51
|
Vinhaes CL, Araujo-Pereira M, Tibúrcio R, Cubillos-Angulo JM, Demitto FO, Akrami KM, Andrade BB. Systemic Inflammation Associated with Immune Reconstitution Inflammatory Syndrome in Persons Living with HIV. Life (Basel) 2021; 11:life11010065. [PMID: 33477581 PMCID: PMC7831327 DOI: 10.3390/life11010065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Antiretroviral therapy (ART) has represented a major advancement in the care of people living with HIV (PLWHH), resulting in significant reductions in morbidity and mortality through immune reconstitution and attenuation of homeostatic disruption. Importantly, restoration of immune function in PLWH with opportunistic infections occasionally leads to an intense and uncontrolled cytokine storm following ART initiation known as immune reconstitution inflammatory syndrome (IRIS). IRIS occurrence is associated with the severe and rapid clinical deterioration that results in significant morbidity and mortality. Here, we detail the determinants underlying IRIS development in PLWH, compiling the available knowledge in the field to highlight details of the inflammatory responses in IRIS associated with the most commonly reported opportunistic pathogens. This review also highlights gaps in the understanding of IRIS pathogenesis and summarizes therapeutic strategies that have been used for IRIS.
Collapse
Affiliation(s)
- Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador 40290-000, Brazil
| | - Mariana Araujo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Rafael Tibúrcio
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Fernanda O. Demitto
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
| | - Kevan M. Akrami
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Divisions of Infectious Diseases and Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador 40290-000, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Curso de Medicina, Centro Universitário Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Brazil
- Correspondence: ; Tel.: +55-71-3176-2264
| |
Collapse
|
52
|
Martin GE, Pace M, Shearer FM, Zilber E, Hurst J, Meyerowitz J, Thornhill JP, Lwanga J, Brown H, Robinson N, Hopkins E, Olejniczak N, Nwokolo N, Fox J, Fidler S, Willberg CB, Frater J. Levels of Human Immunodeficiency Virus DNA Are Determined Before ART Initiation and Linked to CD8 T-Cell Activation and Memory Expansion. J Infect Dis 2021; 221:1135-1145. [PMID: 31776569 PMCID: PMC7075410 DOI: 10.1093/infdis/jiz563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 01/31/2023] Open
Abstract
Initiation of antiretroviral therapy (ART) in early compared with chronic human immunodeficiency virus (HIV) infection is associated with a smaller HIV reservoir. This longitudinal analysis of 60 individuals who began ART during primary HIV infection (PHI) investigates which pre- and posttherapy factors best predict HIV DNA levels (a correlate of reservoir size) after treatment initiation during PHI. The best predictor of HIV DNA at 1 year was pre-ART HIV DNA, which was in turn significantly associated with CD8 memory T-cell differentiation (effector memory, naive, and T-bet−Eomes− subsets), CD8 T-cell activation (CD38 expression) and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) expression on memory T cells. No associations were found for any immunological variables after 1 year of ART. Levels of HIV DNA are determined around the time of ART initiation in individuals treated during PHI. CD8 T-cell activation and memory expansion are linked to HIV DNA levels, suggesting the importance of the initial host-viral interplay in eventual reservoir size.
Collapse
Affiliation(s)
- Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Freya M Shearer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Eva Zilber
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Julianne Lwanga
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Chelsea and Westminster Hospital, London, United Kingdom
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,King's College National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom.,Imperial College National Institute for Health Research Biomedical Research Centre, London, United Kingdom
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
53
|
Al-Hashemi H, Rahman SHA, Shabeeb Z. Expression of immune checkpoint molecules in Iraqi acute myeloid leukemia patients. IRAQI JOURNAL OF HEMATOLOGY 2021. [DOI: 10.4103/ijh.ijh_46_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
54
|
Jiang TY, Hou JH, Su B, Zhang T, Yang Y, Liu ZY, Wang W, Guo CP, Dai LL, Sun LJ, Wu H. Demographic and clinical factors associated with immune reconstitution in HIV/HBV co-infected and HIV mono-infected patients: a retrospective cohort study. HIV Med 2020; 21:722-728. [PMID: 33369028 DOI: 10.1111/hiv.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To describe the clinical characteristics and factors associated with CD4 T-cell count and CD4/CD8 ratio restoration in HIV mono-infected and HIV/HBV co-infected individuals, and to explore liver and renal functional changes in both groups. METHODS A retrospective cohort study was performed including 356 HIV/HBV co-infected and 716 HIV mono-infected participants who initiated antiretroviral therapy (ART) during 2013-2017 in Beijing Youan Hospital, China. Demographic and clinical characteristics were compared between the two groups, using χ2 and Mann-Whitney non-parametric tests. Bivariate and multivariate Cox regression models were used to test their association. RESULTS Baseline HIV viral load and ART regimen were found to be significantly associated with CD4 T-cell restoration among HIV-infected participants, whereas baseline HIV viral load was the only significant factor associated with CD4 T-cell restoration in HIV/HBV co-infected participants. The final model showed that baseline HIV viral load and ART regimen were significantly associated with CD4/CD8 ratio restoration among HIV-infected participants, while baseline HIV viral load was the significant factor. Liver and renal functions were similar at the endpoint (P > 0.05). CONCLUSIONS Baseline HIV viral load count was found to be the key factor affecting immune restoration in both HIV and HIV/HBV individuals. Future multi-wave prospective studies are needed to clarify the potential biological mechanism.
Collapse
Affiliation(s)
- T Y Jiang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - J H Hou
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - B Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - T Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Y Yang
- Network Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Z Y Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - W Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - C P Guo
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - L L Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - L J Sun
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - H Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
55
|
Sánchez-Cerrillo I, Landete P, Aldave B, Sánchez-Alonso S, Sánchez-Azofra A, Marcos-Jiménez A, Ávalos E, Alcaraz-Serna A, de Los Santos I, Mateu-Albero T, Esparcia L, López-Sanz C, Martínez-Fleta P, Gabrie L, Del Campo Guerola L, de la Fuente H, Calzada MJ, González-Álvaro I, Alfranca A, Sánchez-Madrid F, Muñoz-Calleja C, Soriano JB, Ancochea J, Martín-Gayo E. COVID-19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes. J Clin Invest 2020; 130:6290-6300. [PMID: 32784290 DOI: 10.1172/jci140335] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is responsible for the development of coronavirus disease 2019 (COVID-19) in infected individuals, who can either exhibit mild symptoms or progress toward a life-threatening acute respiratory distress syndrome (ARDS). Exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. Here, we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood and lung of COVID-19 patients with different clinical severity in comparison with healthy individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Our results indicate that inflammatory transitional and nonclassical monocytes and CD1c+ conventional dendritic cells preferentially migrate from blood to lungs in patients with severe COVID-19. Thus, this study increases the knowledge of specific myeloid subsets involved in the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies for fighting SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Isidoro González-Álvaro
- Rheumatology Service from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | | | | | | | - Joan B Soriano
- Pneumology Department.,Universidad Autónoma de Madrid, and
| | - Julio Ancochea
- Pneumology Department.,Universidad Autónoma de Madrid, and
| | | | | |
Collapse
|
56
|
Blanco JR, Negredo E, Bernal E, Blanco J. Impact of HIV infection on aging and immune status. Expert Rev Anti Infect Ther 2020; 19:719-731. [PMID: 33167724 DOI: 10.1080/14787210.2021.1848546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Thanks to antiretroviral therapy (ART), persons living with HIV (PLWH), have a longer life expectancy. However, immune activation and inflammation remain elevated, even after viral suppression, and contribute to morbidity and mortality in these individuals.Areas covered: We review aspects related to immune activation and inflammation in PLWH, their consequences, and the potential strategies to reduce immune activation in HIV-infected individuals on ART.Expert opinion: When addressing a problem, it is necessary to thoroughly understand the topic. This is the main limitation faced when dealing with immune activation and inflammation in PLWH since there is no consensus on the ideal markers to evaluate immune activation or inflammation. To date, the different interventions that have addressed this problem by targeting specific mediators have not been able to significantly reduce immune activation or its consequences. Given that there is currently no curative intervention for HIV infection, more studies are necessary to understand the mechanism underlying immune activation and help to identify potential therapeutic targets that contribute to improving the life expectancy of HIV-infected individuals.
