51
|
Kaur G, Pinggera A, Ortner NJ, Lieb A, Sinnegger-Brauns MJ, Yarov-Yarovoy V, Obermair GJ, Flucher BE, Striessnig J. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function. J Biol Chem 2015; 290:21086-21100. [PMID: 26100638 PMCID: PMC4543666 DOI: 10.1074/jbc.m115.645671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/27/2022] Open
Abstract
L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function.
Collapse
Affiliation(s)
- Gurjot Kaur
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Alexandra Pinggera
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Nadine J Ortner
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andreas Lieb
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Martina J Sinnegger-Brauns
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California 95616
| | - Gerald J Obermair
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jörg Striessnig
- Institute of Pharmacy, Department of Pharmacology and Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
52
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
53
|
Proft J, Weiss N. G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 2015; 87:890-906. [PMID: 25549669 DOI: 10.1124/mol.114.096008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Neuronal voltage-gated calcium channels have evolved as one of the most important players for calcium entry into presynaptic endings responsible for the release of neurotransmitters. In turn, and to fine-tune synaptic activity and neuronal communication, numerous neurotransmitters exert a potent negative feedback over the calcium signal provided by G protein-coupled receptors. This regulation pathway of physiologic importance is also extensively exploited for therapeutic purposes, for instance in the treatment of neuropathic pain by morphine and other μ-opioid receptor agonists. However, despite more than three decades of intensive research, important questions remain unsolved regarding the molecular and cellular mechanisms of direct G protein inhibition of voltage-gated calcium channels. In this study, we revisit this particular regulation and explore new considerations.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
54
|
Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Phosphoinositides regulate ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:844-56. [PMID: 25241941 PMCID: PMC4364932 DOI: 10.1016/j.bbalip.2014.09.010] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
Abstract
Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea.
| |
Collapse
|
55
|
Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:620-8. [PMID: 25633344 PMCID: PMC4540326 DOI: 10.1016/j.bbalip.2015.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 01/08/2023]
Abstract
The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458, USA.
| |
Collapse
|
56
|
Szteyn K, Gomez R, Berg KA, Jeske NA. Divergence in endothelin-1- and bradykinin-activated store-operated calcium entry in afferent sensory neurons. ASN Neuro 2015; 7:7/2/1759091415578714. [PMID: 25873305 PMCID: PMC4397213 DOI: 10.1177/1759091415578714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelin-1 (ET-1) and bradykinin (BK) are endogenous peptides that signal through Gαq/11-protein coupled receptors (GPCRs) to produce nociceptor sensitization and pain. Both peptides activate phospholipase C to stimulate Ca2+ accumulation, diacylglycerol production, and protein kinase C activation and are rapidly desensitized via a G-protein receptor kinase 2-dependent mechanism. However, ET-1 produces a greater response and longer lasting nocifensive behavior than BK in multiple models, indicating a potentially divergent signaling mechanism in primary afferent sensory neurons. Using cultured sensory neurons, we demonstrate significant differences in both Ca2+ influx and Ca2+ release from intracellular stores following ET-1 and BK treatments. As intracellular store depletion may contribute to the regulation of other signaling cascades downstream of GPCRs, we concentrated our investigation on store-operated Ca2+ channels. Using pharmacological approaches, we identified transient receptor potential canonical channel 3 (TRPC3) as a dominant contributor to Ca2+ influx subsequent to ET-1 treatment. On the other hand, BK treatment stimulated Orai1 activation, with only minor input from TRPC3. Taken together, data presented here suggest that ET-1 signaling targets TRPC3, generating a prolonged Ca2+ signal that perpetuates nocifensive responses. In contrast, Orai1 dominates as the downstream target of BK receptor activation and results in transient intracellular Ca2+ increases and abridged nocifensive responses.
Collapse
Affiliation(s)
- Kalina Szteyn
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, TX, USA
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Nathaniel A Jeske
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, TX, USA Department of Pharmacology, University of Texas Health Science Center at San Antonio, TX, USA Department of Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
57
|
Masuoka T, Nakamura T, Kudo M, Yoshida J, Takaoka Y, Kato N, Ishibashi T, Imaizumi N, Nishio M. Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity. Br J Pharmacol 2014; 172:1020-33. [PMID: 25297838 DOI: 10.1111/bph.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevation of glutamate, an excitatory amino acid, during inflammation and injury plays a crucial role in the reception and transmission of sensory information via ionotropic and metabotropic receptors. This study aimed to investigate the mechanisms underlying the biphasic effects of metabotropic glutamate mGlu5 receptor activation on responses to noxious heat. EXPERIMENTAL APPROACH We assessed the effects of intraplantar quisqualate, a non-selective glutamate receptor agonist, on heat and mechanical pain behaviours in mice. In addition, the effects of quisqualate on the intracellular calcium response and on membrane currents mediated by TRPV1 channels, were examined in cultured dorsal root ganglion neurons from mice. KEY RESULTS Activation of mGlu5 receptors in hind paw transiently increased, then decreased, the response to noxious heat. In sensory neurons, activation of mGlu5 receptors potentiated TRPV1-mediated intracellular calcium elevation, while terminating activation of mGlu5 receptors depressed it. TRPV1-induced currents were potentiated by activation of mGlu5 receptors under voltage clamp conditions and these disappeared after washout. However, voltage-gated calcium currents were inhibited by the mGlu5 receptor agonist, even after washout. CONCLUSIONS AND IMPLICATIONS These results suggest that, in sensory neurons, mGlu5 receptors biphasically modulate TRPV1-mediated intracellular calcium response via transient potentiation of TRPV1 channel-induced currents and persistent inhibition of voltage-gated calcium currents, contributing to heat hyper- and hypoalgesia.
Collapse
Affiliation(s)
- T Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Rajagopal S, Fields B, Burton B, On C, Reeder A, Kamatchi G. Inhibition of protein kinase C (PKC) response of voltage-gated calcium (Cav)2.2 channels expressed in Xenopus oocytes by Cavβ subunits. Neuroscience 2014; 280:1-9. [DOI: 10.1016/j.neuroscience.2014.08.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 01/12/2023]
|
59
|
Charpentier TH, Waldo GL, Barrett MO, Huang W, Zhang Q, Harden TK, Sondek J. Membrane-induced allosteric control of phospholipase C-β isozymes. J Biol Chem 2014; 289:29545-57. [PMID: 25193662 PMCID: PMC4207972 DOI: 10.1074/jbc.m114.586784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/13/2014] [Indexed: 11/06/2022] Open
Abstract
All peripheral membrane proteins must negotiate unique constraints intrinsic to the biological interface of lipid bilayers and the cytosol. Phospholipase C-β (PLC-β) isozymes hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors. PLC-β isozymes are autoinhibited, and several proteins, including Gαq, Gβγ, and Rac1, directly engage distinct regions of these phospholipases to release autoinhibition. To understand this process, we used a novel, soluble analog of PIP2 that increases in fluorescence upon cleavage to monitor phospholipase activity in real time in the absence of membranes or detergents. High concentrations of Gαq or Gβ1γ2 did not activate purified PLC-β3 under these conditions despite their robust capacity to activate PLC-β3 at membranes. In addition, mutants of PLC-β3 with crippled autoinhibition dramatically accelerated the hydrolysis of PIP2 in membranes without an equivalent acceleration in the hydrolysis of the soluble analog. Our results illustrate that membranes are integral for the activation of PLC-β isozymes by diverse modulators, and we propose a model describing membrane-mediated allosterism within PLC-β isozymes.
