51
|
Vajn K, Viljetić B, Degmečić IV, Schnaar RL, Heffer M. Differential distribution of major brain gangliosides in the adult mouse central nervous system. PLoS One 2013; 8:e75720. [PMID: 24098718 PMCID: PMC3787110 DOI: 10.1371/journal.pone.0075720] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/24/2022] Open
Abstract
Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies.
Collapse
Affiliation(s)
- Katarina Vajn
- Department of Medical Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, University of Osijek School of Medicine, Osijek, Croatia
| | | | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marija Heffer
- Department of Medical Biology, University of Osijek School of Medicine, Osijek, Croatia
- * E-mail:
| |
Collapse
|
52
|
Zearfoss NR, Johnson ES, Ryder SP. hnRNP A1 and secondary structure coordinate alternative splicing of Mag. RNA (NEW YORK, N.Y.) 2013; 19:948-57. [PMID: 23704325 PMCID: PMC3683929 DOI: 10.1261/rna.036780.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/11/2013] [Indexed: 05/21/2023]
Abstract
Myelin-associated glycoprotein (MAG) is a major component of myelin in the vertebrate central nervous system. MAG is present in the periaxonal region of the myelin structure, where it interacts with neuronal proteins to inhibit axon outgrowth and protect neurons from degeneration. Two alternatively spliced isoforms of Mag mRNA have been identified. The mRNA encoding the shorter isoform, known as S-MAG, contains a termination codon in exon 12, while the mRNA encoding the longer isoform, known as L-MAG, skips exon 12 and produces a protein with a longer C-terminal region. L-MAG is required in the central nervous system. How inclusion of Mag exon 12 is regulated is not clear. In a previous study, we showed that heteronuclear ribonucleoprotein A1 (hnRNP A1) contributes to Mag exon 12 skipping. Here, we show that hnRNP A1 interacts with an element that overlaps the 5' splice site of Mag exon 12. The element has a reduced ability to interact with the U1 snRNP compared with a mutant that improves the splice site consensus. An evolutionarily conserved secondary structure is present surrounding the element. The structure modulates interaction with both hnRNP A1 and U1. Analysis of splice isoforms produced from a series of reporter constructs demonstrates that the hnRNP A1-binding site and the secondary structure both contribute to exclusion of Mag exon 12.
Collapse
|
53
|
Guo ML, Xue B, Jin DZ, Mao LM, Wang JQ. Dynamic downregulation of Nogo receptor expression in the rat forebrain by amphetamine. Neurochem Int 2013; 63:195-200. [PMID: 23770273 DOI: 10.1016/j.neuint.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/10/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
Nogo receptors (NgRs) are a family of cell surface receptors that are broadly expressed in the mammalian brain. These receptors could serve as an inhibitory element in the regulation of activity-dependent axonal growth and spine and synaptic formation in the adult animal brain. Thus, through balancing the structural response to changing cellular and synaptic inputs, NgRs participate in constructing activity-dependent morphological plasticity. Psychostimulants have been well documented to induce morphological plasticity critical for addictive properties of stimulants, although underlying molecular mechanisms are poorly understood. In this study, we initiated a study to investigate the response of NgRs to a stimulant. We tested the effect of acute administration of amphetamine on protein expression of two principal NgR subtypes (NgR1 and NgR2) in the rat striatum, medial prefrontal cortex (mPFC) and hippocampus. We found that a single injection of amphetamine induced a rapid and time-dependent decrease in NgR1 and NgR2 expression in the striatum and mPFC. A relatively delayed and time-dependent decrease in expression of the two receptors was seen in the hippocampus. The drug-induced decrease in NgR1 and NgR2 expression in the three forebrain regions was dose-dependent. A behaviorally active dose of the drug was required to trigger a significant reduction in NgR1 and NgR2 expression. These data indicate that NgRs are subject to the regulation by the stimulant. Amphetamine exposure exerts the inhibitory modulation of basal NgR1 and NgR2 expression in the key structures of reward circuits in vivo.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | | | | | | | | |
Collapse
|
54
|
Abstract
Changes in brain circuits occur within specific paradigms of action in the adult brain. These paradigms include changes in behavioral activity patterns, alterations in environmental experience, and direct brain injury. Each of these paradigms can produce axonal sprouting, dendritic morphology changes, and alterations in synaptic connectivity. Activity-, experience-, and injury-dependent plasticity alter neuronal network function and behavioral output, and in the case of brain injury, may produce neurological recovery. The molecular substrate for adult neuronal plasticity overlaps in these three paradigms in key signaling pathways. These common pathways for adult plasticity suggest common mechanisms for activity-, experience-, and injury-dependent plasticity. These common pathways may also interact to enhance or impede each other during adult recovery of function after injury. This review focuses on common molecular changes evoked during the process of adult neuronal plasticity, with a focus on neural repair in stroke.
Collapse
|
55
|
Mironova YA, Giger RJ. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci 2013; 36:363-73. [PMID: 23642707 DOI: 10.1016/j.tins.2013.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 02/07/2023]
Abstract
Growth inhibitory molecules in the adult mammalian central nervous system (CNS) have been implicated in the blocking of axonal sprouting and regeneration following injury. Prominent CNS regeneration inhibitors include Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs), and a key question concerns their physiological role in the naïve CNS. Emerging evidence suggests novel functions in dendrites and at synapses of glutamatergic neurons. CNS regeneration inhibitors target the neuronal actin cytoskeleton to regulate dendritic spine maturation, long-term synapse stability, and Hebbian forms of synaptic plasticity. This is accomplished in part by antagonizing plasticity-promoting signaling pathways activated by neurotrophic factors. Altered function of CNS regeneration inhibitors is associated with mental illness and loss of long-lasting memory, suggesting unexpected and novel physiological roles for these molecules in brain health.
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, 3065 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
56
|
Kempf A, Schwab ME. Nogo-A Represses Anatomical and Synaptic Plasticity in the Central Nervous System. Physiology (Bethesda) 2013; 28:151-63. [DOI: 10.1152/physiol.00052.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nogo-A was initially discovered as a myelin-associated growth inhibitory protein limiting axonal regeneration after central nervous system (CNS) injury. This review summarizes current knowledge on how myelin and neuronal Nogo-A and its receptors exert physiological functions ranging from the regulation of growth suppression to synaptic plasticity in the developing and adult intact CNS.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Sharma K, Selzer ME, Li S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol 2012; 237:370-8. [PMID: 22836147 PMCID: PMC5454774 DOI: 10.1016/j.expneurol.2012.07.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/14/2012] [Indexed: 11/21/2022]
Abstract
Severed axons in adult mammals do not regenerate appreciably after central nervous system (CNS) injury due to developmentally determined reductions in neuron-intrinsic growth capacity and extracellular environment for axon elongation. Chondroitin sulfate proteoglycans (CSPGs), which are generated by reactive scar tissues, are particularly potent contributors to the growth-limiting environment in mature CNS. Thus, surmounting the strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. As of now, the main in vivo approach to overcoming inhibition by CSPGs is enzymatic digestion with locally applied chondroitinase ABC (ChABC), but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of the molecular mechanisms underlying CSPG action is needed in order to develop more effective therapies to overcome CSPG-mediated inhibition of axon regeneration and/or sprouting. Because of their large size and dense negative charges, CSPGs were thought to act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions. Although this may be true, recent studies indicate that two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ (PTPσ) and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibitory effects. CSPGs also may act by binding to two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3 (NgR1 and NgR3). If confirmed, it would suggest that CSPGs have multiple mechanisms by which they inhibit axon growth, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries, including spinal cord injury (SCI).
