51
|
Webster SJ, Bachstetter AD, Van Eldik LJ. Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer's disease. Alzheimers Res Ther 2013; 5:28. [PMID: 23705774 PMCID: PMC3706792 DOI: 10.1186/alzrt182] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/29/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite the extensive mechanistic and pathological characterization of the amyloid precursor protein (APP)/presenilin-1 (PS-1) knock-in mouse model of Alzheimer's disease (AD), very little is known about the AD-relevant behavioral deficits in this model. Characterization of the baseline behavioral performance in a variety of functional tasks and identification of the temporal onset of behavioral impairments are important to provide a foundation for future preclinical testing of AD therapeutics. Here we perform a comprehensive behavioral characterization of this model, discuss how the observed behavior correlates with the mechanistic and pathological observations of others, and compare this model with other commonly used AD mouse models. METHODS FOUR DIFFERENT GROUPS OF MICE RANGING ACROSS THE LIFESPAN OF THIS MODEL (TEST GROUPS: 7, 11, 15, and 24 months old) were run in a behavioral test battery consisting of tasks to assess motor function (grip strength, rotor rod, beam walk, open field ambulatory movement), anxiety-related behavior (open field time spent in peripheral zone vs. center zone, elevated plus maze), and cognitive function (novel object recognition, radial arm water maze). RESULTS There were no differences in motor function or anxiety-related behavior between APP/PS-1 knock-in mice and wild-type counterpart mice for any age group. Cognitive deficits in both recognition memory (novel object recognition) and spatial reference memory (radial arm water maze) became apparent for the knock-in animals as the disease progressed. CONCLUSION This is the first reported comprehensive behavioral analysis of the APP/PS1 knock-in mouse model of AD. The lack of motor/coordination deficits or abnormal anxiety levels, coupled with the age/disease-related cognitive decline and high physiological relevance of this model, make it well suited for utilization in preclinical testing of AD-relevant therapeutics.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
- Department of Anatomy and Neurobiology, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
52
|
Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease. Ageing Res Rev 2013; 12:116-40. [PMID: 22982398 DOI: 10.1016/j.arr.2012.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders, bringing about huge medical and social burden in the elderly worldwide. Many aspects of its pathogenesis have remained unclear and no effective treatment exists for it. Within the past 20 years, various mice models harboring AD-related human mutations have been produced. These models imitate diverse AD-related pathologies and have been used for basic and therapeutic investigations in AD. In this regard, there are a wide variety of preclinical trials of potential therapeutic modalities using AD mice models which are of paramount importance for future clinical trials and applications. This review summarizes more than 140 substances and treatment modalities being used in transgenic AD mice models from 2001 to 2011. We also discuss advantages and disadvantages of each model to be used in therapeutic development for AD.
Collapse
|
53
|
Ajao DO, Pop V, Kamper JE, Adami A, Rudobeck E, Huang L, Vlkolinsky R, Hartman RE, Ashwal S, Obenaus A, Badaut J. Traumatic brain injury in young rats leads to progressive behavioral deficits coincident with altered tissue properties in adulthood. J Neurotrauma 2012; 29:2060-74. [PMID: 22697253 DOI: 10.1089/neu.2011.1883] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) affects many infants and children, and results in enduring motor and cognitive impairments with accompanying changes in white matter tracts, yet few experimental studies in rodent juvenile models of TBI (jTBI) have examined the timeline and nature of these deficits, histologically and functionally. We used a single controlled cortical impact (CCI) injury to the parietal cortex of rats at post-natal day (P) 17 to evaluate behavioral alterations, injury volume, and morphological and molecular changes in gray and white matter, with accompanying measures of electrophysiological function. At 60 days post-injury (dpi), we found that jTBI animals displayed behavioral deficits in foot-fault and rotarod tests, along with a left turn bias throughout their early developmental stages and into adulthood. In addition, anxiety-like behaviors on the zero maze emerged in jTBI animals at 60 dpi. The final lesion constituted only ∼3% of brain volume, and morphological tissue changes were evaluated using MRI, as well as immunohistochemistry for neuronal nuclei (NeuN), myelin basic protein (MBP), neurofilament-200 (NF200), and oligodendrocytes (CNPase). White matter morphological changes were associated with a global increase in MBP immunostaining and reduced compound action potential amplitudes at 60 dpi. These results suggest that brain injury early in life can induce long-term white matter dysfunction, occurring in parallel with the delayed development and persistence of behavioral deficits, thus modeling clinical and longitudinal TBI observations.
Collapse
Affiliation(s)
- David O Ajao
- Department of Physiology, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Lekic T, Rolland W, Manaenko A, Krafft PR, Kamper JE, Suzuki H, Hartman RE, Tang J, Zhang JH. Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg 2012. [PMID: 23198805 DOI: 10.3171/2012.10.jns111836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT Primary pontine hemorrhage (PPH) represents approximately 7% of all intracerebral hemorrhages (ICHs) and is a clinical condition of which little is known. The aim of this study was to characterize the early brain injury, neurobehavioral outcome, and long-term histopathology in a novel preclinical rat model of PPH. METHODS The authors stereotactically infused collagenase (Type VII) into the ventral pontine tegmentum of the rats, in accordance with the most commonly affected clinical region. Measures of cerebrovascular permeability (brain water content, hemoglobin assay, Evans blue, collagen Type IV, ZO-1, and MMP-2 and MMP-9) and neurological deficit were quantified at 24 hours postinfusion (Experiment 1). Functional outcome was measured over a 30-day period using a vertebrobasilar scale (the modified Voetsch score), open field, wire suspension, beam balance, and inclined-plane tests (Experiment 2). Neurocognitive ability was determined at Week 3 using the rotarod (motor learning), T-maze (working memory), and water maze (spatial learning and memory) (Experiment 3), followed by histopathological analysis 1 week later (Experiment 4). RESULTS Stereotactic collagenase infusion caused dose-dependent elevations in hematoma volume, brain edema, neurological deficit, and blood-brain barrier rupture, while physiological variables remained stable. Functional outcomes mostly normalized by Week 3, whereas neurocognitive deficits paralleled the cystic cavitary lesion at 30 days. Obstructive hydrocephalus did not develop despite a clinically relevant 30-day mortality rate (approximately 54%). CONCLUSIONS These results suggest that the model can mimic several translational aspects of pontine hemorrhage in humans and can be used in the evaluation of potential preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology and Pharmacology, of Science and Technology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Relation between insulin, insulin-related factors, and plasma amyloid beta peptide levels at midlife in a population-based study. Alzheimer Dis Assoc Disord 2012; 26:50-4. [PMID: 21502851 DOI: 10.1097/wad.0b013e31821764ce] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Little is known regarding factors associated with soluble amyloid beta peptide (Aβ) concentrations in humans at late midlife, when Aβ is likely most critical to Alzheimer disease pathogenesis. We examined the association between insulin, insulin-related factors, and plasma Aβ at late midlife. Plasma Aβ42, Aβ40, fasting insulin, and c-peptide were measured in 468 women without diabetes, aged 59 to 69 years (median 63 y). Before blood draw, participants reported body mass index, waist circumference, physical activity, alcohol intake, hypertension, and diabetes family history. Linear regression was used to calculate age-adjusted mean differences in Aβ42 to Aβ40 ratio, and Aβ42 levels, by insulin and insulin-related factors. The ratio of Aβ42 to Aβ40 was statistically significantly lower in women with family history of diabetes, and Aβ42 was significantly lower with less physical activity, greater waist circumference, hypertension, and family history of diabetes (P<0.05 for all). Aβ42 to Aβ40 ratio, and Aβ42 levels, appeared lower with higher c-peptide levels (P trend=0.07 and 0.06, respectively), although these were not statistically significant. In summary, insulin-related factors appear associated with lower plasma Aβ42 to Aβ40 ratio, and Aβ42, at late midlife, consistent with increased brain sequestration of Aβ42 (relative to Aβ40), suggesting insulin merits focus in strategies to prevent dementia.
