51
|
Lee DH, Shi J, Jeoung NH, Kim MS, Zabolotny JM, Lee SW, White MF, Wei L, Kim YB. Targeted disruption of ROCK1 causes insulin resistance in vivo. J Biol Chem 2009; 284:11776-80. [PMID: 19276091 PMCID: PMC2673246 DOI: 10.1074/jbc.c900014200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/06/2009] [Indexed: 11/06/2022] Open
Abstract
Insulin signaling is essential for normal glucose homeostasis. Rho-kinase (ROCK) isoforms have been shown to participate in insulin signaling and glucose metabolism in cultured cell lines. To investigate the physiological role of ROCK1 in the regulation of whole body glucose homeostasis and insulin sensitivity in vivo, we studied mice with global disruption of ROCK1. Here we show that, at 16-18 weeks of age, ROCK1-deficient mice exhibited insulin resistance, as revealed by the failure of blood glucose levels to decrease after insulin injection. However, glucose tolerance was normal in the absence of ROCK1. These effects were independent of changes in adiposity. Interestingly, ROCK1 gene ablation caused a significant increase in glucose-induced insulin secretion, leading to hyperinsulinemia. To determine the mechanism(s) by which deletion of ROCK1 causes insulin resistance, we measured the ability of insulin to activate phosphatidylinositol 3-kinase and multiple distal pathways in skeletal muscle. Insulin-stimulated phosphatidylinositol 3-kinase activity associated with IRS-1 or phospho-tyrosine was also reduced approximately 40% without any alteration in tyrosine phosphorylation of insulin receptor in skeletal muscle. Concurrently, serine phosphorylation of IRS-1 at serine 632/635, which is phosphorylated by ROCK in vitro, was also impaired in these mice. Insulin-induced phosphorylation of Akt, AS160, S6K, and S6 was also decreased in skeletal muscle. These data suggest that ROCK1 deficiency causes systemic insulin resistance by impairing insulin signaling in skeletal muscle. Thus, our results identify ROCK1 as a novel regulator of glucose homeostasis and insulin sensitivity in vivo, which could lead to new treatment approaches for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Dae Ho Lee
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Giordano G, Li L, White CC, Farin FM, Wilkerson HW, Kavanagh TJ, Costa LG. Muscarinic receptors prevent oxidative stress-mediated apoptosis induced by domoic acid in mouse cerebellar granule cells. J Neurochem 2009; 109:525-38. [PMID: 19200344 PMCID: PMC4045406 DOI: 10.1111/j.1471-4159.2009.05969.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In mouse cerebellar granule neurons (CGNs) low concentrations of domoic acid (DomA) induce apoptotic cell death, which is mediated by oxidative stress; apoptosis is more pronounced in CGNs from Gclm (-/-) mice, which lack the modifier subunit of glutamate cysteine ligase (GCL) and have very low GSH levels. By activating M(3) muscarinic receptors, the cholinergic agonist carbachol inhibits DomA-induced apoptosis, and the anti-apoptotic action of carbachol is more pronounced in CGNs from Gclm (+/+) mice. Carbachol does not prevent DomA-induced increase in reactive oxygen species, suggesting that its anti-apoptotic effect is downstream of reactive oxygen species production. Carbachol inhibits DomA-induced activation of Jun N-terminal (JNK) and p38 kinases, increased translocation to mitochondria of the pro-apoptotic protein Bax, and activation of caspase-3. Carbachol activates extracellular signal-regulated kinases 1/2 (ERK1/2) MAPK and phospahtidylinositol-3 kinase (PI3K) in CGNs from both genotypes. However, while the protective effect of carbachol is mediated by ERK1/2 MAPK in CGNs from both mouse genotypes, inhibitors of PI3K are only effective at antagonizing the action of carbachol in CGNs from Gclm (+/+) mice. In CGNs from both Gclm (+/+) and (-/-) mice, carbachol induces a MAPK-dependent increase in the level of the anti-apoptotic protein Bcl-2. In contrast, carbachol causes a PI3K-dependent increase in GCL activity and of GSH levels only in CGNs from Gclm (+/+) mice. Such increase in GCL is not because of a transcriptionally-mediated increase in glutamate cysteine ligase catalytic subunit or glutamate cysteine ligase modifier subunit, but rather to an increase in the formation of the GCL holoenzyme. The results indicate that multiple pathways may contribute to the protective action of carbachol toward DomA-induced apoptosis. Compromised GCLM expression, which is also found in a common genetic polymorphism in humans, leads to lower GSH levels, which can exacerbate the neurotoxicity of DomA, and decreases the anti-apoptotic effectiveness of muscarinic agonists.
