51
|
Nguyen TVV, Hayes M, Zbesko JC, Frye JB, Congrove NR, Belichenko NP, McKay BS, Longo FM, Doyle KP. Alzheimer's associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia. Acta Neuropathol Commun 2018; 6:100. [PMID: 30249297 PMCID: PMC6154927 DOI: 10.1186/s40478-018-0603-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022] Open
Abstract
The goal of this study was to determine the chronic impact of stroke on the manifestation of Alzheimer’s disease (AD) related pathology and behavioral impairments in mice. To accomplish this goal, we used two distinct models. First, we experimentally induced ischemic stroke in aged wildtype (wt) C57BL/6 mice to determine if stroke leads to the manifestation of AD-associated pathological β-amyloid (Aβ) and tau in aged versus young adult wt mice. Second, we utilized a transgenic (Tg) mouse model of AD (hAPP-SL) to determine if stroke leads to the worsening of pre-existing AD pathology, as well as the development of pathology in brain regions not typically expressed in AD Tg mice. In the wt mice, there was delayed motor recovery and an accelerated development of cognitive deficits in aged mice compared to young adult mice following stroke. This corresponded with increased brain atrophy, increased cholinergic degeneration, and a focal increase of Aβ in areas of axonal degeneration in the ipsilateral hemisphere of the aged animals. By contrast, in the hAPP-SL mice, we found that ischemia induced aggravated behavioral deficits in conjunction with a global increase in Aβ, tau, and cholinergic pathology compared to hAPP-SL mice that underwent a sham stroke procedure. With regard to a potential mechanism, in both models, we found that the stroke-induced Aβ and tau deposits co-localized with increased levels of β-secretase 1 (BACE1), along with its substrate, neuregulin 1 (NGR1) type III, both of which are proteins integral for myelin repair. Based on these findings, we propose that the chronic sequelae of stroke may be ratcheting-up a myelin repair pathway, and that the consequent increase in BACE1 could be causing an inadvertent cleavage of its alternative substrate, AβPP, resulting in greater Aβ seeding and pathogenesis.
Collapse
|
52
|
Alhadidi Q, Nash KM, Alaqel S, Sayeed MSB, Shah ZA. Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice. Neuroscience 2018; 383:33-45. [PMID: 29746992 PMCID: PMC11956763 DOI: 10.1016/j.neuroscience.2018.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022]
Abstract
Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target.
Collapse
Affiliation(s)
- Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA; Department of Pharmacy, Diyala Health Directorate, Ministry of Health, Iraq
| | - Kevin M Nash
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Saleh Alaqel
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Muhammad Shahdaat Bin Sayeed
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
53
|
Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci 2018; 91:122-130. [PMID: 30004015 DOI: 10.1016/j.mcn.2018.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca2+ signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca2+ signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
54
|
Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechère L. LIM kinases: cofilin and beyond. Oncotarget 2018; 8:41749-41763. [PMID: 28445157 PMCID: PMC5522193 DOI: 10.18632/oncotarget.16978] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
LIM kinases are common downstream effectors of several signalization pathways and function as a signaling node that controls cytoskeleton dynamics through the phosphorylation of the cofilin family proteins. These last 10 years, several reports indicate that the functions of LIM kinases are more extended than initially described and, specifically, that LIM kinases also control microtubule dynamics, independently of their regulation of actin microfilament. In this review we analyze the data supporting these conclusions and the possible mechanisms that could be involved in the control of microtubules by LIM kinases. The demonstration that LIM kinases also control microtubule dynamics has pointed to new therapeutic opportunities. Consistently, several new LIM kinase inhibitors have been recently developed. We provide a comprehensive comparison of these inhibitors, of their chemical structure, their specificity, their cellular effects as well as their effects in animal models of various diseases including cancer.
Collapse
Affiliation(s)
- Chloé Prunier
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France.,Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karin Sadoul
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM, CNRS UMR, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
55
|
Unsain N, Bordenave MD, Martinez GF, Jalil S, von Bilderling C, Barabas FM, Masullo LA, Johnstone AD, Barker PA, Bisbal M, Stefani FD, Cáceres AO. Remodeling of the Actin/Spectrin Membrane-associated Periodic Skeleton, Growth Cone Collapse and F-Actin Decrease during Axonal Degeneration. Sci Rep 2018; 8:3007. [PMID: 29445221 PMCID: PMC5812996 DOI: 10.1038/s41598-018-21232-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
Axonal degeneration occurs in the developing nervous system for the appropriate establishment of mature circuits, and is also a hallmark of diverse neurodegenerative diseases. Despite recent interest in the field, little is known about the changes (and possible role) of the cytoskeleton during axonal degeneration. We studied the actin cytoskeleton in an in vitro model of developmental pruning induced by trophic factor withdrawal (TFW). We found that F-actin decrease and growth cone collapse (GCC) occur early after TFW; however, treatments that prevent axonal fragmentation failed to prevent GCC, suggesting independent pathways. Using super-resolution (STED) microscopy we found that the axonal actin/spectrin membrane-associated periodic skeleton (MPS) abundance and organization drop shortly after deprivation, remaining low until fragmentation. Fragmented axons lack MPS (while maintaining microtubules) and acute pharmacological treatments that stabilize actin filaments prevent MPS loss and protect from axonal fragmentation, suggesting that MPS destruction is required for axon fragmentation to proceed.
Collapse
Affiliation(s)
- Nicolas Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC, Friuli, 2434 - 5016, Córdoba, Argentina. .,Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Martin D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Buenos Aires, Argentina
| | - Gaby F Martinez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC, Friuli, 2434 - 5016, Córdoba, Argentina.,Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sami Jalil
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC, Friuli, 2434 - 5016, Córdoba, Argentina.,Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Catalina von Bilderling
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico M Barabas
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciano A Masullo
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aaron D Johnstone
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Philip A Barker
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC, Friuli, 2434 - 5016, Córdoba, Argentina.,Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION)-CONICET, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo O Cáceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC, Friuli, 2434 - 5016, Córdoba, Argentina. .,Universidad Nacional de Córdoba, Córdoba, Argentina. .,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba, Argentina.
| |
Collapse
|
56
|
Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer's disease. J Neurosci 2018; 38:1085-1099. [PMID: 29246925 PMCID: PMC5792472 DOI: 10.1523/jneurosci.2127-17.2017] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Dendritic spine loss is recognized as an early feature of Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Dendritic spine structure is defined by filamentous actin (F-actin) and we observed depolymerization of synaptosomal F-actin accompanied by increased globular-actin (G-actin) at as early as 1 month of age in a mouse model of AD (APPswe/PS1ΔE9, male mice). This led to recall deficit after contextual fear conditioning (cFC) at 2 months of age in APPswe/PS1ΔE9 male mice, which could be reversed by the actin-polymerizing agent jasplakinolide. Further, the F-actin-depolymerizing agent latrunculin induced recall deficit after cFC in WT mice, indicating the importance of maintaining F-/G-actin equilibrium for optimal behavioral response. Using direct stochastic optical reconstruction microscopy (dSTORM), we show that F-actin depolymerization in spines leads to a breakdown of the nano-organization of outwardly radiating F-actin rods in cortical neurons from APPswe/PS1ΔE9 mice. Our results demonstrate that synaptic dysfunction seen as F-actin disassembly occurs very early, before onset of pathological hallmarks in AD mice, and contributes to behavioral dysfunction, indicating that depolymerization of F-actin is causal and not consequent to decreased spine density. Further, we observed decreased synaptosomal F-actin levels in postmortem brain from mild cognitive impairment and AD patients compared with subjects with normal cognition. F-actin decrease correlated inversely with increasing AD pathology (Braak score, Aβ load, and tangle density) and directly with performance in episodic and working memory tasks, suggesting its role in human disease pathogenesis and progression.SIGNIFICANCE STATEMENT Synaptic dysfunction underlies cognitive deficits in Alzheimer's disease (AD). The cytoskeletal protein actin plays a critical role in maintaining structure and function of synapses. Using cultured neurons and an AD mouse model, we show for the first time that filamentous actin (F-actin) is lost selectively from synapses early in the disease process, long before the onset of classical AD pathology. We also demonstrate that loss of synaptic F-actin contributes directly to memory deficits. Loss of synaptosomal F-actin in human postmortem tissue correlates directly with decreased performance in memory test and inversely with AD pathology. Our data highlight that synaptic cytoarchitectural changes occur early in AD and they may be targeted for the development of therapeutics.