Collapse
|
56
|
Sheng M, Sabatini BL, Südhof TC. Synapses and Alzheimer's disease. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005777. [PMID: 22491782 DOI: 10.1101/cshperspect.a005777] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein ("plaques") and by insoluble filaments composed of hyperphosphorylated tau protein ("tangles"). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.
Collapse
Affiliation(s)
- Morgan Sheng
- Department of Neuroscience, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | |
Collapse
|
57
|
Genetic animal models of cerebral vasculopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:25-55. [PMID: 22137428 DOI: 10.1016/b978-0-12-394596-9.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are genetic cerebrovasculopathies associated with neurodegeneration and vascular cognitive impairment. Linked to autosomal dominant mutations in diverse genes that encode cell-surface receptors (i.e., amyloid precursor protein in CAA and NOTCH3 in CADASIL), both diseases are associated with accumulation of abnormal material around cerebral vessels, such as amyloid in CAA or granular osmiophilic material in CADASIL. Both CAA and CADASIL share clinical features of white matter degeneration and infarcts, and vascular dementia in the human adult; microbleeds occur in both CADASIL and CAA, but large intracerebral hemorrhages are more characteristic for the latter. While the mechanisms are poorly understood, wall thickening, luminal narrowing, and eventual loss of vascular smooth muscle cells are overlapping pathologies involving leptomeningeal, and pial or penetrating small arteries and arterioles in CAA and CADASIL. Dysregulation of cerebral blood flow and eventual hypoperfusion are believed to be the key pathophysiological steps in neurodegeneration and cognitive impairment. Although animal models expressing CAA or CADASIL mutations have partially reproduced the human pathology, there has been marked heterogeneity in the phenotypic spectrum, possibly due to genetic background differences among mouse models, and obvious species differences between mouse and man. Here, we provide an overview of animal models of CAA and CADASIL and the insight on molecular and physiological mechanisms of disease gained from these models.
Collapse
|
58
|
Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer's disease model. THE JOURNAL OF IMMUNOLOGY 2011; 187:6539-49. [PMID: 22095718 DOI: 10.4049/jimmunol.1100620] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation is a key pathological hallmark of Alzheimer's disease (AD), although its impact on disease progression and neurodegeneration remains an area of active investigation. Among numerous inflammatory cytokines associated with AD, IL-1β in particular has been implicated in playing a pathogenic role. In this study, we sought to investigate whether inhibition of IL-1β signaling provides disease-modifying benefits in an AD mouse model and, if so, by what molecular mechanisms. We report that chronic dosing of 3xTg-AD mice with an IL-1R blocking Ab significantly alters brain inflammatory responses, alleviates cognitive deficits, markedly attenuates tau pathology, and partly reduces certain fibrillar and oligomeric forms of amyloid-β. Alterations in inflammatory responses correspond to reduced NF-κB activity. Furthermore, inhibition of IL-1 signaling reduces the activity of several tau kinases in the brain, including cdk5/p25, GSK-3β, and p38-MAPK, and also reduces phosphorylated tau levels. We also detected a reduction in the astrocyte-derived cytokine, S100B, and in the extent of neuronal Wnt/β-catenin signaling in 3xTg-AD brains, and provided in vitro evidence that these changes may, in part, provide a mechanistic link between IL-1 signaling and GSK-3β activation. Taken together, our results suggest that the IL-1 signaling cascade may be involved in one of the key disease mechanisms for AD.
Collapse
Affiliation(s)
- Masashi Kitazawa
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
A mimotope peptide of Aβ42 fibril-specific antibodies with Aβ42 fibrillation inhibitory activity induces anti-Aβ42 conformer antibody response by a displayed form on an M13 phage in mice. J Neuroimmunol 2011; 236:27-38. [PMID: 21641049 DOI: 10.1016/j.jneuroim.2011.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 11/24/2022]
Abstract
In Alzheimer's disease (AD), amyloid-β (Aβ) peptides accumulate in the brain in different forms, including fibrils and oligomers. Recently, we established three distinct conformation-dependent human single-chain Fv (scFv) antibodies, including B6 scFv, which bound to Aβ42 fibril but not to soluble-form Aβ, inhibiting Aβ42 fibril formation. In this study, we determined the mimotopes of these antibodies and found a common mimotope sequence, B6-C15, using the Ph.D.-C7C phage library. The B6-C15 showed weak homology to the C-terminus of Aβ42 containing GXXXG dimerization motifs. We synthesized the peptide of B6-C15 fused with biotinylated TAT at the N-terminus (TAT-B6-C15) and characterized its biochemical features on an Aβ42-fibrillation reaction in vitro. We demonstrated that, first, TAT-B6-C15 inhibited Aβ42 fibril formation; secondly, TAT-B6-C15 bound to prefibril Aβ42 oligomers but not to monomers, trimers, tetramers, fibrils, or ultrasonicated fragments; thirdly, TAT-B6-C15 inhibited Aβ42-induced cytotoxicity against human SH-SY5Y neuroblastoma cells; and, fourthly, when mice were administered B6-C15-phages dissolved in phosphate-buffered saline, the anti-Aβ42 conformer IgG antibody response was induced. These results suggested that the B6-C15 peptide might provide unique opportunities to analyze the Aβ42 fibrillation pathway and develop a vaccine vehicle for Alzheimer's disease.