Collapse
Affiliation(s)
- Gennaro Giordano
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, 98105, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Prolongation of cell survival through prevention of apoptosis is considered to be a significant factor leading to anabolic responses in bone. The current studies were carried out to determine the role of the small GTPase, RhoA, in osteoblast apoptosis, since RhoA has been found to be critical for cell survival in other tissues. We investigated the effects of inhibitors and activators of RhoA signaling on osteoblast apoptosis. In addition, we assessed the relationship of this pathway to parathyroid hormone (PTH) effects on apoptotic signaling and cell survival. RhoA is activated by geranylgeranylation, which promotes its membrane anchoring. In serum-starved MC3T3-E1 osteoblastic cells, inhibition of geranylgeranylation with geranylgeranyl transferase I inhibitors increased activity of caspase-3, a component step in the apoptosis cascade, and increased cell death. Dominant negative RhoA and Y27632, an inhibitor of the RhoA effector Rho kinase, also increased caspase-3 activity. A geranylgeranyl group donor, geranylgeraniol, antagonized the effect of the geranylgeranyl transferase I inhibitor GGTI-2166, but could not overcome the effect of the Rho kinase inhibitor. PTH 1-34, a potent anti-apoptotic agent, completely antagonized the stimulatory effects of GGTI-2166, dominant negative RhoA, and Y27632, on caspase-3 activity. The results suggest that RhoA signaling is essential for osteoblastic cell survival but that the survival effects of PTH 1-34 are independent of this pathway.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Mary F. Clark
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Paula H. Stern
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
54
|
Weitzdörfer R, Höger H, Shim KS, Cekici L, Pollak A, Lubec G. Changes of hippocampal signaling protein levels during postnatal brain development in the rat. Hippocampus 2008; 18:807-13. [PMID: 18493952 DOI: 10.1002/hipo.20441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Developmental regulation of individual signaling proteins in the brain has been reported, although no systematic approach to study postnatal signaling protein expression in the rat has been described. This formed the rationale to compare hippocampal protein levels in rat hippocampus at different developmental time points. Sprague-Dawley rats at 3 days, 3 weeks, and 3 months of age were used, hippocampi were extirpated, proteins extracted and run on two-dimensional gel electrophoresis with subsequent identification of protein spots by mass spectrometry. Identified signaling proteins were quantified by specific software and for between group comparison Fisher's exact or Mann-Whitney U tests were applied. Annexin A3, GTP-binding nuclear protein RAN, phosphatidylethanolamine-binding protein, adenylyl cyclase associated protein 1, Rho-associated protein kinase 1, nucleoside diphosphate kinase A, LIM, and SH3 domain protein 1 were developmentally regulated. High-abundance hippocampal signaling proteins from several cascades in three different postnatal stages are presented, showing temporal regulation of signaling protein levels that have not been described in literature so far. Results are relevant for design and interpretation of further studies at the protein level and, moreover, an analytical tool concomitantly determining regulation of a large series of signaling proteins in the hippocampus is provided. These data contribute to the understanding that different time points may use different signaling cascades.
Collapse
Affiliation(s)
- Rachel Weitzdörfer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
55
|
Fuentes EO, Leemhuis J, Stark GB, Lang EM. Rho kinase inhibitors Y27632 and H1152 augment neurite extension in the presence of cultured Schwann cells. J Brachial Plex Peripher Nerve Inj 2008; 3:19. [PMID: 18817543 PMCID: PMC2567309 DOI: 10.1186/1749-7221-3-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022] Open
Abstract
Background RhoA and Rho kinase inhibitors overcome the inhibition of axonal regeneration posed by central nervous system (CNS) substrates. Methods To investigate if inhibition of the Rho pathway augments the neurite extension that naturally occurs in the peripheral nervous system (PNS) following nerve damage, dorsal root ganglion neurons and Schwann cell co-cultures were incubated with culture medium, C3 fusion toxin, and the Rho kinase (ROCK) inhibitors Y27632 and H1152. The longest neurite per neuron were measured and compared. Incubation with Y27632 and H1152 resulted in significantly longer neurites than controls when the neurons were in contact with Schwann cells. When separated by a porous P.E.T. membrane, only the group incubated with H1152 developed significantly longer neurites. This work demonstrates that Rho kinase inhibition augments neurite elongation in the presence of contact with a PNS-like substrate.
