51
|
Rao Malla R, Marni R, Kumari S, Chakraborty A, Lalitha P. Microbiome Assisted Tumor Microenvironment: Emerging Target of Breast Cancer. Clin Breast Cancer 2021; 22:200-211. [PMID: 34625387 DOI: 10.1016/j.clbc.2021.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
The microbiome assisted tumor microenvironment (TME) supports the tumors by modulating multiple mechanisms. Recent studies reported that microbiome dysbiosis is the main culprit of immune suppressive phenotypes of TME. Further, it has been documented that immune suppressive stimulate metastatic phenotype in TME via modulating signaling pathways, cell differentiation, and innate immune response. This review aims at providing comprehensive developments in microbiome and breast TME interface. The combination of microbiome and breast cancer, breast TME and microbiome or microbial dysbiosis, microbiome and risk of breast cancer, microbiome and phytochemicals or anticancer drugs were as used keywords to retrieve literature from PubMed, Google scholar, Scopus, Web of Science from 2015 onwards. Based on the literature, we presented the impact of TME assisted microbiome dysbiosis and estrobolome in breast cancer risk, drug resistance, and antitumor immunity. We have discussed the influence of antibiotics on the breast microbiome. we also presented the possible dietary phytochemicals that target microbiome dysbiosis to restore the tumor suppression immune environment in breast TME. We presented the microbiome as a possible marker for breast cancer diagnosis. This study will help in the identification of microbiome as a novel target and diagnostic markers and phytochemicals and microbiome metabolites for breast cancer treatment.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Rakshmitha Marni
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | | | - Pappu Lalitha
- Department of Microbiology and FST, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
52
|
Association of Polygenic Risk Score and Bacterial Toxins at Screening Colonoscopy with Colorectal Cancer Progression: A Multicenter Case-Control Study. Toxins (Basel) 2021; 13:toxins13080569. [PMID: 34437440 PMCID: PMC8402601 DOI: 10.3390/toxins13080569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and its incidence is correlated with infections, chronic inflammation, diet, and genetic factors. An emerging aspect is that microbial dysbiosis and chronic infections triggered by certain bacteria can be risk factors for tumor progression. Recent data suggest that certain bacterial toxins implicated in DNA attack or in proliferation, replication, and death can be risk factors for insurgence and progression of CRC. In this study, we recruited more than 300 biopsy specimens from people undergoing colonoscopy, and we analyzed to determine whether a correlation exists between the presence of bacterial genes coding for toxins possibly involved in CRC onset and progression and the different stages of CRC. We also analyzed to determine whether CRC-predisposing genetic factors could contribute to bacterial toxins response. Our results showed that CIF toxin is associated with polyps or adenomas, whereas pks+ seems to be a predisposing factor for CRC. Toxins from Escherichia coli as a whole have a higher incidence rate in adenocarcinoma patients compared to controls, whereas Bacteroides fragilis toxin does not seem to be associated with pre-cancerous nor with cancerous lesions. These results have been obtained irrespectively of the presence of CRC-risk loci.
Collapse
|
53
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
54
|
Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:7429. [PMID: 34299049 PMCID: PMC8303169 DOI: 10.3390/ijms22147429] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Mengyao Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
55
|
Dorelli B, Gallè F, De Vito C, Duranti G, Iachini M, Zaccarin M, Preziosi Standoli J, Ceci R, Romano F, Liguori G, Romano Spica V, Sabatini S, Valeriani F, Cattaruzza MS. Can Physical Activity Influence Human Gut Microbiota Composition Independently of Diet? A Systematic Review. Nutrients 2021; 13:nu13061890. [PMID: 34072834 PMCID: PMC8228232 DOI: 10.3390/nu13061890] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Evidence suggests that physical activity (PA) influences the human gut microbiota composition, but its role is unclear because of dietary interference. The aim of this review is to clarify this issue from this new perspective in healthy individuals. Articles analyzing intestinal microbiota from fecal samples by 16S rRNA amplicon sequencing were selected by searching the electronic databases PubMed, Scopus, and Web of Science until December 2020. For each study, methodological quality was assessed, and results about microbiota biodiversity indices, phylum and genus composition, and information on PA and diet were considered. From 997 potentially relevant articles, 10 met the inclusion criteria and were analyzed. Five studies involved athletes, three were performed on active people classified on the basis of habitual PA level, and two among sedentary subjects undergoing exercise interventions. The majority of the studies reported higher variability and prevalence of the phylum Firmicutes (genera Ruminococcaceae or Fecalibacteria) in active compared to inactive individuals, especially in athletes. The assessment of diet as a possible confounder of PA/exercise effects was completed only in four studies. They reported a similar abundance of Lachnospiraceae, Paraprevotellaceae, Ruminococcaceae, and Veillonellaceae, which are involved in metabolic, protective, structural, and histological functions. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Barbara Dorelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Napoli, Italy; (F.G.); (G.L.)
| | - Corrado De Vito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Guglielmo Duranti
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
- Correspondence: (G.D.); (F.V.); Tel.: +39-0636733479 (G.D.); +39-0636733223 (F.V.)
| | - Matteo Iachini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Matteo Zaccarin
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Jacopo Preziosi Standoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Roberta Ceci
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Napoli, Italy; (F.G.); (G.L.)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
| | - Stefania Sabatini
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Roma, Italy; (R.C.); (V.R.S.); (S.S.)
- Correspondence: (G.D.); (F.V.); Tel.: +39-0636733479 (G.D.); +39-0636733223 (F.V.)
| | - Maria Sofia Cattaruzza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy; (B.D.); (C.D.V.); (M.I.); (M.Z.); (J.P.S.); (F.R.); (M.S.C.)
| |
Collapse
|
56
|
Abstract
Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically evaluating and building frameworks for such evidence in light of modern cancer biology is an important task. In this Review, we delineate between causal and complicit roles of microbes in cancer and trace common themes of their influence through the host's immune system, herein defined as the immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and approaches that manipulate the host's gut or tumor microbiome while projecting the next phase of experimental discovery.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
57
|
Läsche M, Urban H, Gallwas J, Gründker C. HPV and Other Microbiota; Who's Good and Who's Bad: Effects of the Microbial Environment on the Development of Cervical Cancer-A Non-Systematic Review. Cells 2021; 10:cells10030714. [PMID: 33807087 PMCID: PMC8005086 DOI: 10.3390/cells10030714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.
Collapse
|
58
|
Alpuim Costa D, Nobre JG, Batista MV, Ribeiro C, Calle C, Cortes A, Marhold M, Negreiros I, Borralho P, Brito M, Cortes J, Braga SA, Costa L. Human Microbiota and Breast Cancer-Is There Any Relevant Link?-A Literature Review and New Horizons Toward Personalised Medicine. Front Microbiol 2021; 12:584332. [PMID: 33716996 PMCID: PMC7947609 DOI: 10.3389/fmicb.2021.584332] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the second cause of cancer-specific death in women from high-income countries. Recently, gut microbiota dysbiosis emerged as a key player that may directly and/or indirectly influence development, treatment, and prognosis of BC through diverse biological processes: host cell proliferation and death, immune system function, chronic inflammation, oncogenic signalling, hormonal and detoxification pathways. Gut colonisation occurs during the prenatal period and is later diversified over distinct phases throughout life. In newly diagnosed postmenopausal BC patients, an altered faecal microbiota composition has been observed compared with healthy controls. Particularly, β-glucuronidase bacteria seem to modulate the enterohepatic circulation of oestrogens and their resorption, increasing the risk of hormone-dependent BC. Moreover, active phytoestrogens, short-chain fatty acids, lithocholic acid, and cadaverine have been identified as bacterial metabolites influencing the risk and prognosis of BC. As in gut, links are also being made with local microbiota of tumoural and healthy breast tissues. In breast microbiota, different microbial signatures have been reported, with distinct patterns per stage and biological subtype. Total bacterial DNA load was lower in tumour tissue and advanced-stage BC when compared with healthy tissue and early stage BC, respectively. Hypothetically, these findings reflect local dysbiosis, potentially creating an environment that favours breast tumour carcinogenesis (oncogenic trigger), or the natural selection of microorganisms adapted to a specific microenvironment. In this review, we discuss the origin, composition, and dynamic evolution of human microbiota, the links between gut/breast microbiota and BC, and explore the potential implications of metabolomics and pharmacomicrobiomics that might impact BC development and treatment choices toward a more personalised medicine. Finally, we put in perspective the potential limitations and biases regarding the current microbiota research and provide new horizons for stronger accurate translational and clinical studies that are needed to better elucidate the complex network of interactions between host, microorganisms, and drugs in the field of BC.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon Portugal
| | | | - Marta Vaz Batista
- Medical Oncology Department, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Catarina Ribeiro
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Catarina Calle
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- Pathology Department, CUF Oncologia, Lisbon, Portugal
| | - Alfonso Cortes
- Medical Oncology Department, Hospital Universitario Ramón Y Cajal, Madrid, Spain
| | - Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Paula Borralho
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Pathology Department, CUF Oncologia, Lisbon, Portugal
- Health and Technology Research Center (H&TRC), Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Miguel Brito
- Health and Technology Research Center (H&TRC), Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Quiron Group, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medica Scientia Innovation Research, Valencia, Spain
| | - Sofia Azambuja Braga
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon Portugal
- Medical Oncology Department, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Luís Costa
- Breast Cancer Unit, CUF Oncologia, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar de Lisboa Norte, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
59
|
Soopramanien M, Khan NA, Siddiqui R. Gut microbiota of animals living in polluted environments are a potential resource of anticancer molecules. J Appl Microbiol 2021; 131:1039-1055. [PMID: 33368930 DOI: 10.1111/jam.14981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Cancer is a prominent cause of morbidity and mortality worldwide, in spite of advances in therapeutic interventions and supportive care. In 2018 alone, there were 18·1 million new cancer cases and 9·6 million deaths indicating the need for novel anticancer agents. Plant-based products have often been linked with protective effects against communicable and non-communicable diseases. Recently, we have shown that animals such as crocodiles thrive in polluted environments and are often exposed to carcinogenic agents, but still benefit from prolonged lifespan. The protective mechanisms shielding them from cancer could be attributed to the immune system, and/or it is possible that their gut microbiota produce anticancer molecules. In support, several lines of evidence suggest that gut microbiota plays a critical role in the physiology of its host. Here, we reviewed the available literature to assess whether the gut microbiota of animals thriving in polluted environment possess anticancer molecules.