Collapse
|
60
|
Robust amyloid clearance in a mouse model of Alzheimer's disease provides novel insights into the mechanism of amyloid-beta immunotherapy. J Neurosci 2011; 31:4124-36. [PMID: 21411653 DOI: 10.1523/jneurosci.5077-10.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many new therapeutics for Alzheimer's disease delay the accumulation of amyloid-β (Aβ) in transgenic mice, but evidence for clearance of preexisting plaques is often lacking. Here, we demonstrate that anti-Aβ immunotherapy combined with suppression of Aβ synthesis allows significant removal of antecedent deposits. We treated amyloid-bearing tet-off APP (amyloid precursor protein) mice with doxycycline to suppress transgenic Aβ production before initiating a 12 week course of passive immunization. Animals remained on doxycycline for 3 months afterward to assess whether improvements attained during combined treatment could be maintained by monotherapy. This strategy reduced amyloid load by 52% and Aβ42 content by 28% relative to pretreatment levels, with preferential clearance of small deposits and diffuse Aβ surrounding fibrillar cores. We demonstrate that peripherally administered anti-Aβ antibody crossed the blood-brain barrier, bound to plaques, and was still be found associated with a subset of amyloid deposits many months after the final injection. Antibody accessed the brain independent of plasma Aβ levels, where it enhanced microglial internalization of aggregated Aβ. Our data support a mechanism by which passive immunization acts centrally to stimulate microglial phagocytosis of aggregated Aβ, but is opposed by the continued aggregation of newly secreted Aβ. By arresting the production of Aβ, combination therapy allows microglial clearance to work from a static amyloid burden toward a significant reduction in plaque load. Our findings suggest that combining two therapeutic approaches currently in clinical trials may improve neuropathological outcome over either alone.
Collapse
|
61
|
Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Rev Neurosci 2011; 22:373-402. [DOI: 10.1515/rns.2011.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
62
|
Gomez-Isla T, Spires T, De Calignon A, Hyman BT. Neuropathology of Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2010; 89:233-43. [PMID: 18631748 DOI: 10.1016/s0072-9752(07)01222-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Teresa Gomez-Isla
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
63
|
Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J Neurosci 2010; 30:10369-79. [PMID: 20685980 DOI: 10.1523/jneurosci.5721-09.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oligomers of the beta-amyloid (Abeta) peptide have been indicated in early neuropathologic changes in Alzheimer's disease. Here, we present a synthetic Abeta(20-42) oligomer (named globulomer) with a different conformation to monomeric and fibrillar Abeta peptide, enabling the generation of highly Abeta oligomer-specific monoclonal antibodies. The globulomer-derived antibodies specifically detect oligomeric but not monomeric or fibrillar Abeta in various Abeta preparations. The globulomer-specific antibody A-887755 was able to prevent Abeta oligomer binding and dynamin cleavage in primary hippocampal neurons and to reverse globulomer-induced reduced synaptic transmission. In amyloid precursor protein (APP) transgenic mice, vaccination with Abeta globulomer and treatment with A-887755 improved novel object recognition. The cognitive improvement is likely attributable to reversing a deficit in hippocampal synaptic spine density in APP transgenic mice as observed after treatment with A-887755. Our findings demonstrate that selective reduction of Abeta oligomers by immunotherapy is sufficient to normalize cognitive behavior and synaptic deficits in APP transgenic mice.
Collapse
|
64
|
Takeda S, Sato N, Rakugi H, Morishita R. Plasma beta-amyloid as potential biomarker of Alzheimer disease: possibility of diagnostic tool for Alzheimer disease. MOLECULAR BIOSYSTEMS 2010; 6:1760-6. [PMID: 20567751 DOI: 10.1039/c003148h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer disease (AD), which is characterized by progressive cognitive and behavioral deficit, is the most common form of dementia. The incidence of AD is increasing at an alarming rate, and has become a major public health concern in many countries. It is well known that the onset of AD is preceded by a long preclinical period. It is thus critical to establish diagnostic biomarkers that can predict the risk of developing AD prior to clinical manifestation of dementia, for effective prevention and early intervention. With the emergence of potential promising approaches to treat AD targeting the beta-amyloid (Abeta) pathway, such as gamma-secretase inhibitors and vaccine therapy, there is an urgent need for such diagnostic markers. Although cerebrospinal fluid (CSF) Abeta and tau protein levels are candidate biomarkers for AD, the invasive sampling procedure with associated complications limits their use in routine clinical practice. Plasma Abeta has been suggested as an inexpensive and non-invasive biomarker for AD. Although most previous cross-sectional studies on plasma Abeta level in humans failed to show a significant difference between individuals with AD compared to healthy older adults, many strategies are under investigation to improve the diagnostic potential of plasma Abeta. One promising approach is to modify the plasma Abeta level using some potential modulators. It is possible that a difference in plasma Abeta level might be unmasked by evaluating the response to stimulation by a modulator. Anti-Abeta antibody and Abeta binding proteins have been reported to be such modulators of plasma Abeta. In addition, the glucometabolic or hormonal status appears to modulate the plasma Abeta level. Our recent study has shown the possibility that glucose loading could be a novel simple strategy to modulate the plasma Abeta level, making it better suited for early diagnosis. This review summarizes the utility and limitations of current biomarkers of AD and discusses future strategies to improve the diagnostic potential of plasma Abeta.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
65
|
Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, Tang J, Zhang JH. Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma 2010; 27:627-37. [PMID: 20350200 DOI: 10.1089/neu.2009.1163] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since free radicals play a role in the mechanisms of brain injury after hemorrhagic stroke, the effect of melatonin (a potent antioxidant and free-radical scavenger) on outcomes was investigated after intracerebral hemorrhage (ICH) in rats. ICH was induced by clostridial collagenase infusion into the right caudate putamen, and several time points and doses of melatonin were studied. Brain edema and neurological function at 24 h were unchanged in comparison with vehicle-treated groups, in spite of oxidative stress reductions. Repeated treatment with the lower dose of melatonin (5 mg/kg) given at 1 h and every 24 h thereafter for 3 days after ICH, led to normalization of striatal function and memory ability over the course of 8 weeks, and less brain atrophy 2 weeks later. These results suggest that melatonin is safe for use after ICH, reduces oxidative stress, provides brain protection, and could be used for future investigations of free radical mechanisms after cerebral hemorrhage.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology and Pharmacology, Loma Linda University Medical Center, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
67
|
Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O. Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer's disease-linked APPswe/PS1DeltaE9 mice. FASEB J 2010; 24:1667-1681. [PMID: 20086049 PMCID: PMC4050966 DOI: 10.1096/fj.09-136945] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022]
Abstract
Experience in complex environments induces numerous forms of brain plasticity, improving structure and function. It has been long debated whether brain plasticity can be induced under neuropathological conditions, such as Alzheimer's disease (AD), to an extent that would reduce neuropathology, rescue brain structure, and restore its function. Here we show that experience in a complex environment rescues a significant impairment of hippocampal neurogenesis in transgenic mice harboring familial AD-linked mutant APPswe/PS1DeltaE9. Proliferation of hippocampal cells is enhanced significantly after enrichment, and these proliferating cells mature to become new neurons and glia. Enhanced neurogenesis was accompanied by a significant reduction in levels of hyperphosphorylated tau and oligomeric Abeta, the precursors of AD hallmarks, in the hippocampus and cortex of enriched mice. Interestingly, enhanced expression of the neuronal anterograde motor kinesin-1 was observed, suggesting enhanced axonal transport in hippocampal and cortical neurons after enrichment. Examination of synaptic physiology revealed that environmental experience significantly enhanced hippocampal long-term potentiation, without notable alterations in basal synaptic transmission. This study suggests that environmental modulation can rescue the impaired phenotype of the Alzheimer's brain and that induction of brain plasticity may represent therapeutic and preventive avenues in AD.