Collapse
Affiliation(s)
- Jose-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro- Centro De Investigación Biomédica De La Rioja (CIBIR), La Rioja, Spain
| | - Eugenia Negredo
- Lluita Contra La Sida Foundation, Germans Trias I Pujol University Hospital, Badalona, Spain. Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (Uvic - UCC), Catalonia, Spain
| | - Enrique Bernal
- Unidad De Enfermedades Infecciosas, Hospital General Universitario Reina Sofía, Universidad De Murcia, Murcia, Spain
| | - Juliá Blanco
- AIDS Research Institute-IrsiCaixa, Badalona, Barcelona, Spain.,Universitat De Vic-Central De Catalunya (UVIC-UCC), Vic, Spain
| |
Collapse
|
57
|
Chen P, Chen H, Moussa M, Cheng J, Li T, Qin J, Lifson JD, Sneller MC, Krymskaya L, Godin S, Lane HC, Catalfamo M. Recombinant Human Interleukin-15 and Anti-PD-L1 Combination Therapy Expands a CXCR3+PD1-/low CD8 T-Cell Subset in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Infect Dis 2020; 221:523-533. [PMID: 31562760 DOI: 10.1093/infdis/jiz485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The PD1/PD-L1 pathway contributes to the pathogenesis of human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection, and blockade of this pathway may have potential to restore immune function and promote viral control or elimination. In this study, we combined a checkpoint inhibitor anti-PD-L1 (Avelumab) and recombinant human interleukin-15 (rhIL-15) in SIV-infected rhesus macaques (RM). METHODS The rhIL-15 was administered as continuous infusion in 2 cycles of 10 days in the context of weekly administration of anti-PD-L1 (Avelumab) in SIV-infected RM receiving combination antiretroviral therapy (cART). Safety, immunological parameters, and viral loads were monitored during the study. RESULTS Administration of rhIL-15/anti-PD-L1 was safe and well tolerated. Treatment resulted in transient increases in proliferating (Ki67+) natural killer and CD8 T cells. In addition, treatment expanded a CXCR3+PD1-/low CD8 T-cell subset with the ability to secrete cytokines. Despite these effects, no changes in plasma viremia were observed after cART interruption. CONCLUSIONS Expansion of the CXCR3+PD1-/low CD8 T-cell subset with functional capacity and potential to traffic to sites of viral reservoirs in SIV-infected rhesus macaques had no demonstrable effect on plasma viremia after cART interruption.
Collapse
Affiliation(s)
- Ping Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA.,CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Jie Cheng
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Tong Li
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| | - Jing Qin
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Michael C Sneller
- CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ludmila Krymskaya
- Clinical Support Laboratory, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Steven Godin
- Smithers Avanza Toxicology Services, Gaithersburg, Maryland, USA
| | - H Clifford Lane
- CMRS/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington District of Columbia, USA
| |
Collapse
|
58
|
Restrepo C, Álvarez B, Valencia JL, García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Prieto L, Nistal S, Montoya M, Górgolas M, Rallón N, Benito JM. Both HCV Infection and Elevated Liver Stiffness Significantly Impacts on Several Parameters of T-Cells Homeostasis in HIV-Infected Patients. J Clin Med 2020; 9:jcm9092978. [PMID: 32942736 PMCID: PMC7564456 DOI: 10.3390/jcm9092978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The role of hepatitis C virus (HCV) co-infection on the T-cell homeostasis disturbances in human immunodeficiency virus (HIV)-infected patients as well as its reversion after HCV eradication with direct acting antivirals (DAAs) therapy has not been yet clarified. We extensively analyzed the effect of HCV co-infection on immune parameters of HIV pathogenesis and its evolution after HCV eradication with DAAs. (2) Methods: Seventy individuals were included in the study-25 HIV-monoinfected patients, 25 HIV/HCV-coinfected patients and 20 HIV and HCV seronegative subjects. All patients were on antiretroviral therapy and undetectable HIV-viremia. Immune parameters, such as maturation, activation, apoptosis, senescence and exhaustion of T-cells were assessed by flow cytometry. Cross-sectional and longitudinal (comparing pre- and post-DAAs data in HIV/HCV coinfected patients) analyses were performed. Univariate and multivariate (general linear model and canonical discriminant analysis -CDA-) analyses were used to assess differences between groups. (3) Results-The CDA was able to clearly separate HIV/HCV coinfected from HIV-monoinfected patients, showing a more disturbed T-cells homeostasis in HIV/HCV patients, especially activation and exhaustion of T-cells. Interestingly, those perturbations were more marked in HIV/HCV patients with increased liver stiffness. Eradication of HCV with DAAs restored some but not all the T-cells homeostasis disturbances, with activation and exhaustion of effector CD8 T-cells remaining significantly increased three months after HCV eradication. (4) Conclusions-HCV co-infection significantly impacts on several immune markers of HIV pathogenesis, especially in patients with increased liver stiffness. Eradication of HCV with DAAs ameliorates but does not completely normalize these alterations. It is of utmost relevance to explore other mechanisms underlying the immune damage observed in HIV/HCV coinfected patients with control of both HIV and HCV replication.
Collapse
Affiliation(s)
- Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - Beatriz Álvarez
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - José L Valencia
- Departamento de Estadística e Investigación Operativa III, Facultad de Estudios Estadísticos, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.M.L.); (M.M.)
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Laura Prieto
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Sara Nistal
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.M.L.); (M.M.)
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-544-37-20; Fax: +34-91-550-48-49
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| |
Collapse
|
59
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
60
|
Keam S, Megawati D, Patel SK, Tiwari R, Dhama K, Harapan H. Immunopathology and immunotherapeutic strategies in severe acute respiratory syndrome coronavirus 2 infection. Rev Med Virol 2020; 30:e2123. [PMID: 32648313 PMCID: PMC7404843 DOI: 10.1002/rmv.2123] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) and pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major concern globally. As of 14 April 2020, more than 1.9 million COVID-19 cases have been reported in 185 countries. Some patients with COVID-19 develop severe clinical manifestations, while others show mild symptoms, suggesting that dysregulation of the host immune response contributes to disease progression and severity. In this review, we have summarized and discussed recent immunological studies focusing on the response of the host immune system and the immunopathology of SARS-CoV-2 infection as well as immunotherapeutic strategies for COVID-19. Immune evasion by SARS-CoV-2, functional exhaustion of lymphocytes, and cytokine storm have been discussed as part of immunopathology mechanisms in SARS-CoV-2 infection. Some potential immunotherapeutic strategies to control the progression of COVID-19, such as passive antibody therapy and use of interferon αβ and IL-6 receptor (IL-6R) inhibitor, have also been discussed. This may help us to understand the immune status of patients with COVID-19, particularly those with severe clinical presentation, and form a basis for further immunotherapeutic investigations.
Collapse
Affiliation(s)
- Synat Keam
- School of MedicineUniversity of Western AustraliaPerthAustralia
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health SciencesWarmadewa UniversityDenpasarIndonesia
- Department of Medical Microbiology and ImmunologyUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesUP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go‐Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyIndia
| | - Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
- Tropical Disease Centre, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
- Department of Microbiology, School of MedicineUniversitas Syiah KualaBanda AcehIndonesia
| |
Collapse
|
61
|
Herrmann M, Schulte S, Wildner NH, Wittner M, Brehm TT, Ramharter M, Woost R, Lohse AW, Jacobs T, Schulze zur Wiesch J. Analysis of Co-inhibitory Receptor Expression in COVID-19 Infection Compared to Acute Plasmodium falciparum Malaria: LAG-3 and TIM-3 Correlate With T Cell Activation and Course of Disease. Front Immunol 2020; 11:1870. [PMID: 32983106 PMCID: PMC7479337 DOI: 10.3389/fimmu.2020.01870] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) which is caused by the novel SARS-CoV-2 virus is a severe flu-like illness which is associated with hyperinflammation and immune dysfunction. The virus induces a strong T and B cell response but little is known about the immune pathology of this viral infection. Acute Plasmodium falciparum malaria also causes acute clinical illness and is characterized by hyperinflammation due to the strong production of pro-inflammatory cytokines and a massive activation of T cells. In malaria, T cells express a variety of co-inhibitory receptors which might be a consequence of their activation but also might limit their overwhelming function. Thus, T cells are implicated in protection as well as in pathology. The outcome of malaria is thought to be a consequence of the balance between co-activation and co-inhibition of T cells. Following the hypothesis that T cells in COVID-19 might have a similar, dual function, we comprehensively characterized the differentiation (CCR7, CD45RO) and activation status (HLA-DR, CD38, CD69, CD226), the co-expression of co-inhibitory molecules (PD1, TIM-3, LAG-3, BTLA, TIGIT), as well as the expression pattern of the transcription factors T-bet and eomes of CD8+ and CD4+ T cells of PBMC of n = 20 SARS-CoV-2 patients compared to n = 10 P. falciparum infected patients and n = 13 healthy controls. Overall, acute COVID-19 and malaria infection resulted in a comparably elevated activation and altered differentiation status of the CD8+ and CD4+ T cell populations. T effector cells of COVID-19 and malaria patients showed higher frequencies of the inhibitory receptors T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte-activation gene-3 (LAG-3) which was linked to increased activation levels and an upregulation of the transcription factors T-bet and eomes. COVID-19 patients with a more severe disease course showed higher levels of LAG-3 and TIM-3 than patients with a mild disease course. During recovery, a rapid normalization of these inhibitory receptors could be observed. In summary, comparing the expression of different co-inhibitory molecules in CD8+ and CD4+ T cells in COVID-19 vs. malaria, there is a transient increase of the expression of certain inhibitory receptors like LAG-3 and TIM-3 in COVID-19 in the overall context of acute immune activation.