Collapse
Affiliation(s)
- M Soopramanien
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| | - N A Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - R Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
60
|
Udayasuryan B, Nguyen TT, Slade DJ, Verbridge SS. Harnessing Tissue Engineering Tools to Interrogate Host-Microbiota Crosstalk in Cancer. iScience 2020; 23:101878. [PMID: 33344921 PMCID: PMC7736992 DOI: 10.1016/j.isci.2020.101878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have begun to highlight the diverse and tumor-specific microbiomes across multiple cancer types. We believe this work raises the important question of whether the classical "Hallmarks of Cancer" should be expanded to include tumor microbiomes. To answer this question, the causal relationships and co-evolution of these microbiotic tumor ecosystems must be better understood. Because host-microbe interactions should be studied in a physiologically relevant context, animal models have been preferred. Yet these models are often poor mimics of human tumors and are difficult to interrogate at high spatiotemporal resolution. We believe that in vitro tissue engineered platforms could provide a powerful alternative approach that combines the high-resolution of in vitro studies with a high degree of physiological relevance. This review will focus on tissue engineered approaches to study host-microbe interactions and to establish their role as an emerging hallmark of cancer with potential as a therapeutic target.
Collapse
Affiliation(s)
- Barath Udayasuryan
- Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| | - Tam T.D. Nguyen
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
61
|
Bose D, Banerjee S, Singh RK, Wise LM, Robertson ES. Vascular endothelial growth factor encoded by Parapoxviruses can regulate metabolism and survival of triple negative breast cancer cells. Cell Death Dis 2020; 11:996. [PMID: 33219203 PMCID: PMC7679371 DOI: 10.1038/s41419-020-03203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Dysbiotic microbiomes are linked to many pathological outcomes including different metabolic disorders like diabetes, atherosclerosis and even cancer. Breast cancer is the second leading cause of cancer associated death in women, and triple negative breast cancer (TNBC) is the most aggressive type with major challenges for intervention. Previous reports suggested that Parapoxvirus signatures are one of the predominant dysbiotic viral signatures in TNBC. These viruses encode several genes that are homologs of human genes. In this study, we show that the VEGF homolog encoded by Parapoxviruses, can induce cell proliferation, and alter metabolism of breast cancer and normal breast cells, through alteration of MAPK-ERK and PI3K-AKT signaling. In addition, the activity of the transcription factor FoxO1 was altered by viral-encoded VEGF through activation of the PI3K-AKT pathway, leading to reprogramming of cellular metabolic gene expression. Therefore, this study provides new insights into the function of viral-encoded VEGFs, which promoted the growth of the breast cancer cells and imparted proliferative phenotype with altered metabolism in normal breast cells.
Collapse
Affiliation(s)
- Dipayan Bose
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, Tumor Virology Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sagarika Banerjee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, Tumor Virology Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rajnish Kumar Singh
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, Tumor Virology Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lyn M Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, Tumor Virology Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
62
|
Mendez R, Kesh K, Arora N, Di Martino L, McAllister F, Merchant N, Banerjee S, Banerjee S. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis 2020; 41:561-570. [PMID: 31369062 DOI: 10.1093/carcin/bgz116] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly correlated with the abysmal survival rates in patients. In addition to several potential detection tools under active investigation, we tested the gut microbiome and its metabolic complement as one of the earliest detection tools that could be useful in patients at high risk for PDAC. We used a combination of 16s rRNA pyrosequencing and whole-genome sequencing of gut fecal microbiota in a genetically engineered PDAC murine model (KRASG12DTP53R172HPdxCre or KPC). Metabolic reconstruction of microbiome was done using the HUMAnN2 pipeline. Serum polyamine levels were measured from murine and patient samples using chromogenic assay. Our results showed a Proteobacterial and Firmicutes dominance in gut microbiota in early stages of PDAC development. Upon in silico reconstruction of active metabolic pathways within the altered microbial flora, polyamine and nucleotide biosynthetic pathways were significantly elevated. These metabolic products are known to be actively assimilated by the host and eventually utilized by rapidly dividing cells for proliferation validating their importance in the context of tumorigenesis. In KPC mice, as well as PDAC patients, we show significantly elevated serum polyamine concentrations. Therefore, at the early stages of tumorigenesis, there is a strong correlation between microbial changes and release of metabolites that foster host tumorigenesis, thereby fulfilling the 'vicious cycle hypothesis' of the role of microbiome in health and disease states. Our results provide a potential, precise, noninvasive tool for early detection of PDAC, which may result in improved outcomes.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Kousik Kesh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Nivedita Arora
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Leá Di Martino
- Department of Surgery, University of Miami, Miami, FL, USA.,Université Grenoble Alpes, Isère, France
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Miami, FL, USA
| | - Nipun Merchant
- Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sulagna Banerjee
- Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
63
|
Lopez LR, Bleich RM, Arthur JC. Microbiota Effects on Carcinogenesis: Initiation, Promotion, and Progression. Annu Rev Med 2020; 72:243-261. [PMID: 33052764 DOI: 10.1146/annurev-med-080719-091604] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carcinogenesis is a multistep process by which normal cells acquire genetic and epigenetic changes that result in cancer. In combination with host genetic susceptibility and environmental exposures, a prominent procarcinogenic role for the microbiota has recently emerged. In colorectal cancer (CRC), three nefarious microbes have been consistently linked to cancer development: (a) Colibactin-producing Escherichia coli initiates carcinogenic DNA damage, (b) enterotoxigenic Bacteroides fragilis promotes tumorigenesis via toxin-induced cell proliferation and tumor-promoting inflammation, and (c) Fusobacterium nucleatum enhances CRC progression through two adhesins, Fap2 and FadA, that promote proliferation and antitumor immune evasion and may contribute to metastases. Herein, we use these three prominent microbes to discuss the experimental evidence linking microbial activities to carcinogenesis and the specific mechanisms driving this stepwise process. Precisely defining mechanisms by which the microbiota impacts carcinogenesis at each stage is essential for developing microbiota-targeted strategies for the diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Lacey R Lopez
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rachel M Bleich
- Department of Biology, Appalachian State University, Boone, North Carolina 28608, USA;
| | - Janelle C Arthur
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA; , .,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Center for Gastrointestinal Biology and Disease, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
64
|
Abstract
<P>Background: The microbiome plays a very important role in many physiological
processes including metabolism, inflammation, homeostasis and many biological pathways.
Therefore, dysbiosis of the microbiome disrupts these pathways in different ways that may result
in causing cancer. There is a complex connection between the microbiome and cancer. The human
bodies are continuously exposed to microbial cells, both resident and transient, as well as their
byproducts, including toxic metabolites.
</P><P>
Objective: To develop the manually curated, searchable and metagenomic resource to facilitate the
investigation of Human Cancer microbiota and make it publicly accessible through a web interface
which will help further in metagenomic studies.
</P><P>
Methods: In HOBD, the information on different cancers (Oral Cancer, Breast Cancer, Liver
Cancer, and Colorectal Cancer) has been compiled. The main purpose of creating HOBD was to
provide the scientific community with comprehensive information on the species that play a
crucial role in various Human Cancers.
</P><P>
Result: Over time, this resource will grow to become a unique community resource of human
cancer bacteria, providing an extra level of annotation for the analysis of metagenomic datasets.
