51
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
52
|
Ramachandran S, Banerjee N, Bhattacharya R, Lemons ML, Florman J, Lambert CM, Touroutine D, Alexander K, Schoofs L, Alkema MJ, Beets I, Francis MM. A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. eLife 2021; 10:e71747. [PMID: 34766905 PMCID: PMC8626090 DOI: 10.7554/elife.71747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/11/2021] [Indexed: 01/11/2023] Open
Abstract
Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.
Collapse
Affiliation(s)
- Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Raja Bhattacharya
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michele L Lemons
- Department of Biological and Physical Sciences, Assumption UniversityWorcesterUnited States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Liliane Schoofs
- Department of Biology, University of Leuven (KU Leuven)LeuvenBelgium
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Isabel Beets
- Department of Biology, University of Leuven (KU Leuven)LeuvenBelgium
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
53
|
Sordillo A, Bargmann CI. Behavioral control by depolarized and hyperpolarized states of an integrating neuron. eLife 2021; 10:e67723. [PMID: 34738904 PMCID: PMC8570696 DOI: 10.7554/elife.67723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Coordinated transitions between mutually exclusive motor states are central to behavioral decisions. During locomotion, the nematode Caenorhabditis elegans spontaneously cycles between forward runs, reversals, and turns with complex but predictable dynamics. Here, we provide insight into these dynamics by demonstrating how RIM interneurons, which are active during reversals, act in two modes to stabilize both forward runs and reversals. By systematically quantifying the roles of RIM outputs during spontaneous behavior, we show that RIM lengthens reversals when depolarized through glutamate and tyramine neurotransmitters and lengthens forward runs when hyperpolarized through its gap junctions. RIM is not merely silent upon hyperpolarization: RIM gap junctions actively reinforce a hyperpolarized state of the reversal circuit. Additionally, the combined outputs of chemical synapses and gap junctions from RIM regulate forward-to-reversal transitions. Our results indicate that multiple classes of RIM synapses create behavioral inertia during spontaneous locomotion.
Collapse
Affiliation(s)
- Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
- Chan Zuckerberg InitiativeRedwood CityUnited States
| |
Collapse
|
54
|
Methylmercury-Induced Metabolic Alterations in Caenorhabditis elegans Are Diet-Dependent. TOXICS 2021; 9:toxics9110287. [PMID: 34822679 PMCID: PMC8619518 DOI: 10.3390/toxics9110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. Chronic exposure to MeHg in human populations shows an association with diabetes mellitus and metabolic syndrome (MS). As the incidences of both obesity and MS are on the rise globally, it is important to understand the potential role of MeHg in the development of the disease. There is a dearth of information on dietary interactions between MeHg and lipids, which play an important role in developing MS. We have previously shown that MeHg increases food seeking behaviors, lipid levels, fat storage, and pro-adipogenic gene expression in C. elegans fed the standard OP50 Escherichia coli diet. However, we hypothesized that these metabolic changes could be prevented if the worms were fed a bacterial diet lower in lipid content. We tested whether C. elegans developed metabolic alterations in response to MeHg if they were fed two alternative E. coli strains (HT115 and HB101) that are known absorb significantly less lipids from their media. Additionally, to explore the effect of a high-lipid and high-cholesterol diet on MeHg-induced metabolic dysfunction, we supplemented the OP50 strain with twice the standard concentration of cholesterol in the nematode growth media. Wild-type worms fed either the HB101 or HT115 diet were more resistant to MeHg than the worms fed the OP50 diet, showing a significant right-hand shift in the dose–response survival curve. Worms fed the OP50 diet supplemented with cholesterol were more sensitive to MeHg, showing a significant left-hand shift in the dose–response survival curve. Changes in sensitivity to MeHg by differential diet were not due to altered MeHg intake in the worms as measured by inductively coupled mass spectrometry. Worms fed the low-fat diets showed protection from MeHg-induced metabolic changes, including decreased food consumption, lower triglyceride content, and lower fat storage than the worms fed either of the higher-fat diets. Oxidative stress is a common characteristic of both MeHg exposure and high-fat diets. Worms fed either OP50 or OP50 supplemented with cholesterol and treated with MeHg had significantly higher levels of reactive oxygen species, carbonylated proteins, and loss of glutathione than the worms fed the HT115 or HB101 low-lipid diets. Taken together, our data suggest a synergistic effect of MeHg and dietary lipid levels on MeHg toxicity and fat metabolism in C. elegans, which may affect the ability of MeHg to cause metabolic dysfunction.
Collapse
|
55
|
Chalorak P, Sornkaew N, Manohong P, Niamnont N, Malaiwong N, Limboonreung T, Sobhon P, Aschner M, Meemon K. Diterpene glycosides from Holothuria scabra exert the α-synuclein degradation and neuroprotection against α-synuclein-Mediated neurodegeneration in C. elegans model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114347. [PMID: 34147616 PMCID: PMC8381228 DOI: 10.1016/j.jep.2021.114347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Holothuria (Metriatyla) scabra Jaeger (H. scabra), sea cucumber, is the marine organism that has been used as traditional food and medicine to gain the health benefits since ancient time. Although our recent studies have shown that crude extracts from H. scabra exhibited neuroprotective effects against Parkinson's disease (PD), the underlying mechanisms and bioactive compounds are still unknown. AIM OF THE STUDY In the present study, we examined the efficacy of purified compounds from H. scabra and their underlying mechanism on α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration in a transgenic Caenorhabditis elegans PD model. MATERIAL AND METHODS The H. scabra compounds (HSEA-P1 and P2) were purified and examined for their toxicity and optimal dose-range by food-clearance and lifespan assays. The α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration were determined using transgenic C. elegans model, Punc-54::α-syn and Pdat-1:: α-syn; Pdat-1::GFP, respectively, and then further investigated by determining the behavioral assays including locomotion rate, basal slowing rate, ethanol avoidance, and area-restricted searching. The underlying mechanisms related to autophagy were clarified by quantitative PCR and RNAi experiments. RESULTS Our results showed that HSEA-P1 and HSEA-P2 significantly diminished α-synuclein accumulation, improved motility deficits, and recovered the shortened lifespan. Moreover, HSEA-P1 and HSEA-P2 significantly protected dopaminergic neurons from α-synuclein toxicity and alleviated dopamine-associated behavioral deficits, i.e., basal slowing, ethanol avoidance, and area-restricted searching. HSEA-P1 and HSEA-P2 also up-regulated autophagy-related genes, including beclin-1/bec-1, lc-3/lgg-1, and atg-7/atg-7. RNA interference (RNAi) of these genes in transgenic α-synuclein worms confirmed that lc-3/lgg-1 and atg-7/atg-7 were required for α-synuclein degradation and DAergic neuroprotection activities of HSEA-P1 and HSEA-P2. NMR and mass spectrometry analysis revealed that the HSEA-P1 and HSEA-P2 contained diterpene glycosides. CONCLUSION These findings indicate that diterpene glycosides extracted from H. scabra decreases α-synuclein accumulation and protects α-synuclein-mediated DAergic neuronal loss and its toxicities via lgg-1 and atg-7.
Collapse
Affiliation(s)
- Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok, 10140, Thailand.
| | - Preeyanuch Manohong
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok, 10140, Thailand.
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bang Mod, Bangkok, 10140, Thailand.
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Tanapol Limboonreung
- Division of Oral Biology, Faculty of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand.
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Morris Park Avenue, Bronx, NY, 10461, USA.
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
56
|
Chakraborty K, Anees P, Surana S, Martin S, Aburas J, Moutel S, Perez F, Koushika SP, Kratsios P, Krishnan Y. Tissue-specific targeting of DNA nanodevices in a multicellular living organism. eLife 2021; 10:e67830. [PMID: 34318748 PMCID: PMC8360651 DOI: 10.7554/elife.67830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid nanodevices present great potential as agents for logic-based therapeutic intervention as well as in basic biology. Often, however, the disease targets that need corrective action are localized in specific organs, and thus realizing the full potential of DNA nanodevices also requires ways to target them to specific cell types in vivo. Here, we show that by exploiting either endogenous or synthetic receptor-ligand interactions and leveraging the biological barriers presented by the organism, we can target extraneously introduced DNA nanodevices to specific cell types in Caenorhabditis elegans, with subcellular precision. The amenability of DNA nanostructures to tissue-specific targeting in vivo significantly expands their utility in biomedical applications and discovery biology.