Collapse
|
57
|
Pi WS, Cao ZY, Liu JM, Peng AF, Chen WZ, Chen JW, Huang SH, Liu ZL. Potential Molecular Mechanisms of AURKB in the Oncogenesis and Progression of Osteosarcoma Cells: A Label-Free Quantitative Proteomics Analysis. Technol Cancer Res Treat 2018; 18:1533033819853262. [PMID: 31122179 PMCID: PMC6535743 DOI: 10.1177/1533033819853262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Our previous study indicated that knockdown of Aurora-B inhibit the proliferation of osteosarcoma cells. But the function and molecular mechanisms of Aurora-B in osteosarcoma cells growth and metastasis remains unclear. The aim of this study was to investigate the molecular mechanisms of Aurora-B in the progression of osteosarcoma. Osteosarcoma cells (U2-OS and 143B) were treated with specific Lentivirus-Vectors (up or downregulation Aurora-B). The ability of cells proliferation, migration, and invasion was measured using Cell-Counting Kit-8, wound healing and transwell invasion assays. Furthermore, based on label-free quantitative proteomic analysis of potential molecular mechanisms of Aurora-B in human 143B cells. A total of 25 downregulated and 76 upregulated differentially expressed proteins were screened in terms of the change in their expression abundance. We performed functional annotation and functional enrichment analyses. Gene ontology enrichment, KEGG analysis, and protein-protein interaction networks were constructed and analyzed. We found that the PTK2 may play an important role in the progression of osteosarcoma cells. Finally, Western blot revealed that expression of PTK2, AKT, PI3K, and nuclear factor-kappaB increased after over expression of Aurora-B. Overall, these data highlight that Aurora-B may promote the malignant phenotype of osteosarcoma cells by activating the PTK2/PI3K/AKt/nuclear factor-KappaB pathway.
Collapse
Affiliation(s)
- Wen-Sen Pi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhi-Yuan Cao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jia-Ming Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Ai-Fen Peng
- School of Humanities, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Wen-Zhao Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jiang-Wei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Shan-Hu Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhi-Li Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
58
|
Bignante EA, Ponce NE, Heredia F, Musso J, Krawczyk MC, Millán J, Pigino GF, Inestrosa NC, Boccia MM, Lorenzo A. APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models. Neurobiol Aging 2017; 64:44-57. [PMID: 29331876 DOI: 10.1016/j.neurobiolaging.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/15/2022]
Abstract
Deposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites. APP overexpression rendered neurons vulnerable to Aβ toxicity by a mechanism that required Go-Gβγ complex signaling and p38-mitogen-activated protein kinase activation. Gallein, a selective pharmacological inhibitor of Gβγ complex, inhibited Aβ-induced dendritic and axonal dystrophy, abnormal tau phosphorylation, synaptic loss, and neuronal cell death in hippocampal neurons expressing endogenous protein levels. In the 3xTg-AD mice, intrahippocampal application of gallein reversed memory impairment associated with early Aβ pathology. Our data provide further evidence for the involvement of APP/Go protein in Aβ-induced degeneration and reveal that Gβγ complex is a signaling target potentially relevant for developing therapies for halting Aβ degeneration in AD.
Collapse
Affiliation(s)
- Elena Anahi Bignante
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Universitario de Ciencias Biomédicas de Córdoda (IUCBC), Argentina
| | - Nicolás Eric Ponce
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Florencia Heredia
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juliana Musso
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Krawczyk
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Millán
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo F Pigino
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | - Mariano M Boccia
- Laboratorio de Neurofarmacología de los Procesos de Memoria, Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Lorenzo
- Instituto de Investigación Médica "Mercedes y Martín Ferreyra", INIMEC-CONICET- Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
59
|
Cissé M, Duplan E, Lorivel T, Dunys J, Bauer C, Meckler X, Gerakis Y, Lauritzen I, Checler F. The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Mol Psychiatry 2017; 22:1562-1575. [PMID: 27646263 PMCID: PMC5658671 DOI: 10.1038/mp.2016.152] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Neuronal network dysfunction and cognitive decline constitute the most prominent features of Alzheimer's disease (AD), although mechanisms causing such impairments are yet to be determined. Here we report that virus-mediated delivery of the active spliced transcription factor X-Box binding protein 1s (XBP1s) in the hippocampus rescued spine density, synaptic plasticity and memory function in a mouse model of AD. XBP1s transcriptionally activated Kalirin-7 (Kal7), a protein that controls synaptic plasticity. In addition, we found reduced levels of Kal7 in primary neurons exposed to Aβ oligomers, transgenic mouse models and human AD brains. Short hairpin RNA-mediated knockdown of Kal7 altered synaptic plasticity and memory formation in naive mice. Further, reduction of endogenous Kal7 compromised the beneficial effects of XBP1s in Alzheimer's model. Hence, our findings reveal that XBP1s is neuroprotective through a mechanism that engages Kal7 pathway with therapeutic implications in AD pathology.
Collapse
Affiliation(s)
- M Cissé
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France,Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, NEUROLOGY, IPMC/CNRS, 660 Route des Lucioles, 06560 Valbonne, France. E-mail:
| | - E Duplan
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - T Lorivel
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - J Dunys
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - C Bauer
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - X Meckler
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - Y Gerakis
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - I Lauritzen
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - F Checler
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
60
|
The Physiological and Pathological Implications of the Formation of Hydrogels, with a Specific Focus on Amyloid Polypeptides. Biomolecules 2017; 7:biom7040070. [PMID: 28937634 PMCID: PMC5745453 DOI: 10.3390/biom7040070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hydrogels are water-swollen and viscoelastic three-dimensional cross-linked polymeric network originating from monomer polymerisation. Hydrogel-forming polypeptides are widely found in nature and, at a cellular and organismal level, they provide a wide range of functions for the organism making them. Amyloid structures, arising from polypeptide aggregation, can be damaging or beneficial to different types of organisms. Although the best-known amyloids are those associated with human pathologies, this underlying structure is commonly used by higher eukaryotes to maintain normal cellular activities, and also by microbial communities to promote their survival and growth. Amyloidogenesis occurs by nucleation-dependent polymerisation, which includes several species (monomers, nuclei, oligomers, and fibrils). Oligomers of pathological amyloids are considered the toxic species through cellular membrane perturbation, with the fibrils thought to represent a protective sink for toxic species. However, both functional and disease-associated amyloids use fibril cross-linking to form hydrogels. The properties of amyloid hydrogels can be exploited by organisms to fulfil specific physiological functions. Non-physiological hydrogelation by pathological amyloids may provide additional toxic mechanism(s), outside of membrane toxicity by oligomers, such as physical changes to the intracellular and extracellular environments, with wide-spread consequences for many structural and dynamic processes, and overall effects on cell survival.
Collapse
|
61
|
Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 2017; 12:e0185102. [PMID: 28934273 PMCID: PMC5608314 DOI: 10.1371/journal.pone.0185102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa), a derivative of Paeonol, attenuated D-galactose (D-gal) and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT), elevated plus maze test (EPMT), and Morris water maze test (MWMT). Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.
