51
|
Kramár EA, Chen LY, Lauterborn JC, Simmons DA, Gall CM, Lynch G. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2012; 33:708-19. [PMID: 20674095 PMCID: PMC2978788 DOI: 10.1016/j.neurobiolaging.2010.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/30/2010] [Accepted: 06/12/2010] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a possible broad-spectrum treatment for the plasticity losses found in rodent models of human conditions associated with memory and cognitive deficits. We have tested this strategy in the particular case of ovariectomy. The actin polymerization in spines normally found after patterned afferent stimulation was greatly reduced, along with the stabilization of long-term potentiation, in hippocampal slices prepared from middle-aged ovariectomized rats. Both effects were fully restored by a 60-minute infusion of 2 nM BDNF. Comparable rescue results were obtained after elevating endogenous BDNF protein levels in hippocampus with 4 daily injections of a short half-life ampakine (positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate [AMPA]-type glutamate receptors). These results provide the first evidence that minimally invasive, mechanism-based drug treatments can ameliorate defects in spine plasticity caused by depressed estrogen levels.
Collapse
Affiliation(s)
- Enikö A Kramár
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4291, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Kurihara D, Yamashita T. Chondroitin sulfate proteoglycans down-regulate spine formation in cortical neurons by targeting tropomyosin-related kinase B (TrkB) protein. J Biol Chem 2012; 287:13822-8. [PMID: 22389491 DOI: 10.1074/jbc.m111.314070] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit axonal sprouting and experience-dependent plasticity. Although protein-tyrosine phosphatase σ (PTPσ) has been proven to be a receptor for CSPGs, its downstream signaling has remained a mystery. Here, we show that CSPGs target and dephosphorylate tropomyosin-related kinase B, the receptor of brain-derived neurotrophic factor (BDNF), via PTPσ in embryonic cortical neurons in vitro. Whereas BDNF promoted dendritic spine formation in embryonic cortical neurons, CSPGs abolished the effects of BDNF and eliminated existing dendritic spines when BDNF was present. The latter effect was dependent on the p75 receptor, presumably because BDNF binding to the p75 receptor elicits elimination of dendritic spines. These results suggest that the inhibitory activity of CSPGs on dendritic spine formation operates through the targeting of neurotrophins at the receptor level.
Collapse
Affiliation(s)
- Dai Kurihara
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | |
Collapse
|
53
|
Shulga A, Magalhães AC, Autio H, Plantman S, di Lieto A, Nykjær A, Carlstedt T, Risling M, Arumäe U, Castrén E, Rivera C. The loop diuretic bumetanide blocks posttraumatic p75NTR upregulation and rescues injured neurons. J Neurosci 2012; 32:1757-70. [PMID: 22302815 PMCID: PMC6703341 DOI: 10.1523/jneurosci.3282-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023] Open
Abstract
Injured neurons become dependent on trophic factors for survival. However, application of trophic factors to the site of injury is technically extremely challenging. Novel approaches are needed to circumvent this problem. Here, we unravel the mechanism of the emergence of dependency of injured neurons on brain-derived neurotrophic factor (BDNF) for survival. Based on this mechanism, we propose the use of the diuretic bumetanide to prevent the requirement for BDNF and consequent neuronal death in the injured areas. Responses to the neurotransmitter GABA change from hyperpolarizing in intact neurons to depolarizing in injured neurons. We show in vivo in rats and ex vivo in mouse organotypic slice cultures that posttraumatic GABA(A)-mediated depolarization is a cause for the well known phenomenon of pathological upregulation of pan-neurotrophin receptor p75(NTR). The increase in intracellular Ca(2+) triggered by GABA-mediated depolarization activates ROCK (Rho kinase), which in turn leads to the upregulation of p75(NTR). We further show that high levels of p75(NTR) and its interaction with sortilin and proNGF set the dependency on BDNF for survival. Thus, application of bumetanide prevents p75(NTR) upregulation and neuronal death in the injured areas with reduced levels of endogenous BDNF.
Collapse
Affiliation(s)
- Anastasia Shulga
- Institute of Biotechnology
- Neuroscience Center, and
- Department of Neurological Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Stefan Plantman
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Aarhus University, DK-8000C Aarhus, Denmark
| | - Thomas Carlstedt
- Department of Hand Surgery, Karolinska Institutet, Södersjukhuset, SE-118 83 Stockholm, Sweden, and
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | - Claudio Rivera
- Institute of Biotechnology
- Neuroscience Center, and
- Université de la Méditerranée, UMR S901 Aix-Marseille 2, Institut de Neurobiologie de la Méditerranée, 13009 Marseille, France
| |
Collapse
|
54
|
Focal adhesion kinase promotes integrin adhesion dynamics necessary for chemotropic turning of nerve growth cones. J Neurosci 2011; 31:13585-95. [PMID: 21940449 DOI: 10.1523/jneurosci.2381-11.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ability of extending axons to navigate using combinations of extracellular cues is essential for proper neural network formation. One intracellular signaling molecule that integrates convergent signals from both extracellular matrix (ECM) proteins and growth factors is focal adhesion kinase (FAK). Analysis of FAK function shows that it influences a variety of cellular activities, including cell motility, proliferation, and differentiation. Recent work in developing neurons has shown that FAK and Src function downstream of both attractive and repulsive growth factors, but little is known about the effectors or cellular mechanisms that FAK controls in growth cones on ECM proteins. We report that FAK functions downstream of brain-derived neurotrophic factor (BDNF) and laminin in the modulation of point contact dynamics, phosphotyrosine signaling at filopodial tips, and lamellipodial protrusion. BDNF stimulation accelerates paxillin-containing point contact turnover and formation. Knockdown of FAK function either with a FAK antisense morpholino or by expression of FRNK, a dominant-negative FAK isoform, blocks all aspects of the response to BDNF, including the acceleration of point contact dynamics. On the other hand, expression of specific FAK point mutants can selectively disrupt distinct aspects of the response to BDNF. We also show that growth cone turning depends on both signaling cascades tested here. Finally, we provide the first evidence that growth cone point contacts are asymmetrically regulated during turning to an attractive guidance cue.
Collapse
|
55
|
Maloney MT, Bamburg JR. Mechanisms of neuronal growth cone guidance: an historical perspective. Dev Neurobiol 2011; 71:795-800. [PMID: 21805682 DOI: 10.1002/dneu.20908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/03/2011] [Indexed: 02/06/2023]
Abstract
At the distal most aspect of motile extending axons and dendrites lies the growth cone, a hand like macroorganelle of membrane bound cytoskeleton, packed with receptors, adhesion molecules, molecular motors, and an army of regulatory and signaling proteins. Splayed out along the substratum in vitro, the growth cone resembles an open hand with bundles of filamentous actin, barbed ends outstretched, as if fingers extending from a central domain of dynamic microtubule plus ends. The growth cone acts first as a sensory platform, analyzing the environment ahead for the presence of guidance cues, secondly as a mechanical dynamo establishing focal contact with the extracellular matrix to drive processive forward outgrowth, and thirdly as a forward biochemical command center where signals are interrogated to inform turning, extension, retraction, or branching. During his career, Paul Letourneau has made major contributions to our understanding of how growth cones respond to their environment. Here, we will summarize some of these major advances in their historical context. Letourneau's contributions have provided insights into cytoskeletal organization, growth cone dynamics, and signaling pathways. His recent work has described some important molecules and molecular mechanisms involved in growth cone turning. Although much remains to be understood about this important and intriguing structure, Letourneau's contributions have provided us with "growth cone guidance."
Collapse
Affiliation(s)
- Michael T Maloney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
56
|
Gomez TM. Pioneering studies on the mechanisms of neuronal morphogenesis. Dev Neurobiol 2011; 71:780-4. [PMID: 21805681 DOI: 10.1002/dneu.20902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/06/2022]
Abstract
Axon outgrowth and pathfinding occurs through a complex series of interacting biochemical signaling pathways that regulate the motility of neuronal growth cones. Over the past 30 years, Paul Letourneau and his students have explored the molecular basis of growth cone motility and have contributed immensely to this field. In celebration of his 65th birthday, this essay is written in gratitude for Paul's many contributions and training.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
57
|
Garred MM, Wang MM, Guo X, Harrington CA, Lein PJ. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth. PLoS One 2011; 6:e21754. [PMID: 21765909 PMCID: PMC3135585 DOI: 10.1371/journal.pone.0021754] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/06/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis. CONCLUSIONS/SIGNIFICANCE This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types.
