.1454. [PMID: 28990312 PMCID: PMC5739959 DOI: 10.1002/wrna.1454] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Signaling pathways allow bacteria to adapt to changing environments. For pathogenic bacteria, signaling pathways allow for timely expression of virulence factors and the repression of antivirulence factors within the mammalian host. As the bacteria exit the mammalian host, signaling pathways enable the expression of factors promoting survival in the environment and/or nonmammalian hosts. One such signaling pathway uses the dinucleotide cyclic-di-GMP (c-di-GMP), and many bacterial genomes encode numerous proteins that are responsible for synthesizing and degrading c-di-GMP. Once made, c-di-GMP binds to individual protein and RNA receptors to allosterically alter the macromolecule function to drive phenotypic changes. Each bacterial genome encodes unique sets of genes for c-di-GMP signaling and virulence factors so the regulation by c-di-GMP is organism specific. Recent works have pointed to evidence that c-di-GMP regulates virulence in different bacterial pathogens of mammalian hosts. In this review, we discuss the criteria for determining the contribution of signaling nucleotides to pathogenesis using a well-characterized signaling nucleotide, cyclic AMP (cAMP), in Pseudomonas aeruginosa. Using these criteria, we review the roles of c-di-GMP in mediating virulence and highlight common themes that exist among eight diverse pathogens that cause different diseases through different routes of infection and transmission. WIREs RNA 2018, 9:e1454. doi: 10.1002/wrna.1454 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Cherisse L Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA
| |
Collapse
|
89
|
Mewborn L, Benitez JA, Silva AJ. Flagellar motility, extracellular proteases and Vibrio cholerae detachment from abiotic and biotic surfaces. Microb Pathog 2017; 113:17-24. [PMID: 29038053 DOI: 10.1016/j.micpath.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae of serogroups O1 and O139, the causative agent of Asiatic cholera, continues to be a major global health threat. This pathogen utilizes substratum-specific pili to attach to distinct surfaces in the aquatic environment and the human small intestine and detaches when conditions become unfavorable. Both attachment and detachment are critical to bacterial environmental survival, pathogenesis and disease transmission. However, the factors that promote detachment are less understood. In this study, we examine the role of flagellar motility and hemagglutinin/protease (HapA) in vibrio detachment from a non-degradable abiotic surface and from the suckling mouse intestine. Flagellar motility facilitated V. cholerae detachment from abiotic surfaces. HapA had no effect on the stability of biofilms formed on abiotic surfaces despite representing >50% of the proteolytic activity present in the extracellular matrix. We developed a balanced lethal plasmid system to increase the bacterial cyclic diguanylate (c-di-GMP) pool late in infection, a condition that represses motility and HapA expression. Increasing the c-di-GMP pool enhanced V. cholerae colonization of the suckling mouse intestine. The c-di-GMP effect was fully abolished in hapA isogenic mutants. These results suggest that motility facilitates detachment in a substratum-independent manner. Instead, HapA appears to function as a substratum-specific detachment factor.
Collapse
Affiliation(s)
- Loree Mewborn
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, 30310, GA, USA
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, 30310, GA, USA
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, 30310, GA, USA.
| |
Collapse
|
90
|
Hema M, Vasudevan S, Balamurugan P, Adline Princy S. Modulating the Global Response Regulator, LuxO of V. cholerae Quorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCA py): An Antivirulence Approach. Front Cell Infect Microbiol 2017; 7:441. [PMID: 29075619 PMCID: PMC5643417 DOI: 10.3389/fcimb.2017.00441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022] Open
Abstract
Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS) mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD) state produces major virulence factors such as, toxin co-regulated pilus (TCP) and cholera toxin (CT) to mediate infection. On the contrary, at the high cell density (HCD) state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA) and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCApy against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCApy reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCApy could be a potential QS modulator (QSM) for the antivirulence therapeutic approach.