Collapse
Affiliation(s)
| | | | | | - Weigang Huang
- the Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Qisheng Zhang
- the Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Pharmacy, Chapel Hill, North Carolina 27599
| | | | - John Sondek
- From the Departments of Pharmacology and Biochemistry and Biophysics and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
60
|
Keum D, Baek C, Kim DI, Kweon HJ, Suh BC. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit. ACTA ACUST UNITED AC 2014; 144:297-309. [PMID: 25225550 PMCID: PMC4178937 DOI: 10.1085/jgp.201411245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pathway through which preferentially GqPCRs inhibit CaV2.2 channels depends on which β subunits are present. G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Christina Baek
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Dong-Il Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Hae-Jin Kweon
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| |
Collapse
|
61
|
Zaydman MA, Cui J. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 2014; 5:195. [PMID: 24904429 PMCID: PMC4034418 DOI: 10.3389/fphys.2014.00195] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/08/2014] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated potassium (Kv) channels contain voltage-sensing (VSD) and pore-gate (PGD) structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7) channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Recent studies suggest that PIP2 serves as a cofactor to mediate VSD-PGD coupling in KCNQ1 channels. In this review, we put these findings in the context of the current understanding of voltage-dependent gating, lipid modulation of Kv channel activation, and PIP2-regulation of KCNQ channels. We suggest that lipid-mediated coupling of functional domains is a common mechanism among KCNQ channels that may be applicable to other Kv channels and membrane proteins.
Collapse
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis St. Louis, MO, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
62
|
Voltage-gated Ca2+ channels in accessory lobe neurons of the chick. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:739-48. [PMID: 24842482 DOI: 10.1007/s00359-014-0917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Birds have ten pairs of protrusions, "accessory lobes", on the lateral sides of the lumbosacral spinal cord. It has been proposed that accessory lobes act as a sensory organ of equilibrium and neurons in accessory lobes transmit sensory information to the motor center. We have reported that cells in chick accessory lobes express functional voltage-gated Na(+) and K(+) channels and generate action potentials. In this study, we examined properties of voltage-gated Ca(2+) channels (VGCCs). The amplitude of voltage-gated Ca(2+) channel currents carried by Ca(2+) and Ba(2+) increased gradually during 10 min rather than showing the usual run-down. The current-voltage relationship of Ba(2+) currents was consistent with that of the high-voltage-activated Ca(2+) channel. The proportion of Ba(2+) currents inhibited by ω-conotoxin GVIA was larger than 80%, indicating that the major subtype is N type. Amplitudes of tail currents of Ca(2+) currents evoked by repetitive pulses at 50 Hz are stable for 1 s. If the major subtype of VGCCs at synaptic terminals is also N type, this property may contribute to the establishment of stable synaptic connections between accessory lobe neurons, which are reported to fire at frequencies higher than 15 Hz, and postsynaptic neurons in the spinal cord.
Collapse
|
63
|
Yamamoto R, Hatano N, Sugai T, Kato N. Serotonin induces depolarization in lateral amygdala neurons by activation of TRPC-like current and inhibition of GIRK current depending on 5-HT(2C) receptor. Neuropharmacology 2014; 82:49-58. [PMID: 24662600 DOI: 10.1016/j.neuropharm.2014.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Regional differences are known in the serotonin-induced modulation of neuronal activity within the amygdala. This in vitro study in rats focuses on analyzing the ionic mechanism underlying serotonin-induced depolarization in the lateral amygdala. Serotonin depolarized membrane potential by 5 mV, which is underlain by a serotonin-induced inward current at rest with a characteristic reversal potential of -105 mV. From pharmacological experiments, the 5-HT2C subtype was singled out as the receptor subtype involved. Under blockade of K(+) channels by Ba(2+), 5-HT induced an inward current with no reversal at the range between -50 and -130 mV, which was identified as a TRPC-like current. This current was blocked by the specific phosphatidylinositol 3-kinse (PI3-kinase) inhibitor LY294002, pointing to its dependence on PI3-kinase. The Ba(2+)-sensitive component, obtained by subtraction, showed a strong outward rectification and the reversal potential of K(+), indicating that this component results from a serotonin-induced inhibition of G-protein coupled inwardly rectifying K(+) channel (GIRK) current. By wortmannin, an inhibitor of both PI3-kinase and PI4-kinase, a serotonin-induced phosphatidylinositol 4,5-bisphosphate (PIP2) depletion was revealed to underlie GIRK inhibition. Thus, the serotonin-induced current turned out to be caused by a combined occurrence of GIRK inhibition and PI3-kinase-dependent TRPC-like current. With serotonergic modulation, all these mechanisms should be recruited in lateral amygdala principal neurons and likely contribute to generation of region-specific neuronal activity patterns within the amygdala, which may at least partly implement its required role in fear and anxiety.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Natsuki Hatano
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tokio Sugai
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
64
|
Falkenburger BH, Dickson EJ, Hille B. Quantitative properties and receptor reserve of the DAG and PKC branch of G(q)-coupled receptor signaling. ACTA ACUST UNITED AC 2014; 141:537-55. [PMID: 23630338 PMCID: PMC3639584 DOI: 10.1085/jgp.201210887] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gq protein–coupled receptors (GqPCRs) of the plasma membrane activate the phospholipase C (PLC) signaling cascade. PLC cleaves the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers diacylgycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), leading to calcium release, protein kinase C (PKC) activation, and in some cases, PIP2 depletion. We determine the kinetics of each of these downstream endpoints and also ask which is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels in single living tsA-201 cells. We measure DAG production and PKC activity by Förster resonance energy transfer–based sensors, and PIP2 by KCNQ2/3 channels. Fully activating endogenous purinergic receptors by uridine 5′triphosphate (UTP) leads to calcium release, DAG production, and PKC activation, but no net PIP2 depletion. Fully activating high-density transfected muscarinic receptors (M1Rs) by oxotremorine-M (Oxo-M) leads to similar calcium, DAG, and PKC signals, but PIP2 is depleted. KCNQ2/3 channels are inhibited by the Oxo-M treatment (85%) and not by UTP (<1%), indicating that depletion of PIP2 is required to inhibit KCNQ2/3 in response to receptor activation. Overexpression of A kinase–anchoring protein (AKAP)79 or calmodulin (CaM) does not increase KCNQ2/3 inhibition by UTP. From these results and measurements of IP3 and calcium presented in our companion paper (Dickson et al. 2013. J. Gen. Physiol.http://dx.doi.org/10.1085/jgp.201210886), we extend our kinetic model for signaling from M1Rs to DAG/PKC and IP3/calcium signaling. We conclude that calcium/CaM and PKC-mediated phosphorylation do not underlie dynamic KCNQ2/3 channel inhibition during GqPCR activation in tsA-201 cells. Finally, our experimental data provide indirect evidence for cleavage of PI(4)P by PLC in living cells, and our modeling revisits/explains the concept of receptor reserve with measurements from all steps of GqPCR signaling.