Collapse
Affiliation(s)
- Marissa Herrmann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils H. Wildner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Ramharter
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Department of Tropical Medicine, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Robin Woost
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Ansgar W. Lohse
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
62
|
Sears JD, Waldron KJ, Wei J, Chang CH. Targeting metabolism to reverse T-cell exhaustion in chronic viral infections. Immunology 2020; 162:135-144. [PMID: 32681647 DOI: 10.1111/imm.13238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
CD8 T-cells are an essential component of the adaptive immune response accountable for the clearance of virus-infected cells via cytotoxic effector functions. Maintaining a specific metabolic profile is necessary for these T-cells to sustain their effector functions and clear pathogens. When CD8 T-cells are activated via T-cell receptor recognition of viral antigen, they transition from a naïve to an effector state and eventually to a memory phenotype, and their metabolic profiles shift as the cells differentiate to accomidate different metabolic demands. However, in the context of particular chronic viral infections (CVIs), CD8 T-cells can become metabolically dysfunctional in a state known as T-cell exhaustion. In this state, CD8 T-cells exhibit reduced effector functions and are unable to properly control pathogens. Clearing these chronic infections becomes progressively difficult as increasing numbers of the effector T-cells become exhausted. Hence, reversal of this dysfunctional metabolic phenotype is vital when considering potential treatments of these infections and offers the opportunity for novel strategies for the development of therapies against CVIs. In this review we explore research implicating alteration of the metabolic state as a means to reverse CD8 T-cell exhaustion in CVIs. These findings indicate that strategies targeting dysfunctional CD8 T-cell metabolism could prove to be a promising option for successfully treating CVIs.
Collapse
Affiliation(s)
| | | | - Jian Wei
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
63
|
Zhang LX, Jiao YM, Zhang C, Song JW, Fan X, Xu RN, Huang HH, Zhang JY, Wang LF, Zhou CB, Jin L, Shi M, Wang FS. HIV Reservoir Decay and CD4 Recovery Associated With High CD8 Counts in Immune Restored Patients on Long-Term ART. Front Immunol 2020; 11:1541. [PMID: 32793212 PMCID: PMC7390854 DOI: 10.3389/fimmu.2020.01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Whether varying CD8 counts influence the human immunodeficiency virus (HIV) reservoir and CD4 restoration in patients with CD4 counts ≥ 500 cells/μL after long-term antiretroviral therapy (ART) remains unknown. In this study, we analyzed relationships between CD8 levels and viral reservoir decay or CD4 recovery in immune restored patients on long-term ART. Methods: Chronic HIV-infected patients who received 5 years of ART with CD4 counts ≥ 500 cells/μL were grouped according to CD8 counts: CD8 <500 (Group 1), 500–1,000 (Group 2), and ≥1,000 cells/μL (Group 3). CD4 recovery, viral decay, CD8 T-cell function, and their correlations were analyzed during ART among the three groups. Results: Dynamics of viral decay and CD4 recovery were different among the three groups. Both viral decay and CD4 recovery were higher in Group 3 than the other two groups after 5 years of ART, mainly during years 3–5 of ART. Higher expression levels of Ki67 while PD-1 levels were lower on CD8 T-cells in Group 3 compared with the other groups, and Group 3 showed stronger CD8 T-cells functional capacity after 3 years of ART. Reduced HIV DNA levels and increased CD4 counts between years 3 and 5 of ART were positively correlated with CD8 counts and function. Conclusions: High CD8 counts are beneficial for persistent viral decay and CD4 recovery in immune restored patients during long-term ART.
Collapse
Affiliation(s)
- Lu-Xue Zhang
- Peking University 302 Clinical Medical School, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-Feng Wang
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Bao Zhou
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
64
|
Gambichler T, Reuther J, Scheel CH, Becker JC. On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. J Immunother Cancer 2020; 8:jitc-2020-001145. [PMID: 32611687 PMCID: PMC7358098 DOI: 10.1136/jitc-2020-001145] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The present review summarizes up-to-date evidence addressing the frequently discussed clinical controversies regarding the use of immune checkpoint inhibitors (ICIs) in cancer patients with viral infections, including AIDS, hepatitis B and C, progressive multifocal leukoencephalopathy, influenza, and COVID-19. In detail, we provide available information on (1) safety regarding the risk of new infections, (2) effects on the outcome of pre-existing infections, (3) whether immunosuppressive drugs used to treat ICI-related adverse events affect the risk of infection or virulence of pre-existing infections, (4) whether the use of vaccines in ICI-treated patients is considered safe, and (5) whether there are beneficial effects of ICIs that even qualify them as a therapeutic approach for these viral infections.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Judith Reuther
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Christina H Scheel
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany .,Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Dermatology, University Duisburg-Essen, Essen, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
65
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
66
|
Scharf L, Tauriainen J, Buggert M, Hartogensis W, Nolan DJ, Deeks SG, Salemi M, Hecht FM, Karlsson AC. Delayed Expression of PD-1 and TIGIT on HIV-Specific CD8 T Cells in Untreated HLA-B*57:01 Individuals Followed from Early Infection. J Virol 2020; 94:e02128-19. [PMID: 32350076 PMCID: PMC7343205 DOI: 10.1128/jvi.02128-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
While the relationship of protective human leukocyte antigen (HLA) class I alleles and HIV progression is well defined, the interaction of HLA-mediated protection and CD8 T-cell exhaustion is less well characterized. To gain insight into the influence of HLA-B*57:01 on the deterioration of CD8 T-cell responses during HIV infection in the absence of antiretroviral treatment, we compared HLA-B*57:01-restricted HIV-specific CD8 T-cell responses to responses restricted by other HLA class I alleles longitudinally after control of peak viremia. Detailed characterization of polyfunctionality, differentiation phenotypes, transcription factor, and inhibitory receptor expression revealed progression of CD8 T-cell exhaustion over the course of the infection in both patient groups. However, early effects on the phenotype of the total CD8 T-cell population were apparent only in HLA-B*57-negative patients. The HLA-B*57:01-restricted, HIV epitope-specific CD8 T-cell responses showed beneficial functional patterns and significantly lower frequencies of inhibitory receptor expression, i.e., PD-1 and coexpression of PD-1 and TIGIT, within the first year of infection. Coexpression of PD-1 and TIGIT was correlated with clinical markers of disease progression and declining percentages of the T-bethi Eomesdim CD8 T-cell population. In accordance with clinical and immunological deterioration in the HLA-B*57:01 group, the difference in PD-1 and TIGIT receptor expression did not persist to later stages of the disease.IMPORTANCE Given the synergistic nature of TIGIT and PD-1, the coexpression of those inhibitory receptors should be considered when evaluating T-cell pathogenesis, developing immunomodulatory therapies or vaccines for HIV, and when using immunotherapy or vaccination for other causes in HIV-infected patients. HIV-mediated T-cell exhaustion influences the patient´s disease progression, immune system and subsequently non-AIDS complications, and efficacy of vaccinations against other pathogens. Consequently, the possibilities of interfering with exhaustion are numerous. Expanding the use of immunomodulatory therapies to include HIV treatment depends on information about possible targets and their role in the deterioration of the immune system. Furthermore, the rise of immunotherapies against cancer and elevated cancer incidence in HIV-infected patients together increase the need for detailed knowledge of T-cell exhaustion and possible interactions. A broader approach to counteract immune exhaustion to alleviate complications and improve efficacy of other vaccines also promises to increase patients' health and quality of life.
Collapse
Affiliation(s)
- Lydia Scharf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Tauriainen
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wendy Hartogensis
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - David J Nolan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
- Bioinfoexperts LLC, Alachua, Florida, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Annika C Karlsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
67
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
68
|
Sanchez-Cerrillo I, Landete P, Aldave B, Sanchez-Alonso S, Sanchez-Azofra A, Marcos-Jimenez A, Avalos E, Alcaraz-Serna A, de Los Santos I, Mateu-Albero T, Esparcia L, Lopez-Sanz C, Martinez-Fleta P, Gabrie L, Del Campo Guerola L, Calzada MJ, Gonzalez-Alvaro I, Alfranca A, Sanchez-Madrid F, Munoz-Calleja C, Soriano JB, Ancochea J, Martin-Gayo E. Differential Redistribution of Activated Monocyte and Dendritic Cell Subsets to the Lung Associates with Severity of COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.13.20100925. [PMID: 32511573 PMCID: PMC7274254 DOI: 10.1101/2020.05.13.20100925] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 is responsible for the pandemic COVID-19 in infected individuals, who can either exhibit mild symptoms or progress towards a life-threatening acute respiratory distress syndrome (ARDS). It is known that exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. With the aim to improve the knowledge in this area, we developed a cross-sectional study, in which we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood of COVID-19 patients with different clinical severity in comparison with healthy control individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Collectively, our results suggest that inflammatory transitional and non-classical monocytes preferentially migrate from blood to lungs in patients with severe COVID-19. CD1c+ conventional dendritic cells also followed this pattern, whereas CD141+ conventional and CD123hi plasmacytoid dendritic cells were depleted from blood but were absent in the lungs. Thus, this study increases the knowledge on the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies to fight SARS-CoV-2 infection.