Collapse
Affiliation(s)
- Michelle M. Garred
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael M. Wang
- Departments of Neurology and Molecular & Integrative Physiology, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Xin Guo
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christina A. Harrington
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
58
|
14-3-3 proteins regulate protein kinase a activity to modulate growth cone turning responses. J Neurosci 2010; 30:14059-67. [PMID: 20962227 DOI: 10.1523/jneurosci.3883-10.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth cones regulate the speed and direction of neuronal outgrowth during development and regeneration. How the growth cone spatially and temporally regulates signals from guidance cues is poorly understood. Through a proteomic analysis of purified growth cones we identified isoforms of the 14-3-3 family of adaptor proteins as major constituents of the growth cone. Disruption of 14-3-3 via the R18 antagonist or knockdown of individual 14-3-3 isoforms switches nerve growth factor- and myelin-associated glycoprotein-dependent repulsion to attraction in embryonic day 13 chick and postnatal day 5 rat DRG neurons. These effects are reminiscent of switching responses observed in response to elevated cAMP. Intriguingly, R18-dependent switching is blocked by inhibitors of protein kinase A (PKA), suggesting that 14-3-3 proteins regulate PKA. Consistently, 14-3-3 proteins interact with PKA and R18 activates PKA by dissociating its regulatory and catalytic subunits. Thus, 14-3-3 heterodimers regulate the PKA holoenzyme and this activity plays a critical role in modulating neuronal responses to repellent cues.
Collapse
|
59
|
Involvement of the p75NTR signaling pathway in persistent synaptic suppression coupled with synapse elimination following repeated long-term depression induction. J Neurosci Res 2010; 88:3433-46. [DOI: 10.1002/jnr.22505] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/17/2010] [Accepted: 07/25/2010] [Indexed: 01/10/2023]
|
60
|
Naska S, Lin DC, Miller FD, Kaplan DR. p75NTR is an obligate signaling receptor required for cues that cause sympathetic neuron growth cone collapse. Mol Cell Neurosci 2010; 45:108-20. [PMID: 20584617 DOI: 10.1016/j.mcn.2010.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/12/2010] [Accepted: 05/29/2010] [Indexed: 11/30/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) is required for the activity of growth cone collapsing factors such as Nogo, MAG, OMgP, and ephrin A. Specifically, p75NTR associates with the Nogo receptor and GPI-linked ephrin A, and unliganded p75NTR mediates the biological effects of those proteins. Here we assess the requirement for p75NTR for the growth cone collapsing responses of semaphorins (Sema) 3A and 3F and ephrin B2 in sympathetic neurons. We show that the ability of Sema 3s or ephrin B2 to collapse growth cones is suppressed in p75NTR-/- sympathetic neurons. Ectopic expression of p75NTR restores the collapsing activity of Sema 3 in p75NTR-/- neurons. Moreover, p75NTR must be bound to its neurotrophin ligands to participate in Sema 3-mediated collapse. Ligand-bound p75NTR participates in Sema 3 and ephrin B2-mediated collapse via the Rho signaling pathway, since inhibition of Rho signaling is sufficient to suppress the effects of Sema 3s and ephrin B2 in p75NTR+/+ but not p75NTR-/- neurons. Our data suggest that in addition to its role as a co-receptor, p75NTR may provide an obligate parallel neurotrophin-activated inhibitory pathway that broadly sensitizes neurons to inhibitory cues.
Collapse
Affiliation(s)
- Sibel Naska
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
61
|
Fine-tuning of neuronal architecture requires two profilin isoforms. Proc Natl Acad Sci U S A 2010; 107:15780-5. [PMID: 20798032 DOI: 10.1073/pnas.1004406107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two profilin isoforms (PFN1 and PFN2a) are expressed in the mammalian brain. Although profilins are essential for regulating actin dynamics in general, the specific role of these isoforms in neurons has remained elusive. We show that knockdown of the neuron-specific PFN2a results in a significant reduction in dendrite complexity and spine numbers of hippocampal neurons. Overexpression of PFN1 in PFN2a-deficient neurons prevents the loss of spines but does not restore dendritic complexity. Furthermore, we show that profilins are involved in differentially regulating actin dynamics downstream of the pan-neurotrophin receptor (p75(NTR)), a receptor engaged in modulating neuronal morphology. Overexpression of PFN2a restores the morphological changes in dendrites caused by p75(NTR) overexpression, whereas PFN1 restores the normal spine density. Our data assign specific functions to the two PFN isoforms, possibly attributable to different affinities for potent effectors also involved in actin dynamics, and suggest that they are important for the signal-dependent fine-tuning of neuronal architecture.
Collapse
|
62
|
Jeon CY, Kim HJ, Morii H, Mori N, Settleman J, Lee JY, Kim J, Kim SC, Park JB. Neurite outgrowth from PC12 cells by basic fibroblast growth factor (bFGF) is mediated by RhoA inactivation through p190RhoGAP and ARAP3. J Cell Physiol 2010; 224:786-94. [DOI: 10.1002/jcp.22184] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
63
|
Sánchez-Soriano N, Gonçalves-Pimentel C, Beaven R, Haessler U, Ofner-Ziegenfuss L, Ballestrem C, Prokop A. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics. Dev Neurobiol 2010; 70:58-71. [PMID: 19937774 DOI: 10.1002/dneu.20762] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
64
|
Kiasalari Z, Salehi I, Zhong Y, McMahon SB, Michael-Titus AT, Michael GJ. Identification of perineal sensory neurons activated by innocuous heat. J Comp Neurol 2010; 518:137-62. [PMID: 19937707 DOI: 10.1002/cne.22187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-fiber sensory neurons comprise nociceptors and smaller populations of cells detecting innocuous thermal and light tactile stimuli. Markers identify subpopulations of these cells, aiding our understanding of their physiological roles. The transient receptor potential vanilloid 1 (TRPV1) cation channel is characteristic of polymodal C-fiber nociceptors and is sensitive to noxious heat, irritant vanilloids, and protons. By using immunohistochemistry, in situ hybridization, and retrograde tracing, we anatomically characterize a small subpopulation of C-fiber cells that express high levels of TRPV1 (HE TRPV1 cells). These cells do not express molecular markers normally associated with C-fiber nociceptors. Furthermore, they express a unique complement of neurotrophic factor receptors, namely, the trkC receptor for neurotrophin 3, as well as receptors for neurturin and glial cell line-derived neurotrophic factor. HE TRPV1 cells are distributed in sensory ganglia throughout the neuraxis, with higher numbers noted in the sixth lumbar ganglion. In this ganglion and others of the lumbar and sacral regions, 75% or more of such HE TRPV1 cells express estrogen receptor alpha, suggestive of their regulation by estrogen and a role in afferent sensation related to reproduction. Afferents from these cells provide innervation to the hairy skin of the perineal region and can be activated by thermal stimuli from 38 degrees C, with a maximal response at 42 degrees C, as indicated by induction of extracellular signal-regulated kinase phosphorylation. We hypothesize that apart from participating in normal thermal sensation relevant to thermoregulation and reproductive functions, HE TRPV1 cells may mediate burning pain in chronic pain syndromes with perineal localization.
Collapse
Affiliation(s)
- Zahra Kiasalari
- Queen Mary University of London, Bart's and The London School of Medicine and Dentistry, Centre for Neuroscience & Trauma, Blizard Institute of Cell and Molecular Science, London, E1 2AT, UK
| | | | | | | | | | | |
Collapse
|
65
|
Koshimizu Y, Ohtomi M. Regulation of neurite extension by expression of LECT2 and neurotrophins based on findings in LECT2-knockout mice. Brain Res 2010; 1311:1-11. [PMID: 19917270 DOI: 10.1016/j.brainres.2009.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/04/2009] [Accepted: 11/04/2009] [Indexed: 12/12/2022]
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) was first isolated as a chemotactic factor from phytohemagglutinin-activated human T-cell leukemia SKW-3 cells. LECT2 is expressed in various tissues, including in the brain, stomach and liver, but the functions of LECT2 in the brain remains unclear. To elucidate these functions, we investigated the influence of a deficiency of LECT2 on the morphology of cultured hippocampal neurons during neuronal development, and examined the expression of neurotrophins (NGF, BDNF, and NT-3) and their receptors (TrkA, TrkB, TrkC, and p75NTR) in these neurons. The extension of axons and dendrites in neurons from LECT2-knockout (LECT2-KO) mice was shorter than that in neurons from wild-type mice during culture and significantly less than that in wild-type mice after 4 days in culture. Moreover, neurons from LECT2-KO mice showed different expression of NGF, BDNF and NT-3 during culture compared to wild-type mice. Our results show that LECT2 regulates the extension of axons and dendrites and the expressions of NGF, BDNF and NT-3 during neuronal development.