Collapse
Affiliation(s)
| | - Peng Xu
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | | | - John Larson
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | | |
Collapse
|
68
|
Medecigo M, Manoutcharian K, Vasilevko V, Govezensky T, Munguia ME, Becerril B, Luz-Madrigal A, Vaca L, Cribbs DH, Gevorkian G. Novel amyloid-beta specific scFv and VH antibody fragments from human and mouse phage display antibody libraries. J Neuroimmunol 2010; 223:104-14. [PMID: 20451261 PMCID: PMC2882999 DOI: 10.1016/j.jneuroim.2010.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 12/14/2022]
Abstract
Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer's disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Abeta1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single-domain (VH) format. We demonstrated that these antibody fragments recognize in a specific manner amyloid-beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Abeta1-42 in neuroblastoma cell cultures in a concentration-dependent manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Abeta, which makes them strong therapeutic candidates due to the fact that most of the Abeta species found in the brains of AD patients display extensive N-terminus truncations/modifications.
Collapse
Affiliation(s)
- M. Medecigo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - K. Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - V. Vasilevko
- The Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697-4540, USA
| | - T. Govezensky
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - M. E. Munguia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - B. Becerril
- Instituto de Biotecnologia, UNAM, Cuernavaca, 62210, MEXICO
| | - A. Luz-Madrigal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
- Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - L. Vaca
- Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| | - D. H. Cribbs
- The Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697-4540, USA
- Department of Neurology, University of California Irvine, Irvine, CA 92697-4540, USA
| | - G. Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, MÉXICO
| |
Collapse
|
69
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease for which no cure exists. There is a substantial need for new therapies that offer improved symptomatic benefit and disease-slowing capabilities. In recent decades there has been substantial progress in understanding the molecular and cellular changes associated with Alzheimer's disease pathology. This has resulted in identification of a large number of new drug targets. These targets include, but are not limited to, therapies that aim to prevent production of or remove the amyloid-beta protein that accumulates in neuritic plaques; to prevent the hyperphosphorylation and aggregation into paired helical filaments of the microtubule-associated protein tau; and to keep neurons alive and functioning normally in the face of these pathologic challenges. We provide a review of these targets for drug development.
Collapse
Affiliation(s)
- Joshua D Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Deane F. Johnson Center for Neurotherapeutics, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
70
|
Sipos E, Kurunczi A, Fehér A, Penke Z, Fülöp L, Kasza Á, Horváth J, Horvát S, Veszelka S, Balogh G, Kürti L, Erős I, Szabó-Révész P, Párducz Á, Penke B, Deli MA. Intranasal delivery of human beta-amyloid peptide in rats: effective brain targeting. Cell Mol Neurobiol 2010; 30:405-13. [PMID: 19806448 PMCID: PMC11498860 DOI: 10.1007/s10571-009-9463-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/17/2009] [Indexed: 12/20/2022]
Abstract
(1) Intranasal administration is a non-invasive and effective way for the delivery of drugs to brain that circumvents the blood-brain barrier. The aims of the study were to test a nasal delivery system for human beta-amyloid (A beta) peptides, to measure the delivery of the peptides to brain regions, and to test their biological activity in rats. (2) A beta(1-42), in the form of a mixture of oligomers, protofibrils, and fibrils was dissolved in a nasal formulation containing hydrophobic, hydrophylic, and mucoadhesive components. The peptide solution was administered intranasally to rats as a single dose or in repeated doses. (3) Nasally injected A beta labeled with the blue fluorescent dye amino-methyl coumarinyl acetic acid (AMCA) could be detected by fluorescent microscopy in the olfactory bulb and frontal cortex. The concentration of the peptide was quantified by fluorescent spectroscopy, and a significant amount of AMCA-A beta peptide could be detected in the olfactory bulb. Unlabeled A beta also reached the olfactory bulb and frontal cortex of rats as evidenced by intense immunostaining. (4) In behavioral experiments, nasal A beta treatment did not affect anxiety levels (open-field test) and short-term memory (Y-maze test), but significantly impaired long-term spatial memory in the Morris water maze. The treatments did not result in A beta immunization. (5) The tested intranasal delivery system could successfully target a bioactive peptide into the central nervous system and provides a basis for developing a non-invasive and cost effective, new model to study amyloid-induced dysfunctions in the brain.
Collapse
Affiliation(s)
- Eszter Sipos
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Anita Kurunczi
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., 6726 Szeged, Hungary
| | - András Fehér
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - Zsuzsa Penke
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Ágnes Kasza
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - János Horváth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Sándor Horvát
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., 6726 Szeged, Hungary
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - Szilvia Veszelka
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., 6726 Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Levente Kürti
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - István Erős
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | | | - Árpád Párducz
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., 6726 Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
- Supramolecular and Nanostructured Materials Research Group, Hungarian Academy of Science, Szeged, Hungary
| | - Mária A. Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62., 6726 Szeged, Hungary
| |
Collapse
|
71
|
Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:197-206. [PMID: 20205640 PMCID: PMC2895488 DOI: 10.2174/187152710791012017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/12/2009] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive, degenerative disorder of the brain and the most common form of dementia among the elderly. As the population grows and lifespan is extended, the number of AD patients will continue to rise. Current clinical therapies for AD provide partial symptomatic benefits for some patients; however, none of them modify disease progression. Amyloid-beta (Abeta) peptide, the major component of senile plaques in AD patients, is considered to play a crucial role in the pathogenesis of AD thereby leading to Abeta as a target for treatment. Abeta immunotherapy has been shown to induce a marked reduction in amyloid burden and an improvement in cognitive function in animal models. Although preclinical studies were successful, the initial human clinical trial of an active Abeta vaccine was halted due to the development of meningoencephalitis in approximately 6% of the vaccinated AD patients. Some encouraging outcomes, including signs of cognitive stabilization and apparent plaque clearance, were obtained in subset of patients who generated antibody titers. These promising preliminary data support further efforts to refine Abeta immunotherapy to produce highly effective and safer active and passive vaccines for AD. Furthermore, some new human clinical trials for both active and passive Abeta immunotherapy are underway. In this review, we will provide an update of Abeta immunotherapy in animal models and in human beings, as well as discuss the possible mechanisms underlying Abeta immunotherapy for AD.
Collapse
Affiliation(s)
- H J Fu
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
72
|
Basi GS, Feinberg H, Oshidari F, Anderson J, Barbour R, Baker J, Comery TA, Diep L, Gill D, Johnson-Wood K, Goel A, Grantcharova K, Lee M, Li J, Partridge A, Griswold-Prenner I, Piot N, Walker D, Widom A, Pangalos MN, Seubert P, Jacobsen JS, Schenk D, Weis WI. Structural correlates of antibodies associated with acute reversal of amyloid beta-related behavioral deficits in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:3417-27. [PMID: 19923222 PMCID: PMC2823416 DOI: 10.1074/jbc.m109.045187] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/02/2009] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.