Collapse
Affiliation(s)
- Kartavya Sharma
- Department of Neurology and Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Shuxin Li
- Department of Neurology and Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas 75390-8813, USA
| |
Collapse
|
58
|
Han SB, Kim H, Skuba A, Tessler A, Ferguson T, Son YJ. Sensory Axon Regeneration: A Review from an in vivo Imaging Perspective. Exp Neurobiol 2012; 21:83-93. [PMID: 23055786 PMCID: PMC3454810 DOI: 10.5607/en.2012.21.3.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/28/2012] [Indexed: 01/26/2023] Open
Abstract
Injured primary sensory axons fail to regenerate into the spinal cord, leading to chronic pain and permanent sensory loss. Re-entry is prevented at the dorsal root entry zone (DREZ), the CNS-PNS interface. Why axons stop or turn around at the DREZ has generally been attributed to growth-repellent molecules associated with astrocytes and oligodendrocytes/myelin. The available evidence challenges the contention that these inhibitory molecules are the critical determinant of regeneration failure. Recent imaging studies that directly monitored axons arriving at the DREZ in living animals raise the intriguing possibility that axons stop primarily because they are stabilized by forming presynaptic terminals on non-neuronal cells that are neither astrocytes nor oligodendrocytes. These observations revitalized the idea raised many years ago but virtually forgotten, that axons stop by forming synapses at the DREZ.
Collapse
Affiliation(s)
- Seung Baek Han
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair and Rehabilitation, Temple University School of Medicine, Philadelphia, PA 19140, USA. ; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
59
|
Wang X, Hasan O, Arzeno A, Benowitz LI, Cafferty WBJ, Strittmatter SM. Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Exp Neurol 2012; 237:55-69. [PMID: 22728374 DOI: 10.1016/j.expneurol.2012.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/31/2012] [Accepted: 06/09/2012] [Indexed: 12/29/2022]
Abstract
Several pharmacological approaches to promote neural repair and recovery after CNS injury have been identified. Blockade of either astrocyte-derived chondroitin sulfate proteoglycans (CSPGs) or oligodendrocyte-derived NogoReceptor (NgR1) ligands reduces extrinsic inhibition of axonal growth, though combined blockade of these distinct pathways has not been tested. The intrinsic growth potential of adult mammalian neurons can be promoted by several pathways, including pre-conditioning injury for dorsal root ganglion (DRG) neurons and macrophage activation for retinal ganglion cells (RGCs). Singly, pharmacological interventions have restricted efficacy without foreign cells, mechanical scaffolds or viral gene therapy. Here, we examined combinations of pharmacological approaches and assessed the degree of axonal regeneration. After mouse optic nerve crush injury, NgR1-/- neurons regenerate RGC axons as extensively as do zymosan-injected, macrophage-activated WT mice. Synergistic enhancement of regeneration is achieved by combining these interventions in zymosan-injected NgR1-/- mice. In rats with a spinal dorsal column crush injury, a preconditioning peripheral sciatic nerve axotomy, or NgR1(310)ecto-Fc decoy protein treatment or ChondroitinaseABC (ChABC) treatment independently support similar degrees of regeneration by ascending primary afferent fibers into the vicinity of the injury site. Treatment with two of these three interventions does not significantly enhance the degree of axonal regeneration. In contrast, triple therapy combining NgR1 decoy, ChABC and preconditioning, allows axons to regenerate millimeters past the spinal cord injury site. The benefit of a pre-conditioning injury is most robust, but a peripheral nerve injury coincident with, or 3 days after, spinal cord injury also synergizes with NgR1 decoy and ChABC. Thus, maximal axonal regeneration and neural repair are achieved by combining independently effective pharmacological approaches.
Collapse
Affiliation(s)
- Xingxing Wang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
60
|
Chao PK, Lu KT, Jhu JY, Wo YYP, Huang TC, Ro LS, Yang YL. Indomethacin protects rats from neuronal damage induced by traumatic brain injury and suppresses hippocampal IL-1β release through the inhibition of Nogo-A expression. J Neuroinflammation 2012; 9:121. [PMID: 22676811 PMCID: PMC3416695 DOI: 10.1186/1742-2094-9-121] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/08/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nogo-A is a member of the reticulon family of membrane-associated proteins and plays an important role in axonal remodeling. The present study aimed to investigate alterations in Nogo-A expression following traumatic brain injury (TBI)-induced inflammation and neuronal damage. METHODS A weight-drop device was used to deliver a standard traumatic impact to rats. Western blot, RT-PCR and ELISA were used to analyze the expression of Nogo-A and IL-1β. Nogo-A antisense, and an irrelevant control oligonucleotide was intracerebroventricularly infused. We also performed H & E staining and luxol fast blue staining to evaluate the neuronal damage and demyelination resulting from TBI and various treatments. RESULTS Based on RT-PCR and western blot analyses, the expression of Nogo-A was found to be significantly upregulated in the hippocampus beginning eight hours after TBI. In addition, TBI caused an apparent elevation in IL-1β levels and severe neuronal damage and demyelination in the tested animals. All of the TBI-associated molecular and cellular consequences could be effectively reversed by treating the animals with the anti-inflammatory drug indomethacin. More importantly, the TBI-associated stimulation in the levels of both Nogo-A and IL-1β could be effectively inhibited by a specific Nogo-A antisense oligonucleotide. CONCLUSIONS Our findings suggest that the suppression of Nogo-A expression appears to be an early response conferred by indomethacin, which then leads to decreases in the levels of IL-1β and TBI-induced neuron damage.
Collapse
Affiliation(s)
- Po-Kuan Chao
- Department of Life Science, National Taiwan Normal University, 88 Section 4, Ting-Chou Road, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
61
|
Lee JK, Zheng B. Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Exp Neurol 2012; 235:33-42. [PMID: 21596039 PMCID: PMC3170678 DOI: 10.1016/j.expneurol.2011.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 04/19/2011] [Accepted: 05/01/2011] [Indexed: 12/15/2022]
Abstract
Myelin-associated inhibitors of axon growth, including Nogo, MAG and OMgp, have been the subject of intense research. A myriad of experimental approaches have been applied to investigate the potential of targeting these molecules to promote axonal repair after spinal cord injury. However, there are still conflicting results on their role in axon regeneration and therefore a lack of a cohesive mechanism on how these molecules can be targeted to promote axon repair. One major reason may be the lack of a clear definition of axon regeneration in the first place. Nevertheless, recent data from genetic studies in mice indicate that the roles of these molecules in CNS axon repair may be more intricate than previously envisioned.
Collapse
Affiliation(s)
- Jae K Lee
- University of California San Diego, Department of Neurosciences, 9500 Gilman Drive, MC 0691, La Jolla, CA 92093-0691, USA.
| | | |
Collapse
|
62
|
Nocentini S, Reginensi D, Garcia S, Carulla P, Moreno-Flores MT, Wandosell F, Trepat X, Bribian A, del Río JA. Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy. Cell Mol Life Sci 2012; 69:1689-703. [PMID: 22205212 PMCID: PMC11114797 DOI: 10.1007/s00018-011-0893-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 12/16/2022]
Abstract
Newly generated olfactory receptor axons grow from the peripheral to the central nervous system aided by olfactory ensheathing cells (OECs). Thus, OEC transplantation has emerged as a promising therapy for spinal cord injuries and for other neural diseases. However, these cells do not present a uniform population, but instead a functionally heterogeneous population that exhibits a variety of responses including adhesion, repulsion, and crossover during cell-cell and cell-matrix interactions. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical gradients. Here, we demonstrated that rodent OECs express all the components of the Nogo receptor complex and that their migration is blocked by myelin. Next, we used cell tracking and traction force microscopy to analyze OEC migration and its mechanical properties over myelin. Our data relate the decrease of traction force of OEC with lower migratory capacity over myelin, which correlates with changes in the F-actin cytoskeleton and focal adhesion distribution. Lastly, OEC traction force and migratory capacity is enhanced after cell incubation with the Nogo receptor inhibitor NEP1-40.