Collapse
Affiliation(s)
- Yohei Koshimizu
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | | |
Collapse
|
66
|
Zhang Y, Zhao J, Wang J, Jiao X. Brain-derived neurotrophic factor inhibits phenylalanine-induced neuronal apoptosis by preventing RhoA pathway activation. Neurochem Res 2009; 35:480-6. [PMID: 19890711 DOI: 10.1007/s11064-009-0084-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2009] [Indexed: 11/28/2022]
Abstract
Phenylketonuria (PKU) is neuropathologically characterized by neuronal cell loss, white matter abnormalities, dendritic simplification, and synaptic density reduction. The neuropathological effect may be due to the 'toxicity' of the high concentration of phenylalanine, while little is known about the related treatments to block this effect. In this study, we reported that brain-derived growth factor (BDNF) protected neurons from phenylalanine-induced apoptosis and inhibition of Trk receptor by K252a or downregulation of TrkB abrogated the effect of BDNF. We further demonstrated that phenylalanine-induced RhoA activation and myosin light chain phosphorylation were inhibited by pretreatment with BDNF, while phenylalanine activates the mitochondria-mediated apoptosis through the RhoA/Rho-associated kinase pathway. Thus our studies indicate that the protective effect of BDNF against phenylalanine-induced neuronal apoptosis is probably mediated by suppression of RhoA signaling pathway via TrkB receptor. Taken together, these findings suggest a potential neuroprotective action of BDNF in prevention and treatment of PKU brain injury.
Collapse
Affiliation(s)
- Yongjun Zhang
- XinHua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Kongjiang Road 1665#, 200092, Shanghai, China.
| | | | | | | |
Collapse
|
67
|
Koshimizu H, Kiyosue K, Hara T, Hazama S, Suzuki S, Uegaki K, Nagappan G, Zaitsev E, Hirokawa T, Tatsu Y, Ogura A, Lu B, Kojima M. Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol Brain 2009; 2:27. [PMID: 19674479 PMCID: PMC2743674 DOI: 10.1186/1756-6606-2-27] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/13/2009] [Indexed: 11/13/2022] Open
Abstract
Background Proneurotrophins and mature neurotrophins elicit opposite effects via the p75 neurotrophin receptor (p75NTR) and Trk tyrosine kinase receptors, respectively; however the molecular roles of proneurotrophins in the CNS are not fully understood. Results Based on two rare single nucleotide polymorphisms (SNPs) of the human brain-derived neurotrophic factor (BDNF) gene, we generated R125M-, R127L- and R125M/R127L-BDNF, which have amino acid substitution(s) near the cleavage site between the pro- and mature-domain of BDNF. Western blot analyses demonstrated that these BDNF variants are poorly cleaved and result in the predominant secretion of proBDNF. Using these cleavage-resistant proBDNF (CR-proBDNF) variants, the molecular and cellular roles of proBDNF on the CNS neurons were examined. First, CR-proBDNF showed normal intracellular distribution and secretion in cultured hippocampal neurons, suggesting that inhibition of proBDNF cleavage does not affect intracellular transportation and secretion of BDNF. Second, we purified recombinant CR-proBDNF and tested its biological effects using cultured CNS neurons. Treatment with CR-proBDNF elicited apoptosis of cultured cerebellar granule neurons (CGNs), while treatment with mature BDNF (matBDNF) promoted cell survival. Third, we examined the effects of CR-proBDNF on neuronal morphology using more than 2-week cultures of basal forebrain cholinergic neurons (BFCNs) and hippocampal neurons. Interestingly, in marked contrast to the action of matBDNF, which increased the number of cholinergic fibers and hippocampal dendritic spines, CR-proBDNF dramatically reduced the number of cholinergic fibers and hippocampal dendritic spines, without affecting the survival of these neurons. Conclusion These results suggest that proBDNF has distinct functions in different populations of CNS neurons and might be responsible for specific physiological cellular processes in the brain.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, 563-8577 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. ACTA ACUST UNITED AC 2009; 186:85-97. [PMID: 19596849 PMCID: PMC2712993 DOI: 10.1083/jcb.200901084] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The releasable factor adenosine blocks the formation of long-term potentiation (LTP). These experiments used this observation to uncover the synaptic processes that stabilize the potentiation effect. Brief adenosine infusion blocked stimulation-induced actin polymerization within dendritic spines along with LTP itself in control rat hippocampal slices but not in those pretreated with the actin filament stabilizer jasplakinolide. Adenosine also blocked activity-driven phosphorylation of synaptic cofilin but not of synaptic p21-activated kinase (PAK). A search for the upstream origins of these effects showed that adenosine suppressed RhoA activity but only modestly affected Rac and Cdc42. A RhoA kinase (ROCK) inhibitor reproduced adenosine's effects on cofilin phosphorylation, spine actin polymerization, and LTP, whereas a Rac inhibitor did not. However, inhibitors of Rac or PAK did prolong LTP's vulnerability to reversal by latrunculin, a toxin which blocks actin filament assembly. Thus, LTP induction initiates two synaptic signaling cascades: one (RhoA-ROCK-cofilin) leads to actin polymerization, whereas the other (Rac-PAK) stabilizes the newly formed filaments.
Collapse
Affiliation(s)
- Christopher S Rex
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
70
|
Suggate EL, Ahmed Z, Read ML, Eaton-Charnock K, Douglas MR, Gonzalez AM, Berry M, Logan A. Optimisation of siRNA-mediated RhoA silencing in neuronal cultures. Mol Cell Neurosci 2009; 40:451-62. [PMID: 19340932 DOI: 10.1016/j.mcn.2009.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In investigating the consequences of gene silencing in axon growth disinhibition strategies in cultured retinal ganglion cells (RGC), we conducted experiments designed to silence RhoA signalling in PC12 and primary adult rat retinal cell cultures (containing RGC) by siRNA-mediated RhoA mRNA knockdown. We demonstrate wide differences in the levels of RhoA mRNA knockdown, dose-dependent cell toxicity, and induction of endogenous inflammatory cytokine and interferon responses to siRNA therapy. Toxicity effects observed with RhoA-siRNA was significantly reduced with "Stealth" chemical modification of the sequence, promoting approximately 50% and 70% knockdown of RhoA mRNA and protein in retinal cells, respectively, while promoting significant disinhibited RGC neurite outgrowth in the presence of inhibitory CNS myelin. Our results highlight differential responsiveness of cell lines compared to primary cultured cells, and demonstrate the efficacy of the "Stealth" modification to reduce siRNA-induced interferon responses, thereby increasing target cell viability and reducing off-target effects of the delivered nucleic acids.
Collapse
Affiliation(s)
- Ellen L Suggate
- Molecular Neuroscience Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B152TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Kemp SWP, Walsh SK, Midha R. Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol Res 2009; 30:1030-8. [PMID: 19079977 DOI: 10.1179/174313208x362505] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Despite the capacity for spontaneous axonal regeneration, recovery after severe peripheral nerve injury remains variable and often very poor. In addition, autologous nerve grafts, considered to be the 'gold standard' in nerve repair technique, are plagued by restricted donor tissue availability and donor site morbidity. Our primary objective is to highlight new and emerging methods of nerve repair, which have the potential to significantly improve both the functional and behavioral outcome after clinical nerve injury. METHODS A critical analysis of nerve injury and regeneration literature concentrating on outcome measures from both immediate and chronically denervated experimental works was conducted. RESULTS Results of numerous works employing both growth factor and stem cell enhanced nerve guidance conduits have shown encouraging results. However, further research is needed to optimize guidance conduit dynamics, bioavailability and delivery of both growth factors and stem cells to enhance peripheral nerve regeneration and functional recovery. DISCUSSION This review discusses current animal and clinical growth factor and stem cell studies, specifically focusing on future bio-engineering approaches in developing a nerve guidance conduit in the future.
Collapse
Affiliation(s)
- Stephen W P Kemp
- Department of Clinical Neuroscience, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alta, Canada.
| | | | | |
Collapse
|
72
|
Chen Y, Zeng J, Cen L, Chen Y, Wang X, Yao G, Wang W, Qi W, Kong K. Multiple roles of the p75 neurotrophin receptor in the nervous system. J Int Med Res 2009; 37:281-8. [PMID: 19383220 DOI: 10.1177/147323000903700201] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The p75 neurotrophin receptor (p75NTR) is a transmembrane protein that binds nerve growth factor (NGF) and has multiple functions in the nervous system where it is expressed widely during the developmental stages of life, although expression decreases dramatically by adulthood. Expression of p75NTR can increase in pathological states related to neural cell death. p75NTR is a member of the tumour necrosis factor (TNF) receptor family and it consists of intracellular, transmembrane and extracellular domains which are different from other TNF receptors. Either by interacting with tropomyosin receptor kinase (Trk) receptors or via the independent binding of neurotrophin, p75NTR can induce neurite outgrowth and cellular survival or cell apoptosis through several complicated signal transduction pathways. Most of these signalling pathways remain to be elucidated. By interacting with different cellular factors, p75NTR can induce neuron growth cone collapse or regrowth. p75NTR is also expressed in a variety of glial populations. The many functions of p75NTR require further study.