Collapse
Affiliation(s)
- Kasturi Chakraborty
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Palapuravan Anees
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Sunaina Surana
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Simona Martin
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| | - Jihad Aburas
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Sandrine Moutel
- Recombinant Antibody Platform (TAb-IP), Institut Curie, PSL Research University, CNRS UMR144ParisFrance
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS UMR144ParisFrance
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental ResearchMumbaiIndia
| | - Paschalis Kratsios
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Yamuna Krishnan
- Department of Chemistry, The University of ChicagoChicagoUnited States
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of ChicagoChicagoUnited States
| |
Collapse
|
57
|
Abstract
Following the spectacular success of molecular genetics in deciphering the genetic code in the 1960s, several of its leading practitioners felt sufficiently emboldened to use their newly acquired skills to move on and study that most enigmatic of biological organs - the brain. Sydney Brenner's approach was to focus on Caenorhabditis elegans, a nematode that is genetically tractable, has a nervous system that generates a rich repertoire of behaviours yet is small enough to allow anatomical reconstructions with ultrastructural precision. Through force of personality and some inspired pioneering studies, Brenner managed to ignite a bonfire of enthusiasm for this organism, which has resulted in its nervous system becoming the best understood of that in any organism. Initially, many were skeptical that this rather strange structure with just a few hundred neurons would yield insights that were relevant to vertebrate nervous systems. However, fifty years on we know that the basic repertoire of molecular components of worm and human nervous systems are remarkably similar. Furthermore, worms have a similar diversity of these components rather than a primitive sub-set. It appears that the fundamental difference in a vertebrate nervous system is a huge expansion of the neural units that comprise a basic brain such as that exemplified in C. elegans.
Collapse
Affiliation(s)
- John White
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
58
|
Caito SW, Newell-Caito J, Martell M, Crawford N, Aschner M. Methylmercury Induces Metabolic Alterations in Caenorhabditis elegans: Role for C/EBP Transcription Factor. Toxicol Sci 2021; 174:112-123. [PMID: 31851340 DOI: 10.1093/toxsci/kfz244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. We have previously shown that MeHg causes metabolic alterations in Caenorhabditis elegans, leading to decreased nicotinamide adenine dinucleotide cofactor, mitochondrial dysfunction, and oxidative stress. We were, therefore, interested in whether MeHg also affects nutrient metabolism, particularly lipid homeostasis, which may contribute to the development of metabolic conditions such as obesity or metabolic syndrome (MS). RNA from wild-type worms exposed to MeHg was collected immediately after treatment and used for gene expression analysis by DNA microarray. MeHg differentially regulated 215 genes, 17 genes involved in lipid homeostasis, and 12 genes involved in carbohydrate homeostasis. Of particular interest was cebp-1, the worm ortholog to human C/EBP, a pro-adipogenic transcription factor implicated in MS. MeHg increased the expression of cebp-1 as well as pro-adipogenic transcription factors sbp-1 and nhr-49, triglyceride synthesis enzyme acl-6, and lipid transport proteins vit-2 and vit-6. Concurrent with the altered gene expression, MeHg increased triglyceride levels, lipid storage, and feeding behaviors. Worms expressing mutant cebp-1 were protected from MeHg-induced alterations in lipid content, feeding behaviors, and gene expression, highlighting the importance of this transcription factor in the worm's response to MeHg. Taken together, our data demonstrate that MeHg induces biochemical, metabolic, and behavioral changes in C. elegans that can lead to metabolic dysfunction.
Collapse
Affiliation(s)
- Samuel W Caito
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | | | - Megan Martell
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Nicole Crawford
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
59
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
60
|
Maertens T, Schöll E, Ruiz J, Hövel P. Multilayer network analysis of C. elegans: Looking into the locomotory circuitry. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
61
|
Sadananda G, Subramaniam JR. Absence of metabotropic glutamate receptor homolog(s) accelerates acetylcholine neurotransmission in Caenorhabditis elegans. Neurosci Lett 2021; 746:135666. [PMID: 33493646 DOI: 10.1016/j.neulet.2021.135666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Glutamate (Glu) and Acetylcholine (ACh), are excitatory neurotransmitters, acting through ionotropic (iR) and metabotropic receptors (mR). Importantly, both neurotransmitters and their signalling are impaired in the prevalent neurodegenerative disease-Alzheimer disease (AD). Glu and its signalling cascade's influence on ACh-neurotransmission (NT) are sparsely understood. The mGluRs coupled to G-protein signalling acting through PI3K cascade (GrpI) or inhibition of adenylate cyclase-cAMP cascade (GrpII and GrpIII) brings about long-lasting structural/functional changes. These complexities are challenging to decipher. Here, we report that human/mouse mGluRs when compared with their Caenorhabditis elegans homologs, MGL-1-3 showed overall of homology of ∼31-39 %. Phylogeneitc analysis revealed homology of MGL-2 to GrpI, MGL-3 with Grp1 &II and GRM6 of GrpIII and MGL-1, a low homology that falls between GrpI & GrpII. Then, alteration of ACh-NT in C. elegans loss-of-function mutants of mgl-1, mgl-2, mgl-3, PI3K (age-1) and iGluR (NMDA)(nmr-1) was estimated by well-established acute aldicarb (Ald), that increases ACh at synapse, and levamisole (Lev) (postsynaptic activation of levamisole sensitive iAChR) induced time-dependent paralysis assays. Surprisingly, all of them were hypersensitive to Ald and Lev compared to wildtype (in percentage), namely, mgl-1 -17, 54; mgl-2 - 7.2, 24; mgl-3 -52, 64; age-1 - 27, 32; nmr-1- 24, 48; respectively. Of the three, mgl-3 contributes to maximal overall acceleration of ACh-NT. Adenylate cyclase, acy-1 gain-of-function mutant showed less hypersensitivity, Ald - 7% and Lev- 25 %. Together, Glu receptors and signalling cascades are altering ACh-NT permanently, thus establishing the interplay between them thereby provide potential drug targets to be considered for AD.
Collapse
Affiliation(s)
- Girish Sadananda
- Center for Preclinical and Translational Medicine Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India
| | - Jamuna R Subramaniam
- Center for Preclinical and Translational Medicine Research, Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India.
| |
Collapse
|
62
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
63
|
Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions. iScience 2020; 23:101588. [PMID: 33089099 PMCID: PMC7567941 DOI: 10.1016/j.isci.2020.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly. Short-term exposure of CuSO4 evokes hyperactive egg laying ASHs inhibit HSNs and egg laying via GLR-5 receptor under no Cu2+ treatment AIA interneurons suppress HSNs and thus egg laying through ACR-14 signaling Under noxious Cu2+ treatment, ASHs and ADLs suppress AIAs and augment egg laying
Collapse
|
64
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
65
|
d-Serine and d-Alanine Regulate Adaptive Foraging Behavior in Caenorhabditis elegans via the NMDA Receptor. J Neurosci 2020; 40:7531-7544. [PMID: 32855271 DOI: 10.1523/jneurosci.2358-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/28/2023] Open
Abstract
d-Serine (d-Ser) is a coagonist for NMDA-type glutamate receptors and is thus important for higher brain function. d-Ser is synthesized by serine racemase and degraded by d-amino acid oxidase. However, the significance of these enzymes and the relevant functions of d-amino acids remain unclear. Here, we show that in the nematode Caenorhabditis elegans, the serine racemase homolog SERR-1 and d-amino acid oxidase DAAO-1 control an adaptive foraging behavior. Similar to many organisms, C. elegans immediately initiates local search for food when transferred to a new environment. With prolonged food deprivation, the worms exhibit a long-range dispersal behavior as the adaptive foraging strategy. We found that serr-1 deletion mutants did not display this behavior, whereas daao-1 deletion mutants immediately engaged in long-range dispersal after food removal. A quantitative analysis of d-amino acids indicated that d-Ser and d-alanine (d-Ala) are both synthesized and suppressed during food deprivation. A behavioral pharmacological analysis showed that the long-range dispersal behavior requires NMDA receptor desensitization. Long-term pretreatment with d-Ala, as well as with an NMDA receptor agonist, expanded the area searched by wild-type worms immediately after food removal, whereas pretreatment with d-Ser did not. We propose that d-Ser and d-Ala are endogenous regulators that cooperatively induce the long-range dispersal behavior in C. elegans through actions on the NMDA receptor.SIGNIFICANCE STATEMENT In mammals, d-serine (d-Ser) functions as an important neuromodulator of the NMDA-type glutamate receptor, which regulates higher brain functions. In Caenorhabditis elegans, previous studies failed to clearly define the physiological significance of d-Ser, d-alanine (d-Ala), and their metabolic enzymes. In this study, we found that these d-amino acids and their associated enzymes are active during food deprivation, leading to an adaptive foraging behavior. We also found that this behavior involved NMDA receptor desensitization.