Collapse
Affiliation(s)
- Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Simón Garcia
- Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - María Teresa Moreno-Flores
- Centro de Biología Molecular “Severo Ochoa”, Nicolás Cabrera, 1, Universidad Autónoma de Madrid (CBM-UAM), Madrid, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa”, Nicolás Cabrera, 1, Universidad Autónoma de Madrid (CBM-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Xavier Trepat
- Integrative Cell and Tissue Dynamics, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Ana Bribian
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - José A. del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, University of Barcelona, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
63
|
Akbik F, Cafferty WBJ, Strittmatter SM. Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 2012; 235:43-52. [PMID: 21699896 PMCID: PMC3189418 DOI: 10.1016/j.expneurol.2011.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/26/2011] [Accepted: 06/07/2011] [Indexed: 01/01/2023]
Abstract
In the adult, both neurologic recovery and anatomical growth after a CNS injury are limited. Two classes of growth inhibitors, myelin associated inhibitors (MAIs) and extracellular matrix associated inhibitors, limit both functional recovery and anatomical rearrangements in animal models of spinal cord injury. Here we focus on how MAIs limit a wide spectrum of growth that includes regeneration, sprouting, and plasticity in both the intact and lesioned CNS. Three classic myelin associated inhibitors, Nogo-A, MAG, and OMgp, signal through their common receptors, Nogo-66 Receptor-1 (NgR1) and Paired-Immunoglobulin-like-Receptor-B (PirB), to regulate cytoskeletal dynamics and inhibit growth. Initially described as inhibitors of axonal regeneration, subsequent work has demonstrated that MAIs also limit activity and experience-dependent plasticity in the intact, adult CNS. MAIs therefore represent a point of convergence for plasticity that limits anatomical rearrangements regardless of the inciting stimulus, blurring the distinction between injury studies and more "basic" plasticity studies.
Collapse
Affiliation(s)
- Feras Akbik
- Cellular Neuroscience, Neurodegeneration and Repair Program, and Departments of Neurology and of Neurobiology, Yale School of Medicine, New Haven, CT USA
| | - William B. J. Cafferty
- Cellular Neuroscience, Neurodegeneration and Repair Program, and Departments of Neurology and of Neurobiology, Yale School of Medicine, New Haven, CT USA
| | - Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, and Departments of Neurology and of Neurobiology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
64
|
Shim SO, Cafferty WBJ, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM. PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Mol Cell Neurosci 2012; 50:193-200. [PMID: 22564823 DOI: 10.1016/j.mcn.2012.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/10/2012] [Accepted: 04/19/2012] [Indexed: 11/25/2022] Open
Abstract
Axonal growth from both intact and severed fibers is limited after adult mammalian CNS injury. Myelin proteins contribute to inhibition of axonal growth. Semaphorin6A protein inhibits the extension of developing axons and is highly expressed in adult oligodendrocytes. This expression pattern suggests that a developmental axon guidance cue contributes to the restriction of adult CNS growth. Here, we assessed the role of a Sema6A receptor, PlexinA2, in recovery from adult trauma. Adult sensory neuron inhibition by Sema6A requires PlexinA2, with complete protection in PlexinA2-/- cultures. Mice lacking another myelin inhibitor receptor, NgR1, are known to exhibit greater axonal sprouting and functional recovery after lesions of the corticospinal tract at the medullary pyramid, so we investigated PlexinA2 in this lesion. Without injury, the corticofugal projection into the cervical spinal cord is normal in adult PlexinA2 null mice. After unilateral pyramidotomy, unlesioned PlexinA2-/- corticospinal fibers sprout across the midline to innervate the contralateral gray matter of the spinal cord to a significantly greater extent than do fibers in wild type mice. Sprouted fibers display frequent synaptophysin-positive synaptic puncta. The increased axonal growth in PlexinA2-/- mice after injury is accompanied by improved behavioral recovery in a pellet retrieval task using the impaired forelimb, and in a tape removal task. Thus, PlexinA2, as a receptor for oligodendrocyte-derived Sema6A and for secreted class 3 Semaphorins, plays a role in limiting adult axon growth and recovery after trauma.
Collapse
Affiliation(s)
- Sang-Ohk Shim
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06536-0812, USA
| | | | | | | | | | | |
Collapse
|
65
|
The nogo receptor family restricts synapse number in the developing hippocampus. Neuron 2012; 73:466-81. [PMID: 22325200 DOI: 10.1016/j.neuron.2011.11.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2011] [Indexed: 01/23/2023]
Abstract
Neuronal development is characterized by a period of exuberant synaptic growth that is well studied. However, the mechanisms that restrict this process are less clear. Here we demonstrate that glycosylphosphatidylinositol-anchored cell-surface receptors of the Nogo Receptor family (NgR1, NgR2, and NgR3) restrict excitatory synapse formation. Loss of any one of the NgRs results in an increase in synapse number in vitro, whereas loss of all three is necessary for abnormally elevated synaptogenesis in vivo. We show that NgR1 inhibits the formation of new synapses in the postsynaptic neuron by signaling through the coreceptor TROY and RhoA. The NgR family is downregulated by neuronal activity, a response that may limit NgR function and facilitate activity-dependent synapse development. These findings suggest that NgR1, a receptor previously shown to restrict axon growth in the adult, also functions in the dendrite as a barrier that limits excitatory synapse number during brain development.
Collapse
|
66
|
Wang T, Xiong JQ, Ren XB, Sun W. The role of Nogo-A in neuroregeneration: A review. Brain Res Bull 2012; 87:499-503. [DOI: 10.1016/j.brainresbull.2012.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 01/24/2023]
|
67
|
Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 2012; 15:703-12. [PMID: 22406547 PMCID: PMC3337880 DOI: 10.1038/nn.3070] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/06/2012] [Indexed: 12/17/2022]
Abstract
In the adult mammalian CNS, chondroitin sulfate proteoglycans (CSPGs) and myelin–associated inhibitors (MAIs) stabilize neuronal structure and restrict compensatory sprouting following injury. The Nogo receptor family members NgR1 and NgR2 bind to MAIs and have been implicated in neuronal inhibition. Here we show that NgR1 and NgR3 bind with high–affinity to the glycosaminoglycan moiety of proteoglycans and participate in CSPG inhibition in cultured neurons. Nogo receptor triple mutants (NgR123−/−), but not single mutants, show enhanced axonal regeneration following retro–orbital optic nerve crush injury. The combined loss of NgR1 and NgR3 (NgR13−/−), but not NgR1 and NgR2 (NgR12−/−), is sufficient to mimic the NgR123−/− regeneration phenotype. Regeneration in NgR13−/− mice is further enhanced by simultaneous ablation of RPTPσ, a known CSPG receptor. Collectively, these results identify NgR1 and NgR3 as novel CSPG receptors, demonstrate functional redundancy among CSPG receptors, and provide unexpected evidence for shared mechanisms of MAI and CSPG inhibition.
Collapse
Affiliation(s)
- Travis L Dickendesher
- Neuroscience Program, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci 2012; 31:17736-51. [PMID: 22131434 DOI: 10.1523/jneurosci.1482-11.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The plt (pale tremor) mouse carries a null mutation in the Fig4(Sac3) gene that results in tremor, hypopigmentation, spongiform degeneration of the brain, and juvenile lethality. FIG4 is a ubiquitously expressed phosphatidylinositol 3,5-bisphosphate phosphatase that regulates intracellular vesicle trafficking along the endosomal-lysosomal pathway. In humans, the missense mutation FIG4(I41T) combined with a FIG4 null allele causes Charcot-Marie-Tooth 4J disease, a severe form of peripheral neuropathy. Here we show that Fig4 null mice exhibit a dramatic reduction of myelin in the brain and spinal cord. In the optic nerve, smaller-caliber axons lack myelin sheaths entirely, whereas many large- and intermediate-caliber axons are myelinated but show structural defects at nodes of Ranvier, leading to delayed propagation of action potentials. In the Fig4 null brain and optic nerve, oligodendrocyte (OL) progenitor cells are present at normal abundance and distribution, but the number of myelinating OLs is greatly compromised. The total number of axons in the Fig4 null optic nerve is not reduced. Developmental studies reveal incomplete myelination rather than elevated cell death in the OL linage. Strikingly, there is rescue of CNS myelination and tremor in transgenic mice with neuron-specific expression of Fig4, demonstrating a non-cell-autonomous function of Fig4 in OL maturation and myelin development. In transgenic mice with global overexpression of the human pathogenic FIG4 variant I41T, there is rescue of the myelination defect, suggesting that the CNS of CMT4J patients may be protected from myelin deficiency by expression of the FIG4(I41T) mutant protein.