Collapse
Affiliation(s)
- Y Chen
- Department of Orthopaedics, The Second Affiliated Hospital, ShanTou University Medical College, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Pincheira R, Baerwald M, Dunbar JD, Donner DB. Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. EMBO J 2009; 28:261-73. [PMID: 19131967 DOI: 10.1038/emboj.2008.274] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 12/03/2008] [Indexed: 01/08/2023] Open
Abstract
By screening a fetal brain two-hybrid library with the death domain of the p75 neurotrophin receptor (NTR), we identified the Sall2 transcription factor as a novel interacting protein. Sall2 is a unique member of the Sall gene family, which is believed to be a tumour suppressor. Here, we show that Sall2 contains a p75NTR interaction domain not found in other Sall proteins and that p75NTR/Sall2 complexes co-immunoprecipitate from brain lysates. NGF dissociates p75NTR/Sall2 complexes and activates TrkA, which has an obligate function in the nuclear translocation of Sall2. NGF also increases Sall2 expression and this is mediated by p75NTR, but may not require TrkA. Depletion of Sall2 from cells decreases the expression and activity of p21(WAF1/CIP1), as well as the ability of NGF to induce growth arrest and the development of neurites. Overexpression of Sall2 activates p21(WAF1/CIP1), induces growth arrest, and promotes neurite outgrowth independently of NGF. These data establish Sall2 as a link between NTRs and transcriptional events that regulate the growth and development of neuronal cells.
Collapse
Affiliation(s)
- Roxana Pincheira
- The Department of Surgery and the Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA. or
| | | | | | | |
Collapse
|
74
|
Fuentes EO, Leemhuis J, Stark GB, Lang EM. Rho kinase inhibitors Y27632 and H1152 augment neurite extension in the presence of cultured Schwann cells. J Brachial Plex Peripher Nerve Inj 2008; 3:19. [PMID: 18817543 PMCID: PMC2567309 DOI: 10.1186/1749-7221-3-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022] Open
Abstract
Background RhoA and Rho kinase inhibitors overcome the inhibition of axonal regeneration posed by central nervous system (CNS) substrates. Methods To investigate if inhibition of the Rho pathway augments the neurite extension that naturally occurs in the peripheral nervous system (PNS) following nerve damage, dorsal root ganglion neurons and Schwann cell co-cultures were incubated with culture medium, C3 fusion toxin, and the Rho kinase (ROCK) inhibitors Y27632 and H1152. The longest neurite per neuron were measured and compared. Incubation with Y27632 and H1152 resulted in significantly longer neurites than controls when the neurons were in contact with Schwann cells. When separated by a porous P.E.T. membrane, only the group incubated with H1152 developed significantly longer neurites. This work demonstrates that Rho kinase inhibition augments neurite elongation in the presence of contact with a PNS-like substrate.
Collapse
Affiliation(s)
- Erick O Fuentes
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Freiburg, Germany.
| | | | | | | |
Collapse
|
75
|
Rankin SL, Guy CS, Mearow KM. Neurite outgrowth is enhanced by laminin-mediated down-regulation of the low affinity neurotrophin receptor, p75NTR. J Neurochem 2008; 107:799-813. [PMID: 18786176 DOI: 10.1111/j.1471-4159.2008.05663.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Laminin (LN), an extracellular matrix component, is a key factor in promoting axonal regeneration, coordinately regulating growth in conjunction with trophic signals provided by the neurotrophins, including nerve growth factor (NGF). This study investigated potential interactions between the LN and NGF-mediated signaling pathways in PC12 cells and primary neurons. Neurite outgrowth stimulated by NGF was enhanced on a LN substrate. Western blot analysis of pertinent signal transduction components revealed both enhanced phosphorylation of early signaling intermediates upon co-stimulation, and a LN-induced down-regulation of p75NTR which could be prevented by the addition of integrin inhibitory arginine-glycine-aspartate (RGD) peptides. This p75NTR down-regulation was associated with a LN-mediated up-regulation of PTEN and resulted in a decrease in Rho activity. Studies using over-expression or siRNA-mediated knock-down of PTEN demonstrate a consistent inverse relationship with p75NTR, and the over-expression of p75NTR impaired neurite outgrowth on a LN substrate, as well as resulting in sustained activation of Rho which is inhibitory to neurite outgrowth. p75NTR is documented for its role in the transduction of inhibitory myelin-derived signals, and our results point to extracellular matrix regulation of p75NTR as a potential mechanism to ameliorate inhibitory signaling leading to optimized neurite outgrowth.
Collapse
Affiliation(s)
- Sherri L Rankin
- Division of BioMedical Sciences, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | |
Collapse
|
76
|
Johnston ALM, Lun X, Rahn JJ, Liacini A, Wang L, Hamilton MG, Parney IF, Hempstead BL, Robbins SM, Forsyth PA, Senger DL. The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol 2008; 5:e212. [PMID: 17696644 PMCID: PMC1939884 DOI: 10.1371/journal.pbio.0050212] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/08/2007] [Indexed: 01/02/2023] Open
Abstract
The invasive nature of cancers in general, and malignant gliomas in particular, is a major clinical problem rendering tumors incurable by conventional therapies. Using a novel invasive glioma mouse model established by serial in vivo selection, we identified the p75 neurotrophin receptor (p75NTR) as a critical regulator of glioma invasion. Through a series of functional, biochemical, and clinical studies, we found that p75NTR dramatically enhanced migration and invasion of genetically distinct glioma and frequently exhibited robust expression in highly invasive glioblastoma patient specimens. Moreover, we found that p75NTR-mediated invasion was neurotrophin dependent, resulting in the activation of downstream pathways and producing striking cytoskeletal changes of the invading cells. These results provide the first evidence for p75NTR as a major contributor to the highly invasive nature of malignant gliomas and identify a novel therapeutic target. Gliomas are highly malignant and invasive tumors with tendrils that extend far from the primary tumor site, rendering conventional therapies ineffective and leading to an invariably poor prognosis. To understand the molecular mechanisms underlying this invasive behavior, we injected immunocompromised mice with human gliomas and compared invasive cells, which left the primary tumor site, to noninvasive cells, which remained at the site of injection. We identified the neurotrophin receptor p75NTR—which normally functions during development to induce neurite outgrowth and promote neuronal cell death—as an important regulator of glioma invasion. We present the first evidence that this neurotrophin receptor can also be a potent mediator of glioma invasion, and we show that the expression of this receptor is sufficient to impart a dramatic invasive behavior on genetically distinct tumors. These data highlight a previously unknown function of this receptor and suggest it may be a novel therapeutic target in the treatment of this devastating cancer. By in vivo selection of a human glioma, the authors identify the p75NTR neuotrophin receptor as a critical molecule regulating increased invasiveness.
Collapse
Affiliation(s)
- Angela L. M Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
| | - Xueqing Lun
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer J Rahn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Abdelhamid Liacini
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Limei Wang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mark G Hamilton
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Ian F Parney
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Barbara L Hempstead
- Division of Hematology, Cornell University Medical College, New York, New York, United States of America
| | - Stephen M Robbins
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Peter A Forsyth
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- * To whom correspondence should be addressed. E-mail: (PAF); (DLS)
| | - Donna L Senger
- Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
- Clark H. Smith Integrative Brain Tumour Research Center, Calgary, Alberta, Canada
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
- * To whom correspondence should be addressed. E-mail: (PAF); (DLS)
| |
Collapse
|
77
|
Bronfman FC. Metalloproteases and gamma-secretase: new membrane partners regulating p75 neurotrophin receptor signaling? J Neurochem 2008; 103 Suppl 1:91-100. [PMID: 17986144 DOI: 10.1111/j.1471-4159.2007.04781.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Signaling by the p75 neurotrophin receptor (p75) has been implicated in diverse neuronal responses, including the control of neuronal survival versus death and axonal regeneration and growth cone collapse, involving p75 in different neuropathological conditions. There are different levels of complexity regulating p75-mediated signaling. First, p75 can interact with different ligands and co-receptors in the plasma membrane, forming tripartite complexes, whose activation result in different cellular outcomes. Moreover, it was recently described that trafficking capacities of p75 in neurons are regulating, in addition to p75 downstream interactions, also the sequential cleavage of p75. The proteolytical processing of p75 involves, first, a shedding event that releases a membrane-bound carboxiterminal fragment (p75-CTF), followed by a gamma-secretase mediated cleavage, generating a soluble intracellular domain (p75-ICD) with signaling capabilities. The first shedding event, generating a p75-CTF, is the key step to regulating the production of p75-ICD, and although the generation of p75-ICD is important for both p75-mediated control of neuronal survival and the control of neurite outgrowth, little is known how both cleavage events are regulated. In this review, we argue that both sheddases and gamma-secretase are key membrane components regulating p75-mediated signaling transduction; therefore, further attention should be paid to their roles as p75 signaling regulators.
