51
|
Maldonado-Devincci AM, Cook JB, O'Buckley TK, Morrow DH, McKinley RE, Lopez MF, Becker HC, Morrow AL. Chronic intermittent ethanol exposure and withdrawal alters (3α,5α)-3-hydroxy-pregnan-20-one immunostaining in cortical and limbic brain regions of C57BL/6J mice. Alcohol Clin Exp Res 2014; 38:2561-71. [PMID: 25293837 DOI: 10.1111/acer.12530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α-THP levels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in male C57BL/6J mice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α-THP levels have not been examined. Given that CIE exposure changes subsequent voluntary EtOH drinking in a time-dependent fashion following repeated cycles of EtOH exposure, we conducted a time-course analysis of CIE effects on 3α,5α-THP levels in specific brain regions known to influence drinking behavior. METHODS Adult male C57BL/6J mice were exposed to 4 cycles of CIE to induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free-floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α-THP. RESULTS Withdrawal from CIE exposure produced time-dependent and region-specific effects on immunohistochemical detection of 3α,5α-THP levels across cortical and limbic brain regions. A transient reduction in 3α,5α-THP immunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal from CIE (-31.4 ± 9.3%). Decreases in 3α,5α-THP immunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (-25.0 ± 9.3%), nucleus accumbens core (-29.9 ± 6.6%), and dorsolateral striatum (-18.5 ± 6.0%), while an increase was observed in the CA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α-THP immunoreactivity were observed at both time points in the lateral amygdala (8 hours -28.3 ± 12.8%; 72 hours -27.5 ± 12.4%) and in the ventral tegmental area (8 hours -26.5 ± 9.9%; 72 hours -31.6 ± 13.8%). CONCLUSIONS These data suggest that specific neuroadaptations in 3α,5α-THP levels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed after CIE exposure.
Collapse
Affiliation(s)
- Antoniette M Maldonado-Devincci
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Effects of the neuroactive steroid allopregnanolone on intracranial self-stimulation in C57BL/6J mice. Psychopharmacology (Berl) 2014; 231:3415-3423. [PMID: 24810108 PMCID: PMC4692244 DOI: 10.1007/s00213-014-3600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE The neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) has effects on reward-related behaviors in mice and rats that suggest that it may activate brain reward circuits. Intracranial self-stimulation (ICSS) is an operant behavioral technique that detects changes in the sensitivity of brain reward circuitry following drug administration. OBJECTIVE To examine the effects of the neuroactive steroid allopregnanolone on ICSS and to compare these effects to those of cocaine. METHODS Male C57BL/6J mice implanted with stimulating electrodes implanted into the medial forebrain bundle responded for reinforcement by electrical stimulation (brain stimulation reward (BSR)). Mice received cocaine (n = 11, 3.0-30.0 mg/kg, intraperitoneal (i.p.)) or the neuroactive steroid allopregnanolone (n = 11, 3.0-17.0 mg/kg, i.p.). BSR thresholds (θ 0) and maximum (MAX) operant response rates after drug treatments were compared to those after vehicle injections. RESULTS Cocaine and allopregnanolone dose dependently lowered BSR thresholds relative to vehicle injections. Cocaine was maximally effective (80 % reduction) in the second 15 min following the 30 mg/kg dose, while allopregnanolone was maximally effective (30 % reduction) 15-45 min after the 17 mg/kg dose. Neither drug had significant effects on MAX response rates. CONCLUSIONS The effects of allopregnanolone on BSR thresholds are consistent with the previously reported effects of benzodiazepines and alcohol, suggesting that positive modulation of GABAA receptors can facilitate reward-related behaviors in C57BL/6J mice.
Collapse
|
53
|
Maldonado-Devincci AM, Beattie MC, Morrow DH, McKinley RE, Cook JB, O’Buckley TK, Morrow AL. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology (Berl) 2014; 231:3281-92. [PMID: 24744202 PMCID: PMC4335654 DOI: 10.1007/s00213-014-3552-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. OBJECTIVES The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. METHODS Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 μm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. RESULTS FSS decreased circulating 3α,5α-THP (-41.6 ± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (-15.2 ± 5.7 %), lateral amygdala (LA, -31.1 ± 13.4 %), and nucleus accumbens (NAcc) shell (-31.9 ± 14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. CONCLUSIONS The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity.
Collapse
Affiliation(s)
- Antoniette M. Maldonado-Devincci
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Beattie
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Danielle H. Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Raechel E. McKinley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Jason B. Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
54
|
Milivojevic V, Feinn R, Kranzler HR, Covault J. Variation in AKR1C3, which encodes the neuroactive steroid synthetic enzyme 3α-HSD type 2 (17β-HSD type 5), moderates the subjective effects of alcohol. Psychopharmacology (Berl) 2014; 231:3597-608. [PMID: 24838369 PMCID: PMC4135039 DOI: 10.1007/s00213-014-3614-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Animal models suggest that neuroactive steroids contribute to alcohol's acute effects. We previously reported that a common nonsynonymous polymorphism, AKR1C3 2 in the gene encoding the enzyme 3α-HSD2/17β-HSD5, and a synonymous single nucleotide polymorphism (SNP), rs248793, in SRD5A1, which encodes 5α-reductase, were associated with alcohol dependence (AD). OBJECTIVES The aim of the study was to investigate whether these polymorphisms moderate subjective effects of alcohol in humans and whether AKR1C3 2 affects neuroactive steroid synthesis. METHODS Sixty-five Caucasian men (34 lighter and 31 heavier drinkers; mean age 26.2 years) participated in a double-blind laboratory study where they consumed drinks containing no ethanol or 0.8 g/kg of ethanol. Breath alcohol, heart rate (HR), and self-reported alcohol effects were measured at 40-min intervals, and genotype was examined as a moderator of alcohol's effects. Levels of the neuroactive steroid 5α-androstane-3α,17β-diol and its precursors, 3α,5α-androsterone and dihydrotestosterone, were measured at study entry using GC/MS. RESULTS Initially, carriers of the AD-protective AKR1C3 2 G allele had higher levels of 5α-androstane-3α,17β-diol relative to the precursor 3α,5α-androsterone than C allele homozygotes. AKR1C3 2 G allele carriers exhibited greater increases in heart rate and stimulant and sedative effects of alcohol than C allele homozygotes. The genotype effects on sedation were observed only in heavier drinkers. The only effect of the SRD5A1 SNP was to moderate HR. There were no interactive effects of the two SNPs. CONCLUSIONS The observed effects of variation in a gene encoding a neuroactive steroid biosynthetic enzyme on the rate of 17β-reduction of androsterone relative to androstanediol and on alcohol's sedative effects may help to explain the association of AKR1C3 2 with AD.
Collapse
Affiliation(s)
- Verica Milivojevic
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT, 06030-1410, USA
| | | | | | | |
Collapse
|
55
|
Covault J, Pond T, Feinn R, Arias AJ, Oncken C, Kranzler HR. Dutasteride reduces alcohol's sedative effects in men in a human laboratory setting and reduces drinking in the natural environment. Psychopharmacology (Berl) 2014; 231:3609-18. [PMID: 24557088 PMCID: PMC4181572 DOI: 10.1007/s00213-014-3487-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/22/2014] [Indexed: 01/27/2023]
Abstract
RATIONALE Preclinical studies support the hypothesis that endogenous neuroactive steroids mediate some effects of alcohol. OBJECTIVES The aim of this study was to examine the effect of dutasteride inhibition of 5α-reduced neuroactive steroid production on subjective responses to alcohol in adult men. METHODS Using a within-subject factorial design, 70 men completed four randomly ordered monthly sessions in which pretreatment with 4 mg dutasteride or placebo was paired with a moderate dose of alcohol (0.8 g/kg) or placebo beverage. The pharmacologic effect of dutasteride was measured by an assay of serum androstanediol glucuronide. Self-reports of alcohol effects were obtained at 40-min intervals following alcohol administration using the Biphasic Alcohol Effects Scale (BAES) and the Alcohol Sensation Scale (SS). We used linear mixed models to examine the effects of dutasteride and alcohol on BAES and SS responses and the interaction of dutasteride with the GABRA2 alcohol dependence-associated polymorphism rs279858. We also examined whether exposure to dutasteride influenced drinking in the weeks following each laboratory session. RESULTS A single 4-mg dose of dutasteride produced a 70 % reduction in androstanediol glucuronide. Dutasteride pretreatment reduced alcohol effects on the BAES sedation and SS anesthesia scales. There was no interaction of dutasteride with rs279858. Heavy drinkers had fewer heavy drinking days during the 2 weeks following the dutasteride sessions and fewer total drinks in the first week after dutasteride. CONCLUSIONS These results provide evidence that neuroactive steroids mediate some of the sedative effects of alcohol in adult men and that dutasteride may reduce drinking, presumably through its effects on neuroactive steroid concentrations.
Collapse
Affiliation(s)
- Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA,
| | | | | | | | | | | |
Collapse
|
56
|
Effects of different ethanol-administration regimes on mRNA and protein levels of steroid 5α-reductase isozymes in prefrontal cortex of adolescent male rats. Psychopharmacology (Berl) 2014; 231:3273-80. [PMID: 24714925 DOI: 10.1007/s00213-014-3558-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Underage drinking is a leading public health problem in developed countries. An increasing proportion of adolescents consume alcoholic beverages every weekend. Increased anxiety, irritability, and depression among adolescents may induce them to seek for the anxiolytic and rewarding properties of alcohol. Allopregnanolone (AlloP) shares rewarding effects of ethanol and modulates ethanol intake. The rate-limiting enzyme in the biosynthesis of AlloP is steroid 5α-reductase (5α-R), which is expressed as three isozymes, 5α-R1, 5α-R2, and 5α-R3. OBJECTIVE The objective of this study was to quantify the expression levels of 5α-R isozymes in prefrontal cortex (PFC) of adolescent male rats after three different regimes of ethanol administration. METHODS Adolescent male Wistar rats were administered with ethanol (4 g/kg) or saline intraperitoneally for 1 day (acute), for 7 days (chronic), or every 72 h for 14 days (chronic intermittent). Messenger (m)RNA and protein levels of 5α-R isozymes were measured by quantitative RT-PCR and Western blot, respectively. RESULTS Ethanol significantly increased mRNA and protein levels of 5α-R1, 5α-R2, and 5α-R3 in the three different regimes of ethanol administration, being higher in the chronic intermittent regime in comparison with the others. CONCLUSIONS The expression of the AlloP-biosynthetic enzyme 5α-Rs increases in the prefrontal cortex of adolescent male rats under acute, chronic, and chronic intermittent regime of ethanol administration. The latter is very interesting because it mimics the teenage drinking behavior.