Collapse
Affiliation(s)
- Björn H Falkenburger
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
65
|
Dickson EJ, Falkenburger BH, Hille B. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. ACTA ACUST UNITED AC 2014; 141:521-35. [PMID: 23630337 PMCID: PMC3639578 DOI: 10.1085/jgp.201210886] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol.http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5′-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (<1%). These differences can be attributed purely to differences in receptor abundance. Full amplitude calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
66
|
Hille B, Dickson E, Kruse M, Falkenburger B. Dynamic metabolic control of an ion channel. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:219-47. [PMID: 24560147 DOI: 10.1016/b978-0-12-397897-4.00008-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G-protein-coupled receptors mediate responses to external stimuli in various cell types. We are interested in the modulation of KCNQ2/3 potassium channels by the Gq-coupled M1 muscarinic (acetylcholine) receptor (M1R). Here, we describe development of a mathematical model that incorporates all known steps along the M1R signaling cascade and accurately reproduces the macroscopic behavior we observe when KCNQ2/3 currents are inhibited following M1R activation. Gq protein-coupled receptors of the plasma membrane activate phospholipase C (PLC) which cleaves the minor plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) into the second messengers diacylgycerol and inositol 1,4,5-trisphosphate, leading to calcium release, protein kinase C (PKC) activation, and PI(4,5)P2 depletion. Combining optical and electrical techniques with knowledge of relative abundance of each signaling component has allowed us to develop a kinetic model and determine that (i) M1R activation and M1R/Gβ interaction are fast; (ii) Gαq/Gβ separation and Gαq/PLC interaction have intermediate time constants; (iii) the amount of activated PLC limits the rate of KCNQ2/3 suppression; (iv) weak PLC activation can elicit robust calcium signals without net PI(4,5)P2 depletion or KCNQ2/3 channel inhibition; and (v) depletion of PI(4,5)P2, and not calcium/CaM or PKC-mediated phosphorylation, closes KCNQ2/3 potassium channels, thereby increasing neuronal excitability.
Collapse
Affiliation(s)
- Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Eamonn Dickson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
67
|
The actions of Pasteurella multocida toxin on neuronal cells. Neuropharmacology 2013; 77:9-18. [PMID: 24055502 PMCID: PMC3878393 DOI: 10.1016/j.neuropharm.2013.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
Abstract
Pasteurella multocida toxin (PMT) activates the G-proteins Gαi(1-3), Gαq, Gα11, Gα12 and Gα13 by deamidation of specific glutamine residues. A number of these alpha subunits have signalling roles in neurones. Hence we studied the action of this toxin on rat superior cervical ganglion (SCG) neurones and NG108-15 neuronal cells. Both Gαq and Gα11 could be identified in SCGs with immunocytochemistry. PMT had no direct action on Kv7 or Cav2 channels in SCGs. However PMT treatment enhanced muscarinic receptor mediated inhibition of M-current (Kv7.2 + 7. 3) as measured by a 19-fold leftward shift in the oxotremorine-M concentration–inhibition curve. Agonists of other receptors, such as bradykinin or angiotensin, that inhibit M-current did not produce this effect. However the amount of PIP2 hydrolysis could be enhanced by PMT for all three agonists. In a transduction system in SCGs that is unlikely to be affected by PMT, Go mediated inhibition of calcium current, PMT was ineffective whereas the response was blocked by pertussis toxin as expected. M1 muscarinic receptor evoked calcium mobilisation in transformed NG108-15 cells was enhanced by PMT. The calcium rises evoked by uridine triphosphate acting on endogenous P2Y2 receptors in NG108-15 cells were enhanced by PMT. The time and concentration dependence of the PMT effect was different for the resting calcium compared to the calcium rise produced by activation of P2Y2 receptors. PMT's action on these neuronal cells would suggest that if it got into the brain, symptoms of a hyperexcitable nature would be seen, such as seizures. Pasteurella multocida toxin (PMT) activates a range of G-protein alpha subunits. PMT increased muscarinic receptor mediated suppression of Kv7 potassium current in sympathetic neurones. PMT enhances both muscarinic and purinergic receptor mediated calcium mobilisation in NG108-15 cells. Both these events are mediated by the G-proteins Gq or G11. We would predict that the symptoms of central nervous system PMT toxicity would be hyperexcitable events such as seizures.
Collapse
|
68
|
Zhang H, Liu Y, Xu J, Zhang F, Liang H, Du X, Zhang H. Membrane microdomain determines the specificity of receptor-mediated modulation of Kv7/M potassium currents. Neuroscience 2013; 254:70-9. [PMID: 24036375 DOI: 10.1016/j.neuroscience.2013.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
The Kv7/M current is one of the major mechanisms controlling neuronal excitability, which can be modulated by activation of the G protein-coupled receptor (GPCR) via distinct signaling pathways. Membrane microdomains known as lipid rafts have been implicated in the specificity of various cell signaling pathways. The aim of this study was to understand the role of lipid rafts in the specificity of Kv7/M current modulation by activation of GPCR. Methyl-β-cyclodextrin (MβCD), often used to disrupt the integrity of lipid rafts, significantly reduced the bradykinin receptor (B2R)-induced but not muscarinic receptor (M1R)-induced inhibition of the Kv7/M current. B2R and related signaling molecules but not M1R were found in caveolin-containing raft fractions of the rat superior cervical ganglia. Furthermore, activation of B2R resulted in translocation of additional B2R into the lipid rafts, which was not observed for the activation of M1R. The increase of B2R-induced intracellular Ca(2+) was also greatly reduced after MβCD treatment. Finally, B2R but not M1R was found to interact with the IP3 receptor. In conclusion, the present study implicates an important role for lipid rafts in mediating specificity for GPCR-mediated inhibition of the Kv7/M current.
Collapse
Affiliation(s)
- H Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China; Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
70
|
The Other (Muscarinic) Acetylcholine Receptors in Sympathetic Ganglia: Actions and Mechanisms. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
71
|
Hilgemann DW. Fitting K(V) potassium channels into the PIP(2) puzzle: Hille group connects dots between illustrious HH groups. ACTA ACUST UNITED AC 2012; 140:245-8. [PMID: 22930801 PMCID: PMC3434100 DOI: 10.1085/jgp.201210874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA.
| |
Collapse
|
72
|
Zamponi GW, Currie KPM. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1629-43. [PMID: 23063655 DOI: 10.1016/j.bbamem.2012.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
Abstract
Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
73
|
Rodríguez-Menchaca AA, Adney SK, Zhou L, Logothetis DE. Dual Regulation of Voltage-Sensitive Ion Channels by PIP(2). Front Pharmacol 2012; 3:170. [PMID: 23055973 PMCID: PMC3456799 DOI: 10.3389/fphar.2012.00170] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidylinositol 4,5-bisphosphate (PIP(2)). Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav) channels were shown to be regulated bidirectionally by PIP(2). On one hand, PIP(2) stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv) channels PIP(2) was first shown to prevent N-type inactivation regardless of whether the fast inactivation gate was part of the pore-forming α subunit or of an accessory β subunit. Careful examination of the effects of PIP(2) on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP(2) and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP(2) is the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel. PIP(2) has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP(2)-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP(2) dual effects on SpIH, with the proximal C-terminus implicated in the inhibitory effect. The dual regulation of these very different ion channels, all of which are voltage-dependent, points to conserved mechanisms of regulation of these channels by PIP(2).