Collapse
Affiliation(s)
- Francisca C Bronfman
- Center for Cellular Regulation and Pathology Joaquin V. Luco, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
78
|
Abstract
Elements of the cytoskeleton interact intimately and communicate bidirectionally with cellular membranes. Such interactions are critical for a host of cellular processes. Here we focus on the many types of interactions that exist between the cytoskeleton and the plasma membrane to illustrate why these cellular components can never truly be studied in isolation in vivo. We discuss how membrane-cytoskeleton interactions are mediated and modulated, and how many proteins involved in these interactions are disrupted in human disease. We then highlight key molecular and physical variables that must be considered in order to mechanistically dissect events associated with changes in plasma membrane morphology. These considerations are integrated into the context of cell migration, filopodia formation, and clathrin-mediated endocytosis to show how a holistic view of the plasma membrane-cytoskeleton interface can allow for the appropriate interpretation of experimental findings and provide novel mechanistic insight into these important cellular events.
Collapse
Affiliation(s)
- Gary J Doherty
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | | |
Collapse
|
79
|
Modulation of semaphorin3A activity by p75 neurotrophin receptor influences peripheral axon patterning. J Neurosci 2007; 27:13000-11. [PMID: 18032673 DOI: 10.1523/jneurosci.3373-07.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)) interacts with multiple ligands and coreceptors. It is thought to mediate myelin growth inhibition as part of the Nogo receptor complex, in addition to its other roles. Paradoxically, however, peripheral axons of p75(ExonIII-/-) mutant embryos are severely stunted. This inhibition of axon growth may be a result of neurite elongation defects in p75(NTR) mutant neurons. Here, we show that p75(ExonIII-/-) DRG neurons are hypersensitive to the repellent molecule Semaphorin3A (Sema3A). NGF modulates Sema3A activity equally well in both the p75(NTR) mutant and wild-type neurons, indicating that the hypersensitivity of p75(NTR) mutant neurons is probably not related to their NGF receptor activity. Neuropilin1 and p75(NTR) partially colocalize in DRG growth cones. After Sema3A stimulation, the degree of colocalization is dramatically increased, particularly in clusters associated with Sema3A receptor complex activation. Coimmunoprecipitation studies show that p75(NTR) interacts directly with the Sema3A receptors Neuropilin1 and PlexinA4. When coexpressed with both Neuropilin1 and PlexinA4, p75(NTR) reduces the interaction between these two receptor components. Finally, p75(NTR)/Sema3A double-mutant embryos show growth similar to that observed in Sema3A-null mice. These data indicate that p75(NTR) is an important functional modulator of Sema3A activity and that, in the absence of p75(NTR), oversensitivity to Sema3A leads to severe reduction in sensory innervation. Our results also suggest that while inhibition of p75(NTR) in CNS injury may enhance nerve regeneration resulting from the inhibition of myelin-associated protein, it may also inhibit nerve regeneration through its modulation of Sema3A.
Collapse
|
80
|
Ketschek AR, Jones SL, Gallo G. Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions. Dev Neurobiol 2007; 67:1305-20. [PMID: 17638383 PMCID: PMC2674262 DOI: 10.1002/dneu.20455] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axon extension involves the coordinated regulation of the neuronal cytoskeleton. Actin filaments drive protrusion of filopodia and lamellipodia while microtubules invade the growth cone, thereby providing structural support for the nascent axon. Furthermore, in order for axons to extend the growth cone must attach to the substratum. Previous work indicates that myosin II activity inhibits the advance of microtubules into the periphery of growth cones, and myosin II has also been implicated in mediating integrin-dependent cell attachment. However, it is not clear how the functions of myosin II in regulating substratum attachment and microtubule advance are integrated during axon extension. We report that inhibition of myosin II function decreases the rate of axon extension on laminin, but surprisingly promotes extension rate on polylysine. The differential effects of myosin II inhibition on axon extension rate are attributable to myosin II having the primary function of mediating substratum attachment on laminin, but not on polylysine. Conversely, on polylysine the primary function of myosin II is to inhibit microtubule advance into growth cones. Thus, the substratum determines the role of myosin II in axon extension by controlling the functions of myosin II that contribute to extension.
Collapse
Affiliation(s)
- Andrea R Ketschek
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
81
|
Rösner H, Möller W, Wassermann T, Mihatsch J, Blum M. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation. Brain Res 2007; 1176:1-10. [PMID: 17888886 DOI: 10.1016/j.brainres.2007.07.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/01/2023]
Abstract
The myosinII-specific inhibitor blebbistatin was used to attenuate actinomyosinII contractility in E7-chicken retina explant, medulla and spinal cord neuronal cell cultures. Addition of 20-100 microM blebbistatin, a concentration range that reversibly disrupts actin stress fibers, led to a reduction of growth cone lamellipodial areas and to an elongation of filopodia within 5 to 10 min. These morphological changes were completely reversed after removing the inhibitor. In the continued presence of blebbistatin for several hours, a dose-dependent acceleration (up to 6-fold) of neurite outgrowth was observed. The rapidly elongating neuritic processes displayed narrowed growth cones with one to three long filopodia at the leading edge. At the same time, thin neuritic branches emerged in a "push"-like fashion guided by filopodial extensions. Immunocytochemical characterization of these thin sprouts revealed that they contained actin filaments, myosinIIA, phosphorylated neurofilament/tau epitopes, MAP2, NCAM-PSA, and microtubules, demonstrating that these processes presented neurites and not filopodia. The crucial involvement of microtubules in blebbistatin-induced accelerated neurite extension was confirmed by its inhibition in the presence of nocodazole or taxol. The promotion by blebbistatin of neurite outgrowth occurred on polylysine, laminin, as well as on fibronectin as substrate. The presence of the Rho/ROCK-inhibitor Y-27632 also caused a dose-dependent promotion of neurite growth which was, however, 3-fold less pronounced as compared to blebbistatin. In contrast to blebbistatin, Y-27632 led to the enlargement of growth cone lamellipodial extensions. Our data demonstrate that neurite outgrowth and branching are inversely correlated with the degree of actinomyosinII contractility which determines the speed of retrograde flow and turnover of actin filaments and, by this, microtubule extension.
Collapse
Affiliation(s)
- Harald Rösner
- Institute of Zoology, Cell- and Developmental Neuro-Biology, University of Hohenheim, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
82
|
Abstract
Neurotrophin stimulation of tropomyosin-related kinase (Trk) and p75 receptors influences cellular processes such as proliferation, growth, differentiation, and other cell-specific functions, as well as regeneration. In contrast to Trk receptors, which have a well-defined trophic role, p75 has activities ranging from trophism to apoptosis. Continued neurotrophin stimulation of differentiating neurons transforms the initially trophic character of p75 signaling into negative growth control and overstimulation leads to apoptosis. This function shift reflects the signaling effects of ceramide that is generated upon stimulation of p75. The use of ceramide signaling by p75 may provide a key to understanding the cell-biological role of p75. The review presents arguments that the control of cell shape formation and cell selection can serve as an organizing principle of p75 signaling. Concurrent stimulation by neurotrophins of p75 and Trk receptors constitutes a dual growth control with antagonistic and synergistic elements aimed at optimal morphological and functional integration of cells and cell populations into their context.
Collapse
Affiliation(s)
- A Blöchl
- Biochemie II, Fakultät Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
83
|
Liu Z, Nukazuka A, Takagi S. Improved method for visualizing cells revealed dynamic morphological changes of ventral neuroblasts during ventral cleft closure of Caenorhabditis elegans. Dev Growth Differ 2007; 49:49-59. [PMID: 17227344 DOI: 10.1111/j.1440-169x.2007.00906.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of intricate and functional biological structures depends on the dynamic changes of cellular morphology. Confocal laser scanning microscopy (CLSM) is a widely used method to reveal the three-dimensional (3-D) structure of cells during the development of Caenorhabditis elegans (C. elegans) and other model organisms. Improving the efficiency and image quality of CLSM would benefit studies using this method. We found that CED-10::GFP::CED-10, a green fluorescent protein (GFP) marker, is intensely expressed beneath the cell surface, facilitating visualization of cellular morphology in C. elegans embryos. By combining the unique properties of this marker, and with the help of direct 3-D rendering of images obtained by CLSM, we developed a simple but powerful method for investigating cellular morphology in developing embryos. Using this method we, for the first time, document the dynamic changes in the morphology of ventral neuroblasts in vivo during ventral cleft closure.