Collapse
|
66
|
Krum BN, Martins AC, Queirós L, Ferrer B, Milne GL, Soares FAA, Fachinetto R, Aschner M. Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans. Mol Neurobiol 2020; 58:304-316. [PMID: 32935232 DOI: 10.1007/s12035-020-02124-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
Haloperidol is a typical antipsychotic drug commonly used to treat a broad range of psychiatric disorders related to dysregulations in the neurotransmitter dopamine (DA). DA modulates important physiologic functions and perturbations in Caenorhabditis elegans (C. elegans) and, its signaling have been associated with alterations in behavioral, molecular, and morphologic properties in C. elegans. Here, we evaluated the possible involvement of dopaminergic receptors in the onset of these alterations followed by haloperidol exposure. Haloperidol increased lifespan and decreased locomotor behavior (basal slowing response, BSR, and locomotion speed via forward speed) of the worms. Moreover, locomotion speed recovered to basal conditions upon haloperidol withdrawal. Haloperidol also decreased DA levels, but it did not alter neither dop-1, dop-2, and dop-3 gene expression, nor CEP dopaminergic neurons' morphology. These effects are likely due to haloperidol's antagonism of the D2-type DA receptor, dop-3. Furthermore, this antagonism appears to affect mechanistic pathways involved in the modulation and signaling of neurotransmitters such as octopamine, acetylcholine, and GABA, which may underlie at least in part haloperidol's effects. These pathways are conserved in vertebrates and have been implicated in a range of disorders. Our novel findings demonstrate that the dop-3 receptor plays an important role in the effects of haloperidol.
Collapse
Affiliation(s)
- Bárbara Nunes Krum
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ginger L Milne
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Roselei Fachinetto
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
67
|
Abstract
Microbes are ubiquitous in the natural environment of Caenorhabditis elegans. Bacteria serve as a food source for C. elegans but may also cause infection in the nematode host. The sensory nervous system of C. elegans detects diverse microbial molecules, ranging from metabolites produced by broad classes of bacteria to molecules synthesized by specific strains of bacteria. Innate recognition through chemosensation of bacterial metabolites or mechanosensation of bacteria can induce immediate behavioral responses. The ingestion of nutritive or pathogenic bacteria can modulate internal states that underlie long-lasting behavioral changes. Ingestion of nutritive bacteria leads to learned attraction and exploitation of the bacterial food source. Infection, which is accompanied by activation of innate immunity, stress responses, and host damage, leads to the development of aversive behavior. The integration of a multitude of microbial sensory cues in the environment is shaped by experience and context. Genetic, chemical, and neuronal studies of C. elegans behavior in the presence of bacteria have defined neural circuits and neuromodulatory systems that shape innate and learned behavioral responses to microbial cues. These studies have revealed the profound influence that host-microbe interactions have in governing the behavior of this simple animal host.
Collapse
Affiliation(s)
- Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Steven W Flavell
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
68
|
Manjarrez JR, Mailler R. Stress and timing associated with Caenorhabditis elegans immobilization methods. Heliyon 2020; 6:e04263. [PMID: 32671240 PMCID: PMC7339059 DOI: 10.1016/j.heliyon.2020.e04263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Caenorhabditis elegans is a model organism used to study gene, protein, and cell influence on function and behavior. These studies frequently require C. elegans to be immobilized for imaging or laser ablation experiments. There are a number of known techniques for immobilizing worms, but to our knowledge, there are no comprehensive studies of the various agents in common use today. New method This study determines the relationship between concentration, immobilization time, exposure time, and recovery likelihood for several immobilization agents. The agents used in this study are 1-Phenoxy-2-propanol, levamisole, sodium azide, polystyrene beads, and environmental cold shock. These tests are conducted using a humidified chamber to keep chemical concentrations consistent. Each of these agents is also tested to determine if they exhibit stress-related after effects using the gcs-1, daf-16, hsp-4, hif-1, hsp-16.2, and tmem-135 stress reporters. Results We present a range of quick mount immobilization and recovery conditions for each agent tested. This study shows that, under controlled conditions, 1-Phenoxy-2-propanol shows significant stress from the daf-16 reporter. While 1-Phenoxy-2-propanol and sodium azide both create stress related after effects with long term recovery in the case of the hsp-16.2 reporter. Comparison with existing method(s) This study shows that commonly used concentrations of immobilizing agents are ineffective when evaporation is prevented. Conclusions To improve reproducibility of results it is essential to use consistent concentrations of immobilizing agents. It is also critically important to account for stress-related after effects elicited by immobilization agents when designing any experiment.
Collapse
Affiliation(s)
| | - Roger Mailler
- University of Tulsa, 800 S. Tucker Dr., Tulsa, OK, 74104, USA
| |
Collapse
|
69
|
Badman RP, Hills TT, Akaishi R. Multiscale Computation and Dynamic Attention in Biological and Artificial Intelligence. Brain Sci 2020; 10:E396. [PMID: 32575758 PMCID: PMC7348831 DOI: 10.3390/brainsci10060396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Biological and artificial intelligence (AI) are often defined by their capacity to achieve a hierarchy of short-term and long-term goals that require incorporating information over time and space at both local and global scales. More advanced forms of this capacity involve the adaptive modulation of integration across scales, which resolve computational inefficiency and explore-exploit dilemmas at the same time. Research in neuroscience and AI have both made progress towards understanding architectures that achieve this. Insight into biological computations come from phenomena such as decision inertia, habit formation, information search, risky choices and foraging. Across these domains, the brain is equipped with mechanisms (such as the dorsal anterior cingulate and dorsolateral prefrontal cortex) that can represent and modulate across scales, both with top-down control processes and by local to global consolidation as information progresses from sensory to prefrontal areas. Paralleling these biological architectures, progress in AI is marked by innovations in dynamic multiscale modulation, moving from recurrent and convolutional neural networks-with fixed scalings-to attention, transformers, dynamic convolutions, and consciousness priors-which modulate scale to input and increase scale breadth. The use and development of these multiscale innovations in robotic agents, game AI, and natural language processing (NLP) are pushing the boundaries of AI achievements. By juxtaposing biological and artificial intelligence, the present work underscores the critical importance of multiscale processing to general intelligence, as well as highlighting innovations and differences between the future of biological and artificial intelligence.
Collapse
Affiliation(s)
| | | | - Rei Akaishi
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
70
|
Cermak N, Yu SK, Clark R, Huang YC, Baskoylu SN, Flavell SW. Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans. eLife 2020; 9:e57093. [PMID: 32510332 PMCID: PMC7347390 DOI: 10.7554/elife.57093] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/07/2020] [Indexed: 11/13/2022] Open
Abstract
Animal behaviors are commonly organized into long-lasting states that coordinately impact the generation of diverse motor outputs such as feeding, locomotion, and grooming. However, the neural mechanisms that coordinate these distinct motor programs remain poorly understood. Here, we examine how the distinct motor programs of the nematode C. elegans are coupled together across behavioral states. We describe a new imaging platform that permits automated, simultaneous quantification of each of the main C. elegans motor programs over hours or days. Analysis of these whole-organism behavioral profiles shows that the motor programs coordinately change as animals switch behavioral states. Utilizing genetics, optogenetics, and calcium imaging, we identify a new role for dopamine in coupling locomotion and egg-laying together across states. These results provide new insights into how the diverse motor programs throughout an organism are coordinated and suggest that neuromodulators like dopamine can couple motor circuits together in a state-dependent manner.