Collapse
|
69
|
The Nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res 2012; 349:105-17. [PMID: 22311207 DOI: 10.1007/s00441-012-1332-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.
Collapse
|
70
|
Kern F, Sarg B, Stasyk T, Hess D, Lindner H. The Nogo receptor 2 is a novel substrate of Fbs1. Biochem Biophys Res Commun 2012; 417:977-81. [PMID: 22206664 PMCID: PMC3269754 DOI: 10.1016/j.bbrc.2011.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 11/15/2022]
Abstract
Members of the Nogo66 receptor family (NgR) are closely associated with nerve growth inhibition and plasticity in the CNS. All three members, NgR1, NgR2 and NgR3, are GPI anchored and highly glycosylated proteins. The binding and signaling properties of NgR1 are well described, but largely unknown for NgR2. At present the only known ligands are myelin associated glycoprotein (MAG) and amyloid beta precursor protein (APP). Despite the requirement of co-receptors for signaling no other binding partner has been uncovered. To learn more about the interactome of NgR2 we performed pull down experiments and were able to identify F-box protein that recognizes sugar chain 1 (Fbs1) as binding partner. We confirmed this finding with co-immunoprecipitations and in vitro binding assays and showed that the binding is mediated by the substrate recognition domain of Fbs1. As a substrate recognition protein of the SCF complex, Fbs1 binding leads to polyubiquitination and finally degradation of its substrates. This is the first time a member of the Nogo receptor family has been connected with an intracellular degradation pathway, which has not only implications for its production, but also for amyloid deposition in Alzheimer’s disease.
Collapse
Affiliation(s)
- Florian Kern
- Neurobiochemistry - Biocenter, Innsbruck Medical University, Austria.
| | | | | | | | | |
Collapse
|
71
|
Abstract
Spinal cord injury (SCI) has multiple consequences, ranging from molecular imbalances to glial scar formation to functional impairments. It is logical to think that a combination of single treatments implemented in the right order and at the right time will be required to repair the spinal cord. However, the single treatments that compose the combination therapy will need to be chosen with caution as many have multiple outcomes that may or may not be synergistic. Single treatments may also elicit unwanted side-effects and/or effects that would decrease the repair potential of other components and/or the entire combination therapy. In this chapter a number of single treatments are discussed with respect to their multiplicity of action. These include strategies to boost growth and survival (such as neurotrophins and cyclic AMP) and strategies to reduce inhibitory factors (such as antimyelin-associated growth inhibitors and digestion of glial scar-associated inhibitors). We also present an overview of combination therapies that have successfully or unsuccessfully been tested in the laboratory using animal models. To effectively design a combination therapy a number of considerations need to be made such as the nature and timing of the treatments and the method for delivery. This chapter discusses these issues as well as considerations related to chronic SCI and the logistics of bringing combination therapies to the clinic.
Collapse
Affiliation(s)
- M Oudega
- Departments of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
72
|
Luo X, Park KK. Neuron-Intrinsic Inhibitors of Axon Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012. [DOI: 10.1016/b978-0-12-398309-1.00008-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
73
|
|
74
|
Hutson TH, Buchser WJ, Bixby JL, Lemmon VP, Moon LDF. Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost-Effective Medium-Throughput Screening of Genes that Promote Neurite Outgrowth. Front Mol Neurosci 2011; 4:55. [PMID: 22207835 PMCID: PMC3245668 DOI: 10.3389/fnmol.2011.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/04/2011] [Indexed: 01/16/2023] Open
Abstract
Following an injury, central nervous system (CNS) neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterized by their failure to express key regeneration-associated genes (RAGs) and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimized a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons (CGNs) cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth inhibitory chondroitin sulfate proteoglycans. Optimal electroporation parameters resulted in 28% transfection efficiency and 51% viability for postnatal rat CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates.
Collapse
Affiliation(s)
- Thomas H Hutson
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London London, UK
| | | | | | | | | |
Collapse
|
75
|
Lv B, Yuan W, Xu S, Zhang T, Liu B. Lentivirus-siNgR199 Promotes Axonal Regeneration and Functional Recovery in Rats. Int J Neurosci 2011; 122:133-9. [DOI: 10.3109/00207454.2011.633720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
76
|
Steinbach K, McDonald CL, Reindl M, Schweigreiter R, Bandtlow C, Martin R. Nogo-receptors NgR1 and NgR2 do not mediate regulation of CD4 T helper responses and CNS repair in experimental autoimmune encephalomyelitis. PLoS One 2011; 6:e26341. [PMID: 22096481 PMCID: PMC3214013 DOI: 10.1371/journal.pone.0026341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/25/2011] [Indexed: 11/28/2022] Open
Abstract
Myelin-associated inhibition of axonal regrowth after injury is considered one important factor that contributes to regeneration failure in the adult central nervous system (CNS). Blocking strategies targeting this pathway have been successfully applied in several nerve injury models, including experimental autoimmune encephalomyelitis (EAE), suggesting myelin-associated inhibitors (MAIs) and functionally related molecules as targets to enhance regeneration in multiple sclerosis. NgR1 and NgR2 were identified as interaction partners for the myelin proteins Nogo-A, MAG and OMgp and are probably mediating their growth-inhibitory effects on axons, although the in vivo relevance of this pathway is currently under debate. Recently, alternative functions of MAIs and NgRs in the regulation of immune cell migration and T cell differentiation have been described. Whether and to what extent NgR1 and NgR2 are contributing to Nogo and MAG-related inhibition of neuroregeneration or immunomodulation during EAE is currently unknown. Here we show that genetic deletion of both receptors does not promote functional recovery during EAE and that NgR1 and NgR2-mediated signals play a minor role in the development of CNS inflammation. Induction of EAE in Ngr1/2-double mutant mice resulted in indifferent disease course and tissue damage when compared to WT controls. Further, the development of encephalitogenic CD4+ Th1 and Th17 responses was unchanged. However, we observed a slightly increased leukocyte infiltration into the CNS in the absence of NgR1 and NgR2, indicating that NgRs might be involved in the regulation of immune cell migration in the CNS. Our study demonstrates the urgent need for a more detailed knowledge on the multifunctional roles of ligands and receptors involved in CNS regeneration failure.