Collapse
|
69
|
Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev 2020; 292:149-163. [PMID: 31883174 PMCID: PMC7003858 DOI: 10.1111/imr.12823] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
The T‐cell response is central in the adaptive immune‐mediated elimination of pathogen‐infected and/or cancer cells. This activated T‐cell response can inflict an overwhelming degree of damage to the targeted cells, which in most instances leads to the control and elimination of foreign invaders. However, in conditions of chronic infection, persistent exposure of T cells to high levels of antigen results in a severe T‐cell dysfunctional state called exhaustion. T‐cell exhaustion leads to a suboptimal immune‐mediated control of multiple viral infections including the human immunodeficiency virus (HIV). In this review, we will discuss the role of T‐cell exhaustion in HIV disease progression, the long‐term defect of T‐cell function even in aviremic patients on antiretroviral therapy (ART), the role of exhaustion‐specific markers in maintaining a reservoir of latently infected cells, and exploiting these markers in HIV cure strategies.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Patricia Jacquier
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Riddhima Banga
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
70
|
Vitallé J, Terrén I, Gamboa-Urquijo L, Orrantia A, Tarancón-Díez L, Genebat M, Leal M, Ruiz-Mateos E, Borrego F, Zenarruzabeitia O. Polyfunctional HIV-1 specific response by CD8+ T lymphocytes expressing high levels of CD300a. Sci Rep 2020; 10:6070. [PMID: 32269232 PMCID: PMC7142067 DOI: 10.1038/s41598-020-63025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/17/2020] [Indexed: 01/12/2023] Open
Abstract
CD300a receptor is found on different CD8+ T cell subsets and its expression has been associated to a more cytotoxic molecular signature. CD300a has an important role in some viral infections and its expression levels are known to be modulated by human immunodeficiency virus (HIV)−1 infection on several cell types. The main objective of this work was to investigate CD300a expression and its regulation during HIV-1 specific CD8+ T cell responses. CD300a receptor expression was analysed by multiparametric flow cytometry on CD8+ T lymphocytes from HIV negative donors, naive HIV-1+ individuals and HIV-1+ subjects under suppressive combined antiretroviral therapy (cART). HIV-1 specific CD8+ T cell response was studied by stimulating cells with HIV-1 derived peptides or with a Gag HIV-1 peptide. Our results showed that HIV-1 specific CD8+ T cells expressing higher levels of CD300a were more polyfunctional showing an increased degranulation and cytokine production. Moreover, we observed an up-regulation of CD300a expression after Gag HIV-1 peptide stimulation. Finally, our results demonstrated an inverse correlation between CD300a expression on CD8+ T lymphocytes and HIV disease progression markers. In conclusion, CD300a expression is associated to a better and more polyfunctional HIV-1 specific CD8+ T cell response.
Collapse
Affiliation(s)
- Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, 48903, Barakaldo, Spain
| | - Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, 48903, Barakaldo, Spain
| | - Leire Gamboa-Urquijo
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, 48903, Barakaldo, Spain
| | - Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, 48903, Barakaldo, Spain
| | - Laura Tarancón-Díez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, 41013, Seville, Spain.,Laboratory of Molecular Immuno-Biology, Gregorio Marañón University Hospital, Health Research Institute, 28007, Madrid, Spain
| | - Miguel Genebat
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, 41013, Seville, Spain
| | - Manuel Leal
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, 41013, Seville, Spain.,Internal Medicine Service, Santa Ángela de la Cruz Viamed Hospital, 41014, Sevilla, Spain
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, 41013, Seville, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, 48903, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, 48903, Barakaldo, Spain.
| |
Collapse
|
71
|
Kazer SW, Aicher TP, Muema DM, Carroll SL, Ordovas-Montanes J, Miao VN, Tu AA, Ziegler CGK, Nyquist SK, Wong EB, Ismail N, Dong M, Moodley A, Berger B, Love JC, Dong KL, Leslie A, Ndhlovu ZM, Ndung'u T, Walker BD, Shalek AK. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat Med 2020; 26:511-518. [PMID: 32251406 PMCID: PMC7237067 DOI: 10.1038/s41591-020-0799-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell-cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease1,2 and nominating testable therapeutic targets3. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability4. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection5, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.
Collapse
Affiliation(s)
- Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toby P Aicher
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel M Muema
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Shaina L Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Vincent N Miao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Ang A Tu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carly G K Ziegler
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Sarah K Nyquist
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily B Wong
- African Health Research Institute, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
- Harvard Medical School, Boston, MA, USA
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mary Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Amber Moodley
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Christopher Love
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alasdair Leslie
- African Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- HIV Pathogenesis Programme, Nelson R. Mandela School of Medicine, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
72
|
Paul RH, Cho KS, Belden AC, Mellins CA, Malee KM, Robbins RN, Salminen LE, Kerr SJ, Adhikari B, Garcia-Egan PM, Sophonphan J, Aurpibul L, Thongpibul K, Kosalaraksa P, Kanjanavanit S, Ngampiyaskul C, Wongsawat J, Vonthanak S, Suwanlerk T, Valcour VG, Preston-Campbell RN, Bolzenious JD, Robb ML, Ananworanich J, Puthanakit T. Machine-learning classification of neurocognitive performance in children with perinatal HIV initiating de novo antiretroviral therapy. AIDS 2020; 34:737-748. [PMID: 31895148 PMCID: PMC7072001 DOI: 10.1097/qad.0000000000002471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To develop a predictive model of neurocognitive trajectories in children with perinatal HIV (pHIV). DESIGN Machine learning analysis of baseline and longitudinal predictors derived from clinical measures utilized in pediatric HIV. METHODS Two hundred and eighty-five children (ages 2-14 years at baseline; Mage = 6.4 years) with pHIV in Southeast Asia underwent neurocognitive assessment at study enrollment and twice annually thereafter for an average of 5.4 years. Neurocognitive slopes were modeled to establish two subgroups [above (n = 145) and below average (n = 140) trajectories). Gradient-boosted multivariate regressions (GBM) with five-fold cross validation were conducted to examine baseline (pre-ART) and longitudinal predictive features derived from demographic, HIV disease, immune, mental health, and physical health indices (i.e. complete blood count [CBC]). RESULTS The baseline GBM established a classifier of neurocognitive group designation with an average AUC of 79% built from HIV disease severity and immune markers. GBM analysis of longitudinal predictors with and without interactions improved the average AUC to 87 and 90%, respectively. Mental health problems and hematocrit levels also emerged as salient features in the longitudinal models, with novel interactions between mental health problems and both CD4 cell count and hematocrit levels. Average AUCs derived from each GBM model were higher than results obtained using logistic regression. CONCLUSION Our findings support the feasibility of machine learning to identify children with pHIV at risk for suboptimal neurocognitive development. Results also suggest that interactions between HIV disease and mental health problems are early antecedents to neurocognitive difficulties in later childhood among youth with pHIV.
Collapse
Affiliation(s)
- Robert H Paul
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Kyu S Cho
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Andrew C Belden
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Claude A Mellins
- HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute, and Columbia University, New York
| | - Kathleen M Malee
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Reuben N Robbins
- HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute, and Columbia University, New York
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, California, USA
| | - Stephen J Kerr
- HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Badri Adhikari
- Department of Mathematics and Computer Science, University of Missouri-St. Louis, Missouri, USA
| | - Paola M Garcia-Egan
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Jiratchaya Sophonphan
- HIV Center for Clinical and Behavioral Studies, New York State Psychiatric Institute, and Columbia University, New York
| | | | - Kulvadee Thongpibul
- Department of Psychology, Faculty of Humanities, Chiang Mai University, Chiang Mai
| | - Pope Kosalaraksa
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen
| | | | | | - Jurai Wongsawat
- Bamrasnaradura Infectious Diseases Institute, Nonthaburi, Thailand
| | | | - Tulathip Suwanlerk
- HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center
- TREAT Asia, amfAR - The Foundation for AIDS Research, Bangkok, Thailand
| | - Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California
| | | | - Jacob D Bolzenious
- Missouri Institute of Mental Health, University of Missouri-St. Louis, Missouri
| | - Merlin L Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jintanat Ananworanich
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Thanyawee Puthanakit
- HIV Netherlands Australia Thailand (HIV-NAT) Research Collaboration, Thai Red Cross AIDS Research Center
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
73
|
Pritchard GH, Kedl RM, Hunter CA. The evolving role of T-bet in resistance to infection. Nat Rev Immunol 2020; 19:398-410. [PMID: 30846856 DOI: 10.1038/s41577-019-0145-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of T-bet as a key transcription factor associated with the development of IFNγ-producing CD4+ T cells predicted a crucial role for T-bet in cell-mediated immunity and in resistance to many intracellular infections. This idea was reinforced by initial reports showing that T-bet-deficient mice were more susceptible to pathogens that survived within the lysosomal system of macrophages. However, subsequent studies revealed IFNγ-dependent, T-bet-independent pathways of resistance to diverse classes of microorganisms that occupy other intracellular niches. Consequently, a more complex picture has emerged of how T-bet and the related transcription factor eomesodermin (EOMES) coordinate many facets of the immune response to bona fide pathogens as well as commensals. This article provides an overview of the discovery and evolutionary relationship between T-bet and EOMES and highlights the studies that have uncovered broader functions of T-bet in innate and adaptive immunity and in the development of the effector and memory T cell populations that mediate long-term resistance to infection.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
74
|
Frega S, Ferro A, Bonanno L, Guarneri V, Conte P, Pasello G. Lung Cancer (LC) in HIV Positive Patients: Pathogenic Features and Implications for Treatment. Int J Mol Sci 2020; 21:E1601. [PMID: 32111093 PMCID: PMC7084664 DOI: 10.3390/ijms21051601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
: The human immunodeficiency virus (HIV) infection continues to be a social and public health problem. Thanks to more and more effective antiretroviral therapy (ART), nowadays HIV-positive patients live longer, thus increasing their probability to acquire other diseases, malignancies primarily. Senescence along with immune-system impairment, HIV-related habits and other oncogenic virus co-infections increase the cancer risk of people living with HIV (PLWH); in the next future non-AIDS-defining cancers will prevail, lung cancer (LC) in particular. Tumor in PLWH might own peculiar predictive and/or prognostic features, and antineoplastic agents' activity might be subverted by drug-drug interactions (DDIs) due to concurrent ART. Moreover, PLWH immune properties and comorbidities might influence both the response and tolerability of oncologic treatments. The therapeutic algorithm of LC, rapidly and continuously changed in the last years, should be fitted in the context of a special patient population like PLWH. This is quite challenging, also because HIV-positive patients have been often excluded from participation to clinical trials, so that levels of evidence about systemic treatments are lower than evidence in HIV-uninfected individuals. With this review, we depicted the epidemiology, pathogenesis, clinical-pathological characteristics and implications for LC care in PLWH, offering a valid focus about this topic to clinicians.