Collapse
Affiliation(s)
- Fei Han
- College of Life Science, Anhui Normal University, Wuhu, China
| | | | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, Wuhu, China
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Ya-Fei Cai
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, Wuhu, China
- * E-mail:
| |
Collapse
|
62
|
Vrijens K, Winckelmans E, Tsamou M, Baeyens W, De Boever P, Jennen D, de Kok TM, Den Hond E, Lefebvre W, Plusquin M, Reynders H, Schoeters G, Van Larebeke N, Vanpoucke C, Kleinjans J, Nawrot TS. Sex-Specific Associations between Particulate Matter Exposure and Gene Expression in Independent Discovery and Validation Cohorts of Middle-Aged Men and Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:660-669. [PMID: 27740511 PMCID: PMC5381989 DOI: 10.1289/ehp370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 08/12/2016] [Accepted: 08/22/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. OBJECTIVES Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. METHODS Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM10 in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway analysis was performed using Gene Set Enrichment Analysis. Average daily PM2.5 and PM10 exposures over 2-years were estimated for each participant's residential address using spatiotemporal interpolation in combination with a dispersion model. RESULTS Average long-term PM10 was 25.9 (± 5.4) and 23.7 (± 2.3) μg/m3 in the discovery and validation cohorts, respectively. In discovery analysis, associations between PM10 and the expression of individual genes differed by sex. In the validation cohort, long-term PM10 was associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p = 0.053) in women. AKAP6 and LIMK1 were significantly associated with PM10 in women, although associations differed in direction between the discovery and validation cohorts. Expression of the eight candidate genes in the discovery cohort differentiated between validation cohort participants with high versus low PM10 exposure (area under the receiver operating curve = 0.92; 95% CI: 0.85, 1.00; p = 0.0002 in men, 0.86; 95% CI: 0.76, 0.96; p = 0.004 in women). CONCLUSIONS Expression of the sex-specific candidate genes identified in the discovery population predicted PM10 exposure in an independent cohort of adults from the same area. Confirmation in other populations may further support this as a new approach for exposure assessment, and may contribute to the discovery of molecular mechanisms for PM-induced health effects.
Collapse
Affiliation(s)
- Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ellen Winckelmans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maria Tsamou
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Free University of Brussels, Brussels, Belgium
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Theo M. de Kok
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Elly Den Hond
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Wouter Lefebvre
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Hans Reynders
- Environment, Nature and Energy Department, Flemish Government, Brussels, Belgium
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- University of Southern Denmark, Institute of Public Health, Department of Environmental Medicine, Odense, Denmark
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Nuclear Medicine, Ghent University, Ghent, Belgium
| | | | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
- Address correspondence to T.S. Nawrot, Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, B-3590 Diepenbeek, Belgium. Telephone: 0032/11-26.83.82. E-mail:
| |
Collapse
|
63
|
Kweon JH, Kim S, Lee SB. The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep 2017; 50:5-11. [PMID: 27502014 PMCID: PMC5319658 DOI: 10.5483/bmbrep.2017.50.1.131] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 01/30/2023] Open
Abstract
One of the characteristics of the neurons that distinguishes them from other cells is their complex and polarized structure consisting of dendrites, cell body, and axon. The complexity and diversity of dendrites are particularly well recognized, and accumulating evidences suggest that the alterations in the dendrite structure are associated with many neurodegenerative diseases. Given the importance of the proper dendritic structures for neuronal functions, the dendrite pathology appears to have crucial contribution to the pathogenesis of neurodegenerative diseases. Nonetheless, the cellular and molecular basis of dendritic changes in the neurodegenerative diseases remains largely elusive. Previous studies in normal condition have revealed that several cellular components, such as local cytoskeletal structures and organelles located locally in dendrites, play crucial roles in dendrite growth. By reviewing what has been unveiled to date regarding dendrite growth in terms of these local cellular components, we aim to provide an insight to categorize the potential cellular basis that can be applied to the dendrite pathology manifested in many neurodegenerative diseases. [BMB Reports 2017; 50(1): 5-11].
Collapse
Affiliation(s)
- Jung Hyun Kweon
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Sunhong Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141; Department of Biomolecular Science, University of Science and Technology, Daejeon 34141, Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| |
Collapse
|
64
|
Galan-Rodriguez B, Martin E, Brouillet E, Déglon N, Betuing S, Caboche J. Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin. Eur J Neurosci 2016; 45:198-206. [PMID: 27717053 DOI: 10.1111/ejn.13415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 01/27/2023]
Abstract
Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings.
Collapse
Affiliation(s)
- Beatriz Galan-Rodriguez
- UMRS-INSERM1130, Neurosciences Paris Seine, Paris, France.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Elodie Martin
- INSERM UMRS_1127/UPMC/CNRS UMR7225, Institut du Cerveau et de la Moelle, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuel Brouillet
- CEA, DSV, I²BM, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Neurodegenerative Diseases Laboratory, CNRS CEA URA 2210, Fontenay-aux-Roses, France
| | - Nicole Déglon
- Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne University Medical School (CHUV), Lausanne, Switzerland.,Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LNCM), Lausanne University Medical School (CHUV), Lausanne, Switzerland
| | - Sandrine Betuing
- UMRS-INSERM1130, Neurosciences Paris Seine, Paris, France.,UMR CNRS-8246, Paris, France.,Sorbonne Université, UM119, Université Pierre and Marie Curie-Paris 6, 9 quai Saint Bernard, 75005, Paris, France
| | - Jocelyne Caboche
- UMRS-INSERM1130, Neurosciences Paris Seine, Paris, France.,UMR CNRS-8246, Paris, France.,Sorbonne Université, UM119, Université Pierre and Marie Curie-Paris 6, 9 quai Saint Bernard, 75005, Paris, France
| |
Collapse
|
65
|
Wang W, Townes-Anderson E. Lim kinase, a bi-functional effector in injury-induced structural plasticity of synapses. Neural Regen Res 2016; 11:1029-32. [PMID: 27630670 PMCID: PMC4994429 DOI: 10.4103/1673-5374.187018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization. The dual effects of LIMK activity make LIMK a potential target of therapeutic intervention for injury-induced synaptic plasticity, as LIMK inhibition can stabilize actin cytoskeleton and preserve existing structure. This therapeutic benefit of LIMK inhibition has been demonstrated in animal models of injury-induced axon retraction and neuritic sprouting by rod photoreceptors. A better understanding of the regulation of LIMK-cofilin activity and the interaction with the microtubular cytoskeleton may open new ways to promote synaptic regeneration that can benefit neuronal degenerative disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
66
|
Li S, Yan Y, Jiao Y, Gao Z, Xia Y, Kong L, Yao Y, Tao Z, Song J, Yan Y, Zhang G, Yang J. Neuroprotective Effect of Osthole on Neuron Synapses in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9. J Mol Neurosci 2016; 60:71-81. [PMID: 27394443 DOI: 10.1007/s12031-016-0793-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023]
Abstract
Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer's disease (AD). It has been reported that osthole exerts its neuroprotective effect on neuronal synapses, but its exact mechanism is obscure. Recently, microRNAs have been demonstrated to play a crucial role in inducing synaptotoxicity by Aβ, implying that targeting microRNAs could be a therapeutic approach of AD. In the present study, we investigated the neuroprotective effects of osthole on a cell model of AD by transducing APP695 Swedish mutant (APP695swe, APP) into mouse cortical neurons and human SH-SY5Y cells. In this study, the cell counting kit CCK-8, apoptosis assay, immunofluorescence analysis, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction, and Western blot assay were used. We found that osthole could enhance cell viability, prevent cell death, and reverse the reduction of synaptic proteins (synapsin-1, synaptophysin, and postsynaptic density-95) in APP-overexpressed cells, which was attributed to increases in microRNA-9 (miR-9) expression and subsequent decreases in CAMKK2 and p-AMPKα expressions. These results demonstrated that osthole plays a neuroprotective activity role in part through upregulating miR-9 in AD.