Collapse
Affiliation(s)
- Zhicen Liu
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa 464-8602, Japan.
| | | | | |
Collapse
|
84
|
Gascon E, Dayer AG, Sauvain MO, Potter G, Jenny B, De Roo M, Zgraggen E, Demaurex N, Muller D, Kiss JZ. GABA regulates dendritic growth by stabilizing lamellipodia in newly generated interneurons of the olfactory bulb. J Neurosci 2007; 26:12956-66. [PMID: 17167085 PMCID: PMC6674946 DOI: 10.1523/jneurosci.4508-06.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The initial formation and growth of dendrites is a critical step leading to the integration of newly generated neurons into postnatal functional networks. However, the cellular mechanisms and extracellular signals regulating this process remain mostly unknown. By directly observing newborn neurons derived from the subventricular zone in culture as well as in olfactory bulb slices, we show that ambient GABA acting through GABA(A) receptors is essential for the temporal stability of lamellipodial protrusions in dendritic growth cones but did not interfere with filopodia dynamics. Furthermore, we provide direct evidence that ambient GABA is required for the proper initiation and elongation of dendrites by promoting the rapid stabilization of new dendritic segments after their extension. The effects of GABA on the initial formation of dendrites depend on depolarization and Ca2+ influx and are associated with a higher stability of microtubules. Together, our results indicate that ambient GABA is a key regulator of dendritic initiation in postnatally generated olfactory interneurons and offer a mechanism by which this neurotransmitter drives early dendritic growth.
Collapse
Affiliation(s)
| | | | - Marc-Olivier Sauvain
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | - Nicolas Demaurex
- Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland, and
| | | | | |
Collapse
|
85
|
Krimm RF. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:1294-302. [PMID: 17083122 PMCID: PMC2559943 DOI: 10.1002/ar.a.20399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain-derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform papillae, and 26% of their fungiform taste buds by adulthood. The reduction of taste buds in the adult circumvallate papilla was similar to that observed previously at postnatal day 7 (Fan et al. Brain Res Dev Brain Res 2004;150:23-39). Taken together, these findings indicate that the p75 receptor is critical for the development of a full complement of taste buds, but is not required for maintenance of circumvallate taste buds in adulthood. Immunolabeling for p75 was not observed in taste buds, indicating that p75 signaling influences taste bud number indirectly. Geniculate ganglion neurons, which provides innervation to fungiform taste buds, express the p75 receptor. Mice with p75 null mutations also have fewer neurons in the geniculate ganglion. Together, these results suggest that the p75 receptor is important for the survival of geniculate neurons and geniculate neuron survival is required for the development of a full complement of taste buds by adulthood.
Collapse
Affiliation(s)
- Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
| |
Collapse
|
86
|
Loudon RP, Silver LD, Yee HF, Gallo G. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. ACTA ACUST UNITED AC 2006; 66:847-67. [PMID: 16673385 PMCID: PMC1525020 DOI: 10.1002/neu.20258] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Growth cones are highly polarized and dynamic structures confined to the tips of axons. The polarity of growth cones is in part maintained by suppression of protrusive activity from the distal axon shaft, a process termed axon consolidation. The mechanistic basis of axon consolidation that contributes to the maintenance of growth cone polarity is not clear. We report that inhibition of RhoA-kinase (ROCK) or myosin II resulted in unstable consolidation of the distal axon as evidenced by increased filopodial and lamellipodial extension. Furthermore, when ROCK or myosin II was inhibited lamellipodia formed at the growth cone migrated onto the axon shaft. Analysis of EYFP-actin dynamics in the distal axon revealed that ROCK negatively regulates actin polymerization and initiation of protrusive structures from spontaneously formed axonal F-actin patches, the latter being an effect attributable to ROCK-mediated regulation of myosin II. Inhibition of ROCK or myosin II blocked growth cone turning toward NGF by preventing suppression of protrusive activity away from the source of NGF, resulting in aborted turning responses. These data elucidate the mechanism of growth cone polarity, provide evidence that consolidation of the distal axon is a component of guidance, and identify ROCK as a negative regulator of F-actin polymerization underlying protrusive activity in the distal axon.
Collapse
Affiliation(s)
- Robert P. Loudon
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
| | - Lee D. Silver
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
| | - Hal F. Yee
- Department of Gastroenterology, University of California at San Francisco, San Francisco, California 94143
| | - Gianluca Gallo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129
- Correspondence to: G. Gallo ()
| |
Collapse
|
87
|
Arevalo MA, Rodríguez-Tébar A. Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75NTR inhibit glycogen synthase kinase-3beta and stimulate axonal growth. Mol Biol Cell 2006; 17:3369-77. [PMID: 16723502 PMCID: PMC1525228 DOI: 10.1091/mbc.e05-12-1144] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 05/01/2006] [Accepted: 05/11/2006] [Indexed: 12/16/2022] Open
Abstract
Axonal elongation and guidance are controlled by extracellular factors such as the neurotrophins. Indeed, nerve growth factor (NGF) seems to promote axon growth through binding to its p75NTR receptor and inactivating RhoA. Furthermore, the local inhibition of glycogen synthase kinase (GSK)-3beta by NGF also favors microtubule polymerization and axon extension. Inactivation of GSK-3beta may be due to the NGF/TrkA-mediated activation of phosphatidylinositol-3 kinase (PI-3 kinase), which increases the levels of phosphatydilinositol 3-phosphate [PI3P]. However, we show here that NGF may inactivate GSK-3beta through an alternative mechanism. In cultured hippocampal neurons, the capacity of NGF to promote axon elongation is mostly mediated by p75NTR, and the activation of this pathway leads to the inactivation of GSK-3beta. However, the signaling pathway triggered by NGF/p75NTR acts through casein kinase II (CK2). NGF/p75NTR-activated CK2 phosphorylates the phosphatase and tensin homologue deleted on chromosome 10 (PTEN), thus rendering this phosphatase inactive. Like activation of the PI-3 kinase, PTEN inactivation allows PI3P levels to increase, thus favoring GSK-3beta inactivation and axon outgrowth. This newly disclosed mechanism may help to extend the repertoire of pharmacological agents that activate CK2 or that inhibit PTEN to stimulate axon regeneration after trauma or disease.
Collapse
Affiliation(s)
- María-Angeles Arevalo
- Instituto Cajal de Neurobiología, Consejo Superior de Investigaciones Cientificas, E28002 Madrid, Spain
| | | |
Collapse
|
88
|
Singh B, Henneberger C, Betances D, Arevalo MA, Rodríguez-Tébar A, Meier JC, Grantyn R. Altered balance of glutamatergic/GABAergic synaptic input and associated changes in dendrite morphology after BDNF expression in BDNF-deficient hippocampal neurons. J Neurosci 2006; 26:7189-200. [PMID: 16822976 PMCID: PMC6673958 DOI: 10.1523/jneurosci.5474-05.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cultured neurons from bdnf-/- mice display reduced densities of synaptic terminals, although in vivo these deficits are small or absent. Here we aimed at clarifying the local responses to postsynaptic brain-derived neurotrophic factor (BDNF). To this end, solitary enhanced green fluorescent protein (EGFP)-labeled hippocampal neurons from bdnf-/- mice were compared with bdnf-/- neurons after transfection with BDNF, bdnf-/- neurons after transient exposure to exogenous BDNF, and bdnf+/+ neurons in wild-type cultures. Synapse development was evaluated on the basis of presynaptic immunofluorescence and whole-cell patch-clamp recording of miniature postsynaptic currents. It was found that neurons expressing BDNF::EGFP for at least 16 h attracted a larger number of synaptic terminals than BDNF-deficient control neurons. Transfected BDNF formed clusters in the vicinity of glutamatergic terminals and produced a stronger upregulation of synaptic terminal numbers than high levels of ambient BDNF. Glutamatergic and GABAergic synapses reacted differently to postsynaptic BDNF: glutamatergic input increased, whereas GABAergic input decreased. BDNF::EGFP-expressing neurons also differed from BDNF-deficient neurons in their dendrite morphology: they exhibited weaker dendrite elongation and stronger dendrite initiation. The upregulation of glutamatergic synaptic input and the BDNF-induced downregulation of GABAergic synaptic terminal numbers by postsynaptic BDNF depended on tyrosine receptor kinase B activity, as deduced from the blocking effects of K252a. The suppression of dendrite elongation was also prevented by block of tyrosine receptor kinase B but required, in addition, glutamate receptor activity. Dendritic length decreased with the number of glutamatergic contacts. These results illuminate the role of BDNF as a retrograde synaptic regulator of synapse development and the dependence of dendrite elongation on glutamatergic input.