</P><P>
Conclusion: The HOBD site offers easy to use tools for viewing all publicly available Human
Cancer microbiota. The freely accessible website is available at http://www.juit.ac.in/hcmd/home.</P>
Collapse
Affiliation(s)
- Nadia
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat- 173234, Solan (HP), India
| | - Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat- 173234, Solan (HP), India
| |
Collapse
|
65
|
Allwardt V, Ainscough AJ, Viswanathan P, Sherrod SD, McLean JA, Haddrick M, Pensabene V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering (Basel) 2020; 7:E112. [PMID: 32947816 PMCID: PMC7552662 DOI: 10.3390/bioengineering7030112] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Organs-on-a-Chip (OOAC) is a disruptive technology with widely recognized potential to change the efficiency, effectiveness, and costs of the drug discovery process; to advance insights into human biology; to enable clinical research where human trials are not feasible. However, further development is needed for the successful adoption and acceptance of this technology. Areas for improvement include technological maturity, more robust validation of translational and predictive in vivo-like biology, and requirements of tighter quality standards for commercial viability. In this review, we reported on the consensus around existing challenges and necessary performance benchmarks that are required toward the broader adoption of OOACs in the next five years, and we defined a potential roadmap for future translational development of OOAC technology. We provided a clear snapshot of the current developmental stage of OOAC commercialization, including existing platforms, ancillary technologies, and tools required for the use of OOAC devices, and analyze their technology readiness levels. Using data gathered from OOAC developers and end-users, we identified prevalent challenges faced by the community, strategic trends and requirements driving OOAC technology development, and existing technological bottlenecks that could be outsourced or leveraged by active collaborations with academia.
Collapse
Affiliation(s)
- Vanessa Allwardt
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | | | - Priyalakshmi Viswanathan
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Stacy D. Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
| | - John A. McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; (V.A.); (S.D.S.); (J.A.M.)
- Vanderbilt Institute of Chemical Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK; (P.V.); (M.H.)
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, School of Medicine, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
66
|
Mitochondria, the gut microbiome and ROS. Cell Signal 2020; 75:109737. [PMID: 32810578 DOI: 10.1016/j.cellsig.2020.109737] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we discuss the connections between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). We examine the mitochondrion as an endosymbiotic organelle that is a hub for energy production, signaling, and cell homeostasis. Maintaining a diverse gut microbiome is generally associated with organismal fitness, intestinal health and resistance to environmental stress. In contrast, gut microbiome imbalance, termed dysbiosis, is linked to a reduction in organismal well-being. ROS are essential signaling molecules but can be damaging when present in excess. Increasing ROS levels have been shown to influence human health, homeostasis of gut cells, and the gastrointestinal microbial community's biodiversity. Reciprocally, gut microbes can affect ROS levels, mitochondrial homeostasis, and host health. We propose that mechanistic understanding of the suite of bi-directional interactions between mitochondria and the gut microbiome will facilitate innovative interdisciplinary studies examining evolutionary divergence and provide novel treatments and therapeutics for disease. GLOSS: In this review, we focus on the nexus between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). Mitochondria are a cell organelle that is derived from an ancestral alpha-proteobacteria. They generate around 80% of the adenosine triphosphate that an organism needs to function and release a range of signaling molecules essential for cellular homeostasis. The gut microbiome is a suite of microorganisms that are commensal, symbiotic and pathogenic to their host. ROS are one predominant group of essential signaling molecules that can be harmful in excess. We suggest that the mitochondria- microbiome nexus is a frontier of research that has cross-disciplinary benefits in understanding genetic divergence and human well-being.
Collapse
|
67
|
Łaniewski P, Cui H, Roe DJ, Chase DM, Herbst-Kralovetz MM. Vaginal microbiota, genital inflammation, and neoplasia impact immune checkpoint protein profiles in the cervicovaginal microenvironment. NPJ Precis Oncol 2020; 4:22. [PMID: 32802959 PMCID: PMC7398915 DOI: 10.1038/s41698-020-0126-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that the vaginal microbiota play a role in HPV persistence and cervical neoplasia development and progression. Here we examine a broad range of immune checkpoint proteins in the cervicovaginal microenvironment across cervical carcinogenesis and explore relationships among these key immunoregulatory proteins, the microbiota composition, and genital inflammation. First, we demonstrate that immune checkpoint molecules can be measured in cervicovaginal lavages. Secondly, we identify CD40, CD27, and TIM-3 to specifically discriminate cervical cancer from other groups and CD40, CD28, and TLR2 to positively correlate to genital inflammation. Finally, PD-L1 and LAG-3 levels negatively, whereas TLR2 positively correlate to health-associated Lactobacillus dominance. Overall, our study identifies immune checkpoint signatures associated with cervical neoplasm and illuminates the multifaceted microbiota-host immunity network in the local microenvironment. This study provides a foundation for future mechanistic studies and highlights the utility of cervicovaginal lavage profiling for predicting and monitoring response to cancer therapy.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine—Phoenix, University of Arizona, Phoenix, AZ USA
| | - Haiyan Cui
- UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ USA
| | - Denise J. Roe
- UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ USA
| | - Dana M. Chase
- UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ USA
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, AZ USA
- Valleywise Health Medical Center, Phoenix, AZ USA
- Dignity Health St. Joseph’s Hospital and Medical Center, Phoenix, AZ USA
- US Oncology, Phoenix, AZ USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine—Phoenix, University of Arizona, Phoenix, AZ USA
- UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ USA
- Department of Obstetrics and Gynecology, College of Medicine–Phoenix, University of Arizona, Phoenix, AZ USA
| |
Collapse
|
68
|
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020; 10:8996-9031. [PMID: 32802176 PMCID: PMC7415816 DOI: 10.7150/thno.45413] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been one of the most attractive nanomaterials in biomedicine due to their unique physicochemical properties. In this paper, we review the state-of-the-art advances of AgNPs in the synthesis methods, medical applications and biosafety of AgNPs. The synthesis methods of AgNPs include physical, chemical and biological routes. AgNPs are mainly used for antimicrobial and anticancer therapy, and also applied in the promotion of wound repair and bone healing, or as the vaccine adjuvant, anti-diabetic agent and biosensors. This review also summarizes the biological action mechanisms of AgNPs, which mainly involve the release of silver ions (Ag+), generation of reactive oxygen species (ROS), destruction of membrane structure. Despite these therapeutic benefits, their biological safety problems such as potential toxicity on cells, tissue, and organs should be paid enough attention. Besides, we briefly introduce a new type of Ag particles smaller than AgNPs, silver Ångstrom (Å, 1 Å = 0.1 nm) particles (AgÅPs), which exhibit better biological activity and lower toxicity compared with AgNPs. Finally, we conclude the current challenges and point out the future development direction of AgNPs.
Collapse
Affiliation(s)
- Li Xu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jie Huang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Hospital of Central South University-Amcan Medical Biotechnology Co. Ltd. Joint Research Center, Changsha, Hunan 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
69
|
Integrating the Tumor Microenvironment into Cancer Therapy. Cancers (Basel) 2020; 12:cancers12061677. [PMID: 32599891 PMCID: PMC7352326 DOI: 10.3390/cancers12061677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor progression is mediated by reciprocal interaction between tumor cells and their surrounding tumor microenvironment (TME), which among other factors encompasses the extracellular milieu, immune cells, fibroblasts, and the vascular system. However, the complexity of cancer goes beyond the local interaction of tumor cells with their microenvironment. We are on the path to understanding cancer from a systemic viewpoint where the host macroenvironment also plays a crucial role in determining tumor progression. Indeed, growing evidence is emerging on the impact of the gut microbiota, metabolism, biomechanics, and the neuroimmunological axis on cancer. Thus, external factors capable of influencing the entire body system, such as emotional stress, surgery, or psychosocial factors, must be taken into consideration for enhanced management and treatment of cancer patients. In this article, we review prognostic and predictive biomarkers, as well as their potential evaluation and quantitative analysis. Our overarching aim is to open up new fields of study and intervention possibilities, within the framework of an integral vision of cancer as a functional tissue with the capacity to respond to different non-cytotoxic factors, hormonal, immunological, and mechanical forces, and others inducing stroma and tumor reprogramming.
Collapse
|
70
|
Aindelis G, Chlichlia K. Modulation of Anti-Tumour Immune Responses by Probiotic Bacteria. Vaccines (Basel) 2020; 8:vaccines8020329. [PMID: 32575876 PMCID: PMC7350223 DOI: 10.3390/vaccines8020329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing amount of evidence to support the beneficial role of a balanced intestinal microbiota, or distinct members thereof, in the manifestation and progression of malignant tumours, not only in the gastrointestinal tract but also in distant tissues as well. Intriguingly, bacterial species have been demonstrated to be indispensable modulatory agents of widely-used immunotherapeutic or chemotherapeutic regiments. However, the exact contribution of commensal bacteria to immunity, as well as to neoplasia formation and response to treatment, has not been fully elucidated, and most of the current knowledge acquired from animal models has yet to be translated to human subjects. Here, recent advances in understanding the interaction of gut microbes with the immune system and the modulation of protective immune responses to cancer, either naturally or in the context of widely-used treatments, are reviewed, along with the implications of these observations for future therapeutic approaches. In this regard, bacterial species capable of facilitating optimal immune responses against cancer have been surveyed. According to the findings summarized here, we suggest that strategies incorporating probiotic bacteria and/or modulation of the intestinal microbiota can be used as immune adjuvants, aiming to optimize the efficacy of cancer immunotherapies and conventional anti-tumour treatments.