Collapse
Affiliation(s)
- Stefano Frega
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
| | - Alessandra Ferro
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35, 128 Padova, Italy
| | - Laura Bonanno
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
| | - Valentina Guarneri
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35, 128 Padova, Italy
| | - PierFranco Conte
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35, 128 Padova, Italy
| | - Giulia Pasello
- Medical Oncology 2, Istituto Oncologico Veneto IOV- IRCCS, 35, 128 Padova, Italy; (S.F.); (A.F.); (L.B.); (V.G.); (P.C.)
| |
Collapse
|
75
|
Bobardt M, Kuo J, Chatterji U, Wiedemann N, Vuagniaux G, Gallay P. The inhibitor of apoptosis proteins antagonist Debio 1143 promotes the PD-1 blockade-mediated HIV load reduction in blood and tissues of humanized mice. PLoS One 2020; 15:e0227715. [PMID: 31978106 PMCID: PMC6980394 DOI: 10.1371/journal.pone.0227715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint programmed cell death protein 1 (PD-1) plays a major role in T cell exhaustion in cancer and chronic HIV infection. The inhibitor of apoptosis protein antagonist Debio 1143 (D1143) enhances tumor cell death and synergizes with anti-PD-1 agents to promote tumor immunity and displayed HIV latency reversal activity in vitro. We asked in this study whether D1143 would stimulate the potency of an anti-human PD-1 monoclonal antibody (mAb) to reduce HIV loads in humanized mice. Anti-PD-1 mAb treatment decreased PD-1+ CD8+ cell population by 32.3% after interruption of four weeks treatment, and D1143 co-treatment further reduced it from 32.3 to 73%. Anti-PD-1 mAb administration reduced HIV load in blood by 94%, and addition of D1143 further enhanced this reduction from 94 to 97%. D1143 also more profoundly promoted with the anti-PD-1-mediated reduction of HIV loads in all tissues analyzed including spleen (71 to 96.4%), lymph nodes (64.3 to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%), achieving a >5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after drug treatment interruption. Ex vivo anti-CD3/CD28 stimulation increased the ability to activate exhausted CD8+ T cells in infected mice having received in vivo anti-PD-1 treatment by 7.9-fold (5 to 39.6%), and an additional increase by 1.7-fold upon D1143 co-treatment (39.6 to 67.3%). These findings demonstrate for the first time that an inhibitor of apoptosis protein antagonist enhances in a statistically manner the effects of an immune check point inhibitor on antiviral immunity and on HIV load reduction in tissues of humanized mice, suggesting that the combination of two distinct classes of immunomodulatory agents constitutes a promising anti-HIV immunotherapeutic approach.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | - Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
76
|
Winkler F, Bengsch B. Use of Mass Cytometry to Profile Human T Cell Exhaustion. Front Immunol 2020; 10:3039. [PMID: 32038613 PMCID: PMC6987473 DOI: 10.3389/fimmu.2019.03039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 12/11/2019] [Indexed: 11/13/2022] Open
Abstract
Mass cytometry has become an important technique for the deep analysis of single cell protein expression required for precision systems immunology. The ability to profile more than 40 markers per cell is particularly relevant for the differentiation of cell types for which low parametric characterization has proven difficult, such as exhausted CD8+ T cells (TEX). TEX with limited effector function accumulate in many chronic infections and cancers and are subject to inhibitory signaling mediated by several immune checkpoints (e.g., PD-1). Of note, TEX represent considerable targets for immune-stimulatory therapies and are beginning to be recognized as a major correlate of successful checkpoint blockade approaches targeting the PD-1 pathway. TEX exhibit substantial functional, transcriptomic and epigenomic differences compared to canonical functional T cell subsets [such as naïve (TN), effector (TEFF) and memory T cells (TMEM)]. However, phenotypic distinction of TEX from TEFF and TMEM can often be challenging since many molecules expressed by TEX can also be expressed by effector and memory T cell populations. Moreover, significant heterogeneity of TEX has been described, such as subpopulations of exhausted T cells with progenitor-progeny relationships or populations with different degrees of exhaustion or homeostatic potential that may directly inform about disease progression. In addition, TEX subsets have essential clinical implications as they differentially respond to antiviral and checkpoint therapies. The precise assessment of TEX thus requires a high-parametric analysis that accounts for differences to canonical T cell populations as well as for TEX subset heterogeneity. In this review, we discuss how mass cytometry can be used to reveal the role of TEX subsets in humans by combining exhaustion-directed phenotyping with functional profiling. Mass cytometry analysis of human TEX populations is instrumental to gain a better understanding of TEX in chronic infections and cancer. It has important implications for immune monitoring in therapeutic settings aiming to boost T cell immunity, such as during cancer immunotherapy.
Collapse
Affiliation(s)
- Frances Winkler
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
77
|
Yang X, Su B, Zhang X, Liu Y, Wu H, Zhang T. Incomplete immune reconstitution in HIV/AIDS patients on antiretroviral therapy: Challenges of immunological non-responders. J Leukoc Biol 2020; 107:597-612. [PMID: 31965635 PMCID: PMC7187275 DOI: 10.1002/jlb.4mr1019-189r] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
The morbidity and mortality of HIV type-1 (HIV-1)-related diseases were dramatically diminished by the grounds of the introduction of potent antiretroviral therapy, which induces persistent suppression of HIV-1 replication and gradual recovery of CD4+ T-cell counts. However, ∼10-40% of HIV-1-infected individuals fail to achieve normalization of CD4+ T-cell counts despite persistent virological suppression. These patients are referred to as "inadequate immunological responders," "immunodiscordant responders," or "immunological non-responders (INRs)" who show severe immunological dysfunction. Indeed, INRs are at an increased risk of clinical progression to AIDS and non-AIDS events and present higher rates of mortality than HIV-1-infected individuals with adequate immune reconstitution. To date, the underlying mechanism of incomplete immune reconstitution in HIV-1-infected patients has not been fully elucidated. In light of this limitation, it is of substantial practical significance to deeply understand the mechanism of immune reconstitution and design effective individualized treatment strategies. Therefore, in this review, we aim to highlight the mechanism and risk factors of incomplete immune reconstitution and strategies to intervene.
Collapse
Affiliation(s)
- Xiaodong Yang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Xin Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Yan Liu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
78
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Taborda NA, Rugeles MT, Kottilil S, Zapata JC. High activation and skewed T cell differentiation are associated with low IL-17A levels in a hu-PBL-NSG-SGM3 mouse model of HIV infection. Clin Exp Immunol 2020; 200:185-198. [PMID: 31951011 DOI: 10.1111/cei.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
The humanized NOD/SCID/IL-2 receptor γ-chainnull (NSG) mouse model has been widely used for the study of HIV pathogenesis. Here, NSG mice with transgenic expression of human stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-3 (NSG-SGM3) were injected with peripheral blood leukocytes (PBL mice) from two HIV-infected (HIV+ ) patients who were under anti-retroviral therapy (ART; referred as HIV+ mice) or one HIV-seronegative healthy volunteer (HIV- ). Such mice are either hu-PBL-NSG-SGM3 HIV+ or HIV- mice, depending on the source of PBL. The kinetics of HIV replication and T cell responses following engraftment were evaluated in peripheral blood and secondary lymphoid tissues. High HIV replication and low CD4 : CD8 ratios were observed in HIV+ mice in the absence of anti-retroviral therapy (ART). Consistent with high activation and skewed differentiation of T cells from the HIV-infected donor, HIV+ mice exhibited a higher T cell co-expression of human leukocyte antigen D-related (HLA-DR) and CD38 than HIV- mice, as well as a shifted differentiation to a CCR7- CD45RA+ terminal effector profile, even in the presence of ART. In addition, HIV replication and the activation/differentiation disturbances of T cells were associated with decreased plasma levels of IL-17A. Thus, this hu-PBL-NSG-SGM3 mouse model recapitulates some immune disturbances occurring in HIV-infected patients, underlying its potential use for studying pathogenic events during this infection.