Collapse
Affiliation(s)
- Shaoheng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Yuhui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Yanan Jiao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Zhong Gao
- Department of Interventional Therapy, Dalian Municipal Central Hospital, Dalian, Liaoning, 116033, China
| | - Yang Xia
- Department of Engineering, University of Oxford, Oxford, OX1 3LZ, UK
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Yingjia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Zhenyu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China
| | - Yaping Yan
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Guangxian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, 116600, China.
| |
Collapse
|
67
|
Henderson BW, Gentry EG, Rush T, Troncoso JC, Thambisetty M, Montine TJ, Herskowitz JH. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain. J Neurochem 2016; 138:525-31. [PMID: 27246255 DOI: 10.1111/jnc.13688] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and mitigating amyloid-β (Aβ) levels may serve as a rational therapeutic avenue to slow AD progression. Pharmacologic inhibition of the Rho-associated protein kinases (ROCK1 and ROCK2) is proposed to curb Aβ levels, and mechanisms that underlie ROCK2's effects on Aβ production are defined. How ROCK1 affects Aβ generation remains a critical barrier. Here, we report that ROCK1 protein levels were elevated in mild cognitive impairment due to AD (MCI) and AD brains compared to controls. Aβ42 oligomers marginally increased ROCK1 and ROCK2 protein levels in neurons but strongly induced phosphorylation of Lim kinase 1 (LIMK1), suggesting that Aβ42 activates ROCKs. RNAi depletion of ROCK1 or ROCK2 suppressed endogenous Aβ40 production in neurons, and Aβ40 levels were reduced in brains of ROCK1 heterozygous knock-out mice compared to wild-type littermate controls. ROCK1 knockdown decreased amyloid precursor protein (APP), and treatment with bafilomycin accumulated APP levels in neurons depleted of ROCK1. These observations suggest that reduction of ROCK1 diminishes Aβ levels by enhancing APP protein degradation. Collectively, these findings support the hypothesis that both ROCK1 and ROCK2 are therapeutic targets to combat Aβ production in AD. Mitigating amyloid-β (Aβ) levels is a rational strategy for Alzheimer's disease (AD) treatment, however, therapeutic targets with clinically available drugs are lacking. We hypothesize that Aβ accumulation in mild cognitive impairment because of AD (MCI) and AD activates the RhoA/ROCK pathway which in turn fuels production of Aβ. Escalation of this cycle over the course of many years may contribute to the buildup of amyloid pathology in MCI and/or AD.
Collapse
Affiliation(s)
- Benjamin W Henderson
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erik G Gentry
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Madhav Thambisetty
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
68
|
Wang W, Townes-Anderson E. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury. Invest Ophthalmol Vis Sci 2016; 56:7847-58. [PMID: 26658506 DOI: 10.1167/iovs.15-17278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. METHODS Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. RESULTS Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. CONCLUSIONS Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury.
Collapse
|
69
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
70
|
Arastoo M, Hacker C, Popovics P, Lucocq JM, Stewart AJ. Phospholipase C-η2 interacts with nuclear and cytoplasmic LIMK-1 during retinoic acid-stimulated neurite growth. Histochem Cell Biol 2015; 145:163-73. [PMID: 26671787 PMCID: PMC4735258 DOI: 10.1007/s00418-015-1390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 01/22/2023]
Abstract
Neurite growth is central to the formation and differentiation of functional neurons, and recently, an essential role for phospholipase C-η2 (PLCη2) in neuritogenesis was revealed. Here we investigate the function of PLCη2 in neuritogenesis using Neuro2A cells, which upon stimulation with retinoic acid differentiate and form neurites. We first investigated the role of the PLCη2 calcium-binding EF-hand domain, a domain that is known to be required for PLCη2 activation. To do this, we quantified neurite outgrowth in Neuro2A cells, stably overexpressing wild-type PLCη2 and D256A (EF-hand) and H460Q (active site) PLCη2 mutants. Retinoic acid-induced neuritogenesis was highly dependent on PLCη2 activity, with the H460Q mutant exhibiting a strong dominant-negative effect. Expression of the D256A mutant had little effect on neurite growth relative to the control, suggesting that calcium-directed activation of PLCη2 is not essential to this process. We next investigated which cellular compartments contain endogenous PLCη2 by comparing immunoelectron microscopy signals over control and knockdown cell lines. When signals were analyzed to reveal specific labeling for PLCη2, it was found to be localized predominantly over the nucleus and cytosol. Furthermore in these compartments (and also in growing neurites), a proximity ligand assay revealed that PLCη2 specifically interacts with LIMK-1 in Neuro2A cells. Taken together, these data emphasize the importance of the PLCη2 EF-hand domain and articulation of PLCη2 with LIMK-1 in regulating neuritogenesis.
Collapse
Affiliation(s)
- Mohammed Arastoo
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | - Christian Hacker
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
- Bioimaging Centre, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Petra Popovics
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
- Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - John M Lucocq
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK.
| |
Collapse
|
71
|
Tilve S, Difato F, Chieregatti E. Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha-synuclein. Sci Rep 2015; 5:16524. [PMID: 26558842 PMCID: PMC4642265 DOI: 10.1038/srep16524] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Impaired adult neurogenesis and axon traumatic injury participate in the severity of neurodegenerative diseases. Alpha-synuclein, a cytosolic protein involved in Parkinson's disease, may be released from neurons, suggesting a role for excess secreted alpha-synuclein in the onset and spread of the pathology. Here we provide evidence that long term exposure of young neurons to extracellular alpha-synuclein hampers axon elongation and growth cone turning. We show that actin turnover and the rate of movement of actin waves along the axon are altered, due to alpha-synuclein-induced inactivation of cofilin. Upon laser disruption of microfilaments, healing of axons is favored by the increased phosphorylation of cofilin, however, at later time points; the defect in neurite extension prevails, being lost the regulation of cofilin activity. Importantly, overexpression of the active form of cofilin in neurons exposed to alpha-synuclein is able to restore the movement of actin waves, physiological axon elongation and growth cone turning. Our study reveals the molecular basis of alpha-synuclein-driven deficits in growth and migration of newborn neurons, and in elongation and regeneration of adult neurons.
Collapse
Affiliation(s)
- Sharada Tilve
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Francesco Difato
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Evelina Chieregatti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
72
|
Cuberos H, Vallée B, Vourc'h P, Tastet J, Andres CR, Bénédetti H. Roles of LIM kinases in central nervous system function and dysfunction. FEBS Lett 2015; 589:3795-806. [PMID: 26545494 DOI: 10.1016/j.febslet.2015.10.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) regulate actin dynamics by phosphorylating cofilin. In this review, we outline studies that have shown an involvement of LIMKs in neuronal function and we detail some of the pathways and molecular mechanisms involving LIMKs in neurodevelopment and synaptic plasticity. We also review the involvement of LIMKs in neuronal diseases and emphasize the differences in the regulation of LIMKs expression and mode of action. We finally present the existence of a cofilin-independent pathway also involved in neuronal function. A better understanding of the differences between both LIMKs and of the precise molecular mechanisms involved in their mode of action and regulation is now required to improve our understanding of the physiopathology of the neuronal diseases associated with LIMKs.