Collapse
|
71
|
Rotz SJ, Dandoy CE. The microbiome in pediatric oncology. Cancer 2020; 126:3629-3637. [PMID: 32533793 DOI: 10.1002/cncr.33030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The human microbiome comprises a diverse set of microorganisms, which play a mostly cooperative role in processes such as metabolism and host defense. Next-generation genomic sequencing of bacterial nucleic acids now can contribute a much broader understanding of the diverse organisms composing the microbiome. Emerging evidence has suggested several roles of the microbiome in pediatric hematology/oncology, including susceptibility to infectious diseases, immune response to neoplasia, and contributions to the tumor microenvironment as well as changes to the microbiome from chemotherapy and antibiotics with unclear consequences. In this review, the authors have examined the evidence of the role of the microbiome in pediatric hematology/oncology, discussed how the microbiome may be modulated, and suggested key questions in need of further exploration.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
72
|
Wiernikowski JT, Bernhardt MB. Review of nutritional status, body composition, and effects of antineoplastic drug disposition. Pediatr Blood Cancer 2020; 67 Suppl 3:e28207. [PMID: 32083372 DOI: 10.1002/pbc.28207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
The overall survival for children with cancer in high income countries is excellent. However, there are many disparities that may negatively affect survival, which are particularly problematic in low income countries, such as nutritional status at diagnosis and throughout therapy. Nutritional status as well as concomitant foods, supplements, and medications may play a role in overall exposure and response to chemotherapy. Emerging science around the microbiome may also play a role and should be further explored as a contributor to disease progression and therapeutic response. This article highlights some of these issues and proposes additional areas of research relevant to nutritional status and pharmacology that are needed in pediatric oncology.
Collapse
Affiliation(s)
- John T Wiernikowski
- Division of Paediatric Haematology/Oncology, Department of Paediatrics, McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Brooke Bernhardt
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
73
|
Niccolai E, Boem F, Emmi G, Amedei A. The link "Cancer and autoimmune diseases" in the light of microbiota: Evidence of a potential culprit. Immunol Lett 2020; 222:12-28. [PMID: 32145242 DOI: 10.1016/j.imlet.2020.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Evidence establishes that chronic inflammation and autoimmunity are associated with cancer development and patients with a primary malignancy may develop autoimmune-like diseases. Despite immune dysregulation is a common feature of both cancer and autoimmune diseases, precise mechanisms underlying this susceptibility are not clarified and different hypotheses have been proposed, starting from genetic and environmental common features, to intrinsic properties of immune system. Moreover, as the development and use of immunomodulatory therapies for cancer and autoimmune diseases are increasing, the elucidation of this relationship must be investigated in order to offer the best and most secure therapeutic options. The microbiota could represent a potential link between autoimmune diseases and cancer. The immunomodulation role of microbiota is widely recognized and under eubiosis, it orchestrates both the innate and adaptive response of immunity, in order to discriminate and modulate the immune response itself in the most appropriate way. Therefore, a dysbiotic status can alter the immune tonus rendering the host prone to exogenous or endogenous infections, breaking the tolerance against self-components and activating the immune responses in an excessive (i.e. chronic inflammation) or deficient way, favoring the onset of neoplastic and autoimmune diseases.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Federico Boem
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy; Department of Philosophy and Educational Sciences. University of Turin, Via Verdi 8, 10124, Turin, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy; Neuromusculoskeletal Department (Interdisciplinary Internal Medicine), Azienda Ospedaliera Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy; Neuromusculoskeletal Department (Interdisciplinary Internal Medicine), Azienda Ospedaliera Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
74
|
Early-life vancomycin treatment promotes airway inflammation and impairs microbiome homeostasis. Aging (Albany NY) 2020; 11:2071-2081. [PMID: 30981206 PMCID: PMC6503881 DOI: 10.18632/aging.101901] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/31/2019] [Indexed: 12/19/2022]
Abstract
Several studies have reported that gut and lung microbiomes are involved in the process of asthma pathogenesis. However, it remains unclear how perinatal or early-life antibiotic intervention affect adult allergic airway inflammation. We assigned C57BL/6 mice randomly to four experimental groups: normal saline control (NS), ovalbumin (OVA), vancomycin pretreated NS (VAN-NS), and vancomycin pretreated OVA (VAN-OVA). The vancomycin groups were orally given the drug from gestational day 14 to 6 week. An OVA-induced asthma model was then established at 6 weeks of age, and airway inflammation was evaluated. In addition, total DNA was extracted from the feces and lung tissue and used for 16S rDNA gene sequencing, to detect the composition of the microbiome. In the VAN-OVA group, airway inflammation and Th2-related cytokines were found to be significantly increased versus the control groups. Gene sequencing showed that vancomycin treatment attenuated the richness and evenness, and altered the composition of the microbiome in the gut and lung. Micrococcaceae and Clostridiaceae-1 were potentially correlated to the severity of allergic airway inflammation. Our study suggests that perinatal and early-life vancomycin intervention aggravates allergic inflammation in adulthood, which might be correlated with imbalanced gut and lung microbiome homeostasis.
Collapse
|
75
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
76
|
Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells 2020; 9:cells9051091. [PMID: 32354130 PMCID: PMC7290701 DOI: 10.3390/cells9051091] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer-related mortality remains high worldwide, despite tremendous advances in diagnostics and therapeutics; hence, the quest for better strategies for disease management, as well as the identification of modifiable risk factors, continues. With recent leaps in genomic technologies, microbiota have emerged as major players in most cancers, including breast cancer. Interestingly, microbial alterations have been observed with some of the established risk factors of breast cancer, such as obesity, aging and periodontal disease. Higher levels of estrogen, a risk factor for breast cancer that cross-talks with other risk factors such as alcohol intake, obesity, parity, breastfeeding, early menarche and late menopause, are also modulated by microbial dysbiosis. In this review, we discuss the association between known breast cancer risk factors and altered microbiota. An important question related to microbial dysbiosis and cancer is the underlying mechanisms by which alterations in microbiota can support cancer progression. To this end, we review the involvement of microbial metabolites as effector molecules, the modulation of the metabolism of xenobiotics, the induction of systemic immune modulation, and altered responses to therapy owing to microbial dysbiosis. Given the association of breast cancer risk factors with microbial dysbiosis and the multitude of mechanisms altered by dysbiotic microbiota, an impaired microbiome is, in itself, an important risk factor.
Collapse
|
77
|
Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol 2020; 17:232-250. [PMID: 32071434 PMCID: PMC9977514 DOI: 10.1038/s41585-020-0286-z] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
The female reproductive tract (FRT), similar to other mucosal sites, harbours a site-specific microbiome, which has an essential role in maintaining health and homeostasis. In the majority of women of reproductive age, the microbiota of the lower FRT (vagina and cervix) microenvironment is dominated by Lactobacillus species, which benefit the host through symbiotic relationships. By contrast, the upper FRT (uterus, Fallopian tubes and ovaries) might be sterile in healthy individuals or contain a low-biomass microbiome with a diverse mixture of microorganisms. When dysbiosis occurs, altered immune and metabolic signalling can affect hallmarks of cancer, including chronic inflammation, epithelial barrier breach, changes in cellular proliferation and apoptosis, genome instability, angiogenesis and metabolic dysregulation. These pathophysiological changes might lead to gynaecological cancer. Emerging evidence shows that genital dysbiosis and/or specific bacteria might have an active role in the development and/or progression and metastasis of gynaecological malignancies, such as cervical, endometrial and ovarian cancers, through direct and indirect mechanisms, including modulation of oestrogen metabolism. Cancer therapies might also alter microbiota at sites throughout the body. Reciprocally, microbiota composition can influence the efficacy and toxic effects of cancer therapies, as well as quality of life following cancer treatment. Modulation of the microbiome via probiotics or microbiota transplant might prove useful in improving responsiveness to cancer treatment and quality of life. Elucidating these complex host-microbiome interactions, including the crosstalk between distal and local sites, will translate into interventions for prevention, therapeutic efficacy and toxic effects to enhance health outcomes for women with gynaecological cancers.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA,Department of Obstetrics and Gynecology, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA,UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ, USA,Correspondence:
| |
Collapse
|
78
|
Rathje K, Mortzfeld B, Hoeppner MP, Taubenheim J, Bosch TCG, Klimovich A. Dynamic interactions within the host-associated microbiota cause tumor formation in the basal metazoan Hydra. PLoS Pathog 2020; 16:e1008375. [PMID: 32191776 PMCID: PMC7081986 DOI: 10.1371/journal.ppat.1008375] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The extent to which disturbances in the resident microbiota can compromise an animal’s health is poorly understood. Hydra is one of the evolutionary oldest animals with naturally occurring tumors. Here, we found a causal relationship between an environmental spirochete (Turneriella spec.) and tumorigenesis in Hydra. Unexpectedly, virulence of this pathogen requires the presence of Pseudomonas spec., a member of Hydra´s beneficial microbiome indicating that dynamic interactions between a resident bacterium and a pathogen cause tumor formation. The observation points to the crucial role of commensal bacteria in maintaining tissue homeostasis and adds support to the view that microbial community interactions are essential for disease. These findings in an organism that shares deep evolutionary connections with all animals have implications for our understanding of cancer. Here we follow up on our initial observation of tumor formation in the basal metazoan Hydra and demonstrate that tumor development in one of the evolutionary oldest animals is caused by a dynamic interplay between an environmental spirochete, the host-associated resident microbiota, and the tissue homeostasis within the animal. Unexpectedly, the pathogenicity of the environmental bacterium Turneriella is context-dependent: the virulence of this pathogen requires the presence of a member of Hydra’s beneficial microbiome—the Pseudomonas bacterium. Dynamic interactions between two microbiota members have profound effects onto the host tissue homeostasis and fitness. Our data provide direct evidence for the important role of the resident microbiome in maintaining tissue homeostasis and pathogen defense, a fundamental process that is likely to take place in every tissue of every animal species. In summary, our study uncovers an evolutionary conserved role of the resident microbiome in guarding host’s tissue homeostasis.