Collapse
Affiliation(s)
- Erick O Fuentes
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany.
| | | | | | | |
Collapse
|
56
|
Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, Narumiya S, Hashimoto N. Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res 2008; 86:270-80. [PMID: 17828770 DOI: 10.1002/jnr.21502] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rho-GTPase has been implicated in the apoptosis of many cell types, including neurons, but the mechanism by which it acts is not fully understood. Here, we investigate the roles of Rho and ROCK in apoptosis during transplantation of embryonic stem cell-derived neural precursor cells. We find that dissociation of neural precursors activates Rho and induces apoptosis. Treatment with the Rho inhibitor C3 exoenzyme and/or the ROCK inhibitor Y-27632 decreases the amount of dissociation-induced apoptosis (anoikis) by 20-30%. Membrane blebbing, which is an early morphological sign of apoptosis; cleavage of caspase-3; and release of cytochrome c from the mitochondria are also reduced by ROCK inhibition. These results suggest that dissociation of neural precursor cells elicits an intrinsic pathway of cell death that is at least partially mediated through the Rho/ROCK pathway. Moreover, in an animal transplantation model, inhibition of Rho and/or ROCK suppresses acute apoptosis of grafted cells. After transplantation, tumor necrosis factor-alpha and pro-nerve growth factor are strongly expressed around the graft. ROCK inhibition also suppresses apoptosis enhanced by these inflammatory cytokines. Taken together, these results indicate that inhibition of Rho/ROCK signaling may improve survival of grafted cells in cell replacement therapy.
Collapse
Affiliation(s)
- Masaomi Koyanagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Phillips HM, Hildreth V, Peat JD, Murdoch JN, Kobayashi K, Chaudhry B, Henderson DJ. Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation. Circ Res 2008; 102:615-23. [PMID: 18174466 DOI: 10.1161/circresaha.107.160861] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Establishment of cellular polarity is essential for the development of many tissues. In this study, we describe defects in the formation of the coronary vasculature in the loop-tail (Lp) mutant in which the planar cell polarity (PCP) gene, Vangl2, is disrupted. Although Vangl2 is expressed exclusively in the myocardial cells of the developing heart, the coronary vessels do not develop an intact smooth muscle layer, and there are enlarged, ectopic vessels on the surface of the heart. Reduced fibronectin deposition in the subepicardial space is associated with limited migration of epicardially derived cells (EPDCs) into the ventricular myocardium and likely contributes to these defects. Analysis of cardiomyocytes shows that the actin cytoskeleton is disrupted and the cytoarchitecture of the ventricular myocardium is abnormal in Lp/Lp hearts. Moreover, activation of RhoA/Rho kinase signaling is disrupted in these cells. Conditional inhibition of myocardial Rho kinase activity disrupts the organization of the cardiomyocytes and formation of the coronary vessels to produce the same spectrum of defects as seen in Lp. These data suggest that Vangl2 and Rho kinase act cell autonomously in the myocardium to regulate the organization of cardiomyocytes but also have non-cell-autonomous effects on the formation of the coronary vasculature.