Collapse
Affiliation(s)
- M Hema
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - P Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| |
Collapse
|
91
|
Burks DJ, Norris S, Kauffman KM, Joy A, Arevalo P, Azad RK, Wildschutte H. Environmental vibrios represent a source of antagonistic compounds that inhibit pathogenic Vibrio cholerae and Vibrio parahaemolyticus strains. Microbiologyopen 2017; 6:e00504. [PMID: 28857444 PMCID: PMC5635165 DOI: 10.1002/mbo3.504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
With the overuse of antibiotics, many pathogens including Vibrio cholerae and Vibrio parahaemolyticus have evolved multidrug resistance making treatment more difficult. While understanding the mechanisms that underlie pathogenesis is crucial, knowledge of bacterial interactions of V. cholerae and V. parahaemolyticus could provide insight to their susceptibility outside of the human host. Based on previous work showing competition among environmental strains, we predict that marine-derived bacteria should inhibit Vibrio pathogens and may be a source of unique antibiotic compounds. We tested a collection of 3,456 environmental Vibrio isolates from diverse habitats against a panel of V. cholerae and V. parahaemolyticus, and identified 102 strains that inhibited the growth of these pathogens. Phylogenetic analysis revealed that 40 pathogen-inhibiting strains were unique at the hsp60 gene sequence while 62 of the isolates were identical suggesting clonal groups. Genomic comparisons of ten strains revealed diversity even between clonal isolates and were identified as being closely related to known Vibrio crassostreae, Vibrio splendidus, and Vibrio tasmaniensis strains. Further analysis revealed multiple biosynthetic gene clusters within all sequenced genomes that encoded secondary metabolites with potential antagonistic activity. Thus, environmental vibrios represent a source of compounds that inhibit Vibrio pathogens.
Collapse
Affiliation(s)
- David J. Burks
- Department of Biological SciencesUniversity of North TexasDentonTexas
| | - Stephen Norris
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhio
| | - Kathryn M. Kauffman
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Abigail Joy
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhio
| | - Philip Arevalo
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| | - Rajeev K. Azad
- Department of Biological SciencesUniversity of North TexasDentonTexas
- Department of MathematicsUniversity of North TexasDentonTexas
| | - Hans Wildschutte
- Department of Biological SciencesBowling Green State UniversityBowling GreenOhio
| |
Collapse
|
92
|
Sicard JF, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Front Cell Infect Microbiol 2017; 7:387. [PMID: 28929087 PMCID: PMC5591952 DOI: 10.3389/fcimb.2017.00387] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
The human gut is colonized by a variety of large amounts of microbes that are collectively called intestinal microbiota. Most of these microbial residents will grow within the mucus layer that overlies the gut epithelium and will act as the first line of defense against both commensal and invading microbes. This mucus is essentially formed by mucins, a family of highly glycosylated protein that are secreted by specialize cells in the gut. In this Review, we examine how commensal members of the microbiota and pathogenic bacteria use mucus to their advantage to promote their growth, develop biofilms and colonize the intestine. We also discuss how mucus-derived components act as nutrient and chemical cues for adaptation and pathogenesis of bacteria and how bacteria can influence the composition of the mucus layer.