Collapse
Affiliation(s)
- F Perdomo-Celis
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - S Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - H Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - N A Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - M T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - S Kottilil
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
79
|
Abstract
A disease of more than 39.6 million people worldwide, HIV-1 infection has no curative therapy. To date, one man has achieved a sterile cure, with millions more hoping to avoid the potential pitfalls of lifelong antiretroviral therapy and other HIV-related disorders, including neurocognitive decline. Recent developments in immunotherapies and gene therapies provide renewed hope in advancing efforts toward a sterilizing or functional cure. On the horizon is research concentrated in multiple separate but potentially complementary domains: vaccine research, viral transcript editing, T-cell effector response targeting including checkpoint inhibitors, and gene editing. Here, we review the concept of targeting the HIV-1 tissue reservoirs, with an emphasis on the central nervous system, and describe relevant new work in functional cure research and strategies for HIV-1 eradication.
Collapse
|
80
|
Wu L, Seung E, Xu L, Rao E, Lord DM, Wei RR, Cortez-Retamozo V, Ospina B, Posternak V, Ulinski G, Piepenhagen P, Francesconi E, El-Murr N, Beil C, Kirby P, Li A, Fretland J, Vicente R, Deng G, Dabdoubi T, Cameron B, Bertrand T, Ferrari P, Pouzieux S, Lemoine C, Prades C, Park A, Qiu H, Song Z, Zhang B, Sun F, Chiron M, Rao S, Radošević K, Yang ZY, Nabel GJ. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. ACTA ACUST UNITED AC 2019; 1:86-98. [DOI: 10.1038/s43018-019-0004-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
|
81
|
Vedolizumab use and the associations between α4β7 expression and HIV reservoir in the gut during treated primary HIV infection. AIDS 2019; 33:2268-2271. [PMID: 31688047 DOI: 10.1097/qad.0000000000002344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
PD-1 Expression in HIV-Specific CD8+ T cells Before Antiretroviral Therapy Is Associated With HIV Persistence. J Acquir Immune Defic Syndr 2019; 80:1-6. [PMID: 30399040 DOI: 10.1097/qai.0000000000001887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The persistence of latently infected T cells remains the principal barrier to HIV cure. Understanding how the early immune responses shape persistence of HIV on antiretroviral therapy (ART) will be fundamental for potential eradication. Here, we aimed to determine the relationship between CD8 T-cell function and phenotype before therapy and HIV persistence on ART. METHODS Blood samples from 29 individuals enrolled during primary HIV infection (at baseline and every 3 months up to 2 years post-ART initiation) were obtained. HIV-specific T-cell function and expression of the activation markers were evaluated before ART by flow cytometry. Cell-associated HIV DNA and unspliced (US)-RNA were quantified in purified CD4 T cells by real-time polymerase chain reaction. Data were analyzed using nonparametric statistics. RESULTS Elevated immune activation, dominance of monofunctional CD8 T cells, and skewed distribution of memory profile were observed before ART. After ART initiation, HIV DNA and US-RNA levels rapidly diminished, reaching a plateau by 30 weeks after ART. The proportion of baseline HIV-specific effector memory and terminal effector CD8 T cells directly correlated with HIV DNA levels at 1 year after ART. A strong positive correlation was observed between the proportion of bulk and HIV-specific PD-1 CD8 T cells measured before ART and HIV DNA at 1 year after ART. CONCLUSIONS A higher proportion of terminally differentiated CD8 T cells and increased PD1 expression were associated with HIV persistence on ART after treatment of primary infection. Thus, the quality of the early CD8 T-cell immune response may serve as a predictor of HIV persistence on ART.
Collapse
|
83
|
Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z, Wang X. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front Immunol 2019; 10:2298. [PMID: 31636634 PMCID: PMC6787287 DOI: 10.3389/fimmu.2019.02298] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
The recent success of PD-1 and PD-L1 blockade in cancer therapy illustrates the important role of the PD-1/PD-L1 pathway in the regulation of antitumor immune responses. However, signaling regulated by the PD-1/PD-L pathway is also associated with substantial inflammatory effects that can resemble those in autoimmune responses, chronic infection, and sepsis, consistent with the role of this pathway in balancing protective immunity and immunopathology, as well as in homeostasis and tolerance. Targeting PD-1/PD-L1 to treat cancer has shown benefits in many patients, suggesting a promising opportunity to target this pathway in autoimmune and inflammatory disorders. Here, we systematically evaluate the diverse biological functions of the PD-1/PD-L pathway in immune-mediated diseases and the relevant mechanisms that control these immune reactions.
Collapse
Affiliation(s)
- Weiting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
84
|
Zhao C, Jia B, Wang M, Schell TD, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Naik S, Songdej N, Sivik JM, Hohl RJ, Zeng H, Zheng H. Multi-dimensional analysis identifies an immune signature predicting response to decitabine treatment in elderly patients with AML. Br J Haematol 2019; 188:674-684. [PMID: 31573077 PMCID: PMC7065206 DOI: 10.1111/bjh.16228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023]
Abstract
Decitabine is a DNA‐hypomethylating agent that has been widely applied for the treatment of acute myeloid leukaemia (AML) patients who are elderly or unfit for intensive therapy. Although effective, the complete response rate to decitabine is only around 30% and the overall survival remains poor. Emerging data support that regulation of DNA methylation is critical to control immune cell development, differentiation and activation. We hypothesize that defining how decitabine influences the immune responses in AML will facilitate the development of novel immune‐based leukaemia therapeutics. Here, we performed phenotypic and functional immune analysis on clinical samples from AML patients receiving decitabine treatment and demonstrated a significant impact of decitabine on the immune system. T‐cell expression of inhibitory molecules was upregulated and the ability of CD8 T cells to produce cytokines was decreased upon decitabine treatment. Importantly, in an unbiased comprehensive analysis, we identified a unique immune signature containing a cluster of key immune markers that clearly separate patients who achieved complete remission after decitabine from those who failed to do so. Therefore, this immune signature has a strong predictive value for clinical response. Collectively, our study suggests that immune‐based analyses may predict clinical response to decitabine and provide a therapeutic strategy to improve the treatment of AML.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Seema Naik
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Natthapol Songdej
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jeff M Sivik
- Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Raymond J Hohl
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
85
|
Kim GB, Hege K, Riley JL. CAR Talk: How Cancer-Specific CAR T Cells Can Instruct How to Build CAR T Cells to Cure HIV. Front Immunol 2019; 10:2310. [PMID: 31611880 PMCID: PMC6776630 DOI: 10.3389/fimmu.2019.02310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023] Open
Abstract
Re-directing T cells via chimeric antigen receptors (CARs) was first tested in HIV-infected individuals with limited success, but these pioneering studies laid the groundwork for the clinically successful CD19 CARs that were recently FDA approved. Now there is great interest in revisiting the concept of using CAR-expressing T cells as part of a strategy to cure HIV. Many lessons have been learned on how to best engineer T cells to cure cancer, but not all of these lessons apply when developing CARs to treat and cure HIV. This mini review will focus on how early CAR T cell studies in HIV paved the way for cancer CAR T cell therapy and how progress in cancer CAR therapy has and will continue to be instructive for the development of HIV CAR T cell therapy. Additionally, the unique challenges that must be overcome to develop a successful HIV CAR T cell therapy will be highlighted.
Collapse
Affiliation(s)
- Gloria B. Kim
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristen Hege
- Celgene Corporation, San Francisco, CA, United States
| | - James L. Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
86
|
Abers MS, Lionakis MS, Kontoyiannis DP. Checkpoint Inhibition and Infectious Diseases: A Good Thing? Trends Mol Med 2019; 25:1080-1093. [PMID: 31494023 DOI: 10.1016/j.molmed.2019.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
The mammalian immune system has evolved the capacity to detect and destroy tumor cells. Tumors utilize multiple strategies to evade host immune surveillance, including the induction of the checkpoint molecules cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) to suppress antitumor immunity. Pharmacologic blockade of these molecules with checkpoint inhibitors (CPIs) restores T cell function and prolongs survival in patients with various malignancies. Emerging evidence suggests that the same checkpoint pathways may play a crucial role during infections. Indeed, CPIs appear promising as immunotherapeutic agents in infectious diseases, although their efficacy varies depending on pathogen-, cell-, and organ-specific factors. More research will be necessary to clarify the effects and safety of CPIs on clinically relevant outcomes of human infection.