Collapse
Affiliation(s)
- Guriqbal S Basi
- Elan Pharmaceuticals, Incorporated, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 2009; 13:190-6. [PMID: 20037574 DOI: 10.1038/nn.2476] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/16/2009] [Indexed: 11/08/2022]
Abstract
Excessive synaptic loss is thought to be one of the earliest events in Alzheimer's disease. Amyloid beta (Abeta), a peptide secreted in an activity-modulated manner by neurons, has been implicated in the pathogenesis of Alzheimer's disease by removing dendritic spines, sites of excitatory synaptic transmission. However, issues regarding the subcellular source of Abeta, as well as the mechanisms of its production and actions that lead to synaptic loss, remain poorly understood. In rat organotypic slices, we found that acute overproduction of either axonal or dendritic Abeta reduced spine density and plasticity at nearby ( approximately 5-10 mum) dendrites. The production of Abeta and its effects on spines were sensitive to blockade of action potentials or nicotinic receptors; the effects of Abeta (but not its production) were sensitive to NMDA receptor blockade. Notably, only 30-60 min blockade of Abeta overproduction permitted induction of plasticity. Our results indicate that continuous overproduction of Abeta at dendrites or axons acts locally to reduce the number and plasticity of synapses.
Collapse
|
74
|
Röskam S, Neff F, Schwarting R, Bacher M, Dodel R. APP transgenic mice: the effect of active and passive immunotherapy in cognitive tasks. Neurosci Biobehav Rev 2009; 34:487-99. [PMID: 19857518 DOI: 10.1016/j.neubiorev.2009.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 10/11/2009] [Accepted: 10/18/2009] [Indexed: 12/24/2022]
Abstract
Various immunotherapy strategies for APP transgenic mice have emerged in recent years. Specifically, active immunization with beta-amyloid (A beta) or passive immunization with anti-A beta-antibodies in APP transgenic mice has appeared most promising. Recent studies have shown that treatment of APP transgenic mice either with A beta(40/42) or A beta-specific antibodies can have beneficial effects in cognitive tasks. Active as well as passive immunization have been shown to affect spatial, non-spatial, emotional and object-related learning and memory. Such effects can be observed when treatments are applied prophylactically (before apparent A beta pathology) or therapeutically (after the development of A beta pathology) in APP transgenic mice. This review focuses on such cognitive outcomes of different active and passive immunization strategies in APP transgenic mice.
Collapse
Affiliation(s)
- Stephan Röskam
- Department of Neurology, Research Group for Neurological Therapeutics, Biomedical Research Centre, Philipps-University Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
75
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
76
|
Hartman R, Lekic T, Rojas H, Tang J, Zhang JH. Assessing functional outcomes following intracerebral hemorrhage in rats. Brain Res 2009; 1280:148-57. [PMID: 19464275 DOI: 10.1016/j.brainres.2009.05.038] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/18/2022]
Abstract
Translational neuroprotective and drug development studies need to be gauged against well-characterized functional outcomes, including motor, sensory and cognitive domains. Since intracerebral hemorrhage (ICH) causes dramatic neurological and cognitive deficits in humans, we hypothesized that ICH would result in prolonged motor-sensory and learning/memory deficits in rats. Neurological tests of sensorimotor functions were performed before ICH, 1-3 days and 10 weeks after ICH. Water maze, open field, and rotarod performance was tested 2 and 8 weeks after ICH. Early neurological evaluations revealed significant deficits, with almost full recovery by 10 weeks. The water maze revealed significant learning (but not motor) deficits at 2 weeks, but by 8 weeks, the learning deficits had diminished and significant motor deficits had emerged, coinciding with a drop in activity. The injured hemisphere showed significant atrophy at sacrifice. Therefore, ICH produced detectable cognitive and motor deficits in rats that evolved over a 10-week period, and thereby provides a suitable baseline for analysis of future therapeutic interventions following hemorrhagic stroke.
Collapse
Affiliation(s)
- Richard Hartman
- Department of Psychology, Loma Linda University Medical Center, Loma Linda, California, USA.
| | | | | | | | | |
Collapse
|
77
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Hartman RE, Rojas H, Tang J, Zhang J. Long-term behavioral characterization of a rat model of intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 105:125-6. [PMID: 19066096 DOI: 10.1007/978-3-211-09469-3_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We tested the behavioral effects of intracerebral hemorrhage (ICH) in adult male rats. ICH was induced by collagenase injection into the basal ganglia and the rats were subjected to a longitudinal behavioral test battery. Both learning and memory deficits were detected shortly after injury. Two months after injury, there were still significant short- and long-term memory deficits. Rotarod testing also revealed long-term sensorimotor coordination deficits. No differences in activity levels were detected at any time. Thus, spontaneous ICH produced detectable cognitive and motor deficits that evolved over the course of 2 months. Along with histological analysis of infarct volume, this characterization provides a suitable baseline for the analysis of therapeutic interventions.
Collapse
Affiliation(s)
- R E Hartman
- Department of Psychology, Loma Linda University, 11130 Anderson St. 119, Loma Linda, CA 92354, USA.
| | | | | | | |
Collapse
|
79
|
Spires-Jones TL, Mielke M, Rozkalne A, Meyer-Luehmann M, de Calignon A, Bacskai BJ, Schenk D, Hyman BT. Passive immunotherapy rapidly increases structural plasticity in a mouse model of Alzheimer disease. Neurobiol Dis 2009; 33:213-20. [PMID: 19028582 PMCID: PMC2672591 DOI: 10.1016/j.nbd.2008.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 11/15/2022] Open
Abstract
Senile plaque-associated changes in neuronal connectivity such as altered neurite trajectory, dystrophic swellings, and synapse and dendritic spine loss are thought to contribute to cognitive dysfunction in Alzheimer's disease and mouse models. Immunotherapy to remove amyloid beta is a promising therapy that causes recovery of neurite trajectory and dystrophic neurites over a period of days. The acute effects of immunotherapy on neurite morphology at a time point when soluble amyloid has been cleared but dense plaques are not yet affected are unknown. To examine whether removal of soluble amyloid beta (Abeta) has a therapeutic effect on dendritic spines, we explored spine dynamics within 1 h of applying a neutralizing anti Abeta antibody. This acute treatment caused a small but significant increase in dendritic spine formation in PDAPP brain far from plaques, without affecting spine plasticity near plaques or average dendritic spine density. These data support the hypothesis that removing toxic soluble forms of amyloid-beta rapidly increases structural plasticity possibly allowing functional recovery of neural circuits.