Collapse
Affiliation(s)
- Karin Steinbach
- Institute for Neuroimmunology and Clinical MS-Research, Hamburg, Germany
| | - Claire L. McDonald
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Christine Bandtlow
- Department of Neurobiochemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Roland Martin
- Institute for Neuroimmunology and Clinical MS-Research, Hamburg, Germany
- * E-mail:
| |
Collapse
|
77
|
Zhang L, Kuang X, Zhang J. Nogo receptor 3, a paralog of Nogo-66 receptor 1 (NgR1), may function as a NgR1 co-receptor for Nogo-66. J Genet Genomics 2011; 38:515-23. [PMID: 22133682 DOI: 10.1016/j.jgg.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/08/2011] [Accepted: 10/16/2011] [Indexed: 12/11/2022]
Abstract
Nogo-A is a major myelin associated inhibitor that blocks regeneration of injured axons in the central nervous system (CNS). Nogo-66 (a 66-residue domain of Nogo-A) expressed on the surface of oligodendrocytes has been shown to directly interact with Nogo-66 receptor 1 (NgR1). A number of additional components of NgR1 receptor complex essential for its signaling have been uncovered. However, detailed composition of the complex and its signaling mechanisms remain to be fully elucidated. In this study, we show that Nogo receptor 3 (NgR3), a paralog of NgR1, is a binding protein for NgR1. The interaction is highly specific because other members of the reticulin family, to which Nogo-A belongs, do not bind to NgR3. Neither does NgR3 show any binding activity with Nogo receptor 2 (NgR2), another NgR1 paralog. Majority of NgR3 domains are required for its binding to NgR1. Moreover, a truncated NgR3 with the membrane anchoring domain deleted can function as a decoy receptor to reverse neurite outgrowth inhibition caused by Nogo-66 in culture. These in vitro results, together with previously reported overlapping expression profile between NgR1 and NgR3, suggest that NgR3 may be associated with NgR1 in vivo and that their binding interface may be targeted for treating neuronal injuries.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing.
| | | | | |
Collapse
|
78
|
Gerin CG, Madueke IC, Perkins T, Hill S, Smith K, Haley B, Allen SA, Garcia RP, Paunesku T, Woloschak G. Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 2011; 65:1255-81. [DOI: 10.1002/syn.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
79
|
Abstract
After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.
Collapse
Affiliation(s)
- Toby A Ferguson
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
80
|
Ferraro GB, Morrison CJ, Overall CM, Strittmatter SM, Fournier AE. Membrane-type matrix metalloproteinase-3 regulates neuronal responsiveness to myelin through Nogo-66 receptor 1 cleavage. J Biol Chem 2011; 286:31418-24. [PMID: 21768085 PMCID: PMC3173120 DOI: 10.1074/jbc.m111.249169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/28/2011] [Indexed: 12/14/2022] Open
Abstract
Nogo-66 receptor 1 (NgR1) is a glycosylphosphatidylinositol-anchored receptor for myelin-associated inhibitors that restricts plasticity and axonal regrowth in the CNS. NgR1 is cleaved from the cell surface of SH-SY5Y neuroblastoma cells in a metalloproteinase-dependent manner; however, the mechanism and physiological consequence of NgR1 shedding have not been explored. We now demonstrate that NgR1 is shed from multiple populations of primary neurons. Through a loss-of-function approach, we found that membrane-type matrix metalloproteinase-3 (MT3-MMP) regulates endogenous NgR1 shedding in primary neurons. Neuronal knockdown of MT3-MMP resulted in the accumulation of NgR1 at the cell surface and reduced the accumulation of the NgR1 cleavage fragment in medium conditioned by cortical neurons. Recombinant MT1-, MT2-, MT3-, and MT5-MMPs promoted NgR1 shedding from the surface of primary neurons, and this treatment rendered neurons resistant to myelin-associated inhibitors. Introduction of a cleavage-resistant form of NgR1 reconstitutes the neuronal response to these inhibitors, demonstrating that specific metalloproteinases attenuate neuronal responses to myelin in an NgR1-dependent manner.
Collapse
Affiliation(s)
- Gino B. Ferraro
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Charlotte J. Morrison
- the Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Christopher M. Overall
- the Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Stephen M. Strittmatter
- the Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut 06536-0812
| | - Alyson E. Fournier
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
81
|
McDonald CL, Steinbach K, Kern F, Schweigreiter R, Martin R, Bandtlow CE, Reindl M. Nogo receptor is involved in the adhesion of dendritic cells to myelin. J Neuroinflammation 2011; 8:113. [PMID: 21906273 PMCID: PMC3177896 DOI: 10.1186/1742-2094-8-113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/09/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Nogo-66 receptor NgR1 and its structural homologue NgR2 are binding proteins for a number of myelin-associated inhibitory factors. After neuronal injury, these inhibitory factors are responsible for preventing axonal outgrowth via their interactions with NgR1 and NgR2 expressed on neurons. In vitro, cells expressing NgR1/2 are inhibited from adhering to and spreading on a myelin substrate. Neuronal injury also results in the presence of dendritic cells (DCs) in the central nervous system, where they can come into contact with myelin debris. The exact mechanisms of interaction of immune cells with CNS myelin are, however, poorly understood. METHODS Human DCs were differentiated from peripheral blood monocytes and mouse DCs were differentiated from wild type and NgR1/NgR2 double knockout bone marrow precursors. NgR1 and NgR2 expression were determined with quantitative real time PCR and immunoblot, and adhesion of cells to myelin was quantified. RESULTS We demonstrate that human immature myeloid DCs express NgR1 and NgR2, which are then down-regulated upon maturation. Human mature DCs also adhere to a much higher extent to a myelin substrate than immature DCs. We observe the same effect when the cells are plated on Nogo-66-His (binding peptide for NgR1), but not on control proteins. Mature DCs taken from Ngr1/2 knockout mice adhere to a much higher extent to myelin compared to wild type mouse DCs. In addition, Ngr1/2 knockout had no effect on in vitro DC differentiation or phenotype. CONCLUSIONS These results indicate that a lack of NgR1/2 expression promotes the adhesion of DCs to myelin. This interaction could be important in neuroinflammatory disorders such as multiple sclerosis in which peripheral immune cells come into contact with myelin debris.
Collapse
Affiliation(s)
- Claire L McDonald
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
82
|
Zeng Y, Rademacher C, Nycholat CM, Futakawa S, Lemme K, Ernst B, Paulson JC. High affinity sialoside ligands of myelin associated glycoprotein. Bioorg Med Chem Lett 2011; 21:5045-9. [PMID: 21561770 PMCID: PMC3156379 DOI: 10.1016/j.bmcl.2011.04.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 01/19/2023]
Abstract
Myelin associated glycoprotein (Siglec-4) is a myelin adhesion receptor, that is, well established for its role as an inhibitor of axonal outgrowth in nerve injury, mediated by binding to sialic acid containing ligands on the axonal membrane. Because disruption of myelin-ligand interactions promotes axon outgrowth, we have sought to develop potent ligand based inhibitors using natural ligands as scaffolds. Although natural ligands of MAG are glycolipids terminating in the sequence NeuAcα2-3Galβ1-3(±NeuAcα2-6)GalNAcβ-R, we previously established that synthetic O-linked glycoprotein glycans with the same sequence α-linked to Thr exhibited ∼1000-fold increased affinity (∼1μM). Attempts to increase potency by introducing a benzoylamide substituent at C-9 of the α2-3 sialic acid afforded only a two-fold increase, instead of increases of >100-fold observed for other sialoside ligands of MAG. Surprisingly, however, introduction of a 9-N-fluoro-benzoyl substituent on the α2-6 sialic acid increased affinity 80-fold, resulting in a potent inhibitor with a K(d) of 15nM. Docking this ligand to a model of MAG based on known crystal structures of other siglecs suggests that the Thr positions the glycan such that aryl substitution of the α2-3 sialic acid produces a steric clash with the GalNAc, while attaching an aryl substituent to the other sialic acid positions the substituent near a hydrophobic pocket that accounts to the increase in affinity.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Physiological Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | | | | | | | | |
Collapse
|
83
|
Semavina M, Saha N, Kolev MV, Goldgur Y, Giger RJ, Himanen JP, Nikolov DB. Crystal structure of the Nogo-receptor-2. Protein Sci 2011; 20:684-9. [PMID: 21308849 DOI: 10.1002/pro.597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The inhibition of axon regeneration upon mechanical injury is dependent on interactions between Nogo receptors (NgRs) and their myelin-derived ligands. NgRs are composed of a leucine-rich repeat (LRR) region, thought to be structurally similar among the different isoforms of the receptor, and a divergent "stalk" region. It has been shown by others that the LRR and stalk regions of NgR1 and NgR2 have distinct roles in conferring binding affinity to the myelin associated glycoprotein (MAG) in vivo. Here, we show that purified recombinant full length NgR1 and NgR2 maintain significantly higher binding affinity for purified MAG as compared to the isolated LRR region of either NgR1 or NgR2. We also present the crystal structure of the LRR and part of the stalk regions of NgR2 and compare it to the previously reported NgR1 structure with respect to the distinct signaling properties of the two receptor isoforms.