Collapse
Affiliation(s)
- H Cuberos
- CNRS UPR 4301, CBM, Orléans, France; UMR INSERM U930, Université François-Rabelais, Tours, France
| | - B Vallée
- CNRS UPR 4301, CBM, Orléans, France
| | - P Vourc'h
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | - J Tastet
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - C R Andres
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | | |
Collapse
|
73
|
Civiero L, Cirnaru MD, Beilina A, Rodella U, Russo I, Belluzzi E, Lobbestael E, Reyniers L, Hondhamuni G, Lewis PA, Van den Haute C, Baekelandt V, Bandopadhyay R, Bubacco L, Piccoli G, Cookson MR, Taymans JM, Greggio E. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 2015; 135:1242-56. [PMID: 26375402 PMCID: PMC4715492 DOI: 10.1111/jnc.13369] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/01/2015] [Accepted: 09/04/2015] [Indexed: 12/23/2022]
Abstract
Leucine‐rich repeat kinase 2 (LRRK2) is a causative gene for Parkinson's disease, but the physiological function and the mechanism(s) by which the cellular activity of LRRK2 is regulated are poorly understood. Here, we identified p21‐activated kinase 6 (PAK6) as a novel interactor of the GTPase/ROC domain of LRRK2. p21‐activated kinases are serine‐threonine kinases that serve as targets for the small GTP binding proteins Cdc42 and Rac1 and have been implicated in different morphogenetic processes through remodeling of the actin cytoskeleton such as synapse formation and neuritogenesis. Using an in vivo neuromorphology assay, we show that PAK6 is a positive regulator of neurite outgrowth and that LRRK2 is required for this function. Analyses of post‐mortem brain tissue from idiopathic and LRRK2 G2019S carriers reveal an increase in PAK6 activation state, whereas knock‐out LRRK2 mice display reduced PAK6 activation and phosphorylation of PAK6 substrates. Taken together, these results support a critical role of LRRK2 GTPase domain in cytoskeletal dynamics in vivo through the novel interactor PAK6, and provide a valuable platform to unravel the mechanism underlying LRRK2‐mediated pathophysiology.
We propose p21‐activated kinase 6 (PAK6) as a novel interactor of leucine‐rich repeat kinase 2 (LRRK2), a kinase involved in Parkinson's disease (PD). In health, PAK6 regulates neurite complexity in the brain and LRRK2 is required for its function, (a) whereas PAK6 is aberrantly activated in LRRK2‐linked PD brain (b) suggesting that LRRK2 toxicity is mediated by PAK6.
Collapse
Affiliation(s)
- Laura Civiero
- Department of Biology, University of Padova, Padova, Italy
| | | | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, Maryland, USA
| | - Umberto Rodella
- Department of Biology, University of Padova, Padova, Italy.,Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Isabella Russo
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Department of Biology, University of Padova, Padova, Italy
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Lauran Reyniers
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Geshanthi Hondhamuni
- Department of Molecular Neuroscience UCL, Reta Lila Weston Institute of Neurological Studies, Institute of Neurology, London, UK
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Reading, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Rina Bandopadhyay
- Department of Molecular Neuroscience UCL, Reta Lila Weston Institute of Neurological Studies, Institute of Neurology, London, UK
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Giovanni Piccoli
- San Raffaele Science Park and Università Vita-Salute San Raffaele, Milano, Italy
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, Maryland, USA
| | - Jean-Marc Taymans
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
74
|
Nguyen TVV, Shen L, Vander Griend L, Quach LN, Belichenko NP, Saw N, Yang T, Shamloo M, Wyss-Coray T, Massa SM, Longo FM. Small molecule p75NTR ligands reduce pathological phosphorylation and misfolding of tau, inflammatory changes, cholinergic degeneration, and cognitive deficits in AβPP(L/S) transgenic mice. J Alzheimers Dis 2015; 42:459-83. [PMID: 24898660 DOI: 10.3233/jad-140036] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The p75 neurotrophin receptor (p75NTR) is involved in degenerative mechanisms related to Alzheimer's disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lin Shen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lilith Vander Griend
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Lisa N Quach
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Nay Saw
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
| | - Stephen M Massa
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA Department of Neurology, University of California, San Francisco, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
75
|
Barone E, Mosser S, Fraering PC. Inactivation of brain Cofilin-1 by age, Alzheimer's disease and γ-secretase. Biochim Biophys Acta Mol Basis Dis 2015; 1842:2500-9. [PMID: 25315299 DOI: 10.1016/j.bbadis.2014.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022]
Abstract
Rapid remodeling of the actin cytoskeleton in the pre- and/or post-synaptic compartments is responsible for the regulation of neuronal plasticity,which is an important process for learning and memory. Cofilin1 plays an essential role in these processes and a dysregulation of its activity was associated with the cognitive decline observed during normal aging and Alzheimer's disease (AD). To understand the mechanism(s) regulating Cofilin1 activity we evaluated changes occurring with regard to Cofilin1 and its up-stream regulators Lim kinase-1 (LIMK1) and Slingshot phosphatase-1 (SSH1) in (i) human AD brain, (ii) 1-, 4-, and 10-months old APP/PS1 mice, (iii) wildtype 3-, 8-, 12-, 18- and 26-months old mice, as well as in cellular models including (iv) mouse primary cortical neurons (PCNs, cultured for 5, 10, 15 and 20 days in vitro) and (v) mouse embryonic fibroblasts (MEF). Interestingly,we found an increased Cofilin1 phosphorylation/inactivation with age and AD pathology, both in vivo and in vitro. These changes were associated with a major inactivation of SSH1. Interestingly, inhibition of ã-secretase activity with Compound-E (10 ìM) prevented Cofilin1 phosphorylation/inactivation through an increase of SSH1 activity in PCNs. Similarly, MEF cells double knock-out for ã-secretase catalytic subunits presenilin-1 and -2(MEFDKO) showed a strong decrease of both Cofilin1 and SSH1 phosphorylation,which were rescued by the over expression of human ã-secretase. Together, these results shed new light in understanding the molecular mechanisms promoting Cofilin1 dysregulation, both during aging and AD. They further have the potential to impact the development of therapies to safely treat AD.
Collapse
|
76
|
Xu YQ, Sun ZQ, Wang YT, Xiao F, Chen MW. Function of Nogo-A/Nogo-A receptor in Alzheimer's disease. CNS Neurosci Ther 2015; 21:479-85. [PMID: 25732725 DOI: 10.1111/cns.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Nogo-A is a protein inhibiting axonal regeneration, which is considered a major obstacle to nerve regeneration after injury in mammals. Rapid progress has been achieved in new physiopathological function of Nogo-A in Alzheimer's disease in the past decade. Recent research shows that through binding to Nogo-A receptor, Nogo-A plays an important role in Alzheimer's disease (AD) pathogenesis. Particularly, Nogo-A/Nogo-A receptors modulate the generation of amyloid β-protein (Aβ), which is thought to be a major cause of AD. This review describes the recent development of Nogo-A, Nogo-A receptor, and downstream signaling involved in AD and pharmacological basis of therapeutic drugs. We concluded the Nogo-A/Nogo-A receptor provide new insight into potential mechanisms and promising therapy strategies in AD.
Collapse
Affiliation(s)
- Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhong-Qing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
77
|
Yin Y, Zheng K, Eid N, Howard S, Jeong JH, Yi F, Guo J, Park CM, Bibian M, Wu W, Hernandez P, Park H, Wu Y, Luo JL, LoGrasso PV, Feng Y. Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J Med Chem 2015; 58:1846-61. [PMID: 25621531 DOI: 10.1021/jm501680m] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (>400-fold), potent inhibition of cofilin phosphorylation in A7r5, PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors.
Collapse
Affiliation(s)
- Yan Yin
- Medicinal Chemistry, ‡Discovery Biology, §Crystallography/Modeling Facility, Translational Research Institute, ∥Department of Molecular Therapeutics, and ⊥Department of Cancer Biology, The Scripps Research Institute, Scripps Florida , 130 Scripps Way, No. 2A1, Jupiter, Florida 33458, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Li G, Chen H, Cheng L, Zhao R, Zhao J, Xu Y. Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells. Neural Regen Res 2014; 9:1923-8. [PMID: 25558244 PMCID: PMC4281433 DOI: 10.4103/1673-5374.145362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2014] [Indexed: 11/16/2022] Open
Abstract
The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secreting inflammatory cytokines, and is an important target in the treatment of nerve inflammation and neurodegenerative diseases. In the present study, we observed the effects of transfecting three amyloid precursor-like protein 2 (APLP2) C-terminal fragments (CTFs; C57, C50 and C31) in the pEGFP-N1 vector on S100A9 expression in BV2 cells. Reverse transcription-PCR, western blot assay and immunocytochemistry revealed that S100A9 protein and mRNA expression was greater in BV2 cells after CTF transfection than after mock transfection with an empty vector. Furthermore, transfection of full-length APLP2-751 resulted in low levels of S100A9 protein expression. Our results show that APLP2-CTFs upregulate S100A9 protein and mRNA expression in BV2 cells, and identify a novel pathway involved in neuronal injury and apoptosis, and repair and protection in Alzheimer's disease.