Collapse
Affiliation(s)
- Kai Rathje
- Zoological Institute, Kiel University, Kiel, Germany
| | - Benedikt Mortzfeld
- Zoological Institute, Kiel University, Kiel, Germany
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, United States of America
| | - Marc P. Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan Taubenheim
- Zoological Institute, Kiel University, Kiel, Germany
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Kiel University, Kiel, Germany
- * E-mail: (TCGB); (AK)
| | | |
Collapse
|
79
|
Pellegrini M, Ippolito M, Monge T, Violi R, Cappello P, Ferrocino I, Cocolin LS, De Francesco A, Bo S, Finocchiaro C. Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: a randomized open-label pilot intervention trial. Nutrition 2020; 74:110749. [PMID: 32234652 DOI: 10.1016/j.nut.2020.110749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/15/2019] [Accepted: 01/19/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Breast cancer (BC) is the most diagnosed cancer in women. Increasing survival rates shift attention to preventive strategies. Obesity and intestinal microbiota composition may be associated with BC. A Mediterranean diet (MD) proved to be protective. The aim of this study was to assess the efficacy of probiotics in addition to an MD versus diet alone in influencing gut microbiota and metabolic profile in overweight BC survivors. METHODS A total of 34 BC survivors were randomly assigned to an MD for 4 mo plus 1 sachet/d of probiotics (Bifidobacterium longum BB536, Lactobacillus rhamnosus HN001) for the first 2 mo (intervention group, n = 16) or an MD alone for 4 mo (control group, n = 18). Anthropometric and nutritional assessments, adherence to the MD, compliance with physical activity, and metabolic parameters dosage were performed at baseline (T0), at 2 mo (T2), and at 4 mo (T4). Intestinal microbiota analysis was performed at T0 and T2. RESULTS After 2 mo of probiotic administration the number of bacterial species (P = 0.01) and the bacterial diversity assessed with the Chao1 index (P = 0.004) significantly increased; no significant variations were detected after diet alone. The Bacteroidetes-to-Firmicutes ratio significantly decreased in the intervention group and increased in controls (P = 0.004). Significant reductions of body weight, body mass index, fasting glucose, and homeostasis model assessment of insulin resistance were identified at T4 in both groups; in the intervention group waist circumference (P = 0.012), waist-to-hip ratio (P = 0.045), and fasting insulin (P = 0.017) also significantly decreased. CONCLUSIONS Probiotics in addition to an MD positively influence gut microbiota and improve metabolic and anthropometric parameters compared with an MD alone.
Collapse
Affiliation(s)
- Marianna Pellegrini
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Mirko Ippolito
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Taira Monge
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Rossella Violi
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy
| | - Paola Cappello
- CeRMS Labortory of Tumor Immunology, University of Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Luca Simone Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | | | - Simona Bo
- Department of Medical Science, University of Turin, Italy
| | - Concetta Finocchiaro
- Department of Clinical Nutrition, Città della Salute e della Scienza, Turin, Italy.
| |
Collapse
|
80
|
Kovács T, Mikó E, Ujlaki G, Sári Z, Bai P. The Microbiome as a Component of the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:137-153. [PMID: 32030653 DOI: 10.1007/978-3-030-35727-6_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbes, which live in the human body, affect a large set of pathophysiological processes. Changes in the composition and proportion of the microbiome are associated with metabolic diseases (Fulbright et al., PLoS Pathog 13:e1006480, 2017; Maruvada et al., Cell Host Microbe 22:589-599, 2017), psychiatric disorders (Macfabe, Glob Adv Health Med 2:52-66, 2013; Kundu et al., Cell 171:1481-1493, 2017), and neoplastic diseases (Plottel and Blaser, Cell Host Microbe 10:324-335, 2011; Schwabe and Jobin, Nat Rev Cancer 13:800-812, 2013; Zitvogel et al., Cell 165:276-287, 2016). However, the number of directly tumorigenic bacteria is extremely low. Microbial dysbiosis is connected to cancers of the urinary tract (Yu, Arch Med Sci 11:385-394, 2015), cervix (Chase, Gynecol Oncol 138:190-200, 2015), skin (Yu et al., J Drugs Dermatol 14:461-465, 2015), airways (Gui et al., Genet Mol Res 14:5642-5651, 2015), colon (Garrett, Science 348:80-86, 2015), lymphomas (Yamamoto and Schiestl, Int J Environ Res Public Health 11:9038-9049, 2014; Yamamoto and Schiestl, Cancer J 20:190-194, 2014), prostate (Yu, Arch Med Sci 11:385-394, 2015), and breast (Flores et al., J Transl Med 10:253, 2012; Fuhrman et al., J Clin Endocrinol Metab 99:4632-4640, 2014; Xuan et al., PLoS One 9:e83744, 2014; Goedert et al., J Natl Cancer Inst 107:djv147, 2015; Chan et al., Sci Rep 6:28061, 2016; Hieken et al., Sci Rep 6:30751, 2016; Urbaniak et al., Appl Environ Microbiol 82:5039-5048, 2016; Goedert et al., Br J Cancer 118:471-479, 2018). Microbial dysbiosis can influence organs in direct contact with the microbiome and organs that are located at distant sites of the body. The altered microbiota can lead to a disruption of the mucosal barrier (Plottel and Blaser, Cell Host Microbe 10:324-335, 2011), promote or inhibit tumorigenesis through the modification of immune responses (Kawai and Akira, Int Immunol 21:317-337, 2009; Dapito et al., Cancer Cell 21:504-516, 2012) and microbiome-derived metabolites, such as estrogens (Flores et al., J Transl Med 10:253, 2012; Fuhrman et al., J Clin Endocrinol Metab 99:4632-4640, 2014), secondary bile acids (Rowland, Role of the gut flora in toxicity and cancer, Academic Press, London, p x, 517 p., 1988; Yoshimoto et al., Nature 499:97-101, 2013; Xie et al., Int J Cancer 139:1764-1775, 2016; Shellman et al., Clin Otolaryngol 42:969-973, 2017; Luu et al., Cell Oncol (Dordr) 41:13-24, 2018; Miko et al., Biochim Biophys Acta Bioenerg 1859:958-974, 2018), short-chain fatty acids (Bindels et al., Br J Cancer 107:1337-1344, 2012), lipopolysaccharides (Dapito et al., Cancer Cell 21:504-516, 2012), and genotoxins (Fulbright et al., PLoS Pathog 13:e1006480, 2017). Thus, altered gut microbiota may change the efficacy of chemotherapy and radiation therapy (McCarron et al., Br J Biomed Sci 69:14-17, 2012; Viaud et al., Science 342:971-976, 2013; Montassier et al., Aliment Pharmacol Ther 42:515-528, 2015; Buchta Rosean et al., Adv Cancer Res 143:255-294, 2019). Taken together, microbial dysbiosis has intricate connections with neoplastic diseases; hereby, we aim to highlight the major contact routes.
Collapse
Affiliation(s)
- Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Zsanett Sári
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. .,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary. .,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
81
|
Baffy G. Gut Microbiota and Cancer of the Host: Colliding Interests. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:93-107. [PMID: 32130695 DOI: 10.1007/978-3-030-34025-4_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer develops in multicellular organisms from cells that ignore the rules of cooperation and escape the mechanisms of anti-cancer surveillance. Tumorigenesis is jointly encountered by the host and microbiota, a vast collection of microorganisms that live on the external and internal epithelial surfaces of the body. The largest community of human microbiota resides in the gastrointestinal tract where commensal, symbiotic and pathogenic microorganisms interact with the intestinal barrier and gut mucosal lymphoid tissue, creating a tumor microenvironment in which cancer cells thrive or perish. Aberrant composition and function of the gut microbiota (dysbiosis) has been associated with tumorigenesis by inducing inflammation, promoting cell growth and proliferation, weakening immunosurveillance, and altering food and drug metabolism or other biochemical functions of the host. However, recent research has also identified several mechanisms through which gut microbiota support the host in the fight against cancer. These mechanisms include the use of antigenic mimicry, biotransformation of chemotherapeutic agents, and other mechanisms to boost anti-cancer immune responses and improve the efficacy of cancer immunotherapy. Further research in this rapidly advancing field is expected to identify additional microbial metabolites with tumor suppressing properties, map the complex interactions of host-microbe 'transkingdom network' with cancer cells, and elucidate cellular and molecular pathways underlying the impact of specific intestinal microbial configurations on immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Ramirez MU, Hernandez SR, Soto-Pantoja DR, Cook KL. Endoplasmic Reticulum Stress Pathway, the Unfolded Protein Response, Modulates Immune Function in the Tumor Microenvironment to Impact Tumor Progression and Therapeutic Response. Int J Mol Sci 2019; 21:ijms21010169. [PMID: 31881743 PMCID: PMC6981480 DOI: 10.3390/ijms21010169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
Despite advances in cancer therapy, several persistent issues remain. These include cancer recurrence, effective targeting of aggressive or therapy-resistant cancers, and selective treatments for transformed cells. This review evaluates the current findings and highlights the potential of targeting the unfolded protein response to treat cancer. The unfolded protein response, an evolutionarily conserved pathway in all eukaryotes, is initiated in response to misfolded proteins accumulating within the lumen of the endoplasmic reticulum. This pathway is initially cytoprotective, allowing cells to survive stressful events; however, prolonged activation of the unfolded protein response also activates apoptotic responses. This balance is key in successful mammalian immune response and inducing cell death in malignant cells. We discuss how the unfolded protein response affects cancer progression, survival, and immune response to cancer cells. The literature shows that targeting the unfolded protein response as a monotherapy or in combination with chemotherapy or immunotherapies increases the efficacy of these drugs; however, systemic unfolded protein response targeting may yield deleterious effects on immune cell function and should be taken into consideration. The material in this review shows the promise of both approaches, each of which merits further research.