Collapse
Affiliation(s)
- Nathan Cermak
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Stephanie K Yu
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Rebekah Clark
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yung-Chi Huang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Saba N Baskoylu
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
71
|
Shimizu K, Ashida K, Hotta K, Oka K. Food deprivation changes chemotaxis behavior in Caenorhabditis elegans. Biophys Physicobiol 2020; 16:167-172. [PMID: 31984168 PMCID: PMC6975978 DOI: 10.2142/biophysico.16.0_167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/19/2019] [Indexed: 12/01/2022] Open
Abstract
Exploring for food is important in food-deprived condition. Chemotaxis is one of the important behaviors to search food. Although chemotactic strategies in C. elegans have been well investigated: the pirouette and the weathervane strategies, the change of the chemotactic strategy by food deprivation is largely unclear. Here, we show the change of chemotactic strategy by food deprivation, especially for isoamyl alcohol. To compare chemotaxis under different food-deprivation period, we showed that worms change their chemotactic behaviors by food deprivation. The worms with 1-h food-deprivation change the weathervane strategy. On the other hand, 6-h food deprived animals change the pirouette strategy. These results demonstrate that worms change chemotactic strategy different way depend on period of food deprivation.
Collapse
Affiliation(s)
- Kei Shimizu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Keita Ashida
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan.,Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
72
|
Saewanee N, Praputpittaya T, Malaiwong N, Chalorak P, Meemon K. Neuroprotective effect of metformin on dopaminergic neurodegeneration and α-synuclein aggregation in C. elegans model of Parkinson's disease. Neurosci Res 2019; 162:13-21. [PMID: 31881233 DOI: 10.1016/j.neures.2019.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Nada Saewanee
- Mahidol University International College, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Theethawat Praputpittaya
- Mahidol University International College, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
73
|
Novel pharmacological modulation of dystonic phenotypes caused by a gain-of-function mutation in the Na+ leak-current channel. Behav Pharmacol 2019; 31:465-476. [DOI: 10.1097/fbp.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
74
|
Felsenberg J, Waddell S. Switching Gears, Structuring the Right Search Strategy. Neuron 2019; 102:273-275. [PMID: 30998896 DOI: 10.1016/j.neuron.2019.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nematodes can use local and global search strategies to find food. In this issue of Neuron, López-Cruz et al. (2019) unravel a neural circuit mechanism that allows worms to select and switch between these search modes depending on recent experience of food.
Collapse
Affiliation(s)
- Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
75
|
Corbeau A, Collet J, Fontenille M, Weimerskirch H. How do seabirds modify their search behaviour when encountering fishing boats? PLoS One 2019; 14:e0222615. [PMID: 31550257 PMCID: PMC6759163 DOI: 10.1371/journal.pone.0222615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/03/2019] [Indexed: 11/23/2022] Open
Abstract
Seabirds are well known to be attracted by fishing boats to forage on offal and baits. We used recently developed loggers that record accurate GPS position and detect the presence of boats through their radar emissions to examine how albatrosses use Area Restricted Search (ARS) and if so, have specific ARS behaviours, when attending boats. As much as 78.5% of locations with a radar detection (contact with boat) during a trip occurred within ARS: 36.8% of all large-scale ARS (n = 212) and 14.7% of all small-scale ARS (n = 1476) were associated with the presence of a boat. During small-scale ARS, birds spent more time and had greater sinuosity during boat-associated ARS compared with other ARS that we considered natural. For, small-scale ARS associated with boats, those performed over shelves were longer in duration, had greater sinuosity, and birds spent more time sitting on water compared with oceanic ARS associated with boats. We also found that the proportion of small-scale ARS tend to be more frequently nested in larger-scale ARS was higher for birds associated with boats and that ARS behaviour differed between oceanic (tuna fisheries) and shelf-edge (mainly Patagonian toothfish fisheries) habitats. We suggest that, in seabird species attracted by boats, a significant amount of ARS behaviours are associated with boats, and that it is important to be able to separate ARS behaviours associated to boats from natural searching behaviours. Our study suggest that studying ARS characteristics should help attribute specific behaviours associated to the presence of boats and understand associated risks between fisheries.
Collapse
Affiliation(s)
- Alexandre Corbeau
- Centre d’Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
- * E-mail:
| | - Julien Collet
- Centre d’Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Melissa Fontenille
- Centre d’Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Henri Weimerskirch
- Centre d’Études Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
76
|
Environmental Programming of Adult Foraging Behavior in C. elegans. Curr Biol 2019; 29:2867-2879.e4. [PMID: 31422888 DOI: 10.1016/j.cub.2019.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/26/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
Foraging strategies should be tuned to the expected distribution of resources in the environment. Tuning can occur over generations and lead to genetic differences in innate foraging behavior or over shorter timescales within an individual's lifespan. Both genetically encoded and experience-based strategies are implemented by neural circuits that respond to environmental cues and track internal states. Caenorhabditis elegans exhibit both between-strain genetic differences and within-strain plasticity in foraging. In individuals, changes in foraging are usually short term and based on recent experience. Here, we tested whether developmental experience could permanently alter foraging. We found that, in most wild strains, early-life starvation led to "cautious" foraging strategies, in which exploration is reduced, and these behavioral changes are associated with altered dynamics in a locomotory circuit. Possessing either the derived (domestication-associated) or ancestral allele of the neuroglobin glb-5 determines foraging plasticity. Overall, we show that C. elegans exhibit adaptive developmental plasticity that affects multiple aspects of foraging behavior and leads to changes in a core navigation circuit and that innate foraging traits and plasticity in those traits are genetically separable. VIDEO ABSTRACT.
Collapse
|
77
|
Ashida K, Kato T, Hotta K, Oka K. Multiple tracking and machine learning reveal dopamine modulation for area-restricted foraging behaviors via velocity change in Caenorhabditis elegans. Neurosci Lett 2019; 706:68-74. [PMID: 31082452 DOI: 10.1016/j.neulet.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/26/2022]
Abstract
Food exploration is an essential survival behavior in organisms. To find food efficiently, many organisms use a foraging strategy called area-restricted search (ARS) wherein individuals first turn more frequently, restricting their search to one area, then turn less frequently, moving along a straight path to widen the search area. Previous research suggests that the nematode Caenorhabditis elegans shows ARS behavior by changing turn frequency, and that dopamine is a crucial determinant. However, the effects of dopamine on multiple behavioral parameters have remained unknown. Here, we evaluated turn (pirouette) frequency, moving velocity, and specific area occupancy (cell occupancy) over time by using a multiple-worms tracking system. In the control (mock) experiments, all parameters changed over time, but no changes were observed in experiments with dopamine pre-exposed and dopamine-deficient animals. In inverse reinforcement learning analysis, the value function for specific velocity was found to modulate over time in mock animals only. These results demonstrate that dopamine regulates ARS via changes not only to pirouette frequency change but also to velocity.
Collapse
Affiliation(s)
- Keita Ashida
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Taiki Kato
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
78
|
López-Cruz A, Sordillo A, Pokala N, Liu Q, McGrath PT, Bargmann CI. Parallel Multimodal Circuits Control an Innate Foraging Behavior. Neuron 2019; 102:407-419.e8. [PMID: 30824353 PMCID: PMC9161785 DOI: 10.1016/j.neuron.2019.01.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/27/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
Foraging strategies emerge from genetically encoded programs that are similar across animal species. Here, we examine circuits that control a conserved foraging state, local search behavior after food removal, in Caenorhabditis elegans. We show that local search is triggered by two parallel groups of chemosensory and mechanosensory glutamatergic neurons that detect food-related cues. Each group of sensory neurons suppresses distinct integrating neurons through a G protein-coupled metabotropic glutamate receptor, MGL-1, to release local search. The chemosensory and mechanosensory modules are separate and redundant; glutamate release from either module can drive the full behavior. A transition from local search to global search over several minutes after food removal is associated with two changes in circuit function. First, the spontaneous activity of sensory neurons falls. Second, the motor pattern generator for local search becomes less responsive to sensory input. This multimodal, distributed short-term food memory provides robust control of an innate behavior.