Collapse
|
57
|
Porcu P, Morrow AL. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology (Berl) 2014; 231:3257-72. [PMID: 24770626 PMCID: PMC4135033 DOI: 10.1007/s00213-014-3564-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/25/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily γ-aminobutyric acid type A (GABAA) receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders. OBJECTIVES This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice, and humans. RESULTS GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice, and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol. CONCLUSIONS Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy,
| | | |
Collapse
|
58
|
Ramaker MJ, Ford MM, Phillips TJ, Finn DA. Differences in the reinstatement of ethanol seeking with ganaxolone and gaboxadol. Neuroscience 2014; 272:180-7. [PMID: 24814021 PMCID: PMC4122668 DOI: 10.1016/j.neuroscience.2014.04.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
The endogenous neuroactive steroid allopregnanolone (ALLO) has previously been shown to induce reinstatement of ethanol seeking in rodents. ALLO is a positive allosteric modulator at both synaptic and extrasynaptic GABAA receptors. The contribution of each class of GABAA receptors in mediating reinstatement of ethanol seeking is unknown. The first aim of the present study was to determine whether ganaxolone (GAN), a longer-acting synthetic analog of ALLO, also promotes reinstatement of ethanol seeking. The second aim was to examine whether preferentially activating extrasynaptic GABAA receptors with the selective agonist gaboxadol (THIP) was sufficient to reinstate responding for ethanol in mice. Male C57BL/6J mice were trained to lever press for access to a 10% ethanol (v/v) solution (10E), using a sucrose-fading procedure. Following extinction of the lever-pressing behavior, systemic THIP (0, 4 and 6mg/kg) and GAN (0, 10, and 15mg/kg) were tested for their ability to reinstate ethanol-appropriate responding in the absence of 10E access. GAN significantly increased lever pressing on the previously active lever, while THIP did not alter lever-pressing behavior. The results of this study suggest that direct activation of extrasynaptic GABAA receptors at the GABA site is not sufficient to induce ethanol seeking in the reinstatement procedure. Future studies are necessary to elucidate the mechanisms and brain areas by which differences in the pharmacological activity of GAN and THIP at the GABAA receptor contribute to the dissimilarity in their effect on the reinstatement of ethanol seeking. Nonetheless, based on the increased use of these drugs in clinical trials across multiple disease states, the effects of GAN or THIP on alcohol seeking may be an important consideration if these drugs are to be used clinically in a population with a co-occurring alcohol use disorder.
Collapse
Affiliation(s)
- M J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - T J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Veterans Affairs Medical Research, Portland, OR 97239, United States
| | - D A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Veterans Affairs Medical Research, Portland, OR 97239, United States
| |
Collapse
|
59
|
Cook JB, Nelli SM, Neighbors MR, Morrow DH, O'Buckley TK, Maldonado-Devincci AM, Morrow AL. Ethanol alters local cellular levels of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) independent of the adrenals in subcortical brain regions. Neuropsychopharmacology 2014; 39:1978-87. [PMID: 24566803 PMCID: PMC4059907 DOI: 10.1038/npp.2014.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
The neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a positive modulator of GABAA receptors synthesized in the brain, adrenal glands, and gonads. In rats, ethanol activates the hypothalamic-pituitary-adrenal axis and elevates 3α,5α-THP in plasma, cerebral cortex, and hippocampus. In vivo, these effects are dependent on both the pituitary and adrenal glands. In vitro, however, ethanol locally increases 3α,5α-THP in hippocampal slices, in the absence of adrenal influence. Therefore, it is not known whether ethanol can change local brain levels of 3α,5α-THP in vivo, independent of the adrenals. To directly address this controversy, we administered ethanol (2 g/kg) or saline to rats that underwent adrenalectomy (ADX) or received sham surgery and performed immunohistochemistry for 3α,5α-THP. In the medial prefrontal cortex (mPFC), ethanol increased 3α,5α-THP after sham surgery, compared with saline controls, with no ethanol-induced change in 3α,5α-THP following ADX. In subcortical regions, 3α,5α-THP was increased independent of adrenals in the CA1 pyramidal cell layer, dentate gyrus polymorphic layer, bed nucleus of the stria terminalis, and paraventricular nucleus of the hypothalamus. Furthermore, ethanol decreased 3α,5α-THP labeling in the nucleus accumbens shore and central nucleus of the amygdala, independent of the adrenal glands. These data indicate that ethanol dynamically regulates local 3α,5α-THP levels in several subcortical regions; however, the adrenal glands contribute to 3α,5α-THP elevations in the mPFC. Using double immunofluorescent labeling we determined that adrenal dependence of 3α,5α-THP induction by ethanol is not due to a lack of colocalization of 3α,5α-THP with the cholesterol transporters steroidogenic acute regulatory protein (StAR) or translocator protein (TSPO).
Collapse
Affiliation(s)
- Jason B Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Nelli
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie R Neighbors
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle H Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles CB no. 7178, Chapel Hill, NC 27599, USA, Tel: +1 919 966 7682, Fax: +1 919 966 9099, E-mail:
| |
Collapse
|
60
|
Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction. Behav Brain Res 2014; 271:269-76. [PMID: 24959859 DOI: 10.1016/j.bbr.2014.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 01/29/2023]
Abstract
Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors.
Collapse
|
61
|
Vashchinkina E, Manner AK, Vekovischeva O, Hollander BD, Uusi-Oukari M, Aitta-aho T, Korpi ER. Neurosteroid Agonist at GABAA receptor induces persistent neuroplasticity in VTA dopamine neurons. Neuropsychopharmacology 2014; 39:727-37. [PMID: 24077066 PMCID: PMC3895251 DOI: 10.1038/npp.2013.258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 02/05/2023]
Abstract
The main fast-acting inhibitory receptors in the mammalian brain are γ-aminobutyric acid type-A (GABAA) receptors for which neurosteroids, a subclass of steroids synthesized de novo in the brain, constitute a group of endogenous ligands with the most potent positive modulatory actions known. Neurosteroids can act on all subtypes of GABAA receptors, with a preference for δ-subunit-containing receptors that mediate extrasynaptic tonic inhibition. Pathological conditions characterized by emotional and motivational disturbances are often associated with perturbation in the levels of endogenous neurosteroids. We studied the effects of ganaxolone (GAN)-a synthetic analog of endogenous allopregnanolone that lacks activity on nuclear steroid receptors-on the mesolimbic dopamine (DA) system involved in emotions and motivation. A single dose of GAN in young mice induced a dose-dependent, long-lasting neuroplasticity of glutamate synapses of DA neurons ex vivo in the ventral tegmental area (VTA). Increased α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/N-methyl-D-aspartate ratio and rectification of AMPA receptor responses even at 6 days after GAN administration suggested persistent synaptic targeting of GluA2-lacking AMPA receptors. This glutamate neuroplasticity was not observed in GABAA receptor δ-subunit-knockout (δ-KO) mice. GAN (500 nM) applied locally to VTA selectively increased tonic inhibition of GABA interneurons and triggered potentiation of DA neurons within 4 h in vitro. Place-conditioning experiments in adult wild-type C57BL/6J and δ-KO mice revealed aversive properties of repeated GAN administration that were dependent on the δ-subunits. Prolonged neuroadaptation to neurosteroids in the VTA might contribute to both the physiology and pathophysiology underlying processes and changes in motivation, mood, cognition, and drug addiction.
Collapse
Affiliation(s)
- Elena Vashchinkina
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Aino K Manner
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Olga Vekovischeva
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | - Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Teemu Aitta-aho
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland,Institute of Biomedicine, Pharmacology, University of Helsinki, POB 63 (Haartmaninkatu 8), Helsinki FI-00014, Finland. Tel: +358 9 191 25330; Fax: +358 9 191 25364; E-mail:
| |
Collapse
|
62
|
Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014; 48:1-17. [PMID: 24447472 DOI: 10.1016/j.alcohol.2013.09.045] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol's acute and long-term pharmacological consequences.
Collapse
|
63
|
Porcu P, Locci A, Santoru F, Berretti R, Morrow AL, Concas A. Failure of acute ethanol administration to alter cerebrocortical and hippocampal allopregnanolone levels in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 2014; 38:948-58. [PMID: 24428156 DOI: 10.1111/acer.12329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) administration increases brain allopregnanolone levels in rats, and this increase contributes to sensitivity to EtOH's behavioral effects. However, EtOH's effects on allopregnanolone may differ across species. We investigated the effects of acute EtOH administration on allopregnanolone, progesterone, and corticosterone levels in cerebral cortex and hippocampus of C57BL/6J and DBA/2J mice, 2 inbred strains with different alcohol sensitivity. METHODS Naïve male C57BL/6J and DBA/2J mice received EtOH (1, 2, 3, or 4 g/kg, intraperitoneally [i.p.]) or saline and were euthanized 1 hour later. For the time-course study, mice received EtOH (2 g/kg, i.p.) and were euthanized 15, 30, 60, and 120 minutes later. Steroids were measured by radioimmunoassay. RESULTS Acute EtOH administration did not alter cerebrocortical and hippocampal levels of allopregnanolone and progesterone in these strains at any of the doses and time points examined. Acute EtOH dose-dependently increased cerebrocortical corticosterone levels by 319, 347, and 459% in C57BL/6J mice at the doses of 2, 3, and 4 g/kg, and by 371, 507, 533, and 692% in DBA/2J mice at the doses of 1, 2, 3, and 4 g/kg, respectively. Similar changes were observed in the hippocampus. EtOH's effects on cerebrocortical corticosterone levels were also time dependent in both strains. Moreover, acute EtOH administration time-dependently increased plasma levels of progesterone and corticosterone. Finally, morphine administration increased cerebrocortical allopregnanolone levels in C57BL/6J (+77, +93, and +88% at 5, 10, and 30 mg/kg, respectively) and DBA/2J mice (+81% at 5 mg/kg), suggesting that the impairment in brain neurosteroidogenesis may be specific to EtOH. CONCLUSIONS These results underline important species differences on EtOH-induced brain neurosteroidogenesis. Acute EtOH increases brain and plasma corticosterone levels but does not alter cerebrocortical and hippocampal concentrations of allopregnanolone and progesterone in naïve C57BL/6J and DBA/2J mice.