Collapse
Affiliation(s)
- Tara L Spires-Jones
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| | - Matthew Mielke
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| | - Anete Rozkalne
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| | - Melanie Meyer-Luehmann
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| | - Alix de Calignon
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| | - Brian J Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| | | | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA USA
| |
Collapse
|
80
|
Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful beneficial effects of macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in Alzheimer's disease. Brain 2009; 132:1078-92. [PMID: 19151372 DOI: 10.1093/brain/awn331] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alzheimer's disease is a major cause of dementia in humans. The appearance of cognitive decline is linked to the overproduction of a short peptide called beta-amyloid (Abeta) in both soluble and aggregate forms. Here, we show that injecting macrophage colony-stimulating factor (M-CSF) to Swedish beta-amyloid precursor protein (APP(Swe))/PS1 transgenic mice, a well-documented model for Alzheimer's disease, on a weekly basis prior to the appearance of learning and memory deficits prevented cognitive loss. M-CSF also increased the number of microglia in the parenchyma and decreased the number of Abeta deposits. Senile plaques were smaller and less dense in the brain of M-CSF-treated mice compared to littermate controls treated with vehicle solution. Interestingly, a higher ratio of microglia internalized Abeta in the brain of M-CSF-treated animals and the phagocytosed peptides were located in the late endosomes and lysosomes. Less Abeta(40) and Abeta(42) monomers were also detected in the extracellular protein enriched fractions of M-CSF-treated transgenic mice when compared with vehicle controls. Finally, treating APP(Swe)/PS1 mice that were already demonstrating installed Abeta pathology stabilized the cognitive decline. Together these results provide compelling evidence that systemic M-CSF administration is a powerful treatment to stimulate bone marrow-derived microglia, degrade Abeta and prevent or improve the cognitive decline associated with Abeta burden in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Vincent Boissonneault
- Laboratory of Molecular Endocrinology, CHUL Research Center, CHUQ, 2705 Blvd Laurier, Quebec, G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
Small molecule drugs are relatively effective in working on 'drugable' targets such as GPCRs, ion channels, kinases, proteases, etc but ineffective at blocking protein-protein interactions that represent an emerging class of 'nondrugable' central nervous system (CNS) targets. This article provides an overview of novel therapeutic modalities such as biologics (in particular antibodies) and emerging oligonucleotide therapeutics such as antisense, small-interfering RNA, and aptamers. Their key properties, overall strengths and limitations, and their utility as tools for target validation are presented. In addition, issues with regard to CNS targets as it relates to the blood-brain barrier penetration are discussed. Finally, examples of their application as therapeutics for the treatment of pain and some neurological disorders such as Alzheimer's disease, multiple sclerosis, Huntington's disease, and Parkinson's disease are provided.
Collapse
|
82
|
Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: the olfactory and immune system interrelationship. Clin Immunol 2008; 130:235-43. [PMID: 19097945 DOI: 10.1016/j.clim.2008.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/12/2008] [Accepted: 10/14/2008] [Indexed: 12/12/2022]
Abstract
Smell has traditionally been considered a less important sense when compared to sight or hearing, but recent research has unraveled important features inherent to the sense of smell. Once considered just a chemical sensor for sampling the environment, data from animal models and human studies currently imply numerous and complex effects of smell on behavior, mood, and on the immune response. In this review we discuss a possible inter-relationship between olfactory impairment, autoimmunity and neurological/psychiatric symptoms in several diseases affecting the central nervous system (CNS) such as Parkinson, Alzheimer's disease, autism, schizophrenia, multiple sclerosis and neuropsychiatric lupus erythematosus. We suggest that common manifestations are not mere coincidences. Current data from animal models show that neuropsychiatric manifestations are intimately associated with smell impairment, and autoimmune dysregulation, via autoantibodies (anti-NMDAR, anti-ribosomal P) or other mechanisms. From clues of pathological manifestations, we propose a novel approach to the understanding of the interactions between the CNS, the smell and the immune system.
Collapse
|
83
|
Increased exploratory activity of APP23 mice in a novel environment is reversed by siRNA. Brain Res 2008; 1243:124-33. [DOI: 10.1016/j.brainres.2008.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/06/2008] [Accepted: 09/11/2008] [Indexed: 12/11/2022]
|
84
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
85
|
Steinitz M. Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease. Expert Opin Biol Ther 2008; 8:633-42. [PMID: 18407766 DOI: 10.1517/14712598.8.5.633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. OBJECTIVE To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. METHODS Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. RESULTS/CONCLUSIONS In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.
Collapse
Affiliation(s)
- Michael Steinitz
- The Hebrew University-Hadassah Medical School, Department of Pathology, Jerusalem, 91120, POB 12272, Israel.
| |
Collapse
|
86
|
Zeng Y, Han X. Sulfatides facilitate apolipoprotein E-mediated amyloid-beta peptide clearance through an endocytotic pathway. J Neurochem 2008; 106:1275-86. [PMID: 18485101 PMCID: PMC2574953 DOI: 10.1111/j.1471-4159.2008.05481.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid-beta (Abeta) accumulation and fibril formation are key pathologic characteristics of Alzheimer's disease (AD). We have previously found that sulfatide depletion occurs at the earliest stages of AD. To further identify the role of sulfatides in the pathogenesis of AD as well as the interactions between apolipoprotein E (apoE), sulfatides, and Abeta peptides, we examined alterations in the clearance of apoE-mediated Abeta peptides after sulfatide supplementation to cell culture systems. We demonstrated that sulfatides markedly facilitate apoE-mediated clearance of Abeta peptides endogenously generated from H4-APPwt cells through an endocytotic pathway. Moreover, we found that the uptake of Abeta42 mediated by sulfatides was selective in comparison to that of Abeta40. We excluded the possibility that the supplementation of sulfatides and/or apoE altered the production of Abeta peptides from H4-APPwt cells through determination of the clearance of Abeta peptides from conditioned H4-APPwt cell media by neuroblastoma cells which do not appreciably generate Abeta peptides. Finally, we demonstrated that the sulfate galactose moiety of sulfatides is essential for the sulfatide-facilitated clearance of Abeta peptides. Collectively, the current study provides insight into a molecular mechanism leading to Abeta clearance/deposition, highlights the significance of sulfatide deficiency at the earliest clinically recognizable stage of AD, and identifies a potential new direction for therapeutic intervention for the disease.
Collapse
Affiliation(s)
- Youchun Zeng
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine St. Louis, Missouri 63110, USA
| | - Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine St. Louis, Missouri 63110, USA
- Internal Medicine, Washington University School of Medicine St. Louis, Missouri 63110, USA
| |
Collapse
|
87
|
Zou J, Yao Z, Zhang G, Wang H, Xu J, Yew DT, Forster EL. Vaccination of Alzheimer's model mice with adenovirus vector containing quadrivalent foldable Abeta(1-15) reduces Abeta burden and behavioral impairment without Abeta-specific T cell response. J Neurol Sci 2008; 272:87-98. [PMID: 18571202 DOI: 10.1016/j.jns.2008.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Active amyloid beta (Abeta) vaccination has been shown to be effective in clearing cerebral Abeta and improving cognitive function in mouse models of Alzheimer's disease (AD). The meningoencephalitis observed in AD vaccination trial was likely related to excessive T cell-mediated immunity caused by the immunogen Abeta(1-42). To avoid this toxicity, previous researchers have been using synthetic truncated Abeta derivatives that promote humoral immunity. In this study, we develop a novel adenovirus vaccine, which can express quadrivalent foldable Abeta(1-15) (4 x Abeta(15)) and gene adjuvant GM-CSF in vivo. Importantly, the 4 x Abeta(15) sequence includes an Abeta-specific B cell epitope but lacks the reported T cell epitope. The 4 x Abeta(15) adenovirus vaccine induces an Abeta-specific IgG1 predominant humoral immune response, and reduces brain Abeta deposition and cognition deficits in Tg2576 mice. Detection of IL-4 and IFN-gamma in restimulated splenocytes shows a significant Th2-polarized immune response. Stimulation of splenocytes with 4 x Abeta(15) peptides results in robust proliferative responses, whereas proliferation is absent after stimulation with full-length Abeta, which indicates that the 4 x Abeta(15) adenovirus vaccine does not induce Abeta-specific T cellular immune response. Thus, our results raise the possibility that adenovirus vector encoding 4 x Abeta(15) would be a promising candidate for future AD vaccination program.