Collapse
Affiliation(s)
- Alejandro López-Cruz
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Navin Pokala
- New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA; Chan Zuckerberg Initiative, Redwood City, CA 94063, USA.
| |
Collapse
|
79
|
Lozano-Montes L, Astori S, Abad S, Guillot de Suduiraut I, Sandi C, Zalachoras I. Latency to Reward Predicts Social Dominance in Rats: A Causal Role for the Dopaminergic Mesolimbic System. Front Behav Neurosci 2019; 13:69. [PMID: 31024272 PMCID: PMC6460316 DOI: 10.3389/fnbeh.2019.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Reward signals encoded in the mesolimbic dopaminergic system guide approach/seeking behaviors to all varieties of life-supporting stimuli (rewards). Differences in dopamine (DA) levels have been found between dominant and submissive animals. However, it is still unclear whether these differences arise as a consequence of the rewarding nature of the acquisition of a dominant rank, or whether they preexist and favor dominance by promoting reward-seeking behavior. Given that acquisition of a social rank determines animals' priority access to resources, we hypothesized that differences in reward-seeking behavior might affect hierarchy establishment and that modulation of the dopaminergic system could affect the outcome of a social competition. We characterized reward-seeking behaviors based on rats' latency to get a palatable-reward when given temporary access to it. Subsequently, rats exhibiting short (SL) and long (LL) latency to get the rewards cohabitated for more than 2 weeks, in order to establish a stable hierarchy. We found that SL animals exhibited dominant behavior consistently in social competition tests [for palatable-rewards and two water competition tests (WCTs)] after hierarchy was established, indicating that individual latency to rewards predicted dominance. Moreover, because SL animals showed higher mesolimbic levels of DA than LL rats, we tested whether stimulation of mesolimbic DA neurons could affect the outcome of a social competition. Indeed, a combination of optical stimulation of mesolimbic DA neurons during individual training and during a social competition test for palatable rewards resulted in improved performance on this test.
Collapse
Affiliation(s)
- Laura Lozano-Montes
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sonia Abad
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
80
|
Chang L, Jing Lu H, Lansford JE, Skinner AT, Bornstein MH, Steinberg L, Dodge KA, Bin Chen B, Tian Q, Bacchini D, Deater-Deckard K, Pastorelli C, Peña Alampay L, Sorbring E, Al-Hassan SM, Oburu P, Malone PS, Di Giunta L, Uribe Tirado LM, Tapanya S. Environmental harshness and unpredictability, life history, and social and academic behavior of adolescents in nine countries. Dev Psychol 2019; 55:890-903. [PMID: 30507220 PMCID: PMC6422686 DOI: 10.1037/dev0000655] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Safety is essential for life. To survive, humans and other animals have developed sets of psychological and physiological adaptations known as life history (LH) tradeoff strategies in response to various safety constraints. Evolutionarily selected LH strategies in turn regulate development and behavior to optimize survival under prevailing safety conditions. The present study tested LH hypotheses concerning safety based on a 6-year longitudinal sample of 1,245 adolescents and their parents from 9 countries. The results revealed that, invariant across countries, environmental harshness, and unpredictability (lack of safety) was negatively associated with slow LH behavioral profile, measured 2 years later, and slow LH behavioral profile was negatively and positively associated with externalizing behavior and academic performance, respectively, as measured an additional 2 years later. These results support the evolutionary conception that human development responds to environmental safety cues through LH regulation of social and learning behaviors. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Lei Chang
- University of Macau, Taipa, Macau, China
| | | | | | | | - Marc H. Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA, and Institute for Fiscal Studies, UK,
| | - Laurence Steinberg
- Temple University, Philadelphia, PA, USA and King Abdulaziz University, Jeddah, Saudi Arabia,
| | | | | | | | | | | | | | | | | | - Suha M. Al-Hassan
- Hashemite University, Zarqa, Jordan, and Emirates College for Advanced Education, Abu Dhabi, UAE,
| | | | | | | | | | | |
Collapse
|
81
|
Jackson C, van Staaden M. Characterization of locomotor response to psychostimulants in the parthenogenetic marbled crayfish (Procambarus fallax forma virginalis): A promising model for studying the neural and molecular mechanisms of drug addiction. Behav Brain Res 2019; 361:131-138. [PMID: 30550950 DOI: 10.1016/j.bbr.2018.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 11/17/2022]
Abstract
Although scientific research using mammalian models has made great strides in uncovering the enigmatic neural and molecular mechanisms orchestrating the state of drug addiction, a complete understanding has thus far eluded researchers. The complexity of the task has led to the use of invertebrate model systems to complement the research of drug-induced reward in mammalian systems. Invertebrates, such as crayfish, offer excellent model systems to help reveal the underlying mechanisms of drug addiction as they retain the ancestral neural reward circuit that is evolutionarily conserved across taxa, and they possess relatively few, large neurons, laid out in an accessible, modularly organized nervous system. Crayfish offer the benefits of delineated developmental life stages, a large body size suitable for a variety of experimental methods, and stereotyped behaviors. Unique among crayfish is the parthenogenetic marbled crayfish (Procambarus fallax forma virginalis), a species of asexually reproducing, genetically identical clones. With the benefits of reduced individual variation, high fecundity, and easy lab husbandry, the marbled crayfish would make a particularly powerful addition to the animal model repertoire. Here we characterize the locomotor response of juvenile P. f. f. virginalis exposed to the psychostimulant, d-amphetamine sulfate. Custom video-tracking software was used to record the movement patterns of juveniles exposed to water infused with varying concentrations of d-amphetamine sulfate. ANOVA demonstrated that crayfish locomotion was significantly impacted by drug concentration. These psychostimulant effects provide the foundation of P. f. f. virginalis as a model for parsing the neural and molecular mechanisms of drug addiction.
Collapse
Affiliation(s)
- Cedric Jackson
- J.P. Scott Center for Neuroscience, Mind & Behavior, and Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Moira van Staaden
- J.P. Scott Center for Neuroscience, Mind & Behavior, and Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
82
|
Griffin EF, Scopel SE, Stephen CA, Holzhauer AC, Vaji MA, Tuckey RA, Berkowitz LA, Caldwell KA, Caldwell GA. ApoE-associated modulation of neuroprotection from Aβ-mediated neurodegeneration in transgenic Caenorhabditis elegans. Dis Model Mech 2019; 12:dmm.037218. [PMID: 30683808 PMCID: PMC6398492 DOI: 10.1242/dmm.037218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Allele-specific distinctions in the human apolipoprotein E (APOE) locus represent the best-characterized genetic predictor of Alzheimer's disease (AD) risk. Expression of isoform APOEε2 is associated with reduced risk, while APOEε3 is neutral and APOEε4 carriers exhibit increased susceptibility. Using Caenorhabditis elegans, we generated a novel suite of humanized transgenic nematodes to facilitate neuronal modeling of amyloid-beta peptide (Aβ) co-expression in the context of distinct human APOE alleles. We found that co-expression of human APOEε2 with Aβ attenuated Aβ-induced neurodegeneration, whereas expression of the APOEε4 allele had no effect on neurodegeneration, indicating a loss of neuroprotective capacity. Notably, the APOEε3 allele displayed an intermediate phenotype; it was not neuroprotective in young adults but attenuated neurodegeneration in older animals. There was no functional impact from the three APOE isoforms in the absence of Aβ co-expression. Pharmacological treatment that examined neuroprotective effects of APOE alleles on calcium homeostasis showed allele-specific responses to changes in ER-associated calcium dynamics in the Aβ background. Additionally, Aβ suppressed survival, an effect that was rescued by APOEε2 and APOEε3, but not APOEε4. Expression of the APOE alleles in neurons, independent of Aβ, exerted no impact on survival. Taken together, these results illustrate that C. elegans provides a powerful in vivo platform with which to explore how AD-associated neuronal pathways are modulated by distinct APOE gene products in the context of Aβ-associated neurotoxicity. The significance of both ApoE and Aβ to AD highlights the utility of this new pre-clinical model as a means to dissect their functional inter-relationship.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Edward F Griffin
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Samuel E Scopel
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Cayman A Stephen
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Adam C Holzhauer
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Madeline A Vaji
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Ryan A Tuckey
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL 35487-0344, USA .,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center for Research on the Basic Biology of Aging, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
83
|
Calahorro F, Keefe F, Dillon J, Holden-Dye L, O'Connor V. Neuroligin tuning of pharyngeal pumping reveals extrapharyngeal modulation of feeding in Caenorhabditis elegans. ACTA ACUST UNITED AC 2019; 222:jeb.189423. [PMID: 30559302 DOI: 10.1242/jeb.189423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023]
Abstract
The integration of distinct sensory modalities is essential for behavioural decision making. In C aenorhabditis elegans, this process is coordinated by neural circuits that integrate sensory cues from the environment to generate an appropriate behaviour at the appropriate output muscles. Food is a multimodal cue that impacts the microcircuits to modulate feeding and foraging drivers at the level of the pharyngeal and body wall muscle, respectively. When food triggers an upregulation in pharyngeal pumping, it allows the effective ingestion of food. Here, we show that a C elegans mutant in the single gene orthologous to human neuroligins, nlg-1, is defective in food-induced pumping. This was not due to an inability to sense food, as nlg-1 mutants were not defective in chemotaxis towards bacteria. In addition, we found that neuroligin is widely expressed in the nervous system, including AIY, ADE, ALA, URX and HSN neurons. Interestingly, despite the deficit in pharyngeal pumping, neuroligin was not expressed within the pharyngeal neuromuscular network, which suggests an extrapharyngeal regulation of this circuit. We resolved electrophysiologically the neuroligin contribution to the pharyngeal circuit by mimicking food-dependent pumping and found that the nlg-1 phenotype is similar to mutants impaired in GABAergic and/or glutamatergic signalling. We suggest that neuroligin organizes extrapharyngeal circuits that regulate the pharynx. These observations based on the molecular and cellular determinants of feeding are consistent with the emerging role of neuroligin in discretely impacting functional circuits underpinning complex behaviours.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Francesca Keefe
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - James Dillon
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- Biological Sciences, Building 85, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
84
|
Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019; 116:1776-1781. [PMID: 30651312 DOI: 10.1073/pnas.1807454116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hunger affects the behavioral choices of all animals, and many chemosensory stimuli can be either attractive or repulsive depending on an animal's hunger state. Although hunger-induced behavioral changes are well documented, the molecular and cellular mechanisms by which hunger modulates neural circuit function to generate changes in chemosensory valence are poorly understood. Here, we use the CO2 response of the free-living nematode Caenorhabditis elegans to elucidate how hunger alters valence. We show that CO2 response valence shifts from aversion to attraction during starvation, a change that is mediated by two pairs of interneurons in the CO2 circuit, AIY and RIG. The transition from aversion to attraction is regulated by biogenic amine signaling. Dopamine promotes CO2 repulsion in well-fed animals, whereas octopamine promotes CO2 attraction in starved animals. Biogenic amines also regulate the temporal dynamics of the shift from aversion to attraction such that animals lacking octopamine show a delayed shift to attraction. Biogenic amine signaling regulates CO2 response valence by modulating the CO2-evoked activity of AIY and RIG. Our results illuminate a new role for biogenic amine signaling in regulating chemosensory valence as a function of hunger state.