Collapse
Affiliation(s)
- Patrizia Porcu
- Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
64
|
Irwig MS. Persistent Sexual and Nonsexual Adverse Effects of Finasteride in Younger Men. Sex Med Rev 2014; 2:24-35. [DOI: 10.1002/smrj.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
65
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
66
|
Cook JB, Dumitru AMG, O'Buckley TK, Morrow AL. Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 2013; 38:90-9. [PMID: 23906006 DOI: 10.1111/acer.12223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The 5α-reduced pregnane neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a potent positive modulator of GABAA receptors capable of modulating neuronal activity. In rats, systemic ethanol (EtOH) administration increases cerebral cortical and hippocampal levels of 3α,5α-THP, but the effects of EtOH on 3α,5α-THP levels in other brain regions are unknown. There is a large body of evidence suggesting that 3α,5α-THP enhances EtOH sensitivity, contributes to some behavioral effects of EtOH, and modulates EtOH reinforcement and motivation to drink. In this study, we used immunohistochemistry (IHC) to determine EtOH-induced changes in cellular 3α,5α-THP expression in brain regions associated with EtOH actions and responses. METHODS Male Wistar rats were administered EtOH (2 g/kg) or saline intraperitoneally and after 60 minutes transcardially perfused. IHC was performed on free-floating sections (3 to 4 sections/animal/brain region) using an affinity purified anti-3α,5α-THP primary antibody, and immunoreactivity was visualized with 3,3'-diaminobenzidine. RESULTS EtOH significantly increased 3α,5α-THP immunoreactivity by 24 ± 6% in the medial prefrontal cortex, 32 ± 12% in the hippocampal Cornu Ammonis area 1 (CA1) pyramidal cell layer, 52 ± 5% in the polymorph cell layer of the dentate gyrus (DG), 44 ± 15% in the bed nucleus of the stria terminalis, and 36 ± 6% in the paraventricular nucleus of the hypothalamus. In contrast, EtOH administration significantly reduced 3α,5α-THP immunoreactivity by 25 ± 5% in the nucleus accumbens "shore" and 21 ± 3% in the central nucleus of the amygdala. No changes were observed in the ventral tegmental area, dorsomedial striatum, granule cell layer of the DG, or the lateral and basolateral amygdala. CONCLUSIONS The results suggest acute EtOH (2 g/kg) produces divergent, brain region specific, effects on cellular 3α,5α-THP levels. Regional differences in the effects of EtOH suggest there may be regional brain synthesis of 3α,5α-THP independent of the adrenal glands and novel mechanisms that reduce cellular 3α,5α-THP. Regional differences in EtOH-induced changes in 3α,5α-THP levels likely contribute to EtOH effects on neuronal function in brain.
Collapse
Affiliation(s)
- Jason B Cook
- Departments of Psychiatry and Pharmacology , Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
67
|
Irwig MS. Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: a preliminary report. Alcohol Clin Exp Res 2013; 37:1823-6. [PMID: 23763349 DOI: 10.1111/acer.12177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a robust literature in rodents, but not in humans, on the interaction between finasteride and alcohol, particularly as it relates to neurosteroids. Finasteride has been shown to reduce alcohol intake and suppress alcohol preference in male mice. This study examines the role of finasteride in alcohol consumption in humans with male pattern hair loss. METHODS The subjects were 83 otherwise healthy men who developed persistent sexual side effects associated with finasteride, despite the cessation of this medication for at least 3 months. Information from standardized interviews was collected regarding medical histories, sexual function, and alcohol consumption before and after finasteride use. RESULTS Of the 63 men who consumed at least 1 alcoholic beverage/wk prior to starting finasteride, 41 (65%) noted a decrease in their alcohol consumption after stopping finasteride. This reduction typically began before discontinuing finasteride. Twenty men (32%) reported no change in their alcohol consumption, and 2 men (3%) reported an increase in their alcohol consumption. For the 63 consumers of alcohol, the mean number (± SE) of alcoholic beverages/wk declined from 5.2 ± 0.7 before finasteride to 2.0 ± 0.3 after finasteride (p < 0.0001). A major study limitation is the lack of a comparison group. CONCLUSIONS In former male users of finasteride who developed persistent sexual side effects, 65% noticed a decline in their alcohol consumption as compared to baseline. This finding is consistent with finasteride's ability to modulate alcohol intake in rodents. Further research is needed on the central nervous system effects of finasteride in humans.
Collapse
Affiliation(s)
- Michael S Irwig
- Center for Andrology and Division of Endocrinology, Medical Faculty Associates, The George Washington University, Washington, District of Columbia
| |
Collapse
|
68
|
Sex differences in neuroadaptation to alcohol and withdrawal neurotoxicity. Pflugers Arch 2013; 465:643-54. [PMID: 23559099 DOI: 10.1007/s00424-013-1266-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/28/2022]
Abstract
Recent work suggests that sex differences exist with regard to both the nature of neuroadaptation to alcohol during the development of dependence, and possibly, the neurodegenerative consequences of alcohol dependence. Volumetric studies in human samples show that females may demonstrate increased volumetric brain loss with equal or lesser dependence histories than males. Furthermore, animal studies demonstrate sex differences in glutamatergic, GABAergic, and adenosinergic receptor signaling and endocrine responses following prolonged alcohol exposure. These differences may influence the development of dependence, neuronal function, and viability, particularly during alcohol withdrawal. The present review discusses the current state of knowledge in this regard. It is concluded that there exists a clear need for a more extensive examination of potential sex differences in neurodegenerative consequences of alcohol dependence in men and women, particularly with regard to the role that alterations in amino acid signaling and hypothalamic-pituitary-adrenal axis function may play. Furthermore, we note the need for expanded examination of the unique role that alcohol withdrawal-associated neuronal activity may have in the development of dependence-associated neurotoxicity.
Collapse
|
69
|
Milivojevic V, Covault J. Alcohol exposure during late adolescence increases drinking in adult Wistar rats, an effect that is not reduced by finasteride. Alcohol Alcohol 2013; 48:28-38. [PMID: 22997410 PMCID: PMC3523383 DOI: 10.1093/alcalc/ags105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/18/2012] [Accepted: 07/31/2012] [Indexed: 11/13/2022] Open
Abstract
AIMS We tested whether an exposure to alcohol in late adolescence, an age of rapid increase in neuroactive steroid precursors, would increase voluntary alcohol consumption in adult rats and whether this effect would be modulated by finasteride, an inhibitor of neuroactive steroid synthesis. METHODS In Experiment 1, we exposed male Wistar rats to 8% alcohol during the dark cycle for 1 week during late adolescence [postnatal days (PNDs) 51-58], and then measured voluntary alcohol consumption 1 month later in adulthood (PNDs 91-104). In Experiment 2, finasteride was administered during the forced alcohol exposure in late adolescence and, in Experiment 3, during voluntary alcohol consumption in adulthood. Plasma was collected at the end of each finasteride treatment to confirm the reduction of plasma neuroactive steroid levels. RESULTS We found that a daily 12-h exposure to alcohol for 7 days in late adolescence significantly increased voluntary alcohol consumption (4-fold) a month later during adulthood. Finasteride administration in late adolescence increased group alcohol intake in late adolescence but did not block the effect of adolescent alcohol exposure on increasing alcohol preference in adulthood. There was no effect of finasteride treatment in adulthood on alcohol preference. CONCLUSIONS A daily 12-h exposure to alcohol for 7 days in late adolescence was sufficient to induce chronically increased alcohol preference in adulthood, indicating that this age may be sensitive to the effects of alcohol.
Collapse
Affiliation(s)
- Verica Milivojevic
- Graduate Program in Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Psychiatry, Alcohol Research Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jonathan Covault
- Department of Psychiatry, Alcohol Research Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
70
|
Alteration of neonatal Allopregnanolone levels affects exploration, anxiety, aversive learning and adult behavioural response to intrahippocampal neurosteroids. Behav Brain Res 2012; 241:96-104. [PMID: 23228522 DOI: 10.1016/j.bbr.2012.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
Abstract
Neurosteroids (NS) are well known to exert modulatory effects on ionotropic receptors. Recent findings indicate that NS could also act as important factors during development. In this sense, neonatal modifications of Allopregnanolone (Allop) levels during critical periods have been demonstrate to alter the morphology of the hippocampus but also other brain structures. The aim of the present work is to screen whether the alterations of Allop levels modify adult CA1 hippocampal response to NS administration. For this purpose, pups were injected with Allop (20 mg/kg s.c.), Finasteride (5α-reductase inhibitor that impedes Allop synthesis) (50 mg/kg s.c.) or Vehicle from postnatal day 5 (P5) to postnatal day 9 (P9). NS levels were tested at P5. To test the behavioural hippocampal response to NS in adulthood, animals were implanted with a bilateral cannula into the CA1 hippocampus at 80 days old and injected with Allop (0.2 μg/0.5 μl), Pregnenolone sulphate (5 ng/0.5 μl) or Vehicle in each hippocampus. After injections animals were tested in the Boisser test to assess exploratory behaviour, the elevated plus maze to assess anxiety and the passive avoidance to test aversive learning. Results indicate that alteration of neonatal Allop or pregnenolone levels (by Allop and Finasteride administration, respectively) suppressed intrahippocampal Allop anxiolytic effect in the EPM. Moreover our results also indicate that manipulation of neonatal Allop levels (Allop and Finast administration) alters exploratory and anxiety-like behaviour and impairs aversive learning in the adulthood. These data point out the role of Allop in the maturation of hippocampal function and behaviour.