Collapse
Affiliation(s)
- Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | | | | | | | | | | | | |
Collapse
|
88
|
Pardridge WM. Re-Engineering Biopharmaceuticals for Delivery to Brain with Molecular Trojan Horses. Bioconjug Chem 2008; 19:1327-38. [DOI: 10.1021/bc800148t] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- William M. Pardridge
- Department of Medicine, University of California at Los Angeles, Los Angeles, California 90024
| |
Collapse
|
89
|
Oh ES, Troncoso JC, Fangmark Tucker SM. Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer's disease. Neuromolecular Med 2008; 10:195-207. [PMID: 18543125 PMCID: PMC2558671 DOI: 10.1007/s12017-008-8035-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/06/2008] [Indexed: 12/15/2022]
Abstract
Amyloid plaques are composed primarily of amyloid-beta (Abeta) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) and are considered to play a pivotal role in Alzheimer's disease (AD) pathogenesis. Presently, AD is diagnosed after the onset of clinical manifestations. With the arrival of novel therapeutic agents for treatment of AD, there is an urgent need for biomarkers to detect early stages of AD. Measurement of plasma Abeta has been suggested as an inexpensive and non-invasive tool to diagnose AD and to monitor Abeta modifying therapies. However, the majority of cross-sectional studies on plasma Abeta levels in humans have not shown differences between individuals with AD compared to controls. Similarly, cross-sectional studies of mouse plasma Abeta have yielded inconsistent trends in different mouse models. However, longitudinal studies appear to be more promising in humans. Recently, efforts to modify plasma Abeta levels using modulators have shown some promise. In this review, we will summarize the present data on plasma Abeta in humans and mouse models of AD. We will discuss the potential of modulators of Abeta levels in plasma, including antibodies and insulin, and the challenges associated with measuring plasma Abeta. Modulators of plasma Abeta may provide an important tool to optimize plasma Abeta levels and may improve the diagnostic potential of this approach.
Collapse
Affiliation(s)
- Esther S Oh
- Department of Medicine, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Ave., Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
90
|
Cassel JC, Mathis C, Majchrzak M, Moreau PH, Dalrymple-Alford JC. Coexisting cholinergic and parahippocampal degeneration: a key to memory loss in dementia and a challenge for transgenic models? NEURODEGENER DIS 2008; 5:304-17. [PMID: 18520165 DOI: 10.1159/000135615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 10/31/2007] [Indexed: 12/25/2022] Open
Abstract
One century after Alzheimer's initial report, a variety of animal models of Alzheimer's disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- LINC UMR 7191, Université Louis Pasteur, CNRS, Institut Fédératif de Recherche IFR 37, GDR CNRS 2905, Strasbourg, France.
| | | | | | | | | |
Collapse
|
91
|
Head E, Pop V, Vasilevko V, Hill M, Saing T, Sarsoza F, Nistor M, Christie LA, Milton S, Glabe C, Barrett E, Cribbs D. A two-year study with fibrillar beta-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J Neurosci 2008; 28:3555-66. [PMID: 18385314 PMCID: PMC6671080 DOI: 10.1523/jneurosci.0208-08.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 02/20/2008] [Indexed: 11/21/2022] Open
Abstract
Aged canines (dogs) accumulate human-type beta-amyloid (Abeta) in diffuse plaques in the brain with parallel declines in cognitive function. We hypothesized that reducing Abeta in a therapeutic treatment study of aged dogs with preexisting Abeta pathology and cognitive deficits would lead to cognitive improvements. To test this hypothesis, we immunized aged beagles (8.4-12.4 years) with fibrillar Abeta(1-42) formulated with aluminum salt (Alum) for 2.4 years (25 vaccinations). Cognitive testing during this time revealed no improvement in measures of learning, spatial attention, or spatial memory. After extended treatment (22 vaccinations), we observed maintenance of prefrontal-dependent reversal learning ability. In the brain, levels of soluble and insoluble Abeta(1-40) and Abeta(1-42) and the extent of diffuse plaque accumulation was significantly decreased in several cortical regions, with preferential reductions in the prefrontal cortex, which is associated with a maintenance of cognition. However, the amount of soluble oligomers remained unchanged. The extent of prefrontal Abeta was correlated with frontal function and serum anti-Abeta antibody titers. Thus, reducing total Abeta may be of limited therapeutic benefit to recovery of cognitive decline in a higher mammalian model of human brain aging and disease. Immunizing animals before extensive Abeta deposition and cognitive decline to prevent oligomeric or fibrillar Abeta formation may have a greater impact on cognition and also more directly evaluate the role of Abeta on cognition in canines. Alternatively, clearing preexisting Abeta from the brain in a treatment study may be more efficacious for cognition if combined with a second intervention that restores neuron health.
Collapse
Affiliation(s)
- Elizabeth Head
- Institute for Brain Aging and Dementia, and Department of Neurology, University of California, Irvine, Irvine, California 92697, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Panaxydol and panaxynol protect cultured cortical neurons against Aβ25–35-induced toxicity. Neuropharmacology 2008; 54:845-53. [DOI: 10.1016/j.neuropharm.2008.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 12/26/2007] [Accepted: 01/03/2008] [Indexed: 11/22/2022]
|
93
|
Burgess BL, Parkinson PF, Racke MM, Hirsch-Reinshagen V, Fan J, Wong C, Stukas S, Theroux L, Chan JY, Donkin J, Wilkinson A, Balik D, Christie B, Poirier J, Lütjohann D, Demattos RB, Wellington CL. ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo. J Lipid Res 2008; 49:1254-67. [PMID: 18314463 DOI: 10.1194/jlr.m700481-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Braydon L Burgess
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Solórzano-Vargas RS, Vasilevko V, Acero G, Ugen KE, Martinez R, Govezensky T, Vazquez-Ramirez R, Kubli-Garfias C, Cribbs DH, Manoutcharian K, Gevorkian G. Epitope mapping and neuroprotective properties of a human single chain FV antibody that binds an internal epitope of amyloid-beta 1-42. Mol Immunol 2008; 45:881-6. [PMID: 17889938 DOI: 10.1016/j.molimm.2007.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/06/2007] [Accepted: 08/09/2007] [Indexed: 12/26/2022]
Abstract
Active and passive immunotherapy targeted at the amyloid-beta (Abeta) peptide has been proposed as therapeutic approach against Alzheimer's disease (AD), and efforts towards the generation and application of antibody-based reagents that are capable of preventing and clearing amyloid aggregates are currently under active investigation. Previously, we selected and characterized a new anti-Abeta1-42 phage-displayed scFv antibody, designated clone b4.4, using a non-immune human scFv antibody library and demonstrated that a peptide based on the sequence of the Ig heavy chain (VH) complementarity-determining region (HCDR3) of this antibody fragment bound to Abeta1-42)and had neuroprotective potential against Abeta1-42 mediated neurotoxicity in rat hippocampal cultured neurons. In the present study, using novel computational methods and in vitro experiments we demonstrated that b4.4 binds to the central region of Abeta1-42. We also demonstrated that this scFv antibody binds to Abeta-derived diffusible ligands (ADDLs) and neutralizes the toxicity of both fibrillar and oligomeric forms of Abeta1-42 tested in vitro in SH-SY5Y cell cultures.