Collapse
Affiliation(s)
- Mariya Semavina
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Jitoku D, Hattori E, Iwayama Y, Yamada K, Toyota T, Kikuchi M, Maekawa M, Nishikawa T, Yoshikawa T. Association study of Nogo-related genes with schizophrenia in a Japanese case-control sample. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:581-92. [PMID: 21563301 DOI: 10.1002/ajmg.b.31199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 04/25/2011] [Indexed: 11/11/2022]
Abstract
Many studies have suggested that myelin dysfunction may be causally involved in the pathogenesis of schizophrenia. Nogo (RTN4), myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMG) all bind to the common receptor, Nogo-66 receptor 1 (RTN4R). We examined 68 single nucleotide polymorphisms (SNPs) (51 with genotyping and 17 with imputation analysis) from these four genes for genetic association with schizophrenia, using a 2,120 case-control sample from the Japanese population. Allelic tests showed nominally significant association of two RTN4 SNPs (P = 0.047 and 0.037 for rs11894868 and rs2968804, respectively) and two MAG SNPs (P = 0.034 and 0.029 for rs7249617 and rs16970218, respectively) with schizophrenia. The MAG SNP rs7249617 also showed nominal significance in a genotypic test (P = 0.017). In haplotype analysis, the MAG haplotype block including rs7249617 and rs16970218 showed nominal significance (P = 0.008). These associations did not remain significant after correction for multiple testing, possibly due to their small genetic effect. In the imputation analysis of RTN4, the untyped SNP rs2972090 showed nominally significant association (P = 0.032) and several imputed SNPs showed marginal associations. Moreover, in silico analysis (PolyPhen) of a missense variant (rs11677099: Asp357Val), which is in strong linkage disequilibrium with rs11894868, predicted a deleterious effect on Nogo protein function. Despite a failure to detect robust associations in this Japanese cohort, our nominally positive signals, taken together with previously reported biological and genetic findings, add further support to the "disturbed myelin system theory of schizophrenia" across different populations.
Collapse
Affiliation(s)
- Daisuke Jitoku
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Lopez PHH, Ahmad AS, Mehta NR, Toner M, Rowland EA, Zhang J, Doré S, Schnaar RL. Myelin-associated glycoprotein protects neurons from excitotoxicity. J Neurochem 2011; 116:900-8. [PMID: 21214567 PMCID: PMC3059261 DOI: 10.1111/j.1471-4159.2010.07069.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In addition to supporting rapid nerve conduction, myelination nurtures and stabilizes axons and protects them from acute toxic insults. One myelin molecule that protects and sustains axons is myelin-associated glycoprotein (MAG). MAG is expressed on the innermost wrap of myelin, apposed to the axon surface, where it interacts with axonal receptors that reside in lateral membrane domains including gangliosides, the glycosylphosphatidylinositol-anchored Nogo receptors, and β1-integrin. We report here that MAG protection extends beyond the axon to the neurons from which those axons emanate, protecting them from excitotoxicity. Compared to wild type mice, Mag-null mice displayed markedly increased seizure activity in response to intraperitoneal injection of kainic acid, an excitotoxic glutamate receptor agonist. Mag-null mice also had larger lesion volumes in response to intrastriatal injection of the excitotoxin NMDA. Prior injection of a soluble form of MAG partially protected Mag-null mice from NMDA-induced lesions. Hippocampal neurons plated on proteins extracted from wild-type rat or mouse myelin were resistant to kainic acid-induced excitotoxicity, whereas neurons plated on proteins from Mag-null myelin were not. Protection was reversed by anti-MAG antibody and replicated by addition of soluble MAG. MAG-mediated protection from excitotoxicity was dependent on Nogo receptors and β1-integrin. We conclude that MAG engages membrane-domain resident neuronal receptors to protect neurons from excitotoxicity, and that soluble MAG mitigates excitotoxic damage in vivo.
Collapse
Affiliation(s)
- Pablo H. H. Lopez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdullah S. Ahmad
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Niraj R. Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mayu Toner
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth A. Rowland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sylvain Doré
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ronald L. Schnaar
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
86
|
Perdigoto AL, Chaudhry N, Barnes GN, Filbin MT, Carter BD. A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons. Mol Cell Neurosci 2011; 46:235-44. [PMID: 20869442 PMCID: PMC3018674 DOI: 10.1016/j.mcn.2010.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/18/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022] Open
Abstract
Axonal regeneration in the central nervous system is prevented, in part, by inhibitory proteins expressed by myelin, including myelin-associated glycoprotein (MAG). Although injury to the corticospinal tract can result in permanent disability, little is known regarding the mechanisms by which MAG affects cortical neurons. Here, we demonstrate that cortical neurons plated on MAG expressing CHO cells, exhibit a striking reduction in process outgrowth. Interestingly, none of the receptors previously implicated in MAG signaling, including the p75 neurotrophin receptor or gangliosides, contributed significantly to MAG-mediated inhibition. However, blocking the small GTPase Rho or its downstream effector kinase, ROCK, partially reversed the effects of MAG on the neurons. In addition, we identified the lipid phosphatase PTEN as a mediator of MAG's inhibitory effects on neurite outgrowth. Knockdown or gene deletion of PTEN or overexpression of activated AKT in cortical neurons resulted in significant, although partial, rescue of neurite outgrowth on MAG-CHO cells. Moreover, MAG decreased the levels of phospho-Akt, suggesting that it activates PTEN in the neurons. Taken together, these results suggest a novel pathway activated by MAG in cortical neurons involving the PTEN/PI3K/AKT axis.
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Department of Biochemistry and the Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nagarathnamma Chaudhry
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065
| | - Gregory N. Barnes
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Marie T. Filbin
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065
| | - Bruce D. Carter
- Department of Biochemistry and the Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, 37232
| |
Collapse
|
87
|
Li S, Overman JJ, Katsman D, Kozlov SV, Donnelly CJ, Twiss JL, Giger RJ, Coppola G, Geschwind DH, Carmichael ST. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 2010; 13:1496-504. [PMID: 21057507 PMCID: PMC3059556 DOI: 10.1038/nn.2674] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022]
Abstract
Stroke is an age-related disease. Recovery after stroke is associated with axonal sprouting in cortex adjacent to the infarct. The molecular program that induces a mature cortical neuron to sprout a new connection after stroke is not known. We selectively isolated neurons that sprout a new connection in cortex after stroke and compared their whole-genome expression profile to that of adjacent, non-sprouting neurons. This 'sprouting transcriptome' identified a neuronal growth program that consists of growth factor, cell adhesion, axonal guidance and cytoskeletal modifying molecules that differed by age and time point. Gain and loss of function in three distinct functional classes showed new roles for these proteins in epigenetic regulation of axonal sprouting, growth factor-dependent survival of neurons and, in the aged mouse, paradoxical upregulation of myelin and ephrin receptors in sprouting neurons. This neuronal growth program may provide new therapeutic targets and suggest mechanisms for age-related differences in functional recovery.