Collapse
Affiliation(s)
- Helen M Phillips
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
58
|
Julien S, Schnichels S, Teng H, Tassew N, Henke-Fahle S, Mueller BK, Monnier PP. Purkinje cell survival in organotypic cultures: Implication of Rho and its downstream effector ROCK. J Neurosci Res 2008; 86:531-6. [PMID: 17893923 DOI: 10.1002/jnr.21511] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Organotypic cultures of postnatal day 1 (P1) to P7 mouse cerebella are well-established models for studying cell survival. In the present work, we investigate the involvement of the Rho/ROCK intracellular pathway in Purkinje cell survival by using organotypic cultures of P3 Swiss mice. Specific inhibitors of Rho or ROCK were applied at different concentrations to the slice cultures, which were maintained for 5 days in vitro. We show that the bacterial exoenzyme C3 transferase, a specific inhibitor of the small GTPase Rho, increases Purkinje cell survival. There is a 4.5- and 2.5-fold increase in Purkinje cell survival when C3 intracellular uptake is promoted either by the PEP-1 peptide or by the C2IN carrier protein, respectively, and not with the commonly used TAT peptide. Moreover, treatment with Y27632 and H-1152, two specific inhibitors of the Rho kinase ROCK, also strongly reduces apoptotic cell death and results in 6.5- and 8.5-fold increases in cell survival, respectively. In immunohistochemical analysis, we also show that H-1152 did not change either glial fibrillary acidic protein or isolectin-B4 staining, indicating that this compound did not alter the cellular composition in our cultures. Thus, our data demonstrate that inhibition of Rho and its downstream effector ROCK may be used to enhance cell survival in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sylvie Julien
- Section for Experimental Vitreoretinal Surgery, University Eye Hospital, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
59
|
Zhu S, Korzh V, Gong Z, Low BC. RhoA prevents apoptosis during zebrafish embryogenesis through activation of Mek/Erk pathway. Oncogene 2007; 27:1580-9. [PMID: 17873909 DOI: 10.1038/sj.onc.1210790] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RhoA small GTPase, as a key regulator for actin cytoskeletal rearrangement, plays pivotal roles during morphogenesis, cytokinesis, phagocytosis and cell migration, but little is known about its signaling mechanism that controls cell survival in vivo. Using zebrafish as a model, we show that non-overlapping antisense morpholinos that block either translation or splicing of rhoA lead to extensive apoptosis during embryogenesis, resulting in overall reduction of body size and body length. These defects are associated with reduced activation of growth-promoting Erk and decreased expression of anti-apoptotic bcl-2. Moreover, ectopic expression of rhoA, Mek or BCL-2 mRNA rescues such phenotypes. Consistently, combined suppression of RhoA and Mek/Erk or Bcl-2 pathways by sub-optimal dose of rhoA morpholino and pharmacological inhibitors for either Mek (U0126) or Bcl-2 (HA 14-1) can induce developmental abnormalities and enhanced apoptosis, similar to those caused by effective RhoA knockdown. Furthermore, U0126 abrogates the rescue by RhoA and MEK but not BCL-2. In contrast, HA 14-1 effectively abolishes all functional rescues by RhoA, MEK or BCL-2, supporting that RhoA prevents apoptosis by activation of Mek/Erk pathway and requiring Bcl-2. These findings reveal an important genetic and functional relationship between RhoA with Mek/Erk and Bcl-2 for cell survival control during embryogenesis.
Collapse
Affiliation(s)
- S Zhu
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
60
|
Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: Are the pieces now in place? J Cell Biochem 2007; 104:1964-87. [PMID: 17546585 DOI: 10.1002/jcb.21364] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
61
|
Huang CH, Cheng JC, Chen JC, Tseng CP. Evaluation of the role of Disabled-2 in nerve growth factor-mediated neurite outgrowth and cellular signalling. Cell Signal 2007; 19:1339-47. [PMID: 17317100 DOI: 10.1016/j.cellsig.2007.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 11/18/2022]
Abstract
Disabled-2 (DAB2) is an adapter protein that plays a key role in cell proliferation and differentiation. We reported here that DAB2 is expressed in various regions of rat central nervous system and is most abundant in the olfactory bulb. The up-regulation of DAB2 upon 5,7-dihydroxytryptamine-induced spinal cord lesion implicates that DAB2 may participate in the regulation of neuronal plasticity. To investigate DAB2 function in the regulation of neurite outgrowth, the rat p59 and p82 form of DAB2 was individually and stably expressed in the PC12 cells. Both p59 and p82 inhibited nerve growth factor (NGF)-induced neurite outgrowth concomitantly with a decrease in the expression of neuron-specific cytoskeleton protein beta-tubulin III. To unveil the molecular mechanism of DAB2 in NGF signaling, we found that RhoA-GTPase activity was up-regulated in DAB2 stable lines whereas the Ras/MAPK and PI3-kinase/Akt signaling was not affected. The inhibitory effect of DAB2 on NGF-mediated neurite outgrowth was reversed by the pretreatment of Rho-kinase (ROCK) inhibitor Y27632, implicating that DAB2 modulates RhoA/ROCK signaling. Together, this study defines a role of DAB2 in the control of neuronal plasticity and demonstrates for the first time that DAB2 is a negative regulator in NGF-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Graduate Institute of Basic Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan, Republic of China