Collapse
Affiliation(s)
- R S Solórzano-Vargas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México DF 04510, México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized pathologically by the deposition of beta-amyloid (A beta)-containing extracellular neuritic plaques, intracellular neurofibrillary tangles and neuronal loss. Much evidence supports the hypothesis that A beta peptide aggregation contributes to AD pathogenesis, however, currently approved therapeutic treatments do nothing to stop or reverse A beta deposition. The success of active and passive anti-A beta immunotherapies in both preventing and clearing parenchymal amyloid in transgenic mouse models led to the initiation of an active anti-A beta vaccination (AN1792) trial in human patients with mild-to-moderate AD, but was prematurely halted when 6% of inoculated patients developed aseptic meningoencephalitis. Autopsy results from the brains of four individuals treated with AN1792 revealed decreased plaque burden in select brain areas, as well as T-cell lymphocytes in three of the patients. Furthermore, antibody responders showed some improvement in memory task measures. These findings indicated that anti-A beta therapy might still be a viable option for the treatment of AD, if potentially harmful proinflammatory processes can be avoided. Over the past 6 years, this target has led to the development of novel experimental immunization strategies, including selective A beta epitope targeting, antibody and adjuvant modifications, as well as alternative routes and mechanisms of vaccine delivery, to generate anti-A beta antibodies that selectively target and remove specific A beta species without evoking autoimmunity. Results from the passive vaccination AD clinical trials that are currently underway will provide invaluable information about both the effectiveness of newly improved anti-A beta vaccines in clinical treatment, as well as the role of the A beta peptide in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Cheryl A Hawkes
- Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
96
|
Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 2008; 29:117-28. [PMID: 17079053 DOI: 10.1016/j.neurobiolaging.2006.09.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/06/2006] [Accepted: 09/13/2006] [Indexed: 11/29/2022]
Abstract
In lower organisms, such as Caenorhabditis elegans and Drosophila, many genes identified as key regulators of aging are involved in either detoxification of reactive oxygen species or the cellular response to oxidatively-damaged macromolecules. Transgenic mice have been generated to study these genes in mammalian aging, but have not in general exhibited the expected lifespan extension or beneficial behavioral effects, possibly reflecting compensatory changes during development. We administered a small-molecule synthetic enzyme superoxide dismutase (SOD) mimetic to wild-type (i.e. non-transgenic, non-senescence accelerated) mice starting at middle age. Chronic treatment not only reduced age-associated oxidative stress and mitochondrial radical production, but significantly extended lifespan. Treated mice also exhibited improved performance on the Morris water maze learning and memory task. This is to our knowledge the first demonstration that an administered antioxidant with mitochondrial activity and nervous system penetration not only increases lifespan, but rescues age-related cognitive impairment in mammals. SOD mimetics with such characteristics may provide unique complements to genetic strategies to study the contribution of oxidative processes to nervous system aging.
Collapse
Affiliation(s)
- Kevin L Quick
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Immunotherapeutic strategies to combat neurodegenerative disorders have galvanized the scientific community since the first dramatic successes in mouse models recreating aspects of Alzheimer disease (AD) were reported. However, initial human trials of active amyloid-beta (Abeta) vaccination were halted early because of a serious safety issue: meningoencephalitis in 6% of subjects. Nonetheless, some encouraging preliminary data were obtained, and rapid progress has been made toward developing alternative, possibly safer active and passive immunotherapeutic approaches for several neurodegenerative conditions. Many of these are currently in human trials for AD. Despite these advances, our understanding of the essential mechanisms underlying the effects seen in preclinical models and human subjects is still incomplete. Antibody-induced phagocytosis of pathological protein deposits, direct antibody-mediated disruption of aggregates, neutralization of toxic soluble proteins, a shift in equilibrium toward efflux of specific proteins from the brain, cell-mediated immune responses, and other mechanisms may all play roles depending on the specific immunotherapeutic scenario.
Collapse
Affiliation(s)
- David L Brody
- Department of Neurology, Developmental Biology, Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
98
|
|
99
|
Abstract
Abnormalities in hippocampal structure and function are characteristics of early Alzheimer's disease (AD). Behavioral tests measuring hippocampal-dependent memory in rodents are often used to evaluate novel treatments for AD and other dementias. In this study, we review the effects of drugs marketed for the treatment of AD, such as the acetylcholinesterase inhibitors, donepezil, rivastigmine, galantamine and the N-methyl-D-aspartic acid antagonist, memantine, in rodent models of memory impairment. We also briefly describe the effects of novel treatments for cognitive impairment in rodent models of memory impairment, and discuss issues concerning the selection of the animal model and behavioral tests. Suggestions for future research are offered.
Collapse
Affiliation(s)
- Carla M. Yuede
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Hongxin Dong
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - John G. Csernansky
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
100
|
Gruden MA, Davidova TB, Malisauskas M, Sewell RDE, Voskresenskaya NI, Wilhelm K, Elistratova EI, Sherstnev VV, Morozova-Roche LA. Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: Autoantibodies to Aβ(25–35) oligomers, S100b and neurotransmitters. J Neuroimmunol 2007; 186:181-92. [PMID: 17477976 DOI: 10.1016/j.jneuroim.2007.03.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/10/2007] [Accepted: 03/23/2007] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) autoimmunity is a focus for dementia prevention. Generated autoantibodies against major etiopathogenic molecular targets as neuroimmune markers of dementia were measured by ELISA in patient sera. Biphasic antibody levels to Abeta((25-35)) oligomers, S100b and DA were detected during distinctly diagnosed dementia stages. Abeta((25-35)) oligomer autoimmune responses reflected mild to moderate AD dementia, while those to S100b, DA and the S100b concentrations, matched moderate to severe dementia progression. 5-HT antibodies increased during mild dementia and plateaued thereafter. This autoimmunity pattern may be used as a differential biomarker profile in designing AD therapeutic strategies involving early vaccination.
Collapse
Affiliation(s)
- Marina A Gruden
- P. K. Anokhin Institute of Normal Physiology, RAMS, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|