Collapse
Affiliation(s)
- Guangzhe Li
- Department of Psychology, Yanbian Brain Hospital, Yanji, Jilin Province, China
| | - Hui Chen
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China
| | - Lin Cheng
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China
| | - Rongjie Zhao
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Junchang Zhao
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanji Xu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
79
|
Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer disease, Huntington disease and X-linked mental retardation. CELLULAR LOGISTICS 2014; 2:117-125. [PMID: 23162743 PMCID: PMC3490962 DOI: 10.4161/cl.21602] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-β (Aβ) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aβ production. Aβ activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology; University of California Los Angeles; Los Angeles, CA USA ; Geriatric Research and Clinical Center; Greater Los Angeles Veterans Affairs Healthcare System; West Los Angeles Medical Center; Los Angeles, CA USA
| | | | | | | |
Collapse
|
80
|
Henriques AG, Oliveira JM, Carvalho LP, da Cruz E Silva OAB. Aβ Influences Cytoskeletal Signaling Cascades with Consequences to Alzheimer's Disease. Mol Neurobiol 2014; 52:1391-1407. [PMID: 25344315 DOI: 10.1007/s12035-014-8913-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/28/2014] [Indexed: 01/16/2023]
Abstract
Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
Collapse
Affiliation(s)
- Ana Gabriela Henriques
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado Oliveira
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Liliana Patrícia Carvalho
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Laboratório de Neurociências e Sinalização, Centro de Biologia Celular, SACS, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
81
|
Genetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci 2014; 34:7871-85. [PMID: 24899710 DOI: 10.1523/jneurosci.0572-14.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An unresolved debate in Alzheimer's disease (AD) is whether amyloid plaques are pathogenic, causing overt physical disruption of neural circuits, or protective, sequestering soluble forms of amyloid-β (Aβ) that initiate synaptic damage and cognitive decline. Few animal models of AD have been capable of isolating the relative contribution made by soluble and insoluble forms of Aβ to the behavioral symptoms and biochemical consequences of the disease. Here we use a controllable transgenic mouse model expressing a mutant form of amyloid precursor protein (APP) to distinguish the impact of soluble Aβ from that of deposited amyloid on cognitive function and synaptic structure. Rapid inhibition of transgenic APP modulated the production of Aβ without affecting pre-existing amyloid deposits and restored cognitive performance to the level of healthy controls in Morris water maze, radial arm water maze, and fear conditioning. Selective reduction of Aβ with a γ-secretase inhibitor provided similar improvement, suggesting that transgene suppression restored cognition, at least in part by lowering Aβ. Cognitive improvement coincided with reduced levels of synaptotoxic Aβ oligomers, greater synaptic density surrounding amyloid plaques, and increased expression of presynaptic and postsynaptic markers. Together these findings indicate that transient Aβ species underlie much of the cognitive and synaptic deficits observed in this model and demonstrate that significant functional and structural recovery can be attained without removing deposited amyloid.
Collapse
|
82
|
Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, Yu X, Cheng S, Yan R, Wang Q, Liu DH, Deng W, Lai Y, Zhou JH, Zhang SX, Lin WW, Chen DF. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 2014; 1552:41-54. [DOI: 10.1016/j.brainres.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 12/14/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
|
83
|
Cook M, Bolkan BJ, Kretzschmar D. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig. PLoS One 2014; 9:e89847. [PMID: 24587072 PMCID: PMC3934941 DOI: 10.1371/journal.pone.0089847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
loechrig (loe) mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK) complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG)-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH) phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.
Collapse
Affiliation(s)
- Mandy Cook
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Bonnie J. Bolkan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
84
|
The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimers Dis 2013; 2013:910502. [PMID: 24416616 PMCID: PMC3876695 DOI: 10.1155/2013/910502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β-amyloid protein (Aβ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating Aβ-rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of Aβ-mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to Aβ-dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain.
Collapse
|
85
|
Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells. Int J Mol Sci 2013; 14:18657-69. [PMID: 24025424 PMCID: PMC3794801 DOI: 10.3390/ijms140918657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 12/25/2022] Open
Abstract
Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB.
Collapse
|
86
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
87
|
Hafner A, Glavan G, Obermajer N, Živin M, Schliebs R, Kos J. Neuroprotective role of γ-enolase in microglia in a mouse model of Alzheimer's disease is regulated by cathepsin X. Aging Cell 2013; 12:604-14. [PMID: 23621429 DOI: 10.1111/acel.12093] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 12/20/2022] Open
Abstract
γ-Enolase is a neurotrophic-like factor promoting growth, differentiation, survival and regeneration of neurons. Its neurotrophic activity is regulated by cysteine protease cathepsin X which cleaves the C-terminal end of the molecule. We have investigated the expression and colocalization of γ-enolase and cathepsin X in brains of Tg2576 mice overexpressing amyloid precursor protein. In situ hybridization of γ-enolase and cathepsin X revealed that mRNAs for both enzymes were expressed abundantly around amyloid plaques. Immunostaining demonstrated that the C-terminally cleaved form of γ-enolase was present in the immediate plaque vicinity, whereas the intact form, exhibiting neurotrophic activity, was observed in microglia cells in close proximity to senile plaque. The upregulation of γ-enolase in microglial cells in response to amyloid-β peptide (Aβ) was confirmed in mouse microglial cell line EOC 13.31 and primary microglia and medium enriched with γ-enolase proved to be neuroprotective against Aβ toxicity; however, the effect was reversed by cathepsin X proteolytic activity. These results demonstrate an upregulation of γ-enolase in microglia cells surrounding amyloid plaques in Tg2576 transgenic mice and demonstrate its neuroprotective role in amyloid-β-related neurodegeneration.