Collapse
Affiliation(s)
- B Singh
- Developmental Physiology Group, Johannes Mueller Institute for Neurophysiology, University Medical School (Charité) of the Humboldt University, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
89
|
Lopez GF, Krimm RF. Epithelial overexpression of BDNF and NT4 produces distinct gustatory axon morphologies that disrupt initial targeting. Dev Biol 2006; 292:457-68. [PMID: 16500639 PMCID: PMC1939808 DOI: 10.1016/j.ydbio.2006.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 01/19/2023]
Abstract
Most fungiform taste buds fail to become innervated when BDNF or NT4 is overexpressed in the basal layer of tongue epithelium. Here, we examined when and how overexpression of BDNF and NT4 disrupt innervation to fungiform papillae. Overexpression of either factor disrupted chorda tympani innervation patterns either before or during the initial innervation of fungiform papillae. NT4 and BDNF overexpression each disrupted initial innervation by producing different gustatory axon morphologies that emerge at distinct times (E12.5 and E14.5, respectively). Chorda tympani nerve branching was reduced in NT4 overexpressing mice, and neuronal fibers in these mice were fasciculated and remained below the epithelial surface, as if repelled by NT4 overexpression. In contrast, many chorda tympani nerve branches were observed near the epithelial surface in mice overexpressing BDNF, and most were attracted to and invaded non-taste filiform papillae instead of gustatory papillae. These results suggest that BDNF, but not NT4, normally functions as a chemoattractant that allows chorda tympani fibers to distinguish their fungiform papillae targets from non-gustatory epithelium. Since BDNF and NT4 both signal through the p75 and TrkB receptors, trophin-specific activation of different internal signaling pathways must regulate the development of the distinct gustatory axon morphologies in neurotrophin-overexpressing mice.
Collapse
Affiliation(s)
- Grace F. Lopez
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Robin F. Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
90
|
Chen TJ, Gehler S, Shaw AE, Bamburg JR, Letourneau PC. Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor. ACTA ACUST UNITED AC 2006; 66:103-14. [PMID: 16215999 DOI: 10.1002/neu.20204] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rho family GTPases have important roles in mediating the effects of guidance cues and growth factors on the motility of neuronal growth cones. We previously showed that the neurotrophin BDNF regulates filopodial dynamics on growth cones of retinal ganglion cell axons through activation of the actin regulatory proteins ADF and cofilin by inhibiting a RhoA-dependent pathway that phosphorylates (inactivates) ADF/cofilin. The GTPase Cdc42 has also been implicated in mediating the effects of positive guidance cues. In this article we investigated whether Cdc42 is involved in the effects of BDNF on filopodial dynamics. BDNF treatment increases Cdc42 activity in retinal neurons, and neuronal incorporation of constitutively active Cdc42 mimics the increases in filopodial number and length. Furthermore, constitutively active and dominant negative Cdc42 decreased and increased, respectively, the activity of RhoA in retinal growth cones, indicating crosstalk between these GTPases in retinal growth cones. Constitutively active Cdc42 mimicked the activation of ADF/cofilin that resulted from BDNF treatment, while dominant negative Cdc42 blocked the effects of BDNF on filopodia and ADF/cofilin. The inability of dominant negative Cdc42 to block ADF/cofilin activation and stimulation of filopodial dynamics by the ROCK inhibitor Y-27632 indicate interaction between Cdc42 and RhoA occurs upstream of ROCK. Our results demonstrate crosstalk occurs between GTPases in mediating the effects of BDNF on growth cone motility, and Cdc42 activity can promote actin dynamics via activation of ADF/cofilin.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
91
|
Tornieri K, Welshhans K, Geddis MS, Rehder V. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase. ACTA ACUST UNITED AC 2006; 63:173-92. [PMID: 16463277 DOI: 10.1002/cm.20115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphatidylinositol-3-kinase (PI-3K) has been reported to affect neurite outgrowth both in vivo and in vitro. Here we investigated the signaling pathways by which PI-3K affects neurite outgrowth and growth cone motility in identified snail neurons in vitro. Inhibition of PI-3K with wortmannin (2 microM) or LY 294002 (25 microM) resulted in a significant elongation of filopodia and in a slow-down of neurite outgrowth. Experiments using cytochalasin and blebbistatin, drugs that interfere with actin polymerization and myosin II activity, respectively, demonstrated that filopodial elongation resulting from PI-3K inhibition was dependent on actin polymerization. Inhibition of strategic kinases located downstream of PI-3K, such as Akt, ROCK, and MEK, also caused significant filopodial elongation and a slow-down in neurite outgrowth. Another growth cone parameter, filopodial number, was not affected by inhibition of PI-3K, Akt, ROCK, or MEK. A detailed study of growth cone behavior showed that the filopodial elongation induced by inhibiting PI-3K, Akt, ROCK, and MEK was achieved by increasing two motility parameters: the rate with which filopodia extend (extension rate) and the time that filopodia spend elongating. Whereas the inhibition of ROCK or Akt (both activated by the lipid kinase activity of PI-3K) and MEK (activated by the protein kinase activity of PI-3K) had additive effects, simultaneous inhibition of Akt and ROCK showed no additive effect. We further demonstrate that the effects on filopodial dynamics investigated were calcium-independent. Taken together, our results suggest that inhibition of PI-3K signaling results in filopodial elongation and a slow-down of neurite advance, reminiscent of growth cone searching behavior.
Collapse
Affiliation(s)
- Karine Tornieri
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | | | | | | |
Collapse
|
92
|
Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 2006; 25:5455-63. [PMID: 15930396 PMCID: PMC6724992 DOI: 10.1523/jneurosci.5123-04.2005] [Citation(s) in RCA: 776] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is best characterized for critical roles in neuronal survival, differentiation, and synaptic modulation mediated by the TrkB receptor tyrosine kinase. Developmentally regulated death signaling by BDNF has also been demonstrated via activation of p75NTR. Because recent studies suggest that proNGF, the precursor form of NGF, is more active than mature NGF in inducing apoptosis after binding to p75NTR and a coreceptor, sortilin, we asked whether the precursor of BDNF (proBDNF) is also a proapoptotic ligand in the nervous system. proBDNF is secreted by cultured neurons, and recombinant proBDNF binds to sortilin. In sympathetic neurons coexpressing sortilin and p75NTR, we found that proBDNF is an apoptotic ligand that induces death at subnanomolar concentrations. In contrast, mature BDNF, but not proBDNF, is effective in inducing TrkB phosphorylation. proBDNF effects are dependent on cellular coexpression of both p75NTR and sortilin, because neurons deficient in p75NTR are resistant to proBDNF-induced apoptosis, and competitive antagonists of sortilin block sympathetic neuron death. Moreover, addition of preformed complexes of soluble sortilin and proBDNF failed to induce apoptosis of cells coexpressing both sortilin and p75NTR, suggesting that interaction of proBDNF with both receptors on the cell surface is required to initiate cell death. Together with our past findings, these data suggest that the neurotrophin family is capable of modulating diverse biological processes via differential processing of the proneurotrophins.
Collapse
Affiliation(s)
- Henry K Teng
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 2006; 25:9989-99. [PMID: 16251447 PMCID: PMC6725571 DOI: 10.1523/jneurosci.2492-05.2005] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The correlation between functional and structural neuronal plasticity is by now well documented. However, the molecular mechanisms translating patterns of neuronal activity into specific changes in the structure of neurons remain unclear. Neurotrophins can be released in an activity-dependent manner, and they are capable of controlling both neuronal morphology and functional synaptic changes. They are thus attractive molecules to be studied in the context of synaptic plasticity. In the CNS, most of the work so far has focused on the role of BDNF and of its tyrosine kinase B receptor (TrkB), but relatively little is known about the function of the pan-neurotrophin receptor p75NTR. In this study, we show in loss-of-function experiments that postnatal hippocampal pyramidal cells in two mutant lines of p75NTR have a higher spine density and greater dendritic complexity than wild-type (WT) mice. Conversely, in a gain-of-function approach, p75NTR overexpression in WT neurons significantly reduces dendritic complexity, as well as spine density in all dendritic compartments. These results show that p75NTR negatively modulates dendritic morphology in adult hippocampal pyramidal neurons and documents a new case of functional antagonism between Trk and p75NTR signaling.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Department of Cellular and Systems Neurobiology, Max Planck Institute of Neurobiology, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Luikart BW, Parada LF. Receptor tyrosine kinase B-mediated excitatory synaptogenesis. PROGRESS IN BRAIN RESEARCH 2006; 157:15-24. [PMID: 17167900 DOI: 10.1016/s0079-6123(06)57002-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The receptor tyrosine kinase B, TrkB, is the high-affinity receptor for brain-derived neurotrophic factor (BDNF). Much evidence supports a role for TrkB signaling in excitatory synapse formation. There have been a number of recent advances in understanding the cell biology of TrkB-mediated excitatory synaptogenesis. The predominant mechanism by which TrkB supports excitatory synaptogenesis appears to be due to cell-autonomous signaling in both pre- and postsynaptic cells. This signaling appears to contribute to the growth and stabilization processes necessary for the net formation of synapses during development. Further, the molecular mechanisms by which TrkB contributes to these growth and stabilization processes are beginning to be elucidated.