Collapse
Affiliation(s)
- Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center (UT-MDACC), Houston, TX, USA
| |
Collapse
|
87
|
Thornhill JP, Pace M, Martin GE, Hoare J, Peake S, Herrera C, Phetsouphanh C, Meyerowitz J, Hopkins E, Brown H, Dunn P, Olejniczak N, Willberg C, Klenerman P, Goldin R, Fox J, Fidler S, Frater J. CD32 expressing doublets in HIV-infected gut-associated lymphoid tissue are associated with a T follicular helper cell phenotype. Mucosal Immunol 2019; 12:1212-1219. [PMID: 31239514 DOI: 10.1038/s41385-019-0180-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is a key location for the HIV reservoir. The observation that B-cell-T-cell doublets are enriched for CD32a (a low-affinity IgG receptor) in peripheral blood raises interesting questions, especially as these cells have been associated with HIV DNA in some studies. We sought to determine if similar doublets were present in GALT, the significance of these doublets, and their implications for the HIV reservoir. Given the importance of GALT as a reservoir for HIV, we looked for expression of CD32 on gut CD4 T cells and for evidence of doublets, and any relationship with HIV DNA in HIV + individuals initiated on antiretroviral therapy (ART) during primary HIV infection (PHI). Tonsil tissue was also available for one individual. As previously shown for blood, CD32high CD4 cells were mainly doublets of CD4 T cells and B cells, with T-cell expression of ICOS in tonsil and gut tissue. CD4 T cells associated with CD32 (compared with 'CD32-' CD4 cells) had higher expression of follicular markers CXCR5, PD-1, ICOS, and Bcl-6 consistent with a T follicular helper (TFH) phenotype. There was a significant correlation between rectal HIV DNA levels and CD32 expression on TFH cells. Together, these data suggest that CD32high doublets are primarily composed of TFH cells, a subset known to be preferentially infected by HIV.
Collapse
Affiliation(s)
- John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Hoare
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Simon Peake
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Carolina Herrera
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Chan Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Polly Dunn
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rob Goldin
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' NHS Trust, London, UK
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK.,Imperial College NIHR Biomedical Research Centre, London, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | | |
Collapse
|
88
|
Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J 2019; 9:72. [PMID: 31462637 PMCID: PMC6713712 DOI: 10.1038/s41408-019-0234-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Dysproteinemias progress through a series of clonal evolution events in the tumor cell along with the development of a progressively more “permissive” immune tumor microenvironment (iTME). Novel multiparametric cytometry approaches, such as cytometry by time-of-flight (CyTOF) combined with novel gating algorithms can rapidly characterize previously unknown phenotypes in the iTME of tumors and better capture its heterogeneity. Here, we used a 33-marker CyTOF panel to characterize the iTME of dysproteinemia patients (MGUS, multiple myeloma—MM, smoldering MM, and AL amyloidosis) at diagnosis and after standard of care first line therapies (triplet induction chemotherapy and autologous stem cell transplant—ASCT). We identify novel subsets, some of which are unique to the iTME and absent from matched peripheral blood samples, with potential roles in tumor immunosurveillance as well as tumor immune escape. We find that AL amyloidosis has a distinct iTME compared to other dysproteinemias with higher myeloid and “innate-like” T cell subset infiltration. We show that T cell immune senescence might be implicated in disease pathogenesis in patients with trisomies. Finally, we demonstrate that the early post-ASCT period is associated with an increase of senescent and exhausted subsets, which might have implications for the rational selection of post-ASCT therapies.
Collapse
|
89
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
90
|
Longitudinal Changes in Cd4 +, Cd8 + T Cell Phenotype and Activation Marker Expression Following Antiretroviral Therapy Initiation among Patients with Cryptococcal Meningitis. J Fungi (Basel) 2019; 5:jof5030063. [PMID: 31319498 PMCID: PMC6787641 DOI: 10.3390/jof5030063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.
Collapse
|
91
|
Abstract
: Soluble forms of the coinhibitory receptors programmed death 1 (PD-1) and Tim-3 exist, but their relationship with T-cell surface expression remains unclear. When measured by an enzyme-linked immunosorbent assay in plasma, soluble PD-1, and soluble Tim-3 were elevated during primary HIV infection, decreased on antiretroviral therapy to levels found in controls, and correlated with cell surface expression. We conclude that soluble PD-1 and soluble Tim-3 are easy to measure biomarkers of immune exhaustion which potentially eliminate the need for flow cytometry.
Collapse
|
92
|
Zerbato JM, Purves HV, Lewin SR, Rasmussen TA. Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 2019; 38:1-9. [PMID: 31048093 DOI: 10.1016/j.coviro.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) are a major barrier to cure. One strategy to eliminate latency is by activating viral transcription, commonly called latency reversal. Several small non-randomised clinical trials of latency reversing agents (LRAs) in HIV-infected individuals on ART increased viral production, but disappointingly did not reduce the number of latently infected cells or delay time to viral rebound following cessation of ART. More recent approaches aimed at reversing latency include compounds that both activate virus and also modulate immunity to enhance clearance of infected cells. These immunomodulatory LRAs include toll-like receptor agonists, immune checkpoint inhibitors and some cytokines. Here, we provide a brief review of the rationale for transcription-activating and immunomodulatory LRAs, discuss recent clinical trials and some suggestions for combination approaches and research priorities for the future.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Harrison V Purves
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
93
|
Enyindah-Asonye G, Nwankwo A, Hogge C, Rahman MA, Helmold Hait S, Hunegnaw R, Ko EJ, Hoang T, Venzon DJ, Robert-Guroff M. A Pathogenic Role for Splenic B1 Cells in SIV Disease Progression in Rhesus Macaques. Front Immunol 2019; 10:511. [PMID: 30941141 PMCID: PMC6433970 DOI: 10.3389/fimmu.2019.00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
B1 cells spontaneously produce protective natural antibodies which provide the first line of defense against a variety of pathogens. Although these natural antibodies share similar autoreactive features with several HIV-1 broadly neutralizing antibodies, the role of B1 cells in HIV/SIV disease progression is unknown. We report the presence of human-like B1 cells in rhesus macaques. During chronic SIV infection, we found that the frequency of splenic CD11b+ B1 cells positively correlated with plasma SIV viral load and exhausted T cells. Mechanistically, we discovered that splenic CD11b+ B1 cells express PD-L2 and IL-10, and were able to induce PD-1 upregulation on CD4+ T cells in vitro. These findings suggest that splenic CD11b+ B1 cells may contribute to the regulation of SIV plasma viral load by enhancing T cell exhaustion. Therefore, understanding the mechanisms that govern their function in rhesus macaques may lead to novel therapeutic strategies for impeding HIV/SIV disease progression.
Collapse
Affiliation(s)
- Gospel Enyindah-Asonye
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Anthony Nwankwo
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Hogge
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mohammad Arif Rahman
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sabrina Helmold Hait
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ruth Hunegnaw
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eun-Ju Ko
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
94
|
Gossez M, Martin GE, Pace M, Ramjee G, Premraj A, Kaleebu P, Rees H, Inshaw J, Stöhr W, Meyerowitz J, Hopkins E, Jones M, Hurst J, Porter K, Babiker A, Fidler S, Frater J. Virological remission after antiretroviral therapy interruption in female African HIV seroconverters. AIDS 2019; 33:185-197. [PMID: 30325764 DOI: 10.1097/qad.0000000000002044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION There are few data on the frequency of virological remission in African individuals after treatment with antiretroviral therapy (ART) in primary HIV infection (PHI). METHODS We studied participants (n = 82) from South Africa and Uganda in Short Pulse Antiretroviral Treatment at HIV-1 Seroconversion, the first trial of treatment interruption in African individuals with PHI randomized to deferred ART or 48 weeks of immediate ART. All were female and infected with non-B HIV subtypes, mainly C. We measured HIV DNA in CD4+ T cells, CD4+ cell count, plasma viral load (pVL), cell-associated HIV RNA and T-cell activation and exhaustion. We explored associations with clinical progression and time to pVL rebound after treatment interruption (n = 22). Data were compared with non-African Short Pulse Antiretroviral Treatment at HIV-1 Seroconversion participants. RESULTS Pretherapy pVL and integrated HIV DNA were lower in Africans compared with non-Africans (median 4.16 vs. 4.72 log10 copies/ml and 3.07 vs. 3.61 log10 copies/million CD4+ T cells, respectively; P < 0.001). Pre-ART HIV DNA in Africans was associated with clinical progression (P = 0.001, HR per log10 copies/million CD4+ T cells increase (95% CI) 5.38 (1.95-14.79)) and time to pVL rebound (P = 0.034, HR per log10 copies/ml increase 4.33 (1.12-16.84)). After treatment interruption, Africans experienced longer duration of viral remission than non-Africans (P < 0.001; HR 3.90 (1.75-8.71). Five of 22 African participants (22.7%) maintained VL less than 400 copies/ml over a median of 188 weeks following treatment interruption. CONCLUSION We find evidence of greater probability of virological remission following treatment interruption among African participants, although we are unable to differentiate between sex, ethnicity and viral subtype. The finding warrants further investigation.