| | | | | | | |
Collapse
|
62
|
Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa SI, Muguruma K, Sasai Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 2007; 25:681-6. [PMID: 17529971 DOI: 10.1038/nbt1310] [Citation(s) in RCA: 1559] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 05/10/2007] [Indexed: 02/07/2023]
Abstract
Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from approximately 1% to approximately 27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1(+) cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Zhang Y, Gu X, Yuan X. Phenylalanine activates the mitochondria-mediated apoptosis through the RhoA/Rho-associated kinase pathway in cortical neurons. Eur J Neurosci 2007; 25:1341-8. [PMID: 17425560 DOI: 10.1111/j.1460-9568.2007.05404.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylketonuria (PKU) is caused by deficiency of phenylalanine hydroxylase, resulting in an accumulation of phenylalanine in brain tissue and cerebrospinal fluid of phenylketonuria patients. Phenylketonuria is neuropathologically characterized by neuronal cell loss, white matter abnormalities, dendritic simplification, and synaptic density reduction. The neuropathological effect may be due to the "toxicity" of the high concentration of phenylalanine, while the underlying mechanism remains unclear. In this study, we found that cultured cerebral cortical neurons underwent mitochondria-mediated apoptosis when exposed to phenylalanine. We further demonstrated that phenylalanine induced RhoA activation. Phenylalanine also promoted myosin light chain (MLC) phosphorylation, which might be the result of the activation of Rho-associated kinase (ROCK). The RhoA antagonist, C3 transferase (C3), Rho-associated kinase specific inhibitor, Y-27632, and the overexpression of either dominant negative RhoA or dominant negative Rho-associated kinase inhibited phenylalanine-induced caspase-3 activation and rescued neurons from apoptosis, indicating that the RhoA/Rho-associated kinase signalling pathway plays an important role in phenylalanine-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yongjun Zhang
- XinHua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | | | | |
Collapse
|
64
|
Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 2007; 55:61-75. [PMID: 17347801 PMCID: PMC2612781 DOI: 10.1007/s00005-007-0009-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 12/19/2022]
Abstract
Rho kinase (ROCK) belongs to a family of serine/threonine kinases that are activated via interaction with Rho GTPases. ROCK is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, and proliferation. Recent studies have shown that ROCK plays an important role in the regulation of apoptosis in various cell types and animal disease models. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be function redundant, this based largely on kinase construct overexpression and chemical inhibitors (Y27632 and fasudil) which inhibit both ROCK1 and ROCK2. Gene targeting and RNA interference approaches allow further dissection of distinct cellular, physiological, and patho-physiological functions of the two ROCK isoforms. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling in the regulation of apoptosis and highlights new findings from recently generated ROCK-deficient mice.
Collapse
Affiliation(s)
- Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, R4 building, Room 370, 1044 West Walnut Str, Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|
65
|
Hu Y, Cui Q, Harvey AR. Interactive effects of C3, cyclic AMP and ciliary neurotrophic factor on adult retinal ganglion cell survival and axonal regeneration. Mol Cell Neurosci 2006; 34:88-98. [PMID: 17126028 DOI: 10.1016/j.mcn.2006.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/09/2006] [Accepted: 10/12/2006] [Indexed: 11/25/2022] Open
Abstract
We tested whether combined therapy involving Rho inactivation, elevation of cAMP and supply of ciliary neurotrophic factor (CNTF) (i) increased axotomized adult retinal ganglion cell (RGC) survival and (ii) promoted axonal regeneration into peripheral nerve (PN) autografted onto the cut optic nerve. PN-grafted eyes were injected with combinations of a Rho-inactivating enzyme C3 transferase (C3-11), CNTF and a cell-permeant analogue of cAMP (CPT-cAMP). Four weeks after PN transplantation, RGC survival was quantified using beta-III tubulin immunohistochemistry. Regeneration was assessed using retrograde fluorogold tracing and pan-neurofilament immunostaining of grafts. Treatment with C3-11 increased RGC survival but co-injection with CPT-cAMP, CNTF or combined CNTF/CPT-cAMP did not further enhance RGC viability. There were greater numbers of regenerating RGCs after multiple C3-11 injections and regeneration was further and significantly increased after intravitreal injections of all three factors. In the combined C3-11/CNTF/CPT-cAMP treatment group about 15% of RGCs remained viable of which more than half regenerated an axon. These data emphasize the power of combinatorial pharmacotherapeutic and transplant strategies in the treatment of neurotrauma.