Collapse
Affiliation(s)
- Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University Richmond, VA, USA
| | | | | | | |
Collapse
|
74
|
Buraei Z, Yang J. Structure and function of the β subunit of voltage-gated Ca²⁺ channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1530-40. [PMID: 22981275 DOI: 10.1016/j.bbamem.2012.08.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 12/31/2022]
Abstract
The voltage-gated Ca²⁺ channel β subunit (Ca(v)β) is a cytosolic auxiliary subunit that plays an essential role in regulating the surface expression and gating properties of high-voltage activated (HVA) Ca²⁺ channels. It is also crucial for the modulation of HVA Ca²⁺ channels by G proteins, kinases, Ras-related RGK GTPases, and other proteins. There are indications that Ca(v)β may carry out Ca²⁺ channel-independent functions. Ca(v)β knockouts are either non-viable or result in a severe pathophysiology, and mutations in Ca(v)β have been implicated in disease. In this article, we review the structure and various biological functions of Ca(v)β, as well as recent advances. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
75
|
Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci U S A 2012; 109:E1578-86. [PMID: 22586118 DOI: 10.1073/pnas.1201544109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Substance P (SP) is a prominent neuromodulator, which is produced and released by peripheral damage-sensing (nociceptive) neurons; these neurons also express SP receptors. However, the mechanisms of peripheral SP signaling are poorly understood. We report a signaling pathway of SP in nociceptive neurons: Acting predominantly through NK1 receptors and G(i/o) proteins, SP stimulates increased release of reactive oxygen species from the mitochondrial electron transport chain. Reactive oxygen species, functioning as second messengers, induce oxidative modification and augment M-type potassium channels, thereby suppressing excitability. This signaling cascade requires activation of phospholipase C but is largely uncoupled from the inositol 1,4,5-trisphosphate sensitive Ca(2+) stores. In rats SP causes sensitization of TRPV1 and produces thermal hyperalgesia. However, the lack of coupling between SP signaling and inositol 1,4,5-trisphosphate sensitive Ca(2+) stores, together with the augmenting effect on M channels, renders the SP pathway ineffective to excite nociceptors acutely and produce spontaneous pain. Our study describes a mechanism for neurokinin signaling in sensory neurons and provides evidence that spontaneous pain and hyperalgesia can have distinct underlying mechanisms within a single nociceptive neuron.
Collapse
|
76
|
Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels. Proc Natl Acad Sci U S A 2012; 109:3161-6. [PMID: 22308488 DOI: 10.1073/pnas.1121434109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The β-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a β2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the β2a-subunit. To further test effects of membrane targeting of Ca(V) β-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic β3-subunit to confer lipidation. This chimera, like the Ca(V) β2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-β3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) β-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) β3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when β2a was coexpressed with β3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous β-subunit combinations.
Collapse
|
77
|
Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol 2012; 96:304-21. [PMID: 22307060 DOI: 10.1016/j.pneurobio.2012.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
Synaptic transmission is a finely regulated mechanism of neuronal communication. The release of neurotransmitter at the synapse is not only the reflection of membrane depolarization events, but rather, is the summation of interactions between ion channels, G protein coupled receptors, second messengers, and the exocytotic machinery itself which exposes the components within a synaptic vesicle to the synaptic cleft. The focus of this review is to explore the role of G protein signaling as it relates to neurotransmission, as well as to discuss the recently determined inhibitory mechanism of Gβγ dimers acting directly on the exocytotic machinery proteins to inhibit neurotransmitter release.
Collapse
Affiliation(s)
- Katherine M Betke
- Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd Ave. South @ Pierce, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
78
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
79
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
80
|
Tappe-Theodor A, Constantin CE, Tegeder I, Lechner SG, Langeslag M, Lepcynzsky P, Wirotanseng RI, Kurejova M, Agarwal N, Nagy G, Todd A, Wettschureck N, Offermanns S, Kress M, Lewin GR, Kuner R. Gαq/11 signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization. Pain 2012; 153:184-196. [DOI: 10.1016/j.pain.2011.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/15/2022]
|
81
|
Patil MJ, Belugin S, Akopian AN. Chronic alteration in phosphatidylinositol 4,5-biphosphate levels regulates capsaicin and mustard oil responses. J Neurosci Res 2011; 89:945-54. [PMID: 21337373 PMCID: PMC3078693 DOI: 10.1002/jnr.22597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/24/2010] [Accepted: 12/16/2010] [Indexed: 11/06/2022]
Abstract
There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP(2) ) modulate TRPV1 and TRPA1 activities. Because inflammation results in PIP(2) depletion, persisting for long periods (hours to days) in pain models and in the clinic, we examined whether chronic depletion and accumulation of PIP(2) affect capsaicin (CAP) and mustard oil (MO) responses. In addition, we wanted to evaluate whether the effects of PIP(2) depend on TRPV1 and TRPA1 coexpression and whether the PIP(2) actions vary in expression cells vs. sensory neurons. Chronic PIP(2) production was stimulated by overexpression of phosphatidylinositol-4-phosphate-5-kinase, and PIP(2) -specific phospholipid 5'-phosphatase was selected to reduce plasma membrane levels of PIP(2) . Our results demonstrate that CAP (100 nM) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP(2) levels in wild-type (WT) or TRPA1 null-mutant sensory neurons as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP(2) depletion in cells containing TRPV1 alone but not TRPV1 together with TRPA1. MO (25 μM) responses were also not affected by PIP(2) in WT sensory neurons and cells coexpressing TRPA1 and TRPV1. In contrast, PIP(2) reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP(2) on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP(2) levels regulate magnitude of CAP and MO responses as well as MO tachyphylaxis. This regulation depends on coexpression profile of TRPA1 and TRPV1 and cell type.
Collapse
Affiliation(s)
| | | | - Armen N. Akopian
- Departments of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
82
|
Connelly T, Fan Y, Schulz PE. Distinct mechanisms contribute to agonist and synaptically induced metabotropic glutamate receptor long-term depression. Eur J Pharmacol 2011; 667:160-8. [PMID: 21575629 DOI: 10.1016/j.ejphar.2011.04.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate receptor mediated long-term depression (mGlu receptor LTD) is evoked in hippocampal area CA1 chemically by the agonist 3,5-Dihydroxyphenylglycine (DHPG, agonist LTD) and synaptically by paired-pulse low frequency stimulation (PP-LFS, synaptic LTD). We tested the hypothesis that different expression mechanisms regulate mGlu receptor LTD in 15-21 day old rats through neurophysiologic recordings in CA1. Several findings, in fact, suggest that agonist and synaptic mGlu receptor LTD are expressed through different mechanisms. First, neither LTD occluded the other. Second, a low calcium solution enhanced agonist LTD but did not alter synaptic LTD. Third, application of the mGlu receptor antagonist LY341495 (2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid) reversed agonist LTD expression, but did not alter synaptic LTD. Finally, an N-type, voltage-dependent calcium channel antagonist, ω-conotoxin GVIA (CTX), reduced agonist LTD expression by 35%, but did not alter synaptic LTD. CTX also blocked the increase in the paired-pulse ratio associated with agonist LTD. This study cautions against assuming that agonist and synaptic LTD are equivalent as several components underlying their expression appear to differ. Moreover, the data suggest that agonist LTD, but not synaptic LTD, has a presynaptic, N-channel mediated component.