Collapse
|
71
|
Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 2012; 37:109-22. [PMID: 23085210 DOI: 10.1016/j.neubiorev.2012.10.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Neurosteroids are potent and effective neuromodulators that are synthesized from cholesterol in the brain. These agents and their synthetic derivatives influence the function of multiple signaling pathways including receptors for γ-aminobutyric acid (GABA) and glutamate, the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS). Increasing evidence indicates that dysregulation of neurosteroid production plays a role in the pathophysiology of stress and stress-related psychiatric disorders, including mood and anxiety disorders. In this paper, we review the mechanisms of neurosteroid action in brain with an emphasis on those neurosteroids that potently modulate the function of GABA(A) receptors. We then discuss evidence indicating a role for GABA and neurosteroids in stress and depression, and focus on potential strategies that can be used to manipulate CNS neurosteroid synthesis and function for therapeutic purposes.
Collapse
|
72
|
Paez-Martinez N, Aldrete-Audiffred J, Gallardo-Tenorio A, Castro-Garcia M, Estrada-Camarena E, Lopez-Rubalcava C. Participation of GABAA, GABA(B) receptors and neurosteroids in toluene-induced hypothermia: evidence of concentration-dependent differences in the mechanism of action. Eur J Pharmacol 2012; 698:178-85. [PMID: 23085024 DOI: 10.1016/j.ejphar.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/21/2012] [Accepted: 10/06/2012] [Indexed: 12/12/2022]
Abstract
Toluene is a misused substance that modifies γ-aminobutyric acid (GABA) release and shares behavioral and molecular effects with GABA(A) and GABA(B) receptor agonists. GABAergic compounds are involved in thermoregulation processes and volatile substance users have reported that one of the reasons to inhale is to avoid feeling cold. At present, no studies have analyzed the effects of inhalants on body temperature and the mechanism of action involved. Thus, the main purpose of this study was to evaluate the effects of a (60 min) acute toluene inhalation (2000, 4000 and 6000 ppm) in core temperature. In addition, we tried to prevent the changes of temperature induced by toluene with the specific GABA(A) receptor blockers picrotoxin (0.01-0.1mg/kg), bicuculline (0.1-0.3mg/kg), and flumazenil (3-30 mg/kg); the GABA(B) receptor antagonist phaclofen (10-30 mg/kg) and the neurosteroid synthesis inhibitor finasteride (10-30 mg/kg). Results show that toluene reduced core temperature in mice in a concentration-dependent manner. The hypothermia produced by 4000 ppm toluene was prevented by picrotoxin, bicuculline, phaclofen and finasteride but not by flumazenil. In contrast none of these antagonists tested blocked the effects of 6000 ppm toluene. In conclusion, toluene decreases core temperature, GABA receptors and neurosteroids participate in toluene's action at 4000 ppm; but other mechanisms of action are involved in the hypothermic effects of 6000 ppm toluene.
Collapse
Affiliation(s)
- Nayeli Paez-Martinez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Santo Tomás, CP 11340 Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
73
|
RETRACTED: Acute ethanol administration affects memory reactivation: A look at the neuronal density and apoptosis in the rat hippocampus. Pharmacol Biochem Behav 2012; 102:321-8. [DOI: 10.1016/j.pbb.2012.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 11/16/2022]
|
74
|
Taherianfard M, Davazdahemamy M, Shojaeifard M, Sharifi M. Acute and chronic exposure of chick embryo to ethanol alters brain neurosteroid levels. J Physiol Biochem 2012; 69:141-5. [DOI: 10.1007/s13105-012-0198-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 06/28/2012] [Indexed: 12/01/2022]
|
75
|
Ramaker MJ, Strong MN, Ford MM, Finn DA. Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration. Neuropharmacology 2012; 63:555-64. [PMID: 22613838 DOI: 10.1016/j.neuropharm.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/04/2012] [Accepted: 05/06/2012] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that GABA(A) receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit-containing extrasynaptic GABA(A) receptors may confer high sensitivity to both ethanol and neurosteroids. The purpose of the present study was to determine the effects of ganaxolone (GAN; an ALLO analog) and gaboxadol (THIP; a GABA(A) receptor agonist with selectivity for the extrasynaptic δ-subunit) on ethanol intake, drinking patterns, and bout characteristics in operant and limited-access self-administration procedures. In separate studies, the effects of GAN (0-10 mg/kg) and THIP (2-16 mg/kg) were tested in C57BL/6J male mice provided with 2-h access to a two-bottle choice of water or 10% ethanol or trained to respond for 30 min of access to 10% ethanol. GAN had no overall significant effect on operant ethanol self-administration, but tended to decrease the latency to consume the first bout. In the limited-access procedure, GAN dose-dependently decreased ethanol intake. THIP dose-dependently decreased ethanol intake in both paradigms, altering both the consummatory and appetitive processes of operant self-administration as well as shifting the drinking patterns in both procedures. These results add to literature suggesting time-dependent effects of neurosteroids to promote the onset, and to subsequently decrease, ethanol drinking behavior, and they support a role for extrasynaptic GABA(A) receptor activation in ethanol reinforcement.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
76
|
Alijan-pour J, Abrari K, Lashkar bluki T, Ghorbanian MT, Goudarzi I, Elahdadi Salmani M. Ethanol disrupts reactivated contextual conditioned fear memory: behavioral and histological perspectives. CELL JOURNAL 2012; 13:265-74. [PMID: 23507995 PMCID: PMC3584476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 08/13/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This research study is an attempt to examine whether the administration of ethanol after memory reactivation would modulate subsequent expression of memory in rats. Additionally, we examined whether this administration alters the density of Cornu Ammonis (CA)1 and CA3 pyramidal and dentate gyrus (DG) granule cells. MATERIALS AND METHODS In this experimental study, adult male Wistar rats (200-300 g) were trained in a fear conditioning system using two 1 second, 0.6 mA shocks with an interval of 180 seconds. Twenty four hours later rats were returned to the chamber for 120 seconds. Immediately after reactivation they were injected with ethanol (0.5, 1, 1.5 mg/ kg) or saline. 1, 7 and 14 days after reactivation, rats were returned to the context for 5 minutes. Seconds of freezing (absence of all movement except respiration) were scored. In the second experiment (described in the previous paragraph), after test 1, animals were anesthetized with sodium pentobarbital and perfused transcardially with phosphate buffer (10 minutes) and 4% paraformaldehyde (15 minutes). The brains were postfixed in phosphate-buffered 4% paraformaldehyde (24 hours) and 30% sucrose. 10-µm sections were stained with cresyl violet. Data were analyzed by 1-and 2-way ANOVA for repeated measurements by means of SPSS 16.0. Tukey's post hoc test was performed to determine the source of detected significant differences. P <0 .05 were considered significant. Data are presented as mean ± SEM. RESULTS Findings from the first experiment indicated that ethanol at a dose of 1.5 mg/kg significantly impaired recall of memory only in the first test. The density of CA1 and CA3 pyramidal and DG granule cells in the ethanol group was decreased (p< 0.01) compared with control group respectively 43.7%, 35.8%, and 37.8. CONCLUSION The data demonstrate that ethanol exposure impairs post retrieval processes. Moreover, ethanol decreases the density of CA1, CA3 and DG cells. Presumably it would be a correlation between our behavioral and histological results.
Collapse
Affiliation(s)
| | - Kataneh Abrari
- * Corresponding Address:
P.O.Box: 36715-364School of BiologyDamghan UniversityDamghanIran
| | | | | | | | | |
Collapse
|
77
|
Roselli CE, Finn TJ, Ronnekleiv-Kelly SM, Tanchuck MA, Kaufman KR, Finn DA. Localization of brain 5α-reductase messenger RNA in mice selectively bred for high chronic alcohol withdrawal severity. Alcohol 2011; 45:763-72. [PMID: 21917407 DOI: 10.1016/j.alcohol.2011.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/21/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Several lines of evidence suggest that fluctuations in endogenous levels of the γ-aminobutyric acid (GABA)ergic neurosteroid allopregnanolone (ALLO) represent one mechanism for regulation of GABAergic inhibitory tone in the brain, with an ultimate impact on behavior. Consistent with this idea, there was an inverse relationship between ALLO levels and symptoms of anxiety and depression in humans and convulsive activity in rodents during alcohol withdrawal. Our recent studies examined the activity and expression of 5α-reductase (Srd5a1), the rate-limiting enzyme in the biosynthesis of ALLO, during alcohol withdrawal in mice selectively bred for high chronic alcohol withdrawal (Withdrawal Seizure-Prone [WSP]) and found that Srd5a1 was downregulated in the cortex and hippocampus over the time course of dependence and withdrawal. The purpose of the present studies was to extend these findings and more discretely map the regions of Srd5a1 expression in mouse brain using radioactive in situ hybridization in WSP mice that were ethanol naïve, following exposure to 72h ethanol vapor (dependent) or during peak withdrawal. In naïve animals, expression of Srd5a1 was widely distributed throughout the mouse brain, with highest expression in specific regions of the cerebral cortex, hippocampus, thalamus, hypothalamus, and amygdala. In dependent animals and during withdrawal, there was no change in Srd5a1 expression in cortex or hippocampus, which differed from our recent findings in dissected tissues. These results suggest that local Srd5a1 mRNA expression in WSP brain may not change in parallel with local ALLO content or withdrawal severity.