Collapse
Affiliation(s)
- Ying Hu
- School of Anatomy and Human Biology M309, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | | | | |
Collapse
|
66
|
Song J, Li J, Lulla A, Evers BM, Chung DH. Protein kinase D protects against oxidative stress-induced intestinal epithelial cell injury via Rho/ROK/PKC-delta pathway activation. Am J Physiol Cell Physiol 2006; 290:C1469-76. [PMID: 16421204 PMCID: PMC2613753 DOI: 10.1152/ajpcell.00486.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase D (PKD) is a novel protein serine kinase that has recently been implicated in diverse cellular functions, including apoptosis and cell proliferation. The purpose of our present study was 1) to define the activation of PKD in intestinal epithelial cells treated with H2O2, an agent that induces oxidative stress, and 2) to delineate the upstream signaling mechanisms mediating the activation of PKD. We found that the activation of PKD is induced by H2O2 in both a dose- and time-dependent fashion. PKD phosphorylation was attenuated by rottlerin, a selective PKC-delta inhibitor, and by small interfering RNA (siRNA) directed against PKC-delta, suggesting the regulation of PKD activity by upstream PKC-delta. Activation of PKD was also blocked by a Rho kinase (ROK)-specific inhibitor, Y-27632, as well as by C3, a Rho protein inhibitor, demonstrating that the Rho/ROK pathway also mediates PKD activity in intestinal cells. In addition, H2O2-induced PKC-delta phosphorylation was inhibited by C3 treatment, further suggesting that PKC-delta is downstream of Rho/ROK. Interestingly, H2O2-induced intestinal cell apoptosis was enhanced by PKD siRNA. Together, these results clearly demonstrate that oxidative stress induces PKD activation in intestinal epithelial cells and that this activation is regulated by upstream PKC-delta and Rho/ROK pathways. Importantly, our findings suggest that PKD activation protects intestinal epithelial cells from oxidative stress-induced apoptosis. These findings have potential clinical implications for intestinal injury associated with oxidative stress (e.g., necrotizing enterocolitis in infants).
Collapse
Affiliation(s)
- Jun Song
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555
| | - Jing Li
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew Lulla
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555
| | - B. Mark Evers
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Dai H. Chung
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
67
|
Woods A, Beier F. RhoA/ROCK signaling regulates chondrogenesis in a context-dependent manner. J Biol Chem 2006; 281:13134-13140. [PMID: 16565087 DOI: 10.1074/jbc.m509433200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development of the cartilage template that precedes endochondral bone formation requires the condensation of mesenchymal cells and their subsequent differentiation to the chondrocytic lineage. We have previously shown that inhibition of the RhoA/ROCK signaling pathway or actin dynamics enhances Sox9 mRNA expression, increases glycosaminoglycan production, and transforms cell shape to a spherical, chondrocyte-like morphology. However, we demonstrate here that in three-dimensional micromass cultures of mesenchymal cells, increased expression of Sox9 in response to these manipulations is not sufficient to induce the expression of established Sox9 target genes. This is illustrated by a decrease in the transcript levels of collagen II and aggrecan as well as reduced activity of a Sox9-responsive reporter gene in response to ROCK inhibition and cytochalasin D. We also demonstrate a decrease in mRNA levels of the transcriptional co-activators L-Sox5 and Sox6 upon ROCK inhibition and cytochalasin D. The decrease in Sox9 activity is likely partially due to reduced L-Sox5 and Sox6 levels but also to a delay in Sox9 phosphorylation following ROCK inhibition. In contrast, inhibition of the RhoA/ROCK pathway and cytochalasin D treatment in monolayer culture results in the enhancement of a number of markers of chondrogenesis such as Sox9 activity and collagen II and aggrecan transcripts levels. These data demonstrate that the effects of RhoA/ROCK signaling and actin polymerization inhibitors on chondrogenic gene expression are dependent on the cellular context.