Collapse
|
85
|
Brown JW, Schaub BM, Klusas BL, Tran AX, Duman AJ, Haney SJ, Boris AC, Flanagan MP, Delgado N, Torres G, Rolón-Martínez S, Vaasjo LO, Miller MW, Gillette R. A role for dopamine in the peripheral sensory processing of a gastropod mollusc. PLoS One 2018; 13:e0208891. [PMID: 30586424 PMCID: PMC6306152 DOI: 10.1371/journal.pone.0208891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022] Open
Abstract
Histological evidence points to the presence of dopamine (DA) in the cephalic sensory organs of multiple gastropod molluscs, suggesting a possible sensory role for the neurotransmitter. We investigated the sensory function of DA in the nudipleuran Pleurobranchaea californica, in which the central neural correlates of sensation and foraging behavior have been well characterized. Tyrosine hydroxylase-like immunoreactivity (THli), a signature of the dopamine synthetic pathway, was similar to that found in two other opisthobranchs and two pulmonates previously studied: 1) relatively few (<100) THli neuronal somata were observed in the central ganglia, with those observed found in locations similar to those documented in the other snails but varying in number, and 2) the vast majority of THli somata were located in the peripheral nervous system, were associated with ciliated, putative primary sensory cells, and were highly concentrated in chemotactile sensory organs, giving rise to afferent axons projecting to the central nervous system. We extended these findings by observing that applying a selective D2/D3 receptor antagonist to the chemo- and mechanosensory oral veil-tentacle complex of behaving animals significantly delayed feeding behavior in response to an appetitive stimulus. A D1 blocker had no effect. Recordings of the two major cephalic sensory nerves, the tentacle and large oral veil nerves, in a deganglionated head preparation revealed a decrease of stimulus-evoked activity in the former nerve following application of the same D2/D3 antagonist. Broadly, our results implicate DA in sensation and engender speculation regarding the foraging-based decisions the neurotransmitter may serve in the nervous system of Pleurobranchaea and, by extension, other gastropods.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brittany M. Schaub
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bennett L. Klusas
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Andrew X. Tran
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alexander J. Duman
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Samantha J. Haney
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Abigail C. Boris
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Megan P. Flanagan
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nadia Delgado
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Grace Torres
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Solymar Rolón-Martínez
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Lee O. Vaasjo
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mark W. Miller
- Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rhanor Gillette
- Program in Biophysics and Computational Biology, University of Illinois, Urbana, Illinois, United States of America
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular & Integrative Physiology and the Neuroscience Program, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
86
|
Kim H, Calatayud C, Guha S, Fernández-Carasa I, Berkowitz L, Carballo-Carbajal I, Ezquerra M, Fernández-Santiago R, Kapahi P, Raya Á, Miranda-Vizuete A, Lizcano JM, Vila M, Caldwell KA, Caldwell GA, Consiglio A, Dalfo E. The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Mol Neurobiol 2018; 55:7533-7552. [PMID: 29429047 PMCID: PMC6096980 DOI: 10.1007/s12035-018-0881-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Parkinson's disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
| | - Laura Berkowitz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013, Sevilla, Spain
| | - Jose Miguel Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain.
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Spain.
| | - Esther Dalfo
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain.
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Can Baumann, 08500, Vic, Spain.
| |
Collapse
|
87
|
Jan A, Jansonius B, Delaidelli A, Bhanshali F, An YA, Ferreira N, Smits LM, Negri GL, Schwamborn JC, Jensen PH, Mackenzie IR, Taubert S, Sorensen PH. Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol Commun 2018; 6:54. [PMID: 29961428 PMCID: PMC6027557 DOI: 10.1186/s40478-018-0554-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder and the leading neurodegenerative cause of motor disability. Pathologic accumulation of aggregated alpha synuclein (AS) protein in brain, and imbalance in the nigrostriatal system due to the loss of dopaminergic neurons in the substantia nigra- pars compacta, are hallmark features in PD. AS aggregation and propagation are considered to trigger neurotoxic mechanisms in PD, including mitochondrial deficits and oxidative stress. The eukaryotic elongation factor-2 kinase (eEF2K) mediates critical regulation of dendritic mRNA translation and is a crucial molecule in diverse forms of synaptic plasticity. Here we show that eEF2K activity, assessed by immuonohistochemical detection of eEF2 phosphorylation on serine residue 56, is increased in postmortem PD midbrain and hippocampus. Induction of aggressive, AS-related motor phenotypes in a transgenic PD M83 mouse model also increased brain eEF2K expression and activity. In cultures of dopaminergic N2A cells, overexpression of wild-type human AS or the A53T mutant increased eEF2K activity. eEF2K inhibition prevented the cytotoxicity associated with AS overexpression in N2A cells by improving mitochondrial function and reduced oxidative stress. Furthermore, genetic deletion of the eEF2K ortholog efk-1 in C. elegans attenuated human A53T AS induced defects in behavioural assays reliant on dopaminergic neuron function. These data suggest a role for eEF2K activity in AS toxicity, and support eEF2K inhibition as a potential target in reducing AS-induced oxidative stress in PD.
Collapse
|
88
|
Ryu L, Cheon Y, Huh YH, Pyo S, Chinta S, Choi H, Butcher RA, Kim K. Feeding state regulates pheromone-mediated avoidance behavior via the insulin signaling pathway in Caenorhabditis elegans. EMBO J 2018; 37:embj.201798402. [PMID: 29925517 DOI: 10.15252/embj.201798402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Animals change sensory responses and their eventual behaviors, depending on their internal metabolic status and external food availability. However, the mechanisms underlying feeding state-dependent behavioral changes remain undefined. Previous studies have shown that Caenorhabditis elegans hermaphrodite exhibits avoidance behaviors to acute exposure of a pheromone, ascr#3 (asc-ΔC9, C9). Here, we show that the ascr#3 avoidance behavior is modulated by feeding state via the insulin signaling pathway. Starvation increases ascr#3 avoidance behavior, and loss-of-function mutations in daf-2 insulin-like receptor gene dampen this starvation-induced ascr#3 avoidance behavior. DAF-2 and its downstream signaling molecules, including the DAF-16 FOXO transcription factor, act in the ascr#3-sensing ADL neurons to regulate synaptic transmission to downstream target neurons, including the AVA command interneurons. Moreover, we found that starvation decreases the secretion of INS-18 insulin-like peptides from the intestine, which antagonizes DAF-2 function in the ADL neurons. Altogether, this study provides insights about the molecular communication between intestine and sensory neurons delivering hunger message to sensory neurons, which regulates avoidance behavior from pheromones to facilitate survival chance.