Collapse
Affiliation(s)
- Manuel U. Ramirez
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | - David R. Soto-Pantoja
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA
- Correspondence: ; Tel.: +01-336-716-2234
| |
Collapse
|
83
|
Franko J, Raman S, Krishnan N, Frankova D, Tee MC, Brahmbhatt R, Goldman CD, Weigel RJ. Randomized Trial of Perioperative Probiotics Among Patients Undergoing Major Abdominal Operation. J Am Coll Surg 2019; 229:533-540.e1. [DOI: 10.1016/j.jamcollsurg.2019.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
84
|
Fenton SE, Sosman JA, Chandra S. Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:744-761. [PMID: 35582566 PMCID: PMC8992532 DOI: 10.20517/cdr.2019.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022]
Abstract
Checkpoint inhibitors act by blocking physiologic mechanisms coopted by tumor cells to evade immune surveillance, restoring the immune system's ability to identify and kill malignant cells. These therapies have dramatically improved outcomes in multiple tumor types with durable responses in many patients, leading to FDA approval first in advanced melanoma, then in many other malignancies. However, as experience with checkpoint inhibitors has grown, populations of patients who are primary nonresponders or develop secondary resistance have been the majority of cases, even in melanoma. Mechanisms of resistance include those inherent to the tumor microenvironment, the tumor cells themselves, and the function of the patient's native immune cells. This review will discuss resistance to checkpoint inhibitors in melanoma as well as possible methods to restore sensitivity.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey A. Sosman
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Sunandana Chandra
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
85
|
Kovács P, Csonka T, Kovács T, Sári Z, Ujlaki G, Sipos A, Karányi Z, Szeőcs D, Hegedűs C, Uray K, Jankó L, Kiss M, Kiss B, Laoui D, Virág L, Méhes G, Bai P, Mikó E. Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers (Basel) 2019; 11:E1255. [PMID: 31461945 PMCID: PMC6769524 DOI: 10.3390/cancers11091255] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In breast cancer patients, the diversity of the microbiome decreases, coinciding with decreased production of cytostatic bacterial metabolites like lithocholic acid (LCA). We hypothesized that LCA can modulate oxidative stress to exert cytostatic effects in breast cancer cells. Treatment of breast cancer cells with LCA decreased nuclear factor-2 (NRF2) expression and increased Kelch-like ECH associating protein 1 (KEAP1) expression via activation of Takeda G-protein coupled receptor (TGR5) and constitutive androstane receptor (CAR). Altered NRF2 and KEAP1 expression subsequently led to decreased expression of glutathione peroxidase 3 (GPX3), an antioxidant enzyme, and increased expression of inducible nitric oxide synthase (iNOS). The imbalance between the pro- and antioxidant enzymes increased cytostatic effects via increased levels of lipid and protein oxidation. These effects were reversed by the pharmacological induction of NRF2 with RA839, tBHQ, or by thiol antioxidants. The expression of key components of the LCA-elicited cytostatic pathway (iNOS and 4HNE) gradually decreased as the breast cancer stage advanced. The level of lipid peroxidation in tumors negatively correlated with the mitotic index. The overexpression of iNOS, nNOS, CAR, KEAP1, NOX4, and TGR5 or the downregulation of NRF2 correlated with better survival in breast cancer patients, except for triple negative cases. Taken together, LCA, a metabolite of the gut microbiome, elicits oxidative stress that slows down the proliferation of breast cancer cells. The LCA-oxidative stress protective pathway is lost as breast cancer progresses, and the loss correlates with poor prognosis.
Collapse
Affiliation(s)
- Patrik Kovács
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Csonka
- Departments of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Kovács
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsanett Sári
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Ujlaki
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Adrien Sipos
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Karányi
- Departments of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dóra Szeőcs
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Karen Uray
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Laura Jankó
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Borbála Kiss
- Departments of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - László Virág
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gábor Méhes
- Departments of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Bai
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Edit Mikó
- Departments of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary.
| |
Collapse
|
86
|
Stashenko P, Yost S, Choi Y, Danciu T, Chen T, Yoganathan S, Kressirer C, Ruiz-Tourrella M, Das B, Kokaras A, Frias-Lopez J. The Oral Mouse Microbiome Promotes Tumorigenesis in Oral Squamous Cell Carcinoma. mSystems 2019; 4:e00323-19. [PMID: 31387932 PMCID: PMC6687944 DOI: 10.1128/msystems.00323-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck worldwide. Dysbiosis of the microbiome has increasingly been linked to the development of different kinds of cancer. Applying 16S rRNA gene sequence analysis and metatranscriptomic analyses, we characterized the longitudinal changes in the profiles and the function of the oral microbiome in a 4-nitroquinoline-1-oxide (4-NQO)-induced model of OSCC in gnotobiotic mice. We characterized the dynamics of the oral microbiome in this model using two different microbiome inocula: one from healthy mice and the other from mice bearing a 4-NQO-induced tumor. Mice colonized with different oral microbiomes and exposed to 4-NQO had increased tumor numbers and sizes compared to controls exposed to 4-NQO but lacking a microbiome. We observed an overall increase in diversity in the tumorigenic samples compared to that in the nontumor group not exposed to 4-NQO. Despite the variability in community dynamics, specific patterns emerged during the progression of the disease. In the two groups that were inoculated with the OSCC-associated microbiome, we observed opposite profiles of abundance in Parabacteroides and Corynebacterium While the percentage of Parabacteroides bacteria decreased in the control group, it increased in the OSCC group, and the opposite was observed for Corynebacterium The metatranscriptomic analysis revealed overexpression of the same metabolic signatures associated with OSCC regardless of the community profile. These included nitrogen transport, response to stress, interspecies interactions, Wnt pathway modulation, and amino acid and lipid biosynthesis. Thus, these results seem to suggest that certain collective physiological activities are critical for microbiome-mediated OSCC progression.IMPORTANCE There is growing evidence that changes in the microbiome are associated with carcinogenesis. To date, no consistent oral microbiome composition associated with OSCC has been identified. Longitudinal and functional studies like the study presented here should yield a better understanding of the role that the oral microbiome plays in OSCC. Our findings, obtained using a germ-free mouse model, indicate that the presence of different oral microbiomes enhances tumorigenesis and increases the final number of tumors in mice. By studying community-wide expression profiles, we found that regardless of the phylogenetic composition of the microbiome, the same metabolic activities were consistently associated with OSCC. Therefore, due to the functional redundancy of the microbiome, the critical element in explaining the contribution of the microbiota in OSCC is the collective physiological activity of the community, thus accounting for the previous inability to identify a consensus community profile or etiologic agents for OSCC.
Collapse
Affiliation(s)
- Philip Stashenko
- Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Susan Yost
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Yoonhee Choi
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Theodora Danciu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tsute Chen
- Forsyth Institute, Cambridge, Massachusetts, USA
| | | | | | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, Thoreau Lab for Global Health, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
87
|
Dheilly NM, Ewald PW, Brindley PJ, Fichorova RN, Thomas F. Parasite-microbe-host interactions and cancer risk. PLoS Pathog 2019; 15:e1007912. [PMID: 31415672 PMCID: PMC6695093 DOI: 10.1371/journal.ppat.1007912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Paul W. Ewald
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington DC, United States of America
| | - Raina N. Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
88
|
|
89
|
Noguera R, Burgos-Panadero R, Gamero-Sandemetrio E, de la Cruz-Merino L, Álvaro Naranjo T. [An integral view of cancer (II). Fields of investigation and emerging biomarkers]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2019; 52:222-233. [PMID: 31530405 DOI: 10.1016/j.patol.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/26/2019] [Accepted: 04/14/2019] [Indexed: 01/09/2023]
Abstract
Pathology and clinical oncology work hand in hand so that techniques and treatments, biomarkers and antibodies share the common goal of identifying integral new treatment regimens that are more effective and less aggressive. Evidence shows how tissue mechanics affect carcinogenesis and that tumor heterogeneity depends on metabolic stromal alteration and the Warburg effect of malignant cells, regulated directly by PD-1, becoming a target for immunotherapy. Proliferation and apoptosis depend on mitochondrial dysfunction in tumor cells, determining the grade of chemo/radio-resistance. The status of intestinal microbiota regulates immune response, tumor microenvironment structure and oncologic treatment response, whilst the Vitamin D receptor allows reprogramming of tumor stroma. Current collaboration between basic and clinical research paves the way for future investigation into areas such as tumor microenvironment and molecular mechanotherapy, metabolism and immunotherapy, mitochondria and oncogenesis, microbiota and chemotherapy, psychoneuroendocrine axis and homeostatic imbalance, epigenetics and reprogramming possibilities of the tumor phenotype. We review new prognostic and predictive biomarkers emerging from these fields of knowledge, opening up new therapeutic possibilities.