Collapse
Affiliation(s)
- Anita Woods
- Department of Physiology and Pharmacology, The Canadian Institutes for Health Research (CIHR) Group in Skeletal Development and Remodeling, University of Western Ontario, London, Ontario N6A 5C1 Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, The Canadian Institutes for Health Research (CIHR) Group in Skeletal Development and Remodeling, University of Western Ontario, London, Ontario N6A 5C1 Canada.
| |
Collapse
|
68
|
Alabed YZ, Grados-Munro E, Ferraro GB, Hsieh SHK, Fournier AE. Neuronal responses to myelin are mediated by rho kinase. J Neurochem 2006; 96:1616-25. [PMID: 16441511 DOI: 10.1111/j.1471-4159.2006.03670.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CNS myelin inhibits axon growth due to the expression of several growth-inhibitory proteins, including myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein and Nogo. Myelin-associated inhibitory proteins activate rho GTPase in responsive neurons. Rho kinase (ROCK) has been implicated as a critical rho effector in this pathway due to the ability of the pharmacological inhibitor Y-27632 to circumvent myelin-dependent inhibition. Y-27632, however, inhibits the activity of additional kinases. Using three independent approaches, we provide direct evidence that ROCKII is activated in response to the myelin-associated inhibitor Nogo. We demonstrate that Nogo treatment enhances ROCKII translocation to the cellular membrane in PC12 cells and enhances ROCKII kinase activity towards an in vitro substrate. In addition, Nogo treatment enhances phosphorylation of myosin light chain II, a known ROCK substrate. Further, we demonstrate that primary dorsal root ganglia neurons can be rendered insensitive to the inhibitory effects of myelin via infection with dominant negative ROCK. Together these data provide direct evidence for a rho-ROCK-myosin light chain-II signaling cascade in response to myelin-associated inhibitors.
Collapse
Affiliation(s)
- Yazan Z Alabed
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
69
|
Rauch U, Kappler J. Chondroitin/Dermatan Sulfates in the Central Nervous System: Their Structures and Functions in Health and Disease. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:337-56. [PMID: 17239774 DOI: 10.1016/s1054-3589(05)53016-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Uwe Rauch
- Department of Experimental Pathology, Universitet Lund, Lund, Sweden
| | | |
Collapse
|
70
|
Knabe W, Sirén AL, Ehrenreich H, Kuhn HJ. Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia. ACTA ACUST UNITED AC 2005; 210:209-19. [PMID: 16151855 DOI: 10.1007/s00429-005-0019-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Recombinant human erythropoietin (EPO) is neuroprotective in animal models of adult spinal cord injury, and reduces apoptosis in adult dorsal root ganglia after spinal nerve crush. The present work demonstrates that spinal cord and dorsal root ganglia share dynamic expression patterns of EPO and its receptor (EPOR) during development. C57Bl mice from embryonic days (E) 8 (E8) to E19 were studied. In spinal cord and dorsal root ganglia, EPOR expression in all precursor cells preceded the expression of EPO in subsets of neurons. On E11, EPO-immunoreactive spinal motoneurons and ganglionic sensory neurons resided adjacent to EPOR-expressing radial glial cells and satellite cells, respectively. From E12 onwards, EPOR-immunoreactivity decreased in radial glial cells and, transiently, in satellite cells. Simultaneously, large-scale apoptosis of motoneurons and sensory neurons started, and subsets of neurons were labelled by antibodies against EPOR. Viable neurons expressed EPO and EPOR. Up to E12.5, apoptotic cells were EPOR-immunopositive, but variably EPO-immunonegative or EPO-immunopositive. Thereafter, EPO-immunonegative and EPOR-immunopositive apoptotic cells predominated. Our findings suggest that EPO-mediated neuron-glial and, later, neuron-neuronal interactions promote the differentiation and/or the survival of subsets of neurons and glial cells in central as well as in peripheral parts of the embryonic nervous system. Correspondingly, expression of phospho-Akt-1/protein-kinase B extensively overlapped expression sites of EPO and EPOR, but was absent from apoptotic cells. Identified other sites of EPO and/or EPOR expression include radial glial cells that transform to astrocytes, cells of the floor plate and notochord as well as neural crest-derived boundary cap cells at motor exit points and cells of the primary sympathetic chain.