Collapse
|
78
|
Neurosteroid Binding Sites on the GABA(A) Receptor Complex as Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence. Adv Pharmacol Sci 2011; 2011:926361. [PMID: 22110489 PMCID: PMC3206502 DOI: 10.1155/2011/926361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/17/2011] [Indexed: 01/02/2023] Open
Abstract
Despite the prevalence of alcohol abuse and dependence in the US and Europe, there are only five approved pharmacotherapies for alcohol dependence. Moreover, these pharmacotherapeutic options have limited clinical utility. The purpose of this paper is to present pertinent literature suggesting that both alcohol and the neurosteroids interact at the GABAA receptor complex and that the neurosteroid sites on this receptor complex could serve as new targets for the development of novel therapeutics for alcohol abuse. This paper will also present data collected by our laboratory showing that one neurosteroid in particular, dehydroepiandrosterone (DHEA), decreases ethanol intake in rats under a variety of conditions. In the process, we will also mention relevant studies from the literature suggesting that both particular subtypes and subunits of the GABAA receptor play an important role in mediating the interaction of neurosteroids and ethanol.
Collapse
|
79
|
|
80
|
Cushman JD, Moore MD, Jacobs NS, Olsen RW, Fanselow MS. Behavioral pharmacogenetic analysis on the role of the α4 GABA(A) receptor subunit in the ethanol-mediated impairment of hippocampus-dependent contextual learning. Alcohol Clin Exp Res 2011; 35:1948-59. [PMID: 21943327 DOI: 10.1111/j.1530-0277.2011.01546.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A major effect of low-dose ethanol is impairment of hippocampus-dependent cognitive function. α4/δ -containing GABA(A) Rs are highly expressed within the dentate gyrus region of the hippocampus where they mediate a tonic inhibitory current that is sensitive to the enhancement by low ethanol concentrations. These receptors are also powerful modulators of learning and memory, suggesting that they could play an important role in ethanol's cognitive impairing effects. The goal of this study was to develop a high-throughput cognitive ethanol assay, amenable to use in genetically modified mice that could be used to test this hypothesis. METHODS We developed a procedure where preexposure to a conditioning chamber is used to rescue the "immediate shock deficit." Using this task, ethanol can be specifically targeted at the hippocampus-dependent process of contextual learning without interfering with pain sensitivity or behavioral performance. RESULTS Validation of this task in C57BL/6 mice indicated that 1.0 g/kg ethanol and 10 mg/kg allopregnanolone disrupt contextual learning. Ro15-4513 reversed the effects of ethanol but not allopregnanolone, whereas it produced an impairment when given alone. The high-throughput nature of this task allowed for its application in a large cohort of α4 GABA(A) R KO mice. Loss of the α4 GABA(A) R subunit produced an enhanced sensitivity to the cognitive impairing effects of ethanol. This is consistent with the enhanced ethanol sensitivity of synaptic GABA(A) Rs that has been previously observed in the dentate gyrus in these mice, but inconsistent with the reduced ethanol sensitivity of extrasynaptic GABA(A) Rs observed in the same cells. CONCLUSIONS Overall, these findings are consistent with our hypothesis that ethanol acts directly at GABA(A) receptors to impair hippocampus-dependent cognitive function. Furthermore, validation of this high-throughput assay will allow for future studies to use anatomically and temporally restricted genetic manipulations to probe more deeply into the neural mechanisms of ethanol action on learning and memory circuits.
Collapse
Affiliation(s)
- Jesse D Cushman
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
81
|
Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats. Alcohol 2011; 45:473-83. [PMID: 21600728 DOI: 10.1016/j.alcohol.2011.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 02/17/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.
Collapse
|
82
|
Sabeti J. Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma-1 receptor activation in hippocampal CA1 neurons. Alcohol Clin Exp Res 2011; 35:885-904. [PMID: 21314692 PMCID: PMC3083503 DOI: 10.1111/j.1530-0277.2010.01419.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND We demonstrated previously that rats exposed to chronic intermittent ethanol (CIE) vapors in early adolescence show increased magnitudes of long-term potentiation (LTP) of excitatory transmission when recorded at dendritic synapses in hippocampus. Large amplitude LTP following CIE exposure is mediated by sigma-1 receptors; however, not yet addressed is the role of sigma-1 receptors in modulating the intrinsic properties of neurons to alter their action potential firing during LTP. METHODS Activity-induced plasticity of spike firing was investigated using rat hippocampal slice recordings to measure changes in both field excitatory postsynaptic potentials (fEPSPs) and population spikes (pop. spikes) concomitantly at dendritic inputs and soma of CA1 pyramidal neurons, respectively. RESULTS We observed unique modifications in plasticity of action potential firing in hippocampal slices from CIE exposed adolescent rats, where the induction of large amplitude LTP by 100 Hz stimulations was accompanied by reduced CA1 neuronal excitability--reflected as decreased pop. spike efficacy and impaired activity-induced fEPSP-to-spike (E-S) potentiation. In contrast, LTP induction in ethanol-naïve control slices resulted in increased spike efficacy and robust E-S potentiation. E-S potentiation impairments emerged at 24 hours after CIE treatment cessation, but not before the alcohol withdrawal period, and were restored with bath-application of the sigma-1 receptor selective antagonist BD1047, but not the NMDA receptor antagonist d-AP5. Further evidence revealed a significantly shortened somatic fEPSP time course in adolescent CIE-withdrawn hippocampal slices during LTP; however, paired-pulse data show no apparent correspondence between E-S dissociation and altered recurrent feedback inhibition. CONCLUSIONS Results here suggest that acute withdrawal from adolescent CIE exposure triggers sigma-1 receptors that act to depress the efficacy of excitatory inputs in triggering action potentials during LTP. Such withdrawal-induced depression of E-S plasticity in hippocampus probably entails sigma-1 receptor modulation of 1 or several voltage-gated ion channels controlling the neuronal input-output dynamics.
Collapse
Affiliation(s)
- Jilla Sabeti
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
83
|
Milivojevic V, Kranzler HR, Gelernter J, Burian L, Covault J. Variation in genes encoding the neuroactive steroid synthetic enzymes 5α-reductase type 1 and 3α-reductase type 2 is associated with alcohol dependence. Alcohol Clin Exp Res 2011; 35:946-52. [PMID: 21323680 PMCID: PMC3083475 DOI: 10.1111/j.1530-0277.2010.01425.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies of alcohol effects in rodents and in vitro implicate endogenous neuroactive steroids as key mediators of alcohol effects at GABA(A) receptors. We used a case-control sample to test the association with alcohol dependence (AD) of single nucleotide polymorphisms in the genes encoding two key enzymes required for the generation of endogenous neuroactive steroids: 5α-reductase, type I (5α-R), and 3α-hydroxysteroid dehydrogenase, type 2 (3α-HSD), both of which are expressed in human brain. METHODS We focused on markers previously associated with a biological phenotype. For 5α-R, we examined the synonymous SRD5A1 exon 1 SNP rs248793, which has been associated with the ratio of dihydrotestosterone to testosterone. For 3α-HSD, we examined the nonsynonymous AKR1C3 SNP rs12529 (H5Q), which has been associated with bladder cancer. The SNPs were genotyped in a sample of 1,083 non-Hispanic Caucasians including 552 controls and 531 subjects with AD. RESULTS The minor allele for both SNPs was more common among controls than subjects with AD: SRD5A1 rs248793 C-allele (χ(2)(1) = 7.6, p = 0.006) and AKR1C3 rs12529 G-allele (χ(2)(1) = 14.6, p = 0.0001). There was also an interaction of these alleles such that the "protective" effect of the minor allele at each marker for AD was conditional on the genotype of the second marker. CONCLUSIONS We found evidence of an association with AD of polymorphisms in two genes encoding neuroactive steroid biosynthetic enzymes, providing indirect evidence that neuroactive steroids are important mediators of alcohol effects in humans.
Collapse
Affiliation(s)
- Verica Milivojevic
- Graduate Program in Neuroscience, University of Connecticut Health Center, Farmington, CT 06030
| | - Henry R. Kranzler
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
- Department of Genetics and Developmental Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Joel Gelernter
- Departments of Psychiatry Neurobiology and Genetics, Yale University School of Medicine, New Haven, CT and VA CT Healthcare System, West Haven, CT 06516
| | - Linda Burian
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
84
|
Porcu P, O'Buckley TK, Song SC, Harenza JL, Lu L, Wang X, Williams RW, Miles MF, Morrow AL. Genetic analysis of the neurosteroid deoxycorticosterone and its relation to alcohol phenotypes: identification of QTLs and downstream gene regulation. PLoS One 2011; 6:e18405. [PMID: 21494628 PMCID: PMC3072994 DOI: 10.1371/journal.pone.0018405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/07/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deoxycorticosterone (DOC) is an endogenous neurosteroid found in brain and serum, precursor of the GABAergic neuroactive steroid (3α,5α)-3,21-dihydroxypregnan-20-one (tetrahydrodeoxycorticosterone, THDOC) and the glucocorticoid corticosterone. These steroids are elevated following stress or ethanol administration, contribute to ethanol sensitivity, and their elevation is blunted in ethanol dependence. METHODOLOGY/PRINCIPAL FINDINGS To systematically define the genetic basis, regulation, and behavioral significance of DOC levels in plasma and cerebral cortex we examined such levels across 47 young adult males from C57BL/6J (B6)×DBA/2J (D2) (BXD) mouse strains for quantitative trait loci (QTL) and bioinformatics analyses of behavior and gene regulation. Mice were injected with saline or 0.075 mg/kg dexamethasone sodium salt at 8:00 am and were sacrificed 6 hours later. DOC levels were measured by radioimmunoassay. Basal cerebral cortical DOC levels ranged between 1.4 and 12.2 ng/g (8.7-fold variation, p<0.0001) with a heritability of ∼0.37. Basal plasma DOC levels ranged between 2.8 and 12.1 ng/ml (4.3-fold variation, p<0.0001) with heritability of ∼0.32. QTLs for basal DOC levels were identified on chromosomes 4 (cerebral cortex) and 14 (plasma). Dexamethasone-induced changes in DOC levels showed a 4.4-fold variation in cerebral cortex and a 4.1-fold variation in plasma, but no QTLs were identified. DOC levels across BXD strains were further shown to be co-regulated with networks of genes linked to neuronal, immune, and endocrine function. DOC levels and its responses to dexamethasone were associated with several behavioral measures of ethanol sensitivity previously determined across the BXD strains by multiple laboratories. CONCLUSIONS/SIGNIFICANCE Both basal and dexamethasone-suppressed DOC levels are positively correlated with ethanol sensitivity suggesting that the neurosteroid DOC may be a putative biomarker of alcohol phenotypes. DOC levels were also strongly correlated with networks of genes associated with neuronal function, innate immune pathways, and steroid metabolism, likely linked to behavioral phenotypes.