Collapse
Affiliation(s)
- Leesun Ryu
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - YongJin Cheon
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju-si, Chungcheongbuk-do, Korea
| | - Seondong Pyo
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Satya Chinta
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Hongsoo Choi
- Robotics Engineering Department, DGIST, Daegu, Korea
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| |
Collapse
|
89
|
Refai O, Blakely RD. Blockade and reversal of swimming-induced paralysis in C. elegans by the antipsychotic and D2-type dopamine receptor antagonist azaperone. Neurochem Int 2018; 123:59-68. [PMID: 29800604 DOI: 10.1016/j.neuint.2018.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
The catecholamine neurotransmitter dopamine (DA) exerts powerful modulatory control of physiology and behavior across phylogeny. Perturbations of DA signaling in humans are associated with multiple neurodegenerative and behavioral disorders, including Parkinson's disease, attention-deficit/hyperactivity disorder, addiction and schizophrenia. In the nematode C. elegans, DA signaling regulates mating behavior, learning, food seeking and locomotion. Previously, we demonstrated that loss of function mutations in the dat-1 gene that encodes the presynaptic DA transporter (DAT-1) results in a rapid cessation of movement when animals are placed in water, termed Swimming Induced Paralysis (Swip). Loss of function mutations in genes that support DA biosynthesis, DA vesicular packaging and DA action at the extrasynaptic D2-type DA receptor DOP-3 suppress Swip in dat-1 animals, consistent with paralysis as arising from excessive DA signaling. Although animals grown on the vesicular monoamine transporter antagonist reserpine diminish Swip, the drug must be applied chronically, can impact the signaling of multiple biogenic amines, and has been reported to have penetrant, off-target actions. Here, we demonstrate that the antipsychotic drug azaperone potently and rapidly suppresses Swip behavior in either dat-1 mutants, as well as in wildtype animals treated with the DAT-1 antagonist nisoxetine, with genetic experiments consistent with DOP-3 antagonism as the mechanism of Swip suppression. Reversal of Swip in previously paralyzed dat-1 animals by azaperone application demonstrates an otherwise functionally-intact swimming circuit in these mutants. Finally, whereas azaperone suppresses DA-dependent Swip, the drug fails to attenuate the DA-independent paralysis induced by βPEA, aldicarb or genetic disruption of γ-aminobutyric acid (GABA) signaling. We discuss our findings with respect to the use of azaperone as a potent and selective tool in the identification and analysis of presynaptic mechanisms that regulate DA signaling.
Collapse
Affiliation(s)
- Osama Refai
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, USA; Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
90
|
Gubert P, Puntel B, Lehmen T, Fessel JP, Cheng P, Bornhorst J, Trindade LS, Avila DS, Aschner M, Soares FAA. Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation. Neurotoxicology 2018; 67:65-72. [PMID: 29673961 DOI: 10.1016/j.neuro.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/27/2018] [Accepted: 04/08/2018] [Indexed: 11/24/2022]
Abstract
Manganese (Mn) is an essential trace element for physiological functions since it acts as an enzymatic co-factor. Nevertheless, overexposure to Mn has been associated with a pathologic condition called manganism. Furthermore, Mn has been reported to affect lipid metabolism by mechanisms which have yet to be established. Herein, we used the nematode Caenorhabditis elegans to examine Mn's effects on the dopaminergic (DAergic) system and determine which transcription factors that regulate with lipid metabolism are affected by it. Worms were exposed to Mn for four hours in the presence of bacteria and in a liquid medium (85 mM NaCl). Mn increased fat storage as evidenced both by Oil Red O accumulation and triglyceride levels. In addition, metabolic activity was reduced as a reflection of decreased oxygen consumption caused by Mn. Mn also affected feeding behavior as evidenced by decreased pharyngeal pumping rate. DAergic neurons viability were not altered by Mn, however the dopamine levels were significantly reduced following Mn exposure. Furthermore, the expression of sbp-1 transcription factor and let-363 protein kinase responsible for lipid accumulation control was increased and decreased, respectively, by Mn. Altogether, our data suggest that Mn increases the fat storage in C. elegans, secondary to DAergic system alterations, under the control of SBP-1 and LET-363 proteins.
Collapse
Affiliation(s)
- Priscila Gubert
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bruna Puntel
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tassia Lehmen
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Joshua P Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pan Cheng
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia Bornhorst
- Institute of Nutritional Sciences, University of Potsdam, Arthur-Scheunert-Allee 114-166, 14558, Nuthetal, Germany
| | - Lucas Siqueira Trindade
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Hachioji, Tokyo, 192-0397, Japan
| | - Daiana S Avila
- Laboratório do Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Felix A A Soares
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
91
|
Doitsidou M, Minevich G, Kroll JR, Soete G, Gowtham S, Korswagen HC, Sebastiaan van Zon J, Hobert O. A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage. G3 (BETHESDA, MD.) 2018; 8:17-26. [PMID: 29301976 PMCID: PMC5765345 DOI: 10.1534/g3.117.300132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022]
Abstract
Invertebrate and vertebrate nervous systems generate different types of dopaminergic neurons in distinct parts of the brain. We have taken a genetic approach to understand how the four functionally related, but lineally unrelated, classes of dopaminergic neurons of the nematode Caenorhabditis elegans, located in distinct parts of its nervous system, are specified. We have identified several genes involved in the generation of a specific dopaminergic neuron type that is generated from the so-called postdeirid lineage, called PDE. Apart from classic proneural genes and components of the mediator complex, we identified a novel, previously uncharacterized zinc finger transcription factor, ztf-6 Loss of ztf-6 has distinct effects in different dopamine neuron-producing neuronal lineages. In the postdeirid lineage, ztf-6 is required for proper cell division patterns and the proper distribution of a critical cell fate determinant, the POP-1/TCF-like transcription factor.
Collapse
Affiliation(s)
- Maria Doitsidou
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York, NY 10032
- Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, UK
| | - Gregory Minevich
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York, NY 10032
| | - Jason R Kroll
- AMOLF, Amsterdam, 1098 XG, The Netherlands, 3584 CT Utrecht, The Netherlands
| | - Gwen Soete
- Hubrecht Institute, 3584 CT Utrecht, The Netherlands
| | - Sriharsh Gowtham
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York, NY 10032
| | | | | | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York, NY 10032
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027
| |
Collapse
|
92
|
Cooper JF, Van Raamsdonk JM. Modeling Parkinson's Disease in C. elegans. JOURNAL OF PARKINSON'S DISEASE 2018; 8:17-32. [PMID: 29480229 PMCID: PMC5836411 DOI: 10.3233/jpd-171258] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is an adult onset neurodegenerative disease that is characterized by selective degeneration of neurons primarily in the substantia nigra. At present, the pathogenesis of PD is incompletely understood and there are no neuroprotective treatments available. Accurate animal models of PD provide the opportunity to elucidate disease mechanisms and identify therapeutic targets. This review focuses on C. elegans models of PD, including both genetic and toxicant models. This microscopic worm offers several advantages for the study of PD including ease of genetic manipulation, ability to complete experiments rapidly, low cost, and ability to perform large scale screens for disease modifiers. A number of C. elegans models of PD have been generated including transgenic worms that express α-synuclein or LRRK2, and worms with deletions in PRKN/pdr-1, PINK1/pink-1, DJ-1/djr-1.1/djr-1.2 and ATP13A2/catp-6. These worms have been shown to exhibit multiple phenotypic deficits including the loss of dopamine neurons, disruption of dopamine-dependent behaviors, increased sensitivity to stress, age-dependent aggregation, and deficits in movement. As a result, these phenotypes can be used as outcome measures to gain insight into disease pathogenesis and to identify disease modifiers. In this way, C. elegans can be used as an experimental tool to elucidate mechanisms involved in PD and to find novel therapeutic targets that can subsequently be validated in other models.