Collapse
Affiliation(s)
- Bryan W Luikart
- Center for Developmental Biology, and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
95
|
Barald KF. Norman K. Wessells: a life in science. Dev Dyn 2005; 234:445-51. [PMID: 16152628 DOI: 10.1002/dvdy.20560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
"In its triple role as locomotory organelle, as a site of deposition of new surface material for the elongating axon, and a source of microspikes (sensory probes), the growth cone becomes the key to axon elongation" Yamada et al. (1971).
Collapse
Affiliation(s)
- Kate F Barald
- Department of Cell and Development Biology, Department of Biomedical Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
96
|
Chung HA, Hyodo-Miura J, Nagamune T, Ueno N. FGF signal regulates gastrulation cell movements and morphology through its target NRH. Dev Biol 2005; 282:95-110. [PMID: 15936332 DOI: 10.1016/j.ydbio.2005.02.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/28/2005] [Accepted: 02/26/2005] [Indexed: 01/19/2023]
Abstract
We used cDNA microarray analysis to screen for FGF target genes in Xenopus embryos treated with the FGFR1 inhibitor SU5402, and identified neurotrophin receptor homolog (NRH) as an FGF target. Causing gain of NRH function by NRH mRNA or loss of NRH function using a Morpholino antisense-oligonucleotide (Mo) led to gastrulation defects without affecting mesoderm differentiation. Depletion of NRH by the Mo perturbed the polarization of cells in the dorsal marginal zone (DMZ), thereby inhibiting the intercalation of the cells during convergent extension as well as the filopodia formation on DMZ cells. Deletion analysis showed that the carboxyl-terminal region of NRH, which includes the "death domain," was necessary and sufficient to rescue gastrulation defects and to induce the protrusive cell morphology. Furthermore, we found that the FGF signal was both capable of inducing filopodia in animal cap cells, where they do not normally form, and necessary for filopodia formation in DMZ cells. Finally, we demonstrated that FGF required NRH function to induce normal DMZ cell morphology. This study is the first to identify an in vivo role for FGF in the regulation of cell morphology, and we have linked this function to the control of gastrulation cell movements via NRH.
Collapse
Affiliation(s)
- Hyeyoung A Chung
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
97
|
Robles E, Woo S, Gomez TM. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J Neurosci 2005; 25:7669-81. [PMID: 16107653 PMCID: PMC6725397 DOI: 10.1523/jneurosci.2680-05.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/15/2023] Open
Abstract
Extracellular cues guide axon outgrowth by activating intracellular signaling cascades that control the growth cone cytoskeleton. However, the spatial and temporal coordination of signaling intermediates remains essentially unknown. Live imaging of tyrosine phosphorylation in growth cones revealed dynamic phospho-tyrosine (PY) signals in filopodia that directly correlate with filopodial behavior. Local PY signals are generated at distal tips of filopodia during extension and are lost during retraction. Active Src family kinases localize to the tips of filopodia, and Src activity regulates both filopodial dynamics and local PY signaling. Positive guidance cues stimulate filopodial motility by locally increasing tyrosine phosphorylation in a cell division cycle 42 (Cdc42)-dependent manner. Locally reduced Src activity on one side of the growth cone generates an asymmetry in filopodial motility and PY signaling that promotes repulsive turning, suggesting that local changes in filopodial PY levels may underlie growth cone pathfinding decisions. p21-activated kinase (PAK), a Cdc42 effector whose activity is regulated by Src phosphorylation, also localizes to the tips of extending filopodia and controls filopodial motility. Coordinated activation of cytoskeletal effector proteins by GTPase binding and Src-mediated tyrosine phosphorylation may function to produce specific growth cone behaviors in response to guidance cues.
Collapse
Affiliation(s)
- Estuardo Robles
- Department of Anatomy, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
98
|
Gehler S, Shaw AE, Sarmiere PD, Bamburg JR, Letourneau PC. Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. J Neurosci 2005; 24:10741-9. [PMID: 15564592 PMCID: PMC6730129 DOI: 10.1523/jneurosci.2836-04.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms by which neurotrophins regulate growth cone motility are not well understood. This study investigated the signaling involved in transducing BDNF-induced increases of filopodial dynamics. Our results indicate that BDNF regulates filopodial length and number through a Rho kinase-dependent mechanism. Additionally, actin depolymerizing factor (ADF)/cofilin activity is necessary and sufficient to transduce the effects of BDNF. Our data indicate that activation of ADF/cofilin mimics the effects of BDNF on filopodial dynamics, whereas ADF/cofilin inactivity blocks the effects of BDNF. Furthermore, BDNF promotes the activation of ADF/cofilin by reducing the phosphorylation of ADF/cofilin. Although inhibition of myosin II also enhances filopodial length, our results indicate that BDNF signaling is independent of myosin II activity and that the two pathways result in additive effects on filopodial length. Thus, filopodial extension is regulated by at least two independent mechanisms. The BDNF-dependent pathway works via regulation of ADF/cofilin, independently of myosin II activity.
Collapse
Affiliation(s)
- Scott Gehler
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
99
|
Ozdinler PH, Ulupinar E, Erzurumlu RS. Dose and age-dependent axonal responses of embryonic trigeminal neurons to localized NGF via p75NTR receptor. ACTA ACUST UNITED AC 2005; 62:189-206. [PMID: 15459897 DOI: 10.1002/neu.20074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nerve growth factor (NGF) and related neurotrophins are target-derived survival factors for sensory neurons. In addition, these peptides modulate neuronal differentiation, axon guidance, and synaptic plasticity. We tested axonal behavior of embryonic trigeminal neurons towards localized sources of NGF in collagen gel assays. Trigeminal axons preferentially grow towards lower doses of localized NGF and grow away from higher concentrations at earlier stages of development, but do not show this response later. Dorsal root ganglion axons also show similar responses to NGF, but NGF-dependent superior cervical ganglion axons do not. Such axonal responses to localized NGF sources were also observed in Bax-/- mice, suggesting that the axonal effects are largely independent of cell survival. Immunocytochemical studies indicated that axons, which grow towards or away from localized NGF are TrkA-positive, and TrkA-/- TG axons do not respond to any dose of NGF. We further show that axonal responses to NGF are absent in TG derived from mice that lack the p75 neurotrophin receptor (p75NTR). Collectively, our results suggest that localized sources of NGF can direct axon outgrowth from trigeminal ganglion in a dose- and age-dependent fashion, mediated by p75NTR signaling through TrkA expressing axons.
Collapse
Affiliation(s)
- P Hande Ozdinler
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
100
|
Fass J, Gehler S, Sarmiere P, Letourneau P, Bamburg JR. Regulating filopodial dynamics through actin-depolymerizing factor/cofilin. Anat Sci Int 2005; 79:173-83. [PMID: 15633455 DOI: 10.1111/j.1447-073x.2004.00087.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of filopodial dynamics by neurotrophins and other guidance cues plays an integral role in growth cone pathfinding. Filopodia are F-actin-based structures that explore the local environment, generate forces and play a role in growth cone translocation. Here, we review recent research showing that the actin-depolymerizing factor (ADF)/cofilin family of proteins mediates changes in the length and number of growth cone filopodia in response to brain-derived neurotrophic factor (BDNF). Although inhibition of myosin contractility also causes filopodial elongation, the elongation in response to BDNF does not occur through a myosin-dependent pathway. Active ADF/cofilin increases the rate of cycling between the monomer and polymer pools and is critical for the BDNF-induced changes. Thus, we discuss potential mechanisms by which ADF/cofilin may affect filopodial initiation and length change via its effects on F-actin dynamics in light of past research on actin and myosin function in growth cones.
Collapse
Affiliation(s)
- Joseph Fass
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|