Collapse
Affiliation(s)
- Timothy Connelly
- University of Pennsylvania, Department of Neuroscience, United States
| | | | | |
Collapse
|
83
|
Zakharian E, Thyagarajan B, French R, Pavlov E, Rohacs T. Inorganic Polyphosphate Modulates TRPM8 Channels. Inorg Chem 2011. [DOI: 10.1201/b12873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Zaika O, Zhang J, Shapiro MS. Functional role of M-type (KCNQ) K⁺ channels in adrenergic control of cardiomyocyte contraction rate by sympathetic neurons. J Physiol 2011; 589:2559-68. [PMID: 21486761 DOI: 10.1113/jphysiol.2010.204768] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
M-type (KCNQ) K⁺ channels are known to regulate excitability and firing properties of sympathetic neurons (SNs), but their role in regulating neurotransmitter release is unclear, requiring further study. We sought to use a physiological preparation in which SNs innervate primary cardiomyocytes to evaluate the direct role of M-channels in the release of noradrenaline (NA) from SNs. Co-cultures of rat SNs and mouse cardiomyocytes were prepared, and the contraction rate (CR) of the cardiomyocyte syncytium monitored by video microscopy. We excited the SNs with nicotine, acting on nicotinic acetylcholine receptors, and monitored the increase in CR in the presence or absence of the specific M-channel opener retigabine, or agonists of bradykinin B2 or purinergic P2Y receptors on the SNs. The maximal adrenergic effect on the CR was determined by application of isoproterenol (isoprenaline). To isolate the actions of B2 or P2Y receptor stimulation to the neurons, we prepared cardiomyocytes from B2 receptor or P2Y2 receptor knock-out mice, respectively. We found that co-application of retigabine strongly decreased the nicotine-induced increase in CR. Conversely, co-application of bradykinin or the P2Y-receptor agonist UTP augmented the nicotine-induced increase in CR to about half of the level produced by isoproterenol. All effects on the CR were wholly blocked by propranolol. Our data support the role of M-type K⁺ channels in the control of NA release by SNs at functional adrenergic synapses on cardiomyocytes.We conclude that physiological receptor agonists control the heart rate via the regulation of M-current in SNs.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
85
|
Huang P, Yeku O, Zong H, Tsang P, Su W, Yu X, Teng S, Osisami M, Kanaho Y, Pessin JE, Frohman MA. Phosphatidylinositol-4-phosphate-5-kinase alpha deficiency alters dynamics of glucose-stimulated insulin release to improve glucohomeostasis and decrease obesity in mice. Diabetes 2011; 60:454-63. [PMID: 21270258 PMCID: PMC3028345 DOI: 10.2337/db10-0614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Phosphatidylinositol-4-phosphate-5-kinase (PI4P5K) has been proposed to facilitate regulated exocytosis and specifically insulin secretion by generating phosphatidylinositol-4,5-bisphosphate (PIP(2)). We sought to examine the role of the α isoform of PI4P5K in glucohomeostasis and insulin secretion. RESEARCH DESIGN AND METHODS The response of PI4P5Kα(-/-) mice to glucose challenge and a type 2-like diabetes-inducing high-fat diet was examined in vivo. Glucose-stimulated responses and PI4P5Kα(-/-) pancreatic islets and β-cells were characterized in culture. RESULTS We show that PI4P5Kα(-/-) mice exhibit increased first-phase insulin release and improved glucose clearance, and resist high-fat diet-induced development of type 2-like diabetes and obesity. PI4P5Kα(-/-) pancreatic islets cultured in vitro exhibited decreased numbers of insulin granules docked at the plasma membrane and released less insulin under quiescent conditions, but then secreted similar amounts of insulin on glucose stimulation. Stimulation-dependent PIP(2) depletion occurred on the plasma membrane of the PI4P5Kα(-/-) pancreatic β-cells, accompanied by a near-total loss of cortical F-actin, which was already decreased in the PI4P5Kα(-/-) β-cells under resting conditions. CONCLUSIONS Our findings suggest that PI4P5Kα plays a complex role in restricting insulin release from pancreatic β-cells through helping to maintain plasma membrane PIP(2) levels and integrity of the actin cytoskeleton under both basal and stimulatory conditions. The increased first-phase glucose-stimulated release of insulin observed on the normal diet may underlie the partial protection against the elevated serum glucose and obesity seen in type 2 diabetes-like model systems.
Collapse
Affiliation(s)
- Ping Huang
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Oladapo Yeku
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York
- Medical Scientist Training Program, Stony Brook University, Stony Brook, New York
| | - Haihong Zong
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Phyllis Tsang
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Wenjuan Su
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York
| | - Xiao Yu
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Shuzhi Teng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mary Osisami
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jeffrey E. Pessin
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Michael A. Frohman
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York
- Program in Genetics, Stony Brook University, Stony Brook, New York
- Corresponding author: Michael A. Frohman,
| |
Collapse
|
86
|
Zaika O, Zhang J, Shapiro MS. Combined phosphoinositide and Ca2+ signals mediating receptor specificity toward neuronal Ca2+ channels. J Biol Chem 2011; 286:830-41. [PMID: 21051544 PMCID: PMC3013042 DOI: 10.1074/jbc.m110.166033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/08/2010] [Indexed: 01/17/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) regulates Ca(2+) (I(Ca)) and M-type K(+) currents in superior cervical ganglion sympathetic neurons. In those cells, M(1) muscarinic and AT(1) angiotensin types do not elicit Ca(2+)(i) signals and suppress both currents via depletion of PIP(2), whereas the B(2) bradykinin and P2Y purinergic types elicit robust IP(3)-mediated [Ca(2+)](i) rises and neither deplete PIP(2) nor inhibit I(Ca). We have suggested that this specificity arises from differential Ca(2+)(i) signals underlying receptor-specific stimulation of PIP(2) synthesis by phosphatidylinositol (PI) 4-kinase. Here, we investigate which PI 4-kinase isoform underlies this signal, whether stimulation of PI 4-phosphate 5-kinase is also required, and the origin of receptor-specific Ca(2+)(i) signals. Recordings of I(Ca) were used as a PIP(2) "biosensor." In control, stimulation of M(1), but not B(2) or P2Y, receptors robustly suppressed I(Ca). However, when PI 4-kinase IIIβ, diacylglycerol kinase, Rho, or Rho-kinase was blocked, agonists of all three receptors robustly suppressed I(Ca). Overexpression of exogenous M(1) receptors yielded large [Ca(2+)](i) rises by muscarinic agonist, and transfection of wild-type IRBIT decreased Ca(2+)(i) signals, whereas dominant negative IRBIT-S68A had little effect on B(2) or P2Y responses but greatly increased muscarinic responses. We conclude that overlaid on microdomain organization is IRBIT, setting a "threshold" for [IP(3)], assisting in fidelity of receptor specificity.
Collapse
Affiliation(s)
- Oleg Zaika
- From the Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Jie Zhang
- From the Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Mark S. Shapiro
- From the Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
87
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
88
|
Cui S, Ho WK, Kim ST, Cho H. Agonist-induced localization of Gq-coupled receptors and G protein-gated inwardly rectifying K+ (GIRK) channels to caveolae determines receptor specificity of phosphatidylinositol 4,5-bisphosphate signaling. J Biol Chem 2010; 285:41732-9. [PMID: 21041306 DOI: 10.1074/jbc.m110.153312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-gated inwardly rectifying K(+) (GIRK) channels are parasympathetic effectors in cardiac myocytes that act as points of integration of signals from diverse pathways. Neurotransmitters and hormones acting on the Gq protein regulate GIRK channels by phosphatidylinositol 4,5-bisphosphate (PIP(2)) depletion. In previous studies, we found that endothelin-1, but not bradykinin, inhibited GIRK channels, even though both of them hydrolyze PIP(2) in cardiac myocytes, showing receptor specificity. The present study assessed whether the spatial organization of the PIP(2) signal into caveolar microdomains underlies the specificity of PIP(2)-mediated signaling. Using biochemical analysis, we examined the localization of GIRK and Gq protein-coupled receptors (GqPCRs) in mouse atrial myocytes. Agonist stimulation induced a transient co-localization of GIRK channels with endothelin receptors in the caveolae, excluding bradykinin receptors. Such redistribution was eliminated by caveolar disruption with methyl-β-cyclodextrin (MβCD). Patch clamp studies showed that the specific response of GIRK channels to GqPCR agonists was abolished by MβCD, indicating the functional significance of the caveolae-dependent spatial organization. To assess whether low PIP(2) mobility is essential for PIP(2)-mediated signaling, we blocked the cytoskeletal restriction of PIP(2) diffusion by latrunculin B. This abolished the GIRK channel regulation by GqPCRs without affecting their targeting to caveolae. These data suggest that without the hindered diffusion of PIP(2) from microdomains, PIP(2) loses its signaling efficacy. Taken together, these data suggest that specific targeting combined with restricted diffusion of PIP(2) allows the PIP(2) signal to be compartmentalized to the targets localized closely to the GqPCRs, enabling cells to discriminate between identical PIP(2) signaling that is triggered by different receptors.