Collapse
Affiliation(s)
- Patrizia Porcu
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Traish AM, Hassani J, Guay AT, Zitzmann M, Hansen ML. Adverse Side Effects of 5α‐Reductase Inhibitors Therapy: Persistent Diminished Libido and Erectile Dysfunction and Depression in a Subset of Patients. J Sex Med 2011; 8:872-84. [DOI: 10.1111/j.1743-6109.2010.02157.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
86
|
Besheer J, Lindsay TG, O'Buckley TK, Hodge CW, Morrow AL. Pregnenolone and ganaxolone reduce operant ethanol self-administration in alcohol-preferring p rats. Alcohol Clin Exp Res 2010; 34:2044-52. [PMID: 20946297 DOI: 10.1111/j.1530-0277.2010.01300.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neuroactive steroids modulate ethanol intake in several self-administration models with variable effects. The purpose of this work was to examine the effects of the long-acting synthetic GABAergic neurosteroid ganaxolone and the endogenous neurosteroid pregnenolone, a precursor of all GABAergic neuroactive steroids, on the maintenance of ethanol self-administration in an animal model of elevated drinking-the alcohol-preferring (P) rats. METHODS P rats were trained to self-administer ethanol (15% v/v) versus water on a concurrent schedule of reinforcement, and the effects of ganaxolone (0 to 30 mg/kg, subcutaneous [SC]) and pregnenolone (0 to 75 mg/kg, intraperitoneal [IP]) were evaluated on the maintenance of ethanol self-administration. After completion of self-administration testing, doses of the neuroactive steroids that altered ethanol self-administration were assessed on spontaneous locomotor activity. Finally, the effect of pregnenolone administration on cerebral cortical levels of the GABAergic neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone, 3α,5α-THP) was determined in both ethanol-experienced and ethanol-inexperienced P rats because pregnenolone is a precursor of these steroids. RESULTS Ganaxolone produced a dose-dependent biphasic effect on ethanol reinforcement, as the lowest dose (1 mg/kg) increased and the highest dose (30 mg/kg) decreased ethanol-reinforced responding. However, the highest ganaxolone dose also produced a nonspecific reduction in locomotor activity. Pregnenolone treatment significantly reduced ethanol self-administration (50 and 75 mg/kg), without altering locomotor activity. Pregnenolone (50 mg/kg) produced a significant increase in cerebral cortical allopregnanolone levels. This increase was observed in the self-administration trained animals, but not in ethanol-naïve P rats. CONCLUSIONS These results indicate that pregnenolone dose-dependently reduces operant ethanol self-administration in P rats without locomotor impairment, suggesting that it may have potential as a novel therapeutic for reducing chronic alcohol drinking in individuals that abuse alcohol.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | |
Collapse
|
87
|
Van Skike CE, Botta P, Chin VS, Tokunaga S, McDaniel JM, Venard J, Diaz-Granados JL, Valenzuela CF, Matthews DB. Behavioral effects of ethanol in cerebellum are age dependent: potential system and molecular mechanisms. Alcohol Clin Exp Res 2010; 34:2070-80. [PMID: 20860615 DOI: 10.1111/j.1530-0277.2010.01303.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adolescent rats are less sensitive to the motor-impairing effects of ethanol than adults. However, the cellular and molecular mechanisms underlying this age-dependent effect of ethanol have yet to be fully elucidated. METHOD Male rats of various ages were used to investigate ethanol-induced ataxia and its underlying cellular correlates. In addition, Purkinje neurons from adolescent and adult rats were recorded both in vivo and in vitro. Finally, protein kinase C (PKCγ) expression was determined in 3 brain regions in both adolescent and adult rats. RESULTS The present multi-methodological investigation confirms that adolescents are less sensitive to the motor-impairing effects of ethanol, and this differential effect is not because of differential blood ethanol levels. In addition, we identify a particular cellular correlate that may underlie the reduced motor impairment. Specifically, the in vivo firing rate of cerebellar Purkinje neurons recorded from adolescent rats was insensitive to an acute ethanol challenge, while the firing rate of adult cerebellar Purkinje neurons was significantly depressed. Finally, it is demonstrated that PKCγ expression in the cortex and cerebellum mirrors the age-dependent effect of ethanol: adolescents have significantly less PKCγ expression compared to adults. CONCLUSIONS Adolescents are less sensitive than adults to the motor-impairing effects of ethanol, and a similar effect is seen with in vivo electrophysiological recordings of cerebellar Purkinje neurons. While still under investigation, PKCγ expression mirrors the age effect of ethanol and may contribute to the age-dependent differences in the ataxic effects of ethanol.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Psychology and Neuroscience, Baylor University Addictions Research Consortium, Waco, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Boyd KN, Kumar S, O'Buckley TK, Morrow AL. Chronic ethanol exposure produces tolerance to elevations in neuroactive steroids: mechanisms and reversal by exogenous ACTH. J Neurochem 2010; 115:142-52. [PMID: 20633208 DOI: 10.1111/j.1471-4159.2010.06904.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acute ethanol administration increases potent GABAergic neuroactive steroids, specifically (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one. In addition, neuroactive steroids contribute to ethanol actions. Chronic ethanol exposure results in tolerance to many effects of ethanol, including ethanol-induced increases in neuroactive steroid levels. To determine the mechanisms of tolerance to ethanol-induced increases in neuroactive steroids, we investigated critical signaling molecules that are required for acute ethanol effects. Male Sprague-Dawley rats were administered ethanol via liquid diet for 2 weeks and steroid levels, adrenocorticotrophic hormone (ACTH) and adrenal steroidogenic acute regulatory (StAR) protein expression were measured. Chronic ethanol exposure elicits tolerance to ethanol-induced elevation of serum ACTH and the steroids pregnenolone and progesterone. Surprisingly, chronic ethanol exposure does not result in tolerance to ethanol-induced increases in adrenal StAR protein. However, ethanol-induced StAR phosphorylation is decreased when compared to acute ethanol administration. A separate group of rats exposed to chronic ethanol diet were subsequently challenged with ethanol (2 g/kg) and exhibited a blunted elevation of serum ACTH and progesterone as well as cerebral cortical and hippocampal 3α,5α-THP. Administration of ACTH with the ethanol challenge restored the elevation of serum ACTH and progesterone as well as cerebral cortical 3α,5α-THP levels to those observed in ethanol-naïve rats. Thus, chronic ethanol exposure disrupts ACTH release, which results in tolerance to ethanol-induced increases in neuroactive steroid levels. Loss of the ethanol-induced increases in neuroactive steroids may contribute to behavioral tolerance to ethanol and influence the progression towards alcoholism.
Collapse
Affiliation(s)
- Kevin N Boyd
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
89
|
Ray LA, Hutchison KE, Ashenhurst JR, Morrow AL. Naltrexone selectively elevates GABAergic neuroactive steroid levels in heavy drinkers with the Asp40 allele of the OPRM1 gene: a pilot investigation. Alcohol Clin Exp Res 2010; 34:1479-87. [PMID: 20528823 DOI: 10.1111/j.1530-0277.2010.01233.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Preclinical studies have implicated GABAergic neurosteroids in behavioral responses to alcohol. Naltrexone is thought to blunt the reinforcing effects of alcohol, and a few studies have found that the effects of naltrexone are moderated by the Asn40Asp polymorphisms of the OPRM1 gene. The present study seeks to integrate these lines of research by testing (i) the moderating role of the functional Asn40Asp polymorphism of the OPRM1 gene on naltrexone-induced alternations in GABAergic neurosteroid levels, namely (3alpha,5alpha)-3-hydroxypregnan-20-one (allopregnanolone, ALLO); and (ii) the combined effects of naltrexone or genotype with alcohol administration on neurosteroid levels in a sample of at-risk drinkers. METHODS Participants were 32 (9 females) nontreatment-seeking heavy drinkers who completed a placebo-controlled laboratory study of naltrexone (50 mg/d for 3 days) and provided complete sets of serum samples for ALLO assays before and after alcohol administration under both naltrexone and placebo conditions. RESULTS Naltrexone treatment raised ALLO levels among carriers of the Asp40 allele, but not homozygotes for the Asn40 allele. The Asn40Asp polymorphism did not moderate effects of naltrexone on cortisol levels. Ethanol infusion modestly reduced ALLO levels in all subjects, independent of genotype or naltrexone exposure. CONCLUSIONS Naltrexone increased ALLO levels among individuals with the Asn40Asp allele suggesting a potential neurosteroid contribution to the neuropharmacological effects of naltrexone among Asp40 carriers.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California Los Angeles, Los Angeles, California 90095-1563, USA.
| | | | | | | |
Collapse
|
90
|
Quinones-Jenab V, Jenab S. Progesterone attenuates cocaine-induced responses. Horm Behav 2010; 58:22-32. [PMID: 19819242 DOI: 10.1016/j.yhbeh.2009.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/28/2009] [Accepted: 10/01/2009] [Indexed: 11/16/2022]
Abstract
In this review, we summarize literature focused on how progesterone alters cocaine-induced psychomotor, reinforcement, and physiological responses. Clinical studies suggest that progesterone attenuates the subjective effects of cocaine. Similarly, preclinical studies have demonstrated that cocaine-induced reward and psychomotor responses are attenuated after progesterone administration. In rats progesterone also reduces the reinforcement effects of cocaine attenuates acquisition, escalation, reinstatement of cocaine self-administration, and cocaine-seeking behaviors. Progesterone also counteracts the facilitatory effects of estrogen on cocaine self-administration and psychomotor activation. These findings suggest that progesterone has a potential in clinical applications as a treatment for cocaine addiction. Constantly changing progesterone serum levels in female humans and rats affect the female's reinforcement responses to cocaine and may in part contribute to the known sex differences in cocaine responses.