Collapse
Affiliation(s)
- Rosa Noguera
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia/Instituto de Investigaciones Sanitarias INCLIVA, Valencia, España; CIBERONC, Madrid, España
| | - Rebeca Burgos-Panadero
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia/Instituto de Investigaciones Sanitarias INCLIVA, Valencia, España; CIBERONC, Madrid, España
| | - Esther Gamero-Sandemetrio
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia/Instituto de Investigaciones Sanitarias INCLIVA, Valencia, España; CIBERONC, Madrid, España
| | | | - Tomás Álvaro Naranjo
- CIBERONC, Madrid, España; Servicio de Anatomía Patólogica, Hospital Verge de la Cinta, Tortosa, Tarragona, España.
| |
Collapse
|
90
|
Ilhan ZE, Łaniewski P, Thomas N, Roe DJ, Chase DM, Herbst-Kralovetz MM. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine 2019; 44:675-690. [PMID: 31027917 PMCID: PMC6604110 DOI: 10.1016/j.ebiom.2019.04.028] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cervical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic disease, metabolic profiling of the cervicovaginal microenvironment has the potential to reveal the functional interplay between the host and microbes in HPV persistence and progression to cancer. METHODS Our study design included HPV-negative/positive controls, women with low-grade and high-grade cervical dysplasia, or cervical cancer (n = 78). Metabolic fingerprints were profiled using liquid chromatography-mass spectrometry. Vaginal microbiota and genital inflammation were analysed using 16S rRNA gene sequencing and immunoassays, respectively. We used an integrative bioinformatic pipeline to reveal host and microbe contributions to the metabolome and to comprehensively assess the link between HPV, microbiota, inflammation and cervical disease. FINDINGS Metabolic analysis yielded 475 metabolites with known identities. Unique metabolic fingerprints discriminated patient groups from healthy controls. Three-hydroxybutyrate, eicosenoate, and oleate/vaccenate discriminated (with excellent capacity) between cancer patients versus the healthy participants. Sphingolipids, plasmalogens, and linoleate positively correlated with genital inflammation. Non-Lactobacillus dominant communities, particularly in high-grade dysplasia, perturbed amino acid and nucleotide metabolisms. Adenosine and cytosine correlated positively with Lactobacillus abundance and negatively with genital inflammation. Glycochenodeoxycholate and carnitine metabolisms connected non-Lactobacillus dominance to genital inflammation. INTERPRETATION Cervicovaginal metabolic profiles were driven by cancer followed by genital inflammation, HPV infection, and vaginal microbiota. This study provides evidence for metabolite-driven complex host-microbe interactions as hallmarks of cervical cancer with future translational potential. FUND: Flinn Foundation (#1974), Banner Foundation Obstetrics/Gynecology, and NIH NCI (P30-CA023074).
Collapse
Affiliation(s)
- Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Natalie Thomas
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Denise J Roe
- UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA
| | - Dana M Chase
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA; US Oncology, Phoenix, AZ 85016, USA; Maricopa Integrated Health Systems, Phoenix, AZ 85008, USA; Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA; UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA.
| |
Collapse
|
91
|
Tibbs TN, Lopez LR, Arthur JC. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:324-334. [PMID: 31403049 PMCID: PMC6685047 DOI: 10.15698/mic2019.08.685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
From birth, the microbiota plays an essential role in human development by educating host immune responses. Proper maturation of the immune system perturbs chronic inflammation and the pathogenesis of disease by preventing inappropriate immune responses. While many have detailed the roles of specific microbial groups in immune development and human disease, it remains to be elucidated how the microbiota influences the immune system during aging. Furthermore, it is not yet understood how age-related changes to the microbiota and immune system influence the development of age-related diseases. In this review, we outline the role of the microbiota in immune system development as well as functional changes that occur to immune cell populations during immunosenescence. In addition, we highlight how commensal microbes influence the pathogenesis of cancer, a prominent disease of aging. The information provided herein suggests that age-related changes to the microbiota and immune system should be considered in disease treatment and prevention strategies.
Collapse
Affiliation(s)
- Taylor N. Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lacey R. Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
92
|
Kovács T, Mikó E, Vida A, Sebő É, Toth J, Csonka T, Boratkó A, Ujlaki G, Lente G, Kovács P, Tóth D, Árkosy P, Kiss B, Méhes G, Goedert JJ, Bai P. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep 2019; 9:1300. [PMID: 30718646 PMCID: PMC6361949 DOI: 10.1038/s41598-018-37664-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent studies showed that changes to the gut microbiome alters the microbiome-derived metabolome, potentially promoting carcinogenesis in organs that are distal to the gut. In this study, we assessed the relationship between breast cancer and cadaverine biosynthesis. Cadaverine treatment of Balb/c female mice (500 nmol/kg p.o. q.d.) grafted with 4T1 breast cancer cells ameliorated the disease (lower mass and infiltration of the primary tumor, fewer metastases, and lower grade tumors). Cadaverine treatment of breast cancer cell lines corresponding to its serum reference range (100–800 nM) reverted endothelial-to-mesenchymal transition, inhibited cellular movement and invasion, moreover, rendered cells less stem cell-like through reducing mitochondrial oxidation. Trace amino acid receptors (TAARs), namely, TAAR1, TAAR8 and TAAR9 were instrumental in provoking the cadaverine-evoked effects. Early stage breast cancer patients, versus control women, had reduced abundance of the CadA and LdcC genes in fecal DNA, both responsible for bacterial cadaverine production. Moreover, we found low protein expression of E. coli LdcC in the feces of stage 1 breast cancer patients. In addition, higher expression of lysine decarboxylase resulted in a prolonged survival among early-stage breast cancer patients. Taken together, cadaverine production seems to be a regulator of early breast cancer.
Collapse
Affiliation(s)
- Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Éva Sebő
- Kenézy Breast Center, Kenézy Gyula County Hospital, Debrecen, 4032, Hungary
| | - Judit Toth
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tamás Csonka
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gréta Lente
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Dezső Tóth
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Borbála Kiss
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - James J Goedert
- National Cancer Institute, National Institutes of Health, Bethesda, 20982 MD, USA
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary. .,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary. .,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
93
|
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel) 2019; 11:38. [PMID: 30609850 PMCID: PMC6356461 DOI: 10.3390/cancers11010038] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial pathology and it represents the second leading cause of death worldwide. In the recent years, numerous studies highlighted the dual role of the gut microbiota in preserving host's health. Gut resident bacteria are able to produce a number of metabolites and bioproducts necessary to protect host's and gut's homeostasis. Conversely, several microbiota subpopulations may expand during pathological dysbiosis and therefore produce high levels of toxins capable, in turn, to trigger both inflammation and tumorigenesis. Importantly, gut microbiota can interact with the host either modulating directly the gut epithelium or the immune system. Numerous gut populating bacteria, called probiotics, have been identified as protective against the genesis of tumors. Given their capability of preserving gut homeostasis, probiotics are currently tested to help to fight dysbiosis in cancer patients subjected to chemotherapy and radiotherapy. Most recently, three independent studies show that specific gut resident species may potentiate the positive outcome of anti-cancer immunotherapy. The highly significant studies, uncovering the tight association between gut microbiota and tumorigenesis, as well as gut microbiota and anti-cancer therapy, are here described. The role of the Lactobacillus rhamnosus GG (LGG), as the most studied probiotic model in cancer, is also reported. Overall, according to the findings here summarized, novel strategies integrating probiotics, such as LGG, with conventional anti-cancer therapies are strongly encouraged.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, Tor Vergata University of Rome, 00133 Rome, Italy.
| | | | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico of Rome, 00128 Rome, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
94
|
Wallace TC, Bultman S, D'Adamo C, Daniel CR, Debelius J, Ho E, Eliassen H, Lemanne D, Mukherjee P, Seyfried TN, Tian Q, Vahdat LT. Personalized Nutrition in Disrupting Cancer - Proceedings From the 2017 American College of Nutrition Annual Meeting. J Am Coll Nutr 2018; 38:1-14. [PMID: 30511901 DOI: 10.1080/07315724.2018.1500499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer is a major public health problem and is the second leading cause of death in the United States and worldwide; nearly one in six deaths are attributable to cancer. Approximately 20% of all cancers diagnosed in the United States are attributable to unhealthy diet, excessive alcohol consumption, physical inactivity, and body fatness. Individual cancers are distinct disease states that are multifactorial in their causation, making them exceedingly cumbersome to study from a nutrition standpoint. Genetic influences are a major piece of the puzzle and personalized nutrition is likely to be most effective in disrupting cancer during all stages. Increasing evidence shows that after a cancer diagnosis, continuing standard dietary recommendations may not be appropriate. This is because powerful dietary interventions such as short-term fasting and carbohydrate restriction can disrupt tumor metabolism, synergizing with standard therapies such as radiation and drug therapy to improve efficacy and ultimately, cancer survival. The importance of identifying dietary interventions cannot be overstated, and the American College of Nutrition's commitment to advancing knowledge and research is evidenced by dedication of the 2017 ACN Annual Meeting to "Disrupting Cancer: The Role of Personalized Nutrition" and this resulting proceedings manuscript, which summarizes the meeting's findings.