Collapse
Affiliation(s)
- Jean-Félix Sicard
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Guillaume Le Bihan
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Philippe Vogeleer
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Josée Harel
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| |
Collapse
|
93
|
Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer. Int J Mol Sci 2017; 18:ijms18091887. [PMID: 28858232 PMCID: PMC5618536 DOI: 10.3390/ijms18091887] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Martina Pontone
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, Regina Elena National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| |
Collapse
|
94
|
O'Boyle N, Sutherland E, Berry CC, Davies RL. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface. PLoS One 2017; 12:e0181583. [PMID: 28746416 PMCID: PMC5529025 DOI: 10.1371/journal.pone.0181583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erin Sutherland
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine C Berry
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
95
|
Thompson LR, Nikolakakis K, Pan S, Reed J, Knight R, Ruby EG. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ Microbiol 2017; 19:1845-1856. [PMID: 28152560 PMCID: PMC5409853 DOI: 10.1111/1462-2920.13684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 11/30/2022]
Abstract
The marine bacterium Vibrio fischeri is the monospecific symbiont of the Hawaiian bobtail squid, Euprymna scolopes, and the establishment of this association involves a number of signaling pathways and transcriptional responses between both partners. We report here the first full RNA-Seq dataset representing host-associated V. fischeri cells from colonized juvenile E. scolopes, as well as comparative transcriptomes under both laboratory and simulated marine planktonic conditions. These data elucidate the broad transcriptional changes that these bacteria undergo during the early stages of symbiotic colonization. We report several previously undescribed and unexpected transcriptional responses within the early stages of this symbiosis, including gene expression patterns consistent with biochemical stresses inside the host, and metabolic patterns distinct from those reported in associations with adult animals. Integration of these transcriptional data with a recently developed metabolic model of V. fischeri provides us with a clearer picture of the metabolic state of symbionts within the juvenile host, including their possible carbon sources. Taken together, these results expand our understanding of the early stages of the squid-vibrio symbiosis, and more generally inform the transcriptional responses underlying the activities of marine microbes during host colonization.
Collapse
Affiliation(s)
- Luke R Thompson
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Kiel Nikolakakis
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Shu Pan
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jennifer Reed
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Edward G Ruby
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA
- Pacific Biosciences Research Center, University of Hawaii, Manoa, HI, USA
| |
Collapse
|
96
|
Smirnova NI, Agafonov DA, Kul’shan’ TA, Shchelkanova EY, Krasnov YM, Lozovsky YV, Kutyrev VV. Effect of CTXφ prophage deletion in cholera agent on expression of regulatory genes controlling virulence and biofilm formation. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
98
|
Abstract
Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae. In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small β-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca2+ influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response. Previous studies demonstrated that large transmembrane pores, such as those formed by perforin or bacterial toxins of the cholesterol-dependent cytolysin family, trigger rapid, Ca2+ influx-dependent repair mechanisms. In contrast, recovery from attack by the small β-pore-forming Staphylococcus aureus alpha-toxin or aerolysin is slow in comparison and does not depend on extracellular Ca2+. To further elucidate the scope of Ca2+ influx-dependent repair and understand its limitations, we compared the cellular responses to phobalysin and V. cholerae cytolysin, two related small β-pore-forming toxins which create membrane pores of slightly different sizes. The data indicate that the channel width of a small β-pore-forming toxin is a critical determinant of both primary toxicity and susceptibility to Ca2+-dependent repair.
Collapse
|
99
|
Xia X, Larios-Valencia J, Liu Z, Xiang F, Kan B, Wang H, Zhu J. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. PLoS One 2017; 12:e0171201. [PMID: 28151956 PMCID: PMC5289545 DOI: 10.1371/journal.pone.0171201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/18/2017] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae’s transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.
Collapse
Affiliation(s)
- Xiaoyun Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jessie Larios-Valencia
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zhi Liu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biotechnology, Huazhong University of Science and Technology, Wuhan, China
| | - Fu Xiang
- College of Life Sciences, Huanggang Normal University, Huanggang, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- * E-mail: (HW); (JZ)
| | - Jun Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (HW); (JZ)
| |
Collapse
|
100
|
Bartlett TM, Bratton BP, Duvshani A, Miguel A, Sheng Y, Martin NR, Nguyen JP, Persat A, Desmarais SM, VanNieuwenhze MS, Huang KC, Zhu J, Shaevitz JW, Gitai Z. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis. Cell 2017; 168:172-185.e15. [PMID: 28086090 DOI: 10.1016/j.cell.2016.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/05/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022]
Abstract
Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amit Duvshani
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Miguel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ying Sheng
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China
| | - Nicholas R Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey P Nguyen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexandre Persat
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing 210014, China; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|