Collapse
Affiliation(s)
- Vanya Quinones-Jenab
- Department of Psychology, Hunter College and Biopsychology and Behavioral Neuroscience PhD Subprogram, The Graduate Center, The City University of New York, 695 Park Ave, New York, NY 10065, USA.
| | | |
Collapse
|
91
|
Chisari M, Eisenman LN, Covey DF, Mennerick S, Zorumski CF. The sticky issue of neurosteroids and GABA(A) receptors. Trends Neurosci 2010; 33:299-306. [PMID: 20409596 DOI: 10.1016/j.tins.2010.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 01/01/2023]
Abstract
Endogenous neurosteroids and their synthetic analogs (neuroactive steroids) are potent modulators of GABA(A) receptors. Thus, they are of physiological and clinical relevance for their ability to modulate inhibitory function in the CNS. Despite their importance, fundamental issues of neurosteroid actions remain unresolved. Recent evidence suggests that glutamatergic principal neurons, rather than glia, are the major sources of neurosteroid synthesis. Other recent studies have identified putative neurosteroid binding sites on GABA(A) receptors. In this Opinion, we argue that neurosteroids require a membranous route of access to transmembrane-domain binding sites within GABA(A) receptors. This has implications for the design of future neuroactive steroids because the lipid solubility and related accessibility properties of the ligand are likely to be key determinants of receptor modulation.
Collapse
Affiliation(s)
- Mariangela Chisari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
92
|
Replacement with GABAergic steroid precursors restores the acute ethanol withdrawal profile in adrenalectomy/gonadectomy mice. Neuroscience 2010; 166:5-14. [PMID: 20004707 DOI: 10.1016/j.neuroscience.2009.11.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/30/2009] [Accepted: 11/27/2009] [Indexed: 11/22/2022]
Abstract
The neurosteroid allopregnanolone (ALLO) is a progesterone metabolite that is one of a family of neuroactive steroids (NAS) that are potent positive allosteric modulators of gamma-aminobutyric acid(A) (GABA(A)) receptors. These GABAergic NAS are produced peripherally (in the adrenals and gonads) and centrally in the brain. Peripherally produced NAS modulate some effects of ethanol intoxication (e.g., anxiolytic, antidepressant, and anticonvulsant effects) in rodents. We have found that NAS also may be involved in the rebound neural hyperexcitability following a high ethanol dose. Removal of the adrenals and gonads (ADX/GDX) increased withdrawal severity following 4 g/kg ethanol, as measured by handling-induced convulsions (HICs) in male and female DBA/2J mice. NAS are produced through the metabolism of progesterone (PROG), deoxycorticosterone (DOC), or testosterone, which can be blocked with the administration of finasteride (FIN), a 5alpha-reductase enzyme inhibitor. The current investigation was undertaken to clarify the step(s) in the biosynthetic NAS pathway that were sufficient to restore the acute ethanol withdrawal profile in ADX/GDX mice to that seen in intact animals. Male and female DBA/2J mice underwent ADX/GDX or SHAM surgery. After recovery, separate groups of animals were administered PROG, DOC, PROG+FIN, DOC+FIN, FIN, ALLO, ganaxalone (a synthetic ALLO derivative), corticosterone, or vehicle. Animals were then administered a 4 g/kg ethanol dose and allowed to undergo withdrawal. HICs were measured for 12 h and again at 24 h. The results indicate that replacement with PROG and DOC restored the withdrawal profile in ADX/GDX animals to SHAM levels, and that this effect was blocked with co-administration of FIN. Administration of FIN alone increased the withdrawal profile in both SHAM and ADX/GDX males. These findings indicate that the increase in acute withdrawal severity after ADX/GDX may be due to the loss of GABAergic NAS, providing insight into the contribution of endogenous GABAergic NAS to ethanol withdrawal severity.
Collapse
|
93
|
Finn DA, Beckley EH, Kaufman KR, Ford MM. Manipulation of GABAergic steroids: Sex differences in the effects on alcohol drinking- and withdrawal-related behaviors. Horm Behav 2010; 57:12-22. [PMID: 19615369 PMCID: PMC2813380 DOI: 10.1016/j.yhbeh.2009.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/16/2022]
Abstract
Alcoholism is a complex disorder that represents an important contributor to health problems worldwide and that is difficult to encompass with a single preclinical model. Additionally, alcohol (ethanol) influences the function of many neurotransmitter systems, with the interaction at gamma-aminobutyric acid(A) (GABA(A)) receptors being integral for ethanol's reinforcing and several withdrawal-related effects. Given that some steroid derivatives exert rapid membrane actions as potent positive modulators of GABA(A) receptors and exhibit a similar pharmacological profile to that of ethanol, studies in the laboratory manipulated GABAergic steroid levels and determined the impact on ethanol's rewarding- and withdrawal-related effects. Manipulations focused on the progesterone metabolite allopregnanolone (ALLO), since it is the most potent endogenous GABAergic steroid identified. The underlying hypothesis is that fluctuations in GABAergic steroid levels (and the resultant change in GABAergic inhibitory tone) alter sensitivity to ethanol, leading to changes in the positive motivational or withdrawal-related effects of ethanol. This review describes results that emphasize sex differences in the effects of ALLO and the manipulation of its biosynthesis on alcohol reward-versus withdrawal-related behaviors, with females being less sensitive to the modulatory effects of ALLO on ethanol-drinking behaviors but more sensitive to some steroid manipulations on withdrawal-related behaviors. These findings imply the existence of sex differences in the sensitivity of GABA(A) receptors to GABAergic steroids within circuits relevant to alcohol reward versus withdrawal. Thus, sex differences in the modulation of GABAergic neurosteroids may be an important consideration in understanding and developing therapeutic interventions in alcoholics.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Veterans Affairs Medical Research, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
94
|
Alcohol breaks down interhemispheric inhibition in females but not in males: alcohol and frontal connectivity. Psychopharmacology (Berl) 2010; 208:469-74. [PMID: 20020107 PMCID: PMC2806530 DOI: 10.1007/s00213-009-1747-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/25/2009] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Alcohol has renowned behavioral disinhibitory properties which are suggested to involve reductions in frontal lobe functioning as a result of diminished interhemispheric connectivity. METHODS To examine sex differences in frontal interhemispheric connectivity in response to alcohol, 12 female and ten male healthy volunteers received a single administration of 0.5 per thousand alcohol in a placebo-controlled counterbalanced crossover design. Paired-pulse transcranial magnetic stimulation was applied to measure transcallosal inhibition (TCI) between the left and right primary motor cortex (M1). RESULTS Results showed significant reductions in TCI after alcohol administration in female participants exclusively. DISCUSSION These findings provide the first evidence that moderate doses of alcohol differentially affect frontal interhemispheric connectivity in males and females. The present data may shed new light on the physiological mechanisms underlying sex differences in the susceptibility to alcohol.
Collapse
|
95
|
Abstract
This chapter provides an overview of neurosteroids, especially their impact on the brain, sex differences and their therapeutic potentials. Neurosteroids are synthesized within the brain and rapidly modulate neuronal excitability. They are classified as pregnane neurosteroids, such as allopregnanolone and allotetrahydrodeoxycorticosterone, androstane neurosteroids, such as androstanediol and etiocholanolone, and sulfated neurosteroids such as pregnenolone sulfate. Neurosteroids such as allopregnanolone are positive allosteric modulators of GABA-A receptors with powerful anti-seizure activity in diverse animal models. Neurosteroids increase both synaptic and tonic inhibition. They are endogenous regulators of seizure susceptibility, anxiety, and stress. Sulfated neurosteroids such as pregnenolone sulfate, which are negative GABA-A receptor modulators, are memory-enhancing agents. Sex differences in susceptibility to brain disorders could be due to neurosteroids and sexual dimorphism in specific structures of the human brain. Synthetic neurosteroids that exhibit better bioavailability and efficacy and drugs that enhance neurosteroid synthesis have therapeutic potential in anxiety, epilepsy, and other brain disorders. Clinical trials with the synthetic neurosteroid analog ganaxolone in the treatment of epilepsy have been encouraging. Neurosteroidogenic agents that lack benzodiazepine-like side effects show promise in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
96
|
Porcu P, O'Buckley TK, Alward SE, Song SC, Grant KA, de Wit H, Leslie Morrow A. Differential effects of ethanol on serum GABAergic 3alpha,5alpha/3alpha,5beta neuroactive steroids in mice, rats, cynomolgus monkeys, and humans. Alcohol Clin Exp Res 2009; 34:432-42. [PMID: 20028362 DOI: 10.1111/j.1530-0277.2009.01123.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Acute ethanol administration increases plasma and brain levels of progesterone and deoxycorticosterone-derived neuroactive steroids (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP) and (3alpha,5alpha)-3,21-dihydroxypregnan-20-one (3alpha,5alpha-THDOC) in rats. However, little is known about ethanol effects on GABAergic neuroactive steroids in mice, nonhuman primates, or humans. We investigated the effects of ethanol on plasma levels of 3alpha,5alpha- and 3alpha,5beta-reduced GABAergic neuroactive steroids derived from progesterone, deoxycorticosterone, dehydroepiandrosterone, and testosterone using gas chromatography-mass spectrometry. METHODS Serum levels of GABAergic neuroactive steroids and pregnenolone were measured in male rats, C57BL/6J and DBA/2J mice, cynomolgus monkeys, and humans following ethanol administration. Rats and mice were injected with ethanol (0.8 to 2.0 g/kg), cynomolgus monkeys received ethanol (1.5 g/kg) intragastrically, and healthy men consumed a beverage containing 0.8 g/kg ethanol. Steroids were measured after 60 minutes in all species and also after 120 minutes in monkeys and humans. RESULTS Ethanol administration to rats increased levels of 3alpha,5alpha-THP, 3alpha,5alpha-THDOC, and pregnenolone at the doses of 1.5 g/kg (+228, +134, and +860%, respectively, p < 0.001) and 2.0 g/kg (+399, +174, and +1125%, respectively, p < 0.001), but not at the dose of 0.8 g/kg. Ethanol did not alter levels of the other neuroactive steroids. In contrast, C57BL/6J mice exhibited a 27% decrease in serum 3alpha,5alpha-THP levels (p < 0.01), while DBA/2J mice showed no significant effect of ethanol, although both mouse strains exhibited substantial increases in precursor steroids. Ethanol did not alter any of the neuroactive steroids in cynomolgus monkeys at doses comparable to those studied in rats. Finally, no effect of ethanol (0.8 g/kg) was observed in men. CONCLUSIONS These studies show clear species differences among rats, mice, and cynomolgus monkeys in the effects of ethanol administration on circulating neuroactive steroids. Rats are unique in their pronounced elevation of GABAergic neuroactive steroids, while this effect was not observed in mice or cynomolgus monkeys at comparable ethanol doses.