Collapse
Affiliation(s)
- Songlin Li
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Llorens F, Gil V, del Río JA. Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J 2010; 25:463-75. [PMID: 21059749 DOI: 10.1096/fj.10-162792] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth, and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG, and OMgp, share two common neuronal receptors: NgR1, together with its coreceptors [p75(NTR), TROY, and Lingo-1]; and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes, such as development, neuronal homeostasis, plasticity, and neurodegeneration.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
89
|
Schwab ME. Functions of Nogo proteins and their receptors in the nervous system. Nat Rev Neurosci 2010; 11:799-811. [PMID: 21045861 DOI: 10.1038/nrn2936] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The membrane protein Nogo-A was initially characterized as a CNS-specific inhibitor of axonal regeneration. Recent studies have uncovered regulatory roles of Nogo proteins and their receptors--in precursor migration, neurite growth and branching in the developing nervous system--as well as a growth-restricting function during CNS maturation. The function of Nogo in the adult CNS is now understood to be that of a negative regulator of neuronal growth, leading to stabilization of the CNS wiring at the expense of extensive plastic rearrangements and regeneration after injury. In addition, Nogo proteins interact with various intracellular components and may have roles in the regulation of endoplasmic reticulum (ER) structure, processing of amyloid precursor protein and cell survival.
Collapse
Affiliation(s)
- Martin E Schwab
- University of Zurich and ETH, Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
90
|
Dickson HM, Zurawski J, Zhang H, Turner DL, Vojtek AB. POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66. J Neurosci 2010; 30:13319-25. [PMID: 20926658 PMCID: PMC2963859 DOI: 10.1523/jneurosci.1324-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/22/2010] [Accepted: 08/07/2010] [Indexed: 01/31/2023] Open
Abstract
Myelin-derived inhibitors limit axon outgrowth and plasticity during development and in the adult mammalian CNS. Nogo66, a functional domain of the myelin-derived inhibitor NogoA, signals through the PirB receptor to inhibit axon outgrowth. The signaling pathway mobilized by Nogo66 engagement of PirB is not well understood. We identify a critical role for the scaffold protein Plenty of SH3s (POSH) in relaying process outgrowth inhibition downstream of Nogo66 and PirB. Blocking the function of POSH, or two POSH-associated proteins, leucine zipper kinase (LZK) and Shroom3, with RNAi in cortical neurons leads to release from myelin and Nogo66 inhibition. We also observed autocrine inhibition of process outgrowth by NogoA, and suppression analysis with the POSH-associated kinase LZK demonstrated that LZK operates downstream of NogoA and PirB in a POSH-dependent manner. In addition, cerebellar granule neurons with an RNAi-mediated knockdown in POSH function were refractory to the inhibitory action of Nogo66, indicating that a POSH-dependent mechanism operates to inhibit axon outgrowth in different types of CNS neurons. These studies delineate an intracellular signaling pathway for process outgrowth inhibition by Nogo66, comprised of NogoA, PirB, POSH, LZK, and Shroom3, and implicate the POSH complex as a potential therapeutic target to enhance axon outgrowth and plasticity in the injured CNS.
Collapse
Affiliation(s)
| | | | - Huanqing Zhang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - David L. Turner
- Department of Biological Chemistry and
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
91
|
Raiker SJ, Lee H, Baldwin KT, Duan Y, Shrager P, Giger RJ. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 2010; 30:12432-45. [PMID: 20844138 PMCID: PMC2967212 DOI: 10.1523/jneurosci.0895-10.2010] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/17/2010] [Accepted: 07/25/2010] [Indexed: 12/31/2022] Open
Abstract
In the adult mammalian CNS, the growth inhibitors oligodendrocyte-myelin glycoprotein (OMgp) and the reticulon RTN4 (Nogo) are broadly expressed in oligodendrocytes and neurons. Nogo and OMgp complex with the neuronal cell surface receptors Nogo receptor-1 (NgR1) and paired Ig-like receptor-B (PirB) to regulate neuronal morphology. In the healthy CNS, NgR1 regulates dendritic spine shape and attenuates activity-driven synaptic plasticity at Schaffer collateral-CA1 synapses. Here, we examine whether Nogo and OMgp influence functional synaptic plasticity, the efficacy by which synaptic transmission occurs. In acute hippocampal slices of adult mice, Nogo-66 and OMgp suppress NMDA receptor-dependent long-term potentiation (LTP) when locally applied to Schaffer collateral-CA1 synapses. Neither Nogo-66 nor OMgp influences basal synaptic transmission or paired-pulse facilitation, a form of short-term synaptic plasticity. PirB(-/-) and NgR1(-/-) single mutants and NgR1(-/-);PirB(-/-) double mutants show normal LTP, indistinguishable from wild-type controls. In juvenile mice, LTD in NgR1(-/-), but not PirB(-/-), slices is absent. Mechanistic studies revealed that Nogo-66 and OMgp suppress LTP in an NgR1-dependent manner. OMgp inhibits LTP in part through PirB but independently of p75. This suggests that NgR1 and PirB participate in ligand-dependent inhibition of synaptic plasticity. Loss of NgR1 leads to increased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), signaling intermediates known to regulate neuronal growth and synaptic function. In primary cortical neurons, BDNF elicited phosphorylation of AKT and p70S6 kinase is attenuated in the presence of myelin inhibitors. Collectively, we provide evidence that mechanisms of neuronal growth inhibition and inhibition of synaptic strength are related. Thus, myelin inhibitors and their receptors may coordinate structural and functional neuronal plasticity in CNS health and disease.
Collapse
Affiliation(s)
- Stephen J. Raiker
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, and
| | - Hakjoo Lee
- Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642, and
| | - Katherine T. Baldwin
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Shrager
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| |
Collapse
|
92
|
Lee JK, Chow R, Xie F, Chow SY, Tolentino KE, Zheng B. Combined genetic attenuation of myelin and semaphorin-mediated growth inhibition is insufficient to promote serotonergic axon regeneration. J Neurosci 2010; 30:10899-904. [PMID: 20702718 PMCID: PMC2974627 DOI: 10.1523/jneurosci.2269-10.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/16/2010] [Accepted: 06/26/2010] [Indexed: 12/23/2022] Open
Abstract
After CNS injuries, axon growth inhibitors from the myelin and the scar tissue at the injury site are considered major impediments to axon regeneration. The presence of several classes of inhibitors with multiple members in each class suggests functional redundancy in growth inhibition. To test redundancy within the myelin inhibitory pathway, we analyzed raphe spinal serotonergic (5-HT) axon regeneration in mice deficient in two major myelin inhibitors, Nogo and MAG, and their common receptor NgR1 (or NgR). After a complete transection spinal cord injury, there was no significant enhancement of 5-HT axon regeneration beyond the injury site in either Nogo/MAG/NgR1 triple mutants or NgR1 single mutants. Occasional, genotype-independent traversal of 5-HT axons through GFAP-positive tissue bridges at the injury site implicates GFAP-negative lesion areas as especially inhibitory to 5-HT axons. To assess the contribution of class 3 Semaphorins that are expressed by GFAP-negative meningeal fibroblasts at the injury site, we analyzed mice deficient in PlexinA3 and PlexinA4, two key receptors for class 3 Semaphorins, with or without additional NgR1 deletion. No enhanced regeneration of 5-HT or corticospinal axons was detected in PlexinA3/PlexinA4 double mutants or PlexinA3/PlexinA4/NgR1 triple mutants through a complete transection injury. In contrast with previous reports, these data demonstrate that attenuating myelin or Semaphorin-mediated inhibition of axon growth is insufficient to promote 5-HT axon regeneration and further indicate that even attenuating both classes of inhibitory influences is insufficient to promote regeneration of injured axons through a complete transection spinal cord injury.