Collapse
Affiliation(s)
- Anja Hafner
- Department of Pharmaceutical Biology Faculty of Pharmacy University of Ljubljana Askerceva 7Ljubljana 1000Slovenia
| | - Gordana Glavan
- Institute of Pathophysiology Medical faculty University of Ljubljana Zaloska 4Ljubljana 1000Slovenia
- Department of Biology Biotechnical faculty University of Ljubljana Vecna pot 11Ljubljana 1000Slovenia
| | - Nataša Obermajer
- Department of Pharmaceutical Biology Faculty of Pharmacy University of Ljubljana Askerceva 7Ljubljana 1000Slovenia
- Department of Biotechnology Jožef Stefan Institute Jamova 39Ljubljana 1000Slovenia
| | - Marko Živin
- Institute of Pathophysiology Medical faculty University of Ljubljana Zaloska 4Ljubljana 1000Slovenia
| | - Reinhard Schliebs
- Department of Neurochemistry Paul Flechsig Institute for Brain Research University of Leipzig Jahnallee 59Leipzig 04109Germany
| | - Janko Kos
- Department of Pharmaceutical Biology Faculty of Pharmacy University of Ljubljana Askerceva 7Ljubljana 1000Slovenia
- Department of Biotechnology Jožef Stefan Institute Jamova 39Ljubljana 1000Slovenia
| |
Collapse
|
88
|
Arsenault D, Dal-Pan A, Tremblay C, Bennett DA, Guitton MJ, De Koninck Y, Tonegawa S, Calon F. PAK inactivation impairs social recognition in 3xTg-AD Mice without increasing brain deposition of tau and Aβ. J Neurosci 2013; 33:10729-40. [PMID: 23804095 PMCID: PMC4019789 DOI: 10.1523/jneurosci.1501-13.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/13/2013] [Indexed: 11/21/2022] Open
Abstract
Defects in p21-activated kinase (PAK) are suspected to play a role in cognitive symptoms of Alzheimer's disease (AD). Dysfunction in PAK leads to cofilin activation, drebrin displacement from its actin-binding site, actin depolymerization/severing, and, ultimately, defects in spine dynamics and cognitive impairment in mice. To determine the role of PAK in AD, we first quantified PAK by immunoblotting in homogenates from the parietal neocortex of subjects with a clinical diagnosis of no cognitive impairment (n = 12), mild cognitive impairment (n = 12), or AD (n = 12). A loss of total PAK, detected in the cortex of AD patients (-39% versus controls), was correlated with cognitive impairment (r(2) = 0.148, p = 0.027) and deposition of total and phosphorylated tau (r(2) = 0.235 and r(2) = 0.206, respectively), but not with Aβ42 (r(2) = 0.056). Accordingly, we found a decrease of total PAK in the cortex of 12- and 20-month-old 3xTg-AD mice, an animal model of AD-like Aβ and tau neuropathologies. To determine whether PAK dysfunction aggravates AD phenotype, 3xTg-AD mice were crossed with dominant-negative PAK mice. PAK inactivation led to obliteration of social recognition in old 3xTg-AD mice, which was associated with a decrease in cortical drebrin (-25%), but without enhancement of Aβ/tau pathology or any clear electrophysiological signature. Overall, our data suggest that PAK decrease is a consequence of AD neuropathology and that therapeutic activation of PAK may exert symptomatic benefits on high brain function.
Collapse
Affiliation(s)
- Dany Arsenault
- Faculté de pharmacie, Université Laval, Quebec City, G1V 0A6, Quebec, Canada
- Centre Hospitalier de l'Université Laval, Research Center, Quebec City, Quebec, G1V 2L9, Canada
| | - Alexandre Dal-Pan
- Centre Hospitalier de l'Université Laval, Research Center, Quebec City, Quebec, G1V 2L9, Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval, Research Center, Quebec City, Quebec, G1V 2L9, Canada
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Matthieu J. Guitton
- Faculté de médecine, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
- Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, G1J 2G3, Canada, and
| | - Yves De Koninck
- Faculté de médecine, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
- Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, G1J 2G3, Canada, and
| | - Susumu Tonegawa
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec City, G1V 0A6, Quebec, Canada
- Centre Hospitalier de l'Université Laval, Research Center, Quebec City, Quebec, G1V 2L9, Canada
| |
Collapse
|
89
|
Shirao T, González-Billault C. Actin filaments and microtubules in dendritic spines. J Neurochem 2013; 126:155-64. [PMID: 23692384 DOI: 10.1111/jnc.12313] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023]
Abstract
Dendritic spines are small protrusions emerging from their parent dendrites, and their morphological changes are involved in synaptic plasticity. These tiny structures are composed of thousands of different proteins belonging to several subfamilies such as membrane receptors, scaffold proteins, signal transduction proteins, and cytoskeletal proteins. Actin filaments in dendritic spines consist of double helix of actin protomers decorated with drebrin and ADF/cofilin, and the balance of the two is closely related to the actin dynamics, which may govern morphological and functional synaptic plasticity. During development, the accumulation of drebrin-binding type actin filaments is one of the initial events occurring at the nascent excitatory postsynaptic site, and plays a pivotal role in spine formation as well as small GTPases. It has been recently reported that microtubules transiently appear in dendritic spines in correlation with synaptic activity. Interestingly, it is suggested that microtubule dynamics might couple with actin dynamics. In this review, we will summarize the contribution of both actin filaments and microtubules to the formation and regulation of dendritic spines, and further discuss the role of cytoskeletal deregulation in neurological disorders.
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | | |
Collapse
|
90
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
91
|
Moon MY, Kim HJ, Li Y, Kim JG, Jeon YJ, Won HY, Kim JS, Kwon HY, Choi IG, Ro E, Joe EH, Choe M, Kwon HJ, Kim HC, Kim YS, Park JB. Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides. Cell Signal 2013; 25:1861-9. [PMID: 23707391 DOI: 10.1016/j.cellsig.2013.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/12/2013] [Indexed: 11/16/2022]
Abstract
Fibrillar amyloid-beta (fAβ) peptide causes neuronal cell death, which is known as Alzheimer's disease. One of the mechanisms for neuronal cell death is the activation of microglia which releases toxic compounds like reactive oxygen species (ROS) in response to fAβ. We observed that fAβ rather than soluble form blocked BV2 cell proliferation of microglial cell line BV2, while N-acetyl-l-cysteine (NAC), a scavenger of superoxide, prevented the cells from death, suggesting that cell death is induced by ROS. Indeed, both fAβ1-42 and fAβ25-35 induced superoxide production in BV2 cells. fAβ25-35 produced superoxide, although fAβ25-35 is not phagocytosed into BV2 cells. Thus, superoxide production by fAβ does not seem to be dependent on phagocytosis of fAβ. Herein we studied how fAβ produces superoxide in BV2. Transfection of dominant negative (DN) RhoA (N19) cDNA plasmid, small hairpin (sh)-RhoA forming plasmid, and Y27632, an inhibitor of Rho-kinase, abrogated the superoxide formation in BV2 cells stimulated by fAβ. Furthermore, fAβ elevated GTP-RhoA level as well as Rac1 and Cdc42. Tat-C3 toxin, sh-RhoA, and Y27632 inhibited the phosphorylation of p47(PHOX). Moreover, peritoneal macrophages from p47(PHOX) (-/-) knockout mouse could not produce superoxide in response to fAβ. These results suggest that RhoA closely engages in the regulation of superoxide production induced by fAβ through phosphorylation of p47(PHOX) in microglial BV2 cells.
Collapse
Affiliation(s)
- Mi-Young Moon
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-Do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
When compared with single gene functional analysis, gene set analysis (GSA) can extract more information from gene expression profiles. Currently, several gene set methods have been proposed, but most of the methods cannot detect gene sets with a large number of minor-effect genes. Here, we propose a novel distance-based gene set analysis method. The distance between two groups of genes with different phenotypes based on gene expression should be larger if a certain gene set is significantly associated with the given phenotype. We calculated the distance between two groups with different phenotypes, estimated the significant P-values using two permutation methods and performed multiple hypothesis testing adjustments. This method was performed on one simulated data set and three real data sets. After a comparison and literature verification, we determined that the gene resampling-based permutation method is more suitable for GSA, and the centroid statistical and average linkage statistical distance methods are efficient, especially in detecting gene sets containing more minor-effect genes. We believe that this distance-based method will assist us in finding functional gene sets that are significantly related to a complex trait. Additionally, we have prepared a simple and publically available Perl and R package (http://bioinfo.hrbmu.edu.cn/dbgsa or http://cran.r-project.org/web/packages/DBGSA/).
Collapse
|
93
|
Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses. Neurobiol Aging 2012; 34:200-10. [PMID: 22727942 DOI: 10.1016/j.neurobiolaging.2012.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 01/07/2023]
Abstract
Age-related impairments of executive functions appear to be related to reductions of the number and plasticity of dendritic spine synapses in the prefrontal cortex (PFC). Experimental evidence suggests that synaptic plasticity is mediated by the spine actin cytoskeleton, and a major pathway regulating actin-based plasticity is controlled by phosphorylated LIM kinase (pLIMK). We asked whether aging resulted in altered synaptic density, morphology, and pLIMK expression in the rat prelimbic region of the PFC. Using unbiased electron microscopy, we found an approximate 50% decrease in the density of small synapses with aging, while the density of large synapses remained unchanged. Postembedding immunogold revealed that pLIMK localized predominantly to the postsynaptic density where it was increased in aging synapses by approximately 50%. Furthermore, the age-related increase in pLIMK occurred selectively within the largest subset of prelimbic PFC synapses. Because pLIMK is known to inhibit actin filament plasticity, these data support the hypothesis that age-related increases in pLIMK may explain the stability of large synapses at the expense of their plasticity.