Collapse
Affiliation(s)
- Morgane Gossez
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | | | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | - Anamika Premraj
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | - Helen Rees
- Wits Reproductive Health and HIV Institute of the University of the Witwatersrand, Johannesburg, South Africa
| | - Jamie Inshaw
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology
| | - Wolfgang Stöhr
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | - Jacob Hurst
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
| | | | - Abdel Babiker
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, Oxford, UK
- The Oxford Martin School
- Oxford National Institute of Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
95
|
Blockade of the PD-1 axis alone is not sufficient to activate HIV-1 virion production from CD4+ T cells of individuals on suppressive ART. PLoS One 2019; 14:e0211112. [PMID: 30682108 PMCID: PMC6347234 DOI: 10.1371/journal.pone.0211112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
Blockade of the programmed cell death protein/ligand 1 (PD-1/PD-L1) pathway with monoclonal antibodies (mAb) is now commonly used for cancer immunotherapy and has therapeutic potential in chronic viral infections including HIV-1. PD-1/PD-L1 blockade could augment HIV-1-specific immune responses and reverse HIV-1 latency, but the latter effect has not been clearly shown. We tested the ability of the human anti-PD-L1 mAb BMS-936559 and the human anti-PD-1 mAb nivolumab to increase HIV-1 virion production ex vivo from different peripheral blood mononuclear cell populations obtained from donors on suppressive antiretroviral therapy (ART). Fresh peripheral blood mononuclear cells (PBMC), CD8-depleted PBMC, total CD4+ T cells, and resting CD4+ T cells were purified from whole blood of HIV-1-infected donors and cultured in varying concentrations of BMS-936559 (20, 5, or 1.25μg/mL) or nivolumab (5 or 1.25μg/mL), with or without anti-CD3/CD28 stimulatory antibodies. Culture supernatants were assayed for virion HIV-1 RNA by qRT-PCR. Ex vivo exposure to BMS-936559 or nivolumab, with or without anti-CD3/CD28 stimulation, did not consistently increase HIV-1 virion production from blood mononuclear cell populations. Modest (2-fold) increases in virus production were observed in a subset of donors and in some cell types but were not reproducible in longitudinal samples. Cell surface expression of PD-1 and PD-L1 were not associated with changes in virus production. Ex vivo blockade of the PD-1 axis alone has limited effects on HIV-1 latency.
Collapse
|
96
|
Abstract
HIV causes several forms of immune dysfunction that need to be addressed in a functional cure for HIV. Immune exhaustion describes a dysfunctional phenotype caused by chronic cellular activation. Lymphocyte activation gene-3 (LAG3) is one of several negative coreceptors known as immune checkpoints that contribute to this exhaustion phenotype. Antibodies targeting immune checkpoints are now used clinically to restore immunity against cancer and hold promise in restoring immunity during HIV infection. Here, we summarize current knowledge surrounding LAG3 and discuss its relevance during HIV infection and the potential for LAG3-targeting antibodies in a functional HIV cure.
Collapse
Affiliation(s)
- Colin G. Graydon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Allison L. Balasko
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| |
Collapse
|
97
|
Rodríguez-Alba JC, Abrego-Peredo A, Gallardo-Hernández C, Pérez-Lara J, Santiago-Cruz JW, Jiang JW, Espinosa E. HIV Disease Progression: Overexpression of the Ectoenzyme CD38 as a Contributory Factor? Bioessays 2019; 41:e1800128. [PMID: 30537007 PMCID: PMC6545924 DOI: 10.1002/bies.201800128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Despite abundant evidence associating CD38 overexpression and CD4 T cell depletion in HIV infection, no causal relation has been investigated. To address this issue, a series of mechanisms are proposed, supported by evidence from different fields, by which CD38 overexpression can facilitate CD4 T cell depletion in HIV infection. According to this model, increased catalytic activity of CD38 may reduce CD4 T cells' cytoplasmic nicotin-amide adenine dinucleotide (NAD), leading to a chronic Warburg effect. This will reduce mitochondrial function. Simultaneously, CD38's catalytic products ADPR and cADPR may be transported to the cytoplasm, where they can activate calcium channels and increase cytoplasmic Ca2+ concentrations, further altering mitochondrial integrity. These mechanisms will decrease the viability and regenerative capacity of CD4 T cells. These hypotheses can be tested experimentally, and might reveal novel therapeutic targets. Also see the video abstract here https://youtu.be/k1LTyiTKPKs.
Collapse
Affiliation(s)
- J. C. Rodríguez-Alba
- Flow Cytometry Core Facility, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - A. Abrego-Peredo
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - C. Gallardo-Hernández
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. Pérez-Lara
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. W. Santiago-Cruz
- Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J., W. Jiang
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - E. Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| |
Collapse
|
98
|
Wu X, Li Y, Song CB, Chen YL, Fu YJ, Jiang YJ, Ding HB, Shang H, Zhang ZN. Increased Expression of sST2 in Early HIV Infected Patients Attenuated the IL-33 Induced T Cell Responses. Front Immunol 2018; 9:2850. [PMID: 30564243 PMCID: PMC6288272 DOI: 10.3389/fimmu.2018.02850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
T cell responses were less functional and persisted in an exhausted state in chronic HIV infection. Even in early phase of HIV infection, the dysfunction of HIV-specific T cells can be observed in rapid progressors, but the underlying mechanisms are not fully understood. Cytokines play a central role in regulating T cell function. In this study, we sought to elucidate whether IL-33/ST2 axis plays roles in the regulation of T cell function in HIV infection. We found that the level of IL-33 was upregulated in early HIV-infected patients compared with that in healthy controls and has a trend associated with disease progression. In vitro study shows that IL-33 promotes the expression of IFN-γ by Gag stimulated CD4+ and CD8+T cells from HIV-infected patients to a certain extent. However, soluble ST2 (sST2), a decoy receptor of IL-33, was also increased in early HIV infected patients, especially in those with progressive infection. We found that anti-ST2 antibodies attenuated the effect of IL-33 to CD4+ and CD8+T cells. Our data indicates that elevated expression of IL-33 in early HIV infection has the potential to enhance the function of T cells, but the upregulated sST2 weakens the activity of IL-33, which may indirectly contribute to the dysfunction of T cells and rapid disease progression. This data broadens the understanding of HIV pathogenesis and provides critical information for HIV intervention.
Collapse
Affiliation(s)
- Xian Wu
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yao Li
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Clinical and Emergency Medical Laboratory Department, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cheng-Bo Song
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Li Chen
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hai-Bo Ding
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
99
|
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol 2018; 40:17-35. [PMID: 30287177 DOI: 10.1016/j.smim.2018.09.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
100
|
Chowdhury FZ, Ouyang Z, Buzon M, Walker BD, Lichterfeld M, Yu XG. Metabolic pathway activation distinguishes transcriptional signatures of CD8+ T cells from HIV-1 elite controllers. AIDS 2018; 32:2669-2677. [PMID: 30289807 DOI: 10.1097/qad.0000000000002007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Elite controllers, defined as persons maintaining undetectable levels of HIV-1 replication in the absence of antiretroviral therapy, represent living evidence that sustained, natural control of HIV-1 is possible, at least in relatively rare instances. Understanding the complex immunologic and virologic characteristics of these specific patients holds promise for inducing drug-free control of HIV-1 in broader populations of HIV-1 infected patients. DESIGN We used an unbiased transcriptional profiling approach to characterize CD8+ T cells, the strongest correlate of HIV-1 immune control identified thus far, in a large cohort of elite controllers (n = 51); highly active antiretrovial therapy (HAART)-treated patients (n = 32) and HIV-1 negative (n = 10) served as reference cohorts. METHODS We isolated mRNA from total CD8+ T cells isolated from peripheral blood mononuclear cell (PBMC) of each individual followed by microarray analysis of the transcriptional signatures. RESULTS We observed profound transcriptional differences [590 transcripts, false discovery rate (FDR)-adjusted P < 0.05] between elite controller and HAART-treated patients. Interestingly, metabolic and signalling pathways governed by mammalian target of rapamycin (mTOR) and eIF2, known for their key roles in regulating cellular growth, proliferation and metabolism, were among the top functions enriched in the differentially expressed genes, suggesting a therapeutically actionable target as a distinguishing feature of spontaneous HIV-1 immune control. A subsequent bootstrapping approach distinguished five different subgroups of elite controller, each characterized by distinct transcriptional signatures. However, despite this marked heterogeneity, differential regulation of mTOR and eIF2 signalling remained the dominant functional pathway in three of these elite controller subgroups. CONCLUSION These studies suggest that mTOR and eIF2 signalling may play a remarkably universal role for regulating CD8 T-cell function from elite controllers.
Collapse
|