Collapse
Affiliation(s)
- Jae K. Lee
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Renee Chow
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Fang Xie
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Sharon Y. Chow
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Kristine E. Tolentino
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Binhai Zheng
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093
| |
Collapse
|
93
|
Fraidakis MJ. Lugaro's forgotten legacy: the hypothesis of negative neurotropism. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2010; 19:239-252. [PMID: 20628953 DOI: 10.1080/09647040903148621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Among the most fascinating riddles in neuroscience is the one concerning the poor regeneration capacity of the adult mammalian CNS. A central aetiological hypothesis for the lack of axonal regeneration in the CNS concerns the inhibitory role of myelin components of the white matter. The main exponent of this hypothesis in the 1980s and 1990s has been Martin Schwab, although before him Martin Berry and others had suggested an inhibitory role for CNS myelin. However, a hypothesis for a negative neurotropic action exerted by CNS white matter was formulated by Lugaro already in 1906. This article is a belated tribute to Lugaro's original contribution in the field of neuroregeneration.
Collapse
|
94
|
Abstract
Mutations in leucine-rich glioma inactivated (LGI1) are a genetic cause of autosomal dominant temporal lobe epilepsy with auditory features. LGI1 is a secreted protein that shares homology with members of the SLIT family, ligands that direct axonal repulsion and growth cone collapse, and we therefore considered the possibility that LGI1 may regulate neuronal process extension or growth cone collapse. Here we report that LGI1 does not affect growth directly but instead enhances neuronal growth on myelin-based inhibitory substrates and antagonizes myelin-induced growth cone collapse. We show that LGI1 mediates this effect by functioning as a specific Nogo receptor 1 (NgR1) ligand that antagonizes the action of myelin-based inhibitory cues. Finally, we demonstrate that NgR1 and ADAM22 physically associate to form a receptor complex in which NgR1 facilitates LGI1 binding to ADAM22.
Collapse
|
95
|
Zörner B, Schwab ME. Anti-Nogo on the go: from animal models to a clinical trial. Ann N Y Acad Sci 2010; 1198 Suppl 1:E22-34. [DOI: 10.1111/j.1749-6632.2010.05566.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
96
|
Abstract
The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.
Collapse
|
97
|
Cafferty WBJ, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci 2010; 30:6825-37. [PMID: 20484625 PMCID: PMC2883258 DOI: 10.1523/jneurosci.6239-09.2010] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/06/2010] [Accepted: 04/01/2010] [Indexed: 12/11/2022] Open
Abstract
Functional recovery after adult CNS damage is limited in part by myelin inhibitors of axonal regrowth. Three molecules, Nogo-A, MAG, and OMgp, are produced by oligodendrocytes and share neuronal receptor mechanisms through NgR1 and PirB. While each has an axon-inhibitory role in vitro, their in vivo interactions and relative potencies have not been defined. Here, we compared mice singly, doubly, or triply mutant for these three myelin inhibitor proteins. The myelin extracted from Nogo-A mutant mice is less inhibitory for axons than is that from wild-type mice, but myelin lacking MAG and OMgp is indistinguishable from control. However, myelin lacking all three inhibitors is less inhibitory than Nogo-A-deficient myelin, uncovering a redundant and synergistic role for all three proteins in axonal growth inhibition. Spinal cord injury studies revealed an identical in vivo hierarchy of these three myelin proteins. Loss of Nogo-A allows corticospinal and raphespinal axon growth above and below the injury, as well as greater behavioral recovery than in wild-type or heterozygous mutant mice. In contrast, deletion of MAG and OMgp stimulates neither axonal growth nor enhanced locomotion. The triple-mutant mice exhibit greater axonal growth and improved locomotion, consistent with a principal role for Nogo-A and synergistic actions for MAG and OMgp, presumably through shared receptors. These data support the hypothesis that targeting all three myelin ligands, as with NgR1 decoy receptor, provides the optimal chance for overcoming myelin inhibition and improving neurological function.
Collapse
Affiliation(s)
- William B. J. Cafferty
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and
- Departments of Neurology and
| | - Philip Duffy
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and
- Departments of Neurology and
| | - Eric Huebner
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and
- Departments of Neurology and
| | - Stephen M. Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and
- Departments of Neurology and
- Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06536
| |
Collapse
|
98
|
Wright GJ. Signal initiation in biological systems: the properties and detection of transient extracellular protein interactions. MOLECULAR BIOSYSTEMS 2010; 5:1405-12. [PMID: 19593473 PMCID: PMC2898632 DOI: 10.1039/b903580j] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular glycoprotein interactions are not detected by most high throughput assays creating “blind-spots” in protein interaction maps. This review examines this problem and discusses recent advances that have begun to address it.
Individual cells within biological systems frequently coordinate their functions through signals initiated by specific extracellular protein interactions involving receptors that bridge the cellular membrane. Due to their biochemical nature, these membrane-embedded receptor proteins are difficult to manipulate and their interactions are characterised by very weak binding strengths that cannot be detected using popular high throughput assays. This review will provide a general outline of the biochemical attributes of receptor proteins focussing in particular on the biophysical properties of their transient interactions. Methods that are able to detect these weak extracellular binding events and especially those that can be used for identifying novel interactions will be compared. Finally, I discuss the feasibility of constructing a complete and accurate extracellular protein interaction map, and the methods that are likely to be useful in achieving this goal.
Collapse
Affiliation(s)
- Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| |
Collapse
|
99
|
Seira O, Gavín R, Gil V, Llorens F, Rangel A, Soriano E, del Río JA. Neurites regrowth of cortical neurons by GSK3beta inhibition independently of Nogo receptor 1. J Neurochem 2010; 113:1644-58. [PMID: 20374426 DOI: 10.1111/j.1471-4159.2010.06726.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lesioned axons do not regenerate in the adult mammalian CNS, owing to the over-expression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3beta (GSK3beta) and extracellular-related kinase (ERK) 1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3beta and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: (i) cerebellar granule cells and (ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3beta inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Finally, these regenerative effects were corroborated in the lesioned entorhino-hippocampal pathway in NgR1-/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.
Collapse
Affiliation(s)
- Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
100
|
Usher LC, Johnstone A, Ertürk A, Hu Y, Strikis D, Wanner IB, Moorman S, Lee JW, Min J, Ha HH, Duan Y, Hoffman S, Goldberg JL, Bradke F, Chang YT, Lemmon VP, Bixby JL. A chemical screen identifies novel compounds that overcome glial-mediated inhibition of neuronal regeneration. J Neurosci 2010; 30:4693-706. [PMID: 20357120 PMCID: PMC2855497 DOI: 10.1523/jneurosci.0302-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/16/2010] [Indexed: 11/21/2022] Open
Abstract
A major barrier to regeneration of CNS axons is the presence of growth-inhibitory proteins associated with myelin and the glial scar. To identify chemical compounds with the ability to overcome the inhibition of regeneration, we screened a novel triazine library, based on the ability of compounds to increase neurite outgrowth from cerebellar neurons on inhibitory myelin substrates. The screen produced four "hit compounds," which act with nanomolar potency on several different neuronal types and on several distinct substrates relevant to glial inhibition. Moreover, the compounds selectively overcome inhibition rather than promote growth in general. The compounds do not affect neuronal cAMP levels, PKC activity, or EGFR (epidermal growth factor receptor) activation. Interestingly, one of the compounds alters microtubule dynamics and increases microtubule density in both fibroblasts and neurons. This same compound promotes regeneration of dorsal column axons after acute lesions and potentiates regeneration of optic nerve axons after nerve crush in vivo. These compounds should provide insight into the mechanisms through which glial-derived inhibitors of regeneration act, and could lead to the development of novel therapies for CNS injury.
Collapse
Affiliation(s)
| | - Andrea Johnstone
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ali Ertürk
- Laboratory of Axon Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | | | | - Ina B. Wanner
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Sanne Moorman
- Program in Neuroscience and Cognition, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jae-Wook Lee
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Jaeki Min
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Hyung-Ho Ha
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | | | - Stanley Hoffman
- Department of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey L. Goldberg
- Ophthalmology, and
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, Singapore 117543, and
| | - Vance P. Lemmon
- Neurological Surgery, and
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - John L. Bixby
- Departments of Pharmacology
- Neurological Surgery, and
- Miami Project to Cure Paralysis
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|