Collapse
Affiliation(s)
- Shanyu Cui
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
89
|
Weiss JL, Hui H, Burgoyne RD. Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 2010; 30:1283-92. [PMID: 21104311 PMCID: PMC11498851 DOI: 10.1007/s10571-010-9588-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 12/01/2022]
Abstract
Calcium (Ca(2+)) is an important intracellular messenger underlying cell physiology. Ca(2+) channels are the main entry route for Ca(2+) into excitable cells, and regulate processes such as neurotransmitter release and neuronal outgrowth. Neuronal Calcium Sensor-1 (NCS-1) is a member of the Calmodulin superfamily of EF-hand Ca(2+) sensing proteins residing in the subfamily of NCS proteins. NCS-1 was originally discovered in Drosophila as an overexpression mutant (Frequenin), having an increased frequency of Ca(2+)-evoked neurotransmission. NCS-1 is N-terminally myristoylated, can bind intracellular membranes, and has a Ca(2+) affinity of 0.3 μM. Over 10 years ago it was discovered that NCS-1 overexpression enhances Ca(2+)-evoked secretion in bovine adrenal chromaffin cells. The mechanism was unclear, but there was no apparent direct effect on the exocytotic machinery. It was revealed, again in chromaffin cells, that NCS-1 regulates voltage-gated Ca(2+) channels (Cavs) in G-Protein Coupled Receptor (GPCR) signaling pathways. This work in chromaffin cells highlighted NCS-1 as an important modulator of neurotransmission. NCS-1 has since been shown to regulate and/or directly interact with many proteins including Cavs (P/Q, N, and L), TRPC1/5 channels, GPCRs, IP3R, and PI4 kinase type IIIβ. NCS-1 also affects neuronal outgrowth having roles in learning and memory affecting both short- and long-term synaptic plasticity. It is not known if NCS-1 affects neurotransmission and synaptic plasticity via its effect on PIP2 levels, and/or via a direct interaction with Ca(2+) channels or their signaling complexes. This review gives a historical account of NCS-1 function, examining contributions from chromaffin cells, PC12 cells and other models, to describe how NCS-1's regulation of Ca(2+) channels allows it to exert its physiological effects.
Collapse
Affiliation(s)
- Jamie L Weiss
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA.
| | | | | |
Collapse
|
90
|
Chung S, Ahn DS, Kim YH, Kim YS, Joeng JH, Nam TS. Modulation of N-type calcium currents by presynaptic imidazoline receptor activation in rat superior cervical ganglion neurons. Exp Physiol 2010; 95:982-93. [PMID: 20696781 DOI: 10.1113/expphysiol.2010.053355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presynaptic imidazoline receptors (R(i-pre)) are found in the sympathetic axon terminals of animal and human cardiovascular systems, and they regulate blood pressure by modulating the release of peripheral noradrenaline (NA). The cellular mechanism of R(i-pre)-induced inhibition of NA release is unknown. We, therefore, investigated the effect of R(i-pre) activation on voltage-dependent Ca(2+) channels in rat superior cervical ganglion (SCG) neurons, using the conventional whole-cell patch-clamp method. Cirazoline (30 μM), an R(i-pre) agonist as well as an α-adrenoceptor (R(α)) agonist, decreased Ca(2+) currents (I(Ca)) by about 50% in a voltage-dependent manner with prepulse facilitation. In the presence of low-dose rauwolscine (3 μM), which blocks the α(2)-adrenoceptor (R(α2)), cirazoline still inhibited I(Ca) by about 30%, but prepulse facilitation was significantly attenuated. This inhibitory action of cirazoline was almost completely prevented by high-dose rauwolscine (30 μM), which blocks R(i-pre) as well as R(α2). In addition, pretreatment with LY320135 (10 μM), another R(i-pre) antagonist, in combination with low-dose rauwolscine (3 μM), also blocked the R(α2)-resistant effect of cirazoline. Addition of guanosine-5-O-(2-thiodiphosphate) (2 mm) to the internal solutions significantly attenuated the action of cirazoline. However, pertussis toxin (500 ng ml(1)) did not significantly influence the inhibitory effect of cirazoline. Moreover, cirazoline (30 μM) suppressed M current in SCG neurons cultured overnight. Finally, omega-conotoxin (omega-CgTx) GVIA (1 μM) obstructed cirazoline-induced current inhibition, and cirazoline (30 μM) significantly decreased the frequency of action potential firing in a partly reversible manner. This cirazoline-induced inhibition of action potential firing was almost completely occluded in the presence of omega-CgTx. Taken together, our results suggest that activation of R(i-pre) in SCG neurons reduced N-type I(Ca) in a pertussis toxin- and voltage-insensitive pathway, and this inhibition attenuated repetitive action potential firing in SCG neurons.
Collapse
Affiliation(s)
- Seungsoo Chung
- Brain Korea 21 Project for Medical Science, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
91
|
Sowa NA, Street SE, Vihko P, Zylka MJ. Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010; 30:10282-93. [PMID: 20685973 PMCID: PMC2920622 DOI: 10.1523/jneurosci.2162-10.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 11/21/2022] Open
Abstract
Prostatic acid phosphatase (PAP) is expressed in nociceptive dorsal root ganglion (DRG) neurons, functions as an ectonucleotidase, and generates adenosine extracellularly. Here, we found that PAP inhibits noxious thermal sensitivity and sensitization that is associated with chronic pain through sustained activation of the adenosine A(1) receptor (A(1)R) and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)). In mice, intrathecal injection of PAP reduced PIP(2) levels in DRGs, inhibited thermosensation through TRPV1, and enduringly reduced thermal hyperalgesia and mechanical allodynia caused by inflammation, nerve injury, and pronociceptive receptor activation. This included inhibitory effects on lysophosphatidic acid, purinergic (ATP), bradykinin, and protease-activated (thrombin) receptors. Conversely, PIP(2) levels were significantly elevated in DRGs from Pap(-/-) mice, and this correlated with enhanced thermal hyperalgesia and mechanical allodynia in Pap(-/-) mice. To directly test the importance of PIP(2) in nociception, we intrathecally injected PIP(2) into mice. This transiently (2 h) elevated PIP(2) levels in lumbar DRGs and transiently (2 h) enhanced thermosensation. Additionally, thermal hyperalgesia and mechanical allodynia were enduringly enhanced when PIP(2) levels were elevated coincident with injury/pronociceptive receptor stimulation. Nociceptive sensitization was not affected if PIP(2) levels were elevated in the absence of ongoing pronociceptive receptor stimulation. Together, our data suggest that PIP(2) levels in DRGs directly influence thermosensation and the magnitude of nociceptive sensitization. Moreover, our data suggest there is an underlying "phosphoinositide tone" that can be manipulated by an adenosine-generating ectonucleotidase. This tone regulates how effectively acute nociceptive insults promote the transition to chronic pain.