Collapse
Affiliation(s)
- Taylor C Wallace
- a Department of Nutrition and Food Studies , George Mason University , Fairfax, VA , USA.,b Think Healthy Group, Inc , Washington, DC , USA
| | - Scott Bultman
- c Department of Genetics, University of North Carolina School of Medicine
| | - Chris D'Adamo
- d Departments of Family and Community Medicine and Epidemiology and Public Health , Center for Integrative Medicine, University of Maryland School of Medicine
| | - Carrie R Daniel
- e Department of Epidemiology, Division of Cancer Prevention and Population Sciences , The University of Texas MD Anderson Cancer Center
| | - Justine Debelius
- f Department of Medical Epidemiology and Biostatistics , Karolinska Institute , Stockholm , Sweden
| | - Emily Ho
- g Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, School of Biological and Population Health Sciences, Linus Pauling Institute, Oregon State University
| | - Heather Eliassen
- h Channing Division of Network Medicine , Brigham and Women's Hospital and Harvard Medical School.,i Harvard T.H. Chan School of Public Health
| | - Dawn Lemanne
- j Department of Medicine , University of Arizona , Tucson.,k National Institute of Integrative Medicine , Melbourne , Australia.,l Oregon Integrative Oncology , Ashland , Oregon
| | | | | | - Qiang Tian
- n Institute for Systems Biology, P4 Medicine Institute
| | | |
Collapse
|
95
|
Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 2018; 15:671-682. [PMID: 29844585 DOI: 10.1038/s41575-018-0025-6] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overweight and obesity are associated with increased risk of developing metabolic disorders such as diabetes and cardiovascular diseases. However, besides these metabolic diseases, excess body weight is also associated with different cancers, including gastrointestinal cancers, such as liver, pancreatic and colon cancers. Inflammation is a common feature of both obesity and cancer; however, the origin of this inflammation has been largely debated. Over the past decade, growing evidence has shown that the composition of the gut microbiota and its activity might be associated not only with the onset of inflammation but also with metabolic disorders and cancer. Here, we review the links between the gut microbiota, gut barrier function and the onset of low-grade inflammation in the development of gastrointestinal cancer. We also describe the mechanisms by which specific microorganism-associated molecular patterns crosstalk with the immune system and how the metabolic activity of bacteria induces specific signalling pathways beyond the gut that eventually trigger carcinogenesis.
Collapse
Affiliation(s)
- Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium.
| | - Benedicte F Jordan
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| |
Collapse
|
96
|
van Elsland D, Neefjes J. Bacterial infections and cancer. EMBO Rep 2018; 19:embr.201846632. [PMID: 30348892 PMCID: PMC6216254 DOI: 10.15252/embr.201846632] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/10/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022] Open
Abstract
Infections are estimated to contribute to 20% of all human tumours. These are mainly caused by viruses, which explains why a direct bacterial contribution to cancer formation has been largely ignored. While epidemiological data link bacterial infections to particular cancers, tumour formation is generally assumed to be solely caused by the ensuing inflammation responses. Yet, many bacteria directly manipulate their host cell in various phases of their infection cycle. Such manipulations can affect host cell integrity and can contribute to cancer formation. We here describe how bacterial surface moieties, bacterial protein toxins and bacterial effector proteins can induce host cell DNA damage, and thereby can interfere with essential host cell signalling pathways involved in cell proliferation, apoptosis, differentiation and immune signalling.
Collapse
Affiliation(s)
- Daphne van Elsland
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Leiden, The Netherlands
| |
Collapse
|
97
|
Apopa PL, Alley L, Penney RB, Arnaoutakis K, Steliga MA, Jeffus S, Bircan E, Gopalan B, Jin J, Patumcharoenpol P, Jenjaroenpun P, Wongsurawat T, Shah N, Boysen G, Ussery D, Nookaew I, Fagan P, Bebek G, Orloff MS. PARP1 Is Up-Regulated in Non-small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcystin. Front Microbiol 2018; 9:1757. [PMID: 30127774 PMCID: PMC6087756 DOI: 10.3389/fmicb.2018.01757] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major form of lung cancer, with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being its major subtypes. Smoking alone cannot completely explain the lung cancer etiology. We hypothesize that altered lung microbiome and chronic inflammatory insults in lung tissues contribute to carcinogenesis. Here we explore the microbiome composition of LUAD samples, compared to LUSC and normal samples. Extraction of microbiome DNA in formalin-fixed, paraffin-embedded (FFPE) lung tumor and normal adjacent tissues was meticulously performed. The 16S rRNA product from extracted microbiota was subjected to microbiome amplicon sequencing. To assess the contribution of the host genome, CD36 expression levels were analyzed then integrated with altered NSCLC subtype-specific microbe sequence data. Surprisingly phylum Cyanobacteria was consistently observed in LUAD samples. Across the NSCLC subtypes, differential abundance across four phyla (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes) was identified based on the univariate analysis (p-value < 6.4e-4 to 3.2e-2). In silico metagenomic and pathway analyses show that presence of microcystin correlates with reduced CD36 and increased PARP1 levels. This was confirmed in microcystin challenged NSCLC (A427) cell lines and Cyanobacteria positive LUAD tissues. Controlling the influx of Cyanobacteria-like particles or microcystin and the inhibition of PARP1 can provide a potential targeted therapy and prevention of inflammation-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Patrick L Apopa
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lisa Alley
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rosalind B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Konstantinos Arnaoutakis
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mathew A Steliga
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan Jeffus
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Emine Bircan
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Jing Jin
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nishi Shah
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pebbles Fagan
- Department of Health Behavior and Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gurkan Bebek
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, United States.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Mohammed S Orloff
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
98
|
Buono R, Longo VD. Starvation, Stress Resistance, and Cancer. Trends Endocrinol Metab 2018; 29:271-280. [PMID: 29463451 PMCID: PMC7477630 DOI: 10.1016/j.tem.2018.01.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer cells are characterized by dysregulation in signal transduction and metabolic pathways leading to increased glucose uptake, altered mitochondrial function, and the evasion of antigrowth signals. Fasting and fasting-mimicking diets (FMDs) provide a particularly promising intervention to promote differential effects in normal and malignant cells. These effects are caused in part by the reduction in IGF-1, insulin, and glucose and the increase in IGFBP1 and ketone bodies, which generate conditions that force cancer cells to rely more on metabolites and factors that are limited in the blood, thus resulting in cell death. Here we discuss the cellular and animal experiments demonstrating the differential effects of fasting on normal and cancer cells and the mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Roberta Buono
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
99
|
|
100
|
Piqué N, Gómez-Guillén MDC, Montero MP. Xyloglucan, a Plant Polymer with Barrier Protective Properties over the Mucous Membranes: An Overview. Int J Mol Sci 2018; 19:E673. [PMID: 29495535 PMCID: PMC5877534 DOI: 10.3390/ijms19030673] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Disruption of the epithelial barrier function has been recently associated with a variety of diseases, mainly at intestinal level, but also affecting the respiratory epithelium and other mucosal barriers. Non-pharmacological approaches such as xyloglucan, with demonstrated protective barrier properties, are proposed as new alternatives for the management of a wide range of diseases, for which mucosal disruption and, particularly, tight junction alterations, is a common characteristic. Xyloglucan, a natural polysaccharide derived from tamarind seeds, possesses a "mucin-like" molecular structure that confers mucoadhesive properties, allowing xyloglucan formulations to act as a barrier capable of reducing bacterial adherence and invasion and to preserve tight junctions and paracellular flux, as observed in different in vitro and in vivo studies. In clinical trials, xyloglucan has been seen to reduce symptoms of gastroenteritis in adults and children, nasal disorders and dry eye syndrome. Similar mucosal protectors containing reticulated proteins have also been useful for the treatment of irritable bowel syndrome and urinary tract infections. The role of xyloglucan in other disorders with mucosal disruption, such as dermatological or other infectious diseases, deserves further research. In conclusion, xyloglucan, endowed with film-forming protective barrier properties, is a safe non-pharmacological alternative for the management of different diseases, such as gastrointestinal and nasal disorders.
Collapse
Affiliation(s)
- Núria Piqué
- Department of Microbiology and Parasitology, Pharmacy Faculty, Universitat de Barcelona (UB), Diagonal Sud, Facultat de Farmàcia, Edifici A, Av Joan XXIII, 27-31, 08028 Barcelona, Spain.
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Universitat de Barcelona, 08921 Barcelona, Spain.
| | | | - María Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain.
| |
Collapse
|