Collapse
Affiliation(s)
- Wolfgang Knabe
- Department of Anatomy/Embryology, Georg August University Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
71
|
Le SS, Loucks FA, Udo H, Richardson-Burns S, Phelps RA, Bouchard RJ, Barth H, Aktories K, Tyler KL, Kandel ER, Heidenreich KA, Linseman DA. Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 2005; 94:1025-39. [PMID: 16092944 PMCID: PMC2366110 DOI: 10.1111/j.1471-4159.2005.03252.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation. GTP-loading of Rac1 was maintained in CGNs by integrin-mediated (RGD-dependent) cell attachment and trophic support. Clostridium difficile toxin B (ToxB), a specific Rho family inhibitor, induced a selective caspase-mediated degradation of Rac1 without affecting RhoA or Cdc42 protein levels. Both ToxB and dominant-negative N17Rac1 elicited CGN apoptosis, characterized by cytochrome c release and activation of caspase-9 and -3, whereas dominant-negative N19RhoA or N17Cdc42 did not cause significant cell death. ToxB stimulated mitochondrial translocation and conformational activation of Bax, c-Jun activation, and induction of the BH3-only protein Bim. Similarly, c-Jun activation and Bim induction were observed with N17Rac1. A c-jun N-terminal protein kinase (JNK)/p38 inhibitor, SB203580, and a JNK-specific inhibitor, SP600125, significantly decreased ToxB-induced Bim expression and blunted each subsequent step of the apoptotic cascade. These results indicate that Rac acts downstream of integrins and growth factors to promote neuronal survival by repressing c-Jun/Bim-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Shoshona S. Le
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | - Hiroshi Udo
- Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Sarah Richardson-Burns
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Reid A. Phelps
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Ron J. Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Holger Barth
- Department of Pharmacology and Toxicology, University of Ulm, Ulm, Germany
| | - Klaus Aktories
- Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universitat Freiburg, Germany
| | - Kenneth L. Tyler
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
- Department of Neurology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Eric R. Kandel
- Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Kim A. Heidenreich
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Daniel A. Linseman
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, USA
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado, USA
| |
Collapse
|
72
|
De Sarno P, Shestopal SA, Zmijewska AA, Jope RS. Anti-apoptotic effects of muscarinic receptor activation are mediated by Rho kinase. Brain Res 2005; 1041:112-5. [PMID: 15804506 DOI: 10.1016/j.brainres.2005.01.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 01/21/2005] [Accepted: 01/24/2005] [Indexed: 11/23/2022]
Abstract
Activation of muscarinic receptors has been shown to be neuroprotective in several different models of apoptosis, but the mechanism of this action is unknown. Therefore, we investigated the intermediate signals mediating the anti-apoptotic action of muscarinic receptor activation in SH-SY5Y cells. Inhibition of most muscarinic receptor-coupled actions had no effect on protection, but inhibition of Rho kinase with HA-1077 concentration-dependently was able to completely block the protection against H(2)O(2)- and camptothecin-induced apoptosis produced by stimulation of muscarinic receptors. These results demonstrate that the anti-apoptotic effect provided by muscarinic receptor stimulation is dependent on the activity of Rho kinase.
Collapse
Affiliation(s)
- Patrizia De Sarno
- Department of Psychiatry and Behavioral Neurobiology, 1720 Seventh Avenue South, Sparks Center 1057, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | |
Collapse
|
73
|
Matsushita N, Kobayashi K, Miyazaki JI, Kobayashi K. Fate of transient catecholaminergic cell types revealed by site-specific recombination in transgenic mice. J Neurosci Res 2005; 78:7-15. [PMID: 15372500 DOI: 10.1002/jnr.20229] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catecholamine-producing cell types are generated from specified neuronal lineages during vertebrate development. The catecholaminergic phenotype is also expressed transiently in some cell types in non-catecholaminergic tissues, including the sensory ganglia, enteric ganglia, and ventral portions of the neural tube during embryonic development. The fate of the transient catecholaminergic cell types at later developmental stages, however, has not been elucidated. We developed a Cre-loxP-mediated recombination system under the control of the dopamine beta-hydroxylase (DBH) promoter, which drives gene expression in typical noradrenergic and adrenergic cell groups as well as in transient catecholaminergic cell types. Expression of Cre recombinase in transgenic mice resulted in an efficient recombination in noradrenergic and adrenergic cell groups at the adult stage. The recombination was also induced in the cranial nerve/spinal cord motor neurons and sensory/enteric ganglion neurons. Analysis of recombination patterns in transgenic mouse embryos showed the occurrence of recombination during prenatal development in both cell types exhibiting the typical and transient catecholaminergic phenotypes. Because the DBH gene promoter is expressed transiently in the ventral neural tube and sensory ganglion during embryonic development, our results provide evidence that the cell types showing a transient catecholaminergic phenotype in these tissues are destined to become mature motor neurons or sensory ganglion neurons during subsequent differentiation.
Collapse
Affiliation(s)
- Natsuki Matsushita
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | |
Collapse
|