Collapse
Affiliation(s)
- Nathaniel A. Sowa
- Department of Cell and Molecular Physiology, University of North Carolina Neuroscience Center, and
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah E. Street
- Department of Cell and Molecular Physiology, University of North Carolina Neuroscience Center, and
| | - Pirkko Vihko
- Department of Clinical Medicine, Division of Clinical Chemistry, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland, and
- Research Center for Molecular Endocrinology, University of Oulu, FI-90014 Oulu, Finland
| | - Mark J. Zylka
- Department of Cell and Molecular Physiology, University of North Carolina Neuroscience Center, and
| |
Collapse
|
92
|
Suh BC, Leal K, Hille B. Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 2010; 67:224-38. [PMID: 20670831 PMCID: PMC2931829 DOI: 10.1016/j.neuron.2010.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2010] [Indexed: 12/23/2022]
Abstract
Modulation of voltage-gated Ca(2+) channels controls activities of excitable cells. We show that high-voltage activated Ca(2+) channels are regulated by membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) with different sensitivities. Plasma membrane PIP(2) depletion by rapamycin-induced translocation of an inositol lipid 5-phosphatase or by a voltage-sensitive 5-phosphatase (VSP) suppresses Ca(V)1.2 and Ca(V)1.3 channel currents by approximately 35% and Ca(V)2.1 and Ca(V)2.2 currents by 29% and 55%, respectively. Other Ca(V) channels are less sensitive. Inhibition is not relieved by strong depolarizing prepulses. It changes the voltage dependence of channel gating little. Recovery of currents from inhibition needs intracellular hydrolysable ATP, presumably for PIP(2) resynthesis. When PIP(2) is increased by overexpressing PIP 5-kinase, activation and inactivation of Ca(V)2.2 current slow and voltage-dependent gating shifts to slightly higher voltages. Thus, endogenous membrane PIP(2) supports high-voltage activated L-, N-, and P/Q-type Ca(2+) channels, and stimuli that activate phospholipase C deplete PIP(2) and reduce those Ca(2+) channel currents.
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Physiology and Biophysics, The University of Washington School of Medicine, Seattle, WA 98195-7290, USA.
| | | | | |
Collapse
|
93
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
94
|
Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H. Cholesterol inhibits M-type K+ channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem 2010; 285:10939-50. [PMID: 20123983 PMCID: PMC2856299 DOI: 10.1074/jbc.m109.048868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 01/25/2010] [Indexed: 01/10/2023] Open
Abstract
M-type (KCNQ) potassium channels play an important role in regulating the action potential firing in neurons. Here, we investigated the effect of cholesterol on M current in superior cervical ganglion (SCG) sympathetic neurons, using the patch clamp technique. M current was inhibited in a dose-dependent manner by cholesterol loading with a methyl-beta-cyclodextrin-cholesterol complex. This effect was prevented when membrane cholesterol level was restored by including empty methyl-beta-cyclodextrin in the pipette solution. Dialysis of cells with AMP-PNP instead of ATP prevented cholesterol action on M currents. Protein kinase C (PKC) inhibitor, calphostin C, abolished cholesterol-induced inhibition whereas the PKC activator, PDBu, mimicked the inhibition of M currents by cholesterol. The in vitro kinase assay showed that KCNQ2 subunits of M channel can be phosphorylated by PKC. A KCNQ2 mutant that is defective in phosphorylation by PKC failed to show current inhibition not only by PDBu but also by cholesterol. These results indicate that cholesterol-induced inhibition of M currents is mediated by PKC phosphorylation. The inhibition of M currents by PDBu and cholesterol was completely blocked by PIP(2) loading, indicating that the decrease in PIP(2)-channel interaction underlies M channel inhibition by PKC-mediated phosphorylation. We conclude that cholesterol specifically regulates M currents in SCG neurons via PKC activation.
Collapse
Affiliation(s)
| | - Hyun-Kyung Choi
- Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea and
| | - Seong-Tae Kim
- Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea and
| | | | | | - Jung-Hwa Cho
- the WCU Neurocytomics Program Project, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul 110-799, Korea
| | - Won-Kyung Ho
- the WCU Neurocytomics Program Project, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul 110-799, Korea
| | - Hana Cho
- From the Departments of Physiology and
| |
Collapse
|
95
|
Falkenburger BH, Jensen JB, Hille B. Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. ACTA ACUST UNITED AC 2010; 135:99-114. [PMID: 20100891 PMCID: PMC2812502 DOI: 10.1085/jgp.200910345] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The signaling phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP(2)) is synthesized in two steps from phosphatidylinositol by lipid kinases. It then interacts with KCNQ channels and with pleckstrin homology (PH) domains among many other physiological protein targets. We measured and developed a quantitative description of these metabolic and protein interaction steps by perturbing the PIP(2) pool with a voltage-sensitive phosphatase (VSP). VSP can remove the 5-phosphate of PIP(2) with a time constant of tau <300 ms and fully inhibits KCNQ currents in a similar time. PIP(2) was then resynthesized from phosphatidylinositol 4-phosphate (PIP) quickly, tau = 11 s. In contrast, resynthesis of PIP(2) after activation of phospholipase C by muscarinic receptors took approximately 130 s. These kinetic experiments showed that (1) PIP(2) activation of KCNQ channels obeys a cooperative square law, (2) the PIP(2) residence time on channels is <10 ms and the exchange time on PH domains is similarly fast, and (3) the step synthesizing PIP(2) by PIP 5-kinase is fast and limited primarily by a step(s) that replenishes the pool of plasma membrane PI(4)P. We extend the kinetic model for signaling from M(1) muscarinic receptors, presented in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910344), with this new information on PIP(2) synthesis and KCNQ interaction.
Collapse
Affiliation(s)
- Björn H Falkenburger
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
96
|
Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels. J Clin Invest 2010; 120:1240-52. [PMID: 20335661 PMCID: PMC2846053 DOI: 10.1172/jci41084] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/13/2010] [Indexed: 12/30/2022] Open
Abstract
Bradykinin (BK) is an inflammatory mediator and one of the most potent endogenous pain-inducing substances. When released at sites of tissue damage or inflammation, or applied exogenously, BK produces acute spontaneous pain and causes hyperalgesia (increased sensitivity to potentially painful stimuli). The mechanisms underlying spontaneous pain induced by BK are poorly understood. Here we report that in small nociceptive neurons from rat dorsal root ganglia, BK, acting through its B2 receptors, PLC, and release of calcium from intracellular stores, robustly inhibits M-type K+ channels and opens Ca2+-activated Cl- channels (CaCCs) encoded by Tmem16a (also known as Ano1). Summation of these two effects accounted for the depolarization and increase in AP firing induced by BK in DRG neurons. Local injection of inhibitors of CaCC and specific M-channel openers both strongly attenuated the nociceptive effect of local injections of BK in rats. These results provide a framework for understanding spontaneous inflammatory pain and may suggest new drug targets for treatment of such pain.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| | - John E. Linley
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| | - Xuan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| | - Lezanne Ooi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
Institute of Membrane and Systems Biology, Faculty of Biological Science, University of Leeds, United Kingdom
| |
Collapse
|
97
|
Pereira U, Boulais N, Lebonvallet N, Pennec JP, Dorange G, Misery L. Mechanisms of the sensory effects of tacrolimus on the skin. Br J Dermatol 2010; 163:70-7. [PMID: 20302583 DOI: 10.1111/j.1365-2133.2010.09757.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tacrolimus is an immunosuppressant drug currently used for the treatment of atopic dermatitis and pruritus. This topical therapy is effective and safe, but transient burning, stinging and itch are frequently reported. OBJECTIVES To understand the mechanisms underlying these burning sensations. METHODS We examined the impact of tacrolimus on substance P (SP) release in an in vitro model of cutaneous neurogenic inflammation. Because phosphorylation of TRPV1 (transient receptor potential subtype vanilloid 1) plays a role in the induction of pain, we investigated whether tacrolimus regulates the phosphorylation state of TRPV1. Finally, we used a macropatch to evaluate the impact of tacrolimus on voltage-gated calcium currents of sensory neurons. RESULTS Tacrolimus was able to induce initial SP release by extracellular calcium influx and inhibited SP release induced by capsaicin after 1, 24 and 72 h of pretreatment. Analysis of TRPV1 phosphorylation by Western blot confirmed the capacity of tacrolimus to favour phosphorylation. An electrophysiological study showed inhibitory effects on calcium currents. CONCLUSIONS The efficacy of tacrolimus in pruritus, as well as the sensory side-effects, could be explained by a direct effect on neurons through an effect on calcineurin, possibly by a desensitization of TRPV1 and calcium currents through the PIP(2) regulation pathway.