Collapse
Affiliation(s)
- Patrizia Porcu
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7178, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Fleming RL, Manis PB, Morrow AL. The effects of acute and chronic ethanol exposure on presynaptic and postsynaptic gamma-aminobutyric acid (GABA) neurotransmission in cultured cortical and hippocampal neurons. Alcohol 2009; 43:603-18. [PMID: 20004338 DOI: 10.1016/j.alcohol.2009.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 01/04/2023]
Abstract
Decades after ethanol was first described as a gamma-aminobutyric acid (GABA) mimetic, the precise mechanisms that produce the acute effects of ethanol and the physiological adaptations that underlie ethanol tolerance and dependence remain unclear. Although a substantial body of evidence suggests that ethanol acts on GABAergic neurotransmission to enhance inhibition in the central nervous system, the precise mechanisms underlying the physiological effects of both acute and chronic ethanol exposure are still under investigation. We have used in vitro ethanol exposure followed by recording of miniature inhibitory postsynaptic currents (mIPSCs) to determine whether acute or chronic ethanol exposure directly alters synaptic GABA(A) receptor (GABA(A)R) function or GABA release in cultured cortical and hippocampal neurons. Acute ethanol exposure slightly increased the duration of mIPSCs in hippocampal neurons but did not alter mIPSC kinetics in cortical neurons. Acute ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. One day of chronic ethanol exposure produced a transient decrease in mIPSC duration in cortical neurons but did not alter mIPSC kinetics in hippocampal neurons. Chronic ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. Chronic ethanol exposure also did not produce substantial cross-tolerance to a benzodiazepine in either hippocampal or cortical neurons. The results suggest that ethanol exposure in vitro has limited effects on synaptic GABA(A)R function and action potential-independent GABA release in cultured neurons and that ethanol exposure in cultured cortical and hippocampal neurons may not reproduce all the effects that occur in vivo and in acute brain slices.
Collapse
|
98
|
Boyd KN, Kumar S, O'Buckley TK, Porcu P, Morrow AL. Ethanol induction of steroidogenesis in rat adrenal and brain is dependent upon pituitary ACTH release and de novo adrenal StAR synthesis. J Neurochem 2009; 112:784-96. [PMID: 20021565 DOI: 10.1111/j.1471-4159.2009.06509.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of ethanol actions that produce its behavioral sequelae involve the synthesis of potent GABAergic neuroactive steroids, specifically the GABAergic metabolites of progesterone, (3alpha,5alpha)-3-hydroxypregnan-20-one (3alpha,5alpha-THP), and deoxycorticosterone, (3alpha,5alpha)-3,21-dihydroxypregnan-20-one. We investigated the mechanisms that underlie the effect of ethanol on adrenal steroidogenesis. We found that ethanol effects on plasma pregnenolone, progesterone, 3alpha,5alpha-THP and cortical 3alpha,5alpha-THP are highly correlated, exhibit a threshold of 1.5 g/kg, but show no dose dependence. Ethanol increases plasma adrenocorticotropic hormone (ACTH), adrenal steroidogenic acute regulatory protein (StAR), and adrenal StAR phosphorylation, but does not alter levels of other adrenal cholesterol transporters. The inhibition of ACTH release, de novo adrenal StAR synthesis or cytochrome P450 side chain cleavage activity prevents ethanol-induced increases in GABAergic steroids in plasma and brain. ACTH release and de novo StAR synthesis are independently regulated following ethanol administration and both are necessary, but not sufficient, for ethanol-induced elevation of plasma and brain neuroactive steroids. As GABAergic steroids contribute to ethanol actions and ethanol sensitivity, the mechanisms of this effect of ethanol may be important factors that contribute to the behavioral actions of ethanol and risk for alcohol abuse disorders.
Collapse
Affiliation(s)
- Kevin N Boyd
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
99
|
Morrow AL, Biggio G, Serra M, Becker HC, Lopez MF, Porcu P, Alward SE, O'Buckley TK. The role of neuroactive steroids in ethanol/stress interactions: proceedings of symposium VII at the Volterra conference on alcohol and stress, May 2008. Alcohol 2009; 43:521-30. [PMID: 19913195 PMCID: PMC2778608 DOI: 10.1016/j.alcohol.2009.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 03/17/2009] [Accepted: 04/09/2009] [Indexed: 11/19/2022]
Abstract
This report summarizes the proceedings of the symposium VII on the role of neuroactive steroids in stress/alcohol interactions. The production of GABAergic neuroactive steroids, including (3alpha,5alpha)-3-hydroxypregnan-20-one and (3alpha,5alpha)-3,21-dihydroxypregnan-20-one is a consequence of both acute stress and acute ethanol exposure. Acute, but not chronic ethanol administration elevates brain levels of these steroids and enhances GABA(A) receptor activity. Neuroactive steroids modulate acute anticonvulsant effects, sedation, spatial memory impairment, anxiolytic-like, antidepressant-like, and reinforcing properties of ethanol in rodents. Furthermore, these steroids participate in the homeostatic regulation of the hypothalamic-pituitary-adrenal axis. Therefore, it is not surprising that neuroactive steroids are involved in ethanol/stress interactions. Nevertheless, the interactions are complex and not well understood. This symposium addressed the role of neuroactive steroids in both stress and alcohol responses and their interactions. Professor Giovanni Biggio of the University of Cagliari, Italy presented the effects of juvenile isolation stress on neuroactive steroids, GABA(A) receptor expression, and ethanol sensitivity. Professor Howard Becker of the Medical University of South Carolina, USA presented evidence for neuroactive steroid involvement in ethanol dependence and drinking behavior. Professor Patrizia Porcu of the University of North Carolina, USA described a potential neuroactive steroid biomarker that may predict heavy drinking in monkeys and mice. These presentations provide a framework for new theories on the nature of ethanol/stress interactions that may be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Tanchuck MA, Long SL, Ford MM, Hashimoto J, Crabbe JC, Roselli CE, Wiren KM, Finn DA. Selected line difference in the effects of ethanol dependence and withdrawal on allopregnanolone levels and 5alpha-reductase enzyme activity and expression. Alcohol Clin Exp Res 2009; 33:2077-87. [PMID: 19740134 DOI: 10.1111/j.1530-0277.2009.01047.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Allopregnanolone (ALLO) is a progesterone derivative that rapidly potentiates gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition and modulates symptoms of ethanol withdrawal. Because clinical and preclinical data indicate that ALLO levels are inversely related to symptoms of withdrawal, the present studies determined whether ethanol dependence and withdrawal differentially altered plasma and cortical ALLO levels in mice selectively bred for differences in ethanol withdrawal severity and determined whether the alterations in ALLO levels corresponded to a concomitant change in activity and expression of the biosynthetic enzyme 5alpha-reductase. METHODS Male Withdrawal Seizure-Prone (WSP) and -Resistant (WSR) mice were exposed to 72 hours ethanol vapor or air and euthanized at select times following removal from the inhalation chambers. Blood was collected for analysis of ALLO and corticosterone levels by radioimmunoassay. Dissected amygdala, hippocampus, midbrain, and cortex as well as adrenals were examined for 5alpha-reductase enzyme activity and expression levels. RESULTS Plasma ALLO was decreased significantly only in WSP mice, and this corresponded to a decrease in adrenal 5alpha-reductase expression. Cortical ALLO was decreased up to 54% in WSP mice and up to 46% in WSR mice, with a similar decrease in cortical 5alpha-reductase activity during withdrawal in the lines. While cortical gene expression was significantly decreased during withdrawal in WSP mice, there was a 4-fold increase in expression in the WSR line during withdrawal. Hippocampal 5alpha-reductase activity and gene expression was decreased only in dependent WSP mice. CONCLUSIONS These results suggest that there are line and brain regional differences in the regulation of the neurosteroid biosynthetic enzyme 5alpha-reductase during ethanol dependence and withdrawal. In conjunction with the finding that WSP mice exhibit reduced sensitivity to ALLO during withdrawal, the present results are consistent with the hypothesis that genetic differences in ethanol withdrawal severity are due, in part, to modulatory effects of GABAergic neurosteroids such as ALLO.
Collapse
Affiliation(s)
- Michelle A Tanchuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|