Collapse
Affiliation(s)
- Jason F. Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
93
|
Rodríguez-Ramos Á, Gámez-Del-Estal MM, Porta-de-la-Riva M, Cerón J, Ruiz-Rubio M. Impaired Dopamine-Dependent Locomotory Behavior of C. elegans Neuroligin Mutants Depends on the Catechol-O-Methyltransferase COMT-4. Behav Genet 2017; 47:596-608. [PMID: 28879499 DOI: 10.1007/s10519-017-9868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022]
Abstract
Neurexins and neuroligins are neuronal membrane adhesion molecules that have been involved in neuropsychiatric and neurodevelopmental disorders. The nrx-1 and nlg-1 genes of Caenorhabditis elegans encode NRX-1 and NLG-1, orthologue proteins of human neurexins and neuroligins, respectively. Dopaminergic and serotoninergic signalling control the locomotory rate of the nematode. When well-fed animals are transferred to a plate with food (bacterial lawn), they reduce the locomotory rate. This behavior, which depends on dopamine, is known as basal slowing response (BSR). Alternatively, when food-deprived animals are moved to a plate with a bacterial lawn, further decrease their locomotory rate. This behavior, known as enhanced slowing response (ESR), is serotonin dependent. C. elegans nlg-1-deficient mutants are impaired in BSR and ESR. Here we report that nrx-1-deficient mutants were defective in ESR, but not in BSR. The nrx-1;nlg-1 double mutant was impaired in both behaviors. Interestingly, the nlg-1 mutants upregulate the expression of comt-4 which encodes an enzyme with putative catechol-O-methyltransferase activity involved in dopamine degradation. Our study also shows that comt-4(RNAi) in nlg-1-deficient mutants rescues the wild type phenotypes of BSR and ESR. On the other hand, comt-4(RNAi) in nlg-1-deficient mutants also recovers, at least partially, the gentle touch response and the pharyngeal pumping rate that were impaired in these mutants. These latter behaviors are dopamine and serotonin dependent, respectively. Based on these results we propose a model for the neuroligin function in modulating the dopamine-dependent locomotory behavior in the nematode.
Collapse
Affiliation(s)
- Ángel Rodríguez-Ramos
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain
| | - M Mar Gámez-Del-Estal
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain
| | | | - Julián Cerón
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manuel Ruiz-Rubio
- Department of Genetics, University of Córdoba, Córdoba, Spain.
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- University Hospital Reina Sofía from Córdoba, Córdoba, Spain.
| |
Collapse
|
94
|
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models. Front Genet 2017; 8:77. [PMID: 28659967 PMCID: PMC5468440 DOI: 10.3389/fgene.2017.00077] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, United States
| | - Barbara E Taylor
- Department of Biological Sciences, California State University, Long BeachLong Beach, CA, United States
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska FairbanksFairbanks, AK, United States
| |
Collapse
|
95
|
Schmeisser K, Parker JA. Worms on the spectrum - C. elegans models in autism research. Exp Neurol 2017; 299:199-206. [PMID: 28434869 DOI: 10.1016/j.expneurol.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
The small non-parasitic nematode Caenorhabditis elegans is widely used in neuroscience thanks to its well-understood development and lineage of the nervous system. Furthermore, C. elegans has been used to model many human developmental and neurological conditions to better understand disease mechanisms and identify potential therapeutic strategies. Autism spectrum disorder (ASD) is the most prevalent of all neurodevelopmental disorders, and the C. elegans system may provide opportunities to learn more about this complex disorder. Since basic cell biology and biochemistry of the C. elegans nervous system is generally very similar to mammals, cellular or molecular phenotypes can be investigated, along with a repertoire of behaviours. For instance, worms have contributed greatly to the understanding of mechanisms underlying mutations in genes coding for synaptic proteins such as neuroligin and neurexin. Using worms to model neurodevelopmental disorders like ASD is an emerging topic that harbours great, untapped potential. This review summarizes the numerous contributions of C. elegans to the field of neurodevelopment and introduces the nematode system as a potential research tool to study essential roles of genes associated with ASD.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada; Department of Neuroscience, Université de Montreál, 2960 Chemin de la Tour, Montreál, Queb́ec H3T 1J4, Canada.
| |
Collapse
|
96
|
Han B, Dong Y, Zhang L, Liu Y, Rabinowitch I, Bai J. Dopamine signaling tunes spatial pattern selectivity in C. elegans. eLife 2017; 6. [PMID: 28349862 PMCID: PMC5370180 DOI: 10.7554/elife.22896] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/04/2017] [Indexed: 11/13/2022] Open
Abstract
Animals with complex brains can discriminate the spatial arrangement of physical features in the environment. It is unknown whether such sensitivity to spatial patterns can be accomplished in simpler nervous systems that lack long-range sensory modalities such as vision and hearing. Here we show that the nematode Caenorhabditis elegans can discriminate spatial patterns in its surroundings, despite having a nervous system of only 302 neurons. This spatial pattern selectivity requires touch-dependent dopamine signaling, including the mechanosensory TRP-4 channel in dopaminergic neurons and the D2-like dopamine receptor DOP-3. We find that spatial pattern selectivity varies significantly among C. elegans wild isolates. Electrophysiological recordings show that natural variations in TRP-4 reduce the mechanosensitivity of dopaminergic neurons. Polymorphic substitutions in either TRP-4 or DOP-3 alter the selectivity of spatial patterns. Together, these results demonstrate an ancestral role for dopamine signaling in tuning spatial pattern preferences in a simple nervous system.
Collapse
Affiliation(s)
- Bicheng Han
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yongming Dong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Lin Zhang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yan Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Ithai Rabinowitch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
97
|
Baugh AT, Ryan MJ. Vasotocin induces sexually dimorphic effects on acoustically-guided behavior in a tropical frog. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:265-273. [DOI: 10.1007/s00359-017-1155-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 12/23/2022]
|
98
|
Henne S, Sombke A, Schmidt-Rhaesa A. Immunohistochemical analysis of the anterior nervous system of the free-living nematode Plectus spp. (Nematoda, Plectidae). ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0347-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
99
|
Horstick EJ, Bayleyen Y, Sinclair JL, Burgess HA. Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biol 2017; 15:4. [PMID: 28122559 PMCID: PMC5267475 DOI: 10.1186/s12915-016-0346-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animals use sensory cues to efficiently locate resources, but when sensory information is insufficient, they may rely on internally coded search strategies. Despite the importance of search behavior, there is limited understanding of the underlying neural mechanisms in vertebrates. RESULTS Here, we report that loss of illumination initiates sophisticated light-search behavior in larval zebrafish. Using three-dimensional tracking, we show that at the onset of darkness larvae swim in a helical trajectory that is spatially restricted in the horizontal plane, before gradually transitioning to an outward movement profile. Local and outward swim patterns display characteristic features of area-restricted and roaming search strategies, differentially enhancing phototaxis to nearby and remote sources of light. Retinal signaling is only required to initiate area-restricted search, implying that photoreceptors within the brain drive the transition to the roaming search state. Supporting this, orthopediaA mutant larvae manifest impaired transition to roaming search, a phenotype which is recapitulated by loss of the non-visual opsin opn4a and somatostatin signaling. CONCLUSION These findings define distinct neuronal pathways for area-restricted and roaming search behaviors and clarify how internal drives promote goal-directed activity.
Collapse
Affiliation(s)
- Eric J Horstick
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| | - Yared Bayleyen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jennifer L Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
100
|
Ardiel EL, Giles AC, Yu AJ, Lindsay TH, Lockery SR, Rankin CH. Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor. ACTA ACUST UNITED AC 2016; 23:495-503. [PMID: 27634141 PMCID: PMC5026203 DOI: 10.1101/lm.041830.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/27/2016] [Indexed: 11/29/2022]
Abstract
Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like Caenorhabditis elegans, can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral tracking and optogenetics for stimulation of the C. elegans polymodal nociceptor, ASH. Photoactivation of ASH with ChR2 elicited backward locomotion and repetitive stimulation altered aspects of the response in a manner consistent with habituation. Recording photocurrents in ASH, we observed no evidence for light adaptation of ChR2. Furthermore, we ruled out fatigue by demonstrating that sensory input from the touch cells could dishabituate the ASH avoidance circuit. Food and dopamine signaling slowed habituation downstream from ASH excitation via D1-like dopamine receptor, DOP-4. This assay allows for large-scale genetic and drug screens investigating mechanisms of nociception modulation.
Collapse
Affiliation(s)
- Evan L Ardiel
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Andrew C Giles
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Alex J Yu
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Theodore H Lindsay
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Catharine H Rankin
- DM Centre for Brain Health, University of British Columbia, Vancouver V6T 2B5, Canada Department of Psychology, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|