Collapse
Affiliation(s)
- U Pereira
- University of Western Brittany, Laboratory of Neuronal Factors and Tissue Structure (EA 4326), Brest, France
| | | | | | | | | | | |
Collapse
|
98
|
Bal M, Zhang J, Hernandez CC, Zaika O, Shapiro MS. Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. J Neurosci 2010; 30:2311-23. [PMID: 20147557 PMCID: PMC2832802 DOI: 10.1523/jneurosci.5175-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/20/2009] [Indexed: 01/07/2023] Open
Abstract
M-type channels are localized to neuronal, cardiovascular, and epithelial tissues, where they play critical roles in control of excitability and K(+) transport, and are regulated by numerous receptors via G(q/11)-mediated signals. One pathway shown for KCNQ2 and muscarinic receptors uses PKC, recruited to the channels by A-kinase anchoring protein (AKAP)79/150. As M-type channels can be variously composed of KCNQ1-5 subunits, and M current is known to be regulated by Ca(2+)/calmodulin (CaM) and PIP(2), we probed the generality of AKAP79/150 actions among KCNQ1-5 channels, and the influence of Ca(2+)/CaM and PIP(2) on AKAP79/150 actions. We first examined which KCNQ subunits are targeted by AKAP79 in Chinese hamster ovary (CHO) cells heterologously expressing KCNQ1-5 subunits and AKAP79, using fluorescence resonance energy transfer (FRET) under total internal reflection fluorescence (TIRF) microscopy, and patch-clamp analysis. Donor-dequenching FRET between CFP-tagged KCNQ1-5 and YFP-tagged AKAP79 revealed association of KCNQ2-5, but not KCNQ1, with AKAP79. In parallel with these results, CHO cells stably expressing M(1) receptors studied under perforated patch-clamp showed cotransfection of AKAP79 to "sensitize" KCNQ2/3 heteromers and KCNQ2-5, but not KCNQ1, homomers to muscarinic inhibition, manifested by shifts in the dose-response relations to lower concentrations. The effect on KCNQ4 was abolished by the T553A mutation of the putative PKC phosphorylation site. We then probed the role of CaM and PIP(2) in these AKAP79 actions. TIRF/FRET experiments revealed cotransfection of wild-type, but not dominant-negative (DN), CaM that cannot bind Ca(2+), to disrupt the interaction of YFP-tagged AKAP79(1-153) with CFP-tagged KCNQ2-5. Tonic depletion of PIP(2) by cotransfection of a PIP(2) phosphatase had no effect, and sudden depletion of PIP(2) did not delocalize GFP-tagged AKAP79 from the membrane. Finally, patch-clamp experiments showed cotransfection of wild-type, but not DN, CaM to prevent the AKAP79-mediated sensitization of KCNQ2/3 heteromers to muscarinic inhibition. Thus, AKAP79 acts on KCNQ2-5, but not KCNQ1-containing channels, with effects disrupted by calcified CaM, but not by PIP(2) depletion.
Collapse
Affiliation(s)
- Manjot Bal
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jie Zhang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Ciria C. Hernandez
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Oleg Zaika
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mark S. Shapiro
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
99
|
Jensen JB, Lyssand JS, Hague C, Hille B. Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. ACTA ACUST UNITED AC 2010; 133:347-59. [PMID: 19332618 PMCID: PMC2699104 DOI: 10.1085/jgp.200810075] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G protein–coupled receptors initiate signaling cascades. M1 muscarinic receptor (M1R) activation couples through Gαq to stimulate phospholipase C (PLC), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2). Depletion of PIP2 closes PIP2-requiring Kv7.2/7.3 potassium channels (M current), thereby increasing neuronal excitability. This modulation of M current is relatively slow (6.4 s to reach within 1/e of the steady-state value). To identify the rate-limiting steps, we investigated the kinetics of each step using pairwise optical interactions likely to represent fluorescence resonance energy transfer for M1R activation, M1R/Gβ interaction, Gαq/Gβ separation, Gαq/PLC interaction, and PIP2 hydrolysis. Electrophysiology was used to monitor channel closure. Time constants for M1R activation (<100 ms) and M1R/Gβ interaction (200 ms) are both fast, suggesting that neither of them is rate limiting during muscarinic suppression of M current. Gαq/Gβ separation and Gαq/PLC interaction have intermediate 1/e times (2.9 and 1.7 s, respectively), and PIP2 hydrolysis (6.7 s) occurs on the timescale of M current suppression. Overexpression of PLC accelerates the rate of M current suppression threefold (to 2.0 s) to become nearly contemporaneous with Gαq/PLC interaction. Evidently, channel release of PIP2 and closure are rapid, and the availability of active PLC limits the rate of M current suppression.
Collapse
Affiliation(s)
- Jill B Jensen
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
100
|
Roberts-Crowley ML, Rittenhouse AR. Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVbeta subunits. ACTA ACUST UNITED AC 2010; 133:387-403. [PMID: 19332620 PMCID: PMC2699108 DOI: 10.1085/jgp.200810047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arachidonic acid (AA) inhibits the activity of several different voltage-gated Ca2+ channels by an unknown mechanism at an unknown site. The Ca2+ channel pore-forming subunit (CaVα1) is a candidate for the site of AA inhibition because T-type Ca2+ channels, which do not require accessory subunits for expression, are inhibited by AA. Here, we report the unanticipated role of accessory CaVβ subunits on the inhibition of CaV1.3b L-type (L-) current by AA. Whole cell Ba2+ currents were measured from recombinant channels expressed in human embryonic kidney 293 cells at a test potential of −10 mV from a holding potential of −90 mV. A one-minute exposure to 10 µM AA inhibited currents with β1b, β3, or β4 58, 51, or 44%, respectively, but with β2a only 31%. At a more depolarized holding potential of −60 mV, currents were inhibited to a lesser degree. These data are best explained by a simple model where AA stabilizes CaV1.3b in a deep closed-channel conformation, resulting in current inhibition. Consistent with this hypothesis, inhibition by AA occurred in the absence of test pulses, indicating that channels do not need to open to become inhibited. AA had no effect on the voltage dependence of holding potential–dependent inactivation or on recovery from inactivation regardless of CaVβ subunit. Unexpectedly, kinetic analysis revealed evidence for two populations of L-channels that exhibit willing and reluctant gating previously described for CaV2 channels. AA preferentially inhibited reluctant gating channels, revealing the accelerated kinetics of willing channels. Additionally, we discovered that the palmitoyl groups of β2a interfere with inhibition by AA. Our novel findings that the CaVβ subunit alters kinetic changes and magnitude of inhibition by AA suggest that CaVβ expression may regulate how AA modulates Ca2+-dependent processes that rely on L-channels, such as gene expression, enzyme activation, secretion, and membrane excitability.
Collapse
Affiliation(s)
- Mandy L Roberts-Crowley
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|