Collapse
|
94
|
Zhang Z, Chen J, Lin S, Li Z, Cheng R, Fang C, Chen H, Lin W. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:259-73. [PMID: 22325889 DOI: 10.1016/j.plantsci.2011.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/16/2011] [Accepted: 11/19/2011] [Indexed: 05/08/2023]
Abstract
Cultivars of rice (Oryza sativa L.), especially the large-spikelet-type, often fail to achieve the high yield potential due to poor grain-filling of their inferior (late-flowering) spikelets. The superior (early-flowering) spikelets normally contain more abscisic acid (ABA) than the inferior spikelets. It was speculated that ABA might play a pivotal role in the grain-filling of inferior spikelets. To understand the molecular regulation involved in this process, we employed the 2-D gel-based comparative proteomic and phosphoproteomic analyses to search for differentially expressed proteins in the inferior spikelets under exogenous ABA treatment. A total of 111 significantly differential proteins and 31 phosphoproteins were found in the inferior spikelets after treatment. Among them, 100 proteins and 23 phosphoproteins were identified by using MALDI-TOF/TOF MS. In addition, the gene expression patterns of the inferior spikelets were confirmed with RT-PCR. These differentially expressed proteins are active in defense response, carbohydrate, protein, amino acid, energy and secondary metabolisms, as well as cell development and photosynthesis. The results suggest that the grain-filling of rice inferior spikelets is regulated by ABA through some proteins and phosphoproteins participating in carbon, nitrogen and energy metabolisms.
Collapse
Affiliation(s)
- Zhixing Zhang
- Institute of Agricultural Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 35002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 2012; 217:353-64. [PMID: 21960299 PMCID: PMC3670699 DOI: 10.1007/s00221-011-2870-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/07/2011] [Indexed: 12/12/2022]
Abstract
Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer's disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.
Collapse
Affiliation(s)
- Silke Brunholz
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Penzes P, Cahill ME. Deconstructing signal transduction pathways that regulate the actin cytoskeleton in dendritic spines. Cytoskeleton (Hoboken) 2012; 69:426-41. [PMID: 22307832 DOI: 10.1002/cm.21015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 11/10/2022]
Abstract
Dendritic spines are the sites of most excitatory synapses in the central nervous system. Recent studies have shown that spines function independently of each other, and they are currently the smallest known processing units in the brain. Spines exist in an array of morphologies, and spine structure helps dictate synaptic function. Dendritic spines are rich in actin, and actin rearrangements are critical regulators of spine morphology and density. In this review, we discuss the importance of actin in regulating dendritic spine morphogenesis, and discuss the upstream signal transduction pathways that either foster or inhibit actin polymerization. The understanding of actin regulatory pathways is best conceptualized as a hierarchical network in which molecules function in discrete levels defined by their molecular distance to actin. To this end, we focus on several classes of molecules, including guanine nucleotide exchange factors, small GTPases, small GTPase effectors, and actin binding proteins. We discuss how individual proteins in these molecular classes impact spine morphogenesis, and reveal the biochemical interactions in these networks that are responsible for shaping actin polymerization. Finally, we discuss the importance of these actin regulatory pathways in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
97
|
Riediger F, Quack I, Qadri F, Hartleben B, Park JK, Potthoff SA, Sohn D, Sihn G, Rousselle A, Fokuhl V, Maschke U, Purfürst B, Schneider W, Rump LC, Luft FC, Dechend R, Bader M, Huber TB, Nguyen G, Muller DN. Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 2011; 22:2193-202. [PMID: 22034640 DOI: 10.1681/asn.2011020200] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The prorenin receptor (PRR) is highly expressed in podocytes, but its role in the maintenance of podocyte function is unknown. Here we generated podocyte-specific PRR-knockout mice and found that these animals died between 2 to 3 wk after birth. Within 14 d, PRR-knockout mice developed nephrotic syndrome, albuminuria with podocyte foot-process fusion, and cytoskeletal changes. Podocyte-specific PRR deletion also led to disturbed processing of multivesicular bodies and enrichment of autophagosomal (LC3) and lysosomal (LAMP2) markers, indicating a functional block in autophagosome-lysosome fusion and an overload of the proteasomal protein-degradation machinery. In vitro, PRR knockdown and pharmacologic blockade of vacuolar H(+)-ATPases, which associate with the PRR, increased vesicular pH, led to accumulation of LC3-positive and LAMP2-positive vesicles and altered the cytoskeleton. Taken together, these results suggest that the PRR is essential for podocyte function and survival by maintaining autophagy and protein-turnover machinery. Furthermore, PRR contributes to the control of lysosomal pH, which is important for podocyte survival and cytoskeletal integrity.
Collapse
Affiliation(s)
- Fabian Riediger
- Nikolaus-Fiebiger-Center for Molecular Medicine, Glückstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Figge C, Loers G, Schachner M, Tilling T. Neurite outgrowth triggered by the cell adhesion molecule L1 requires activation and inactivation of the cytoskeletal protein cofilin. Mol Cell Neurosci 2011; 49:196-204. [PMID: 22019611 DOI: 10.1016/j.mcn.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/09/2011] [Accepted: 10/05/2011] [Indexed: 01/29/2023] Open
Abstract
Neurite outgrowth, an essential process for constructing nervous system connectivity, requires molecular cues which promote neurite extension and guide growing neurites. The neural cell adhesion molecule L1 is one of the molecules involved in this process. Growth of neurites depends on actin remodeling, but actin-remodeling proteins which act downstream of L1 signaling are not known. In this study, we investigated whether the actin-remodeling protein cofilin, which can be activated by dephosphorylation, is involved in neurite outgrowth stimulated by L1. Upon stimulation with an L1 monoclonal antibody which specifically triggers L1-dependent neurite outgrowth, cofilin phosphorylation in cultured cerebellar granule neurons and isolated growth cones was reduced to 47 ± 13% or 58 ± 9% of IgG control levels, respectively. We therefore investigated whether cofilin phosphorylation plays a role in L1-stimulated neurite outgrowth. Inhibition of calcineurin, a phosphatase acting upstream of cofilin dephosphorylation, impaired L1-dependent neurite extension in cultures of cerebellar granule neurons and led to an increase in cofilin phosphorylation. Moreover, when peptide S3, a competitive inhibitor of cofilin phosphorylation, or peptide pS3, a competitive inhibitor of cofilin dephosphorylation, were transferred into cerebellar neurons in culture, L1-stimulated neurite outgrowth was reduced from 173 ± 15% to 103 ± 4% of poly-L-lysine control levels in the presence of either peptide. Our findings suggest that both activation of cofilin by dephosphorylation and inactivation of cofilin by phosphorylation are essential for L1-stimulated neurite outgrowth. These results are in accordance with a cofilin activity cycle recently proposed for invasive tumor cells and inflammatory cells, indicating that a similar regulatory mechanism might be involved in neurite outgrowth. As L1 is expressed by invasive tumor cells, cofilin might also be a downstream actor of L1 in metastasis.
Collapse
Affiliation(s)
- Carina Figge
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
99
|
Manetti F. HIV-1 proteins join the family of LIM kinase partners. New roads open up for HIV-1 treatment. Drug Discov Today 2011; 17:81-8. [PMID: 21872676 DOI: 10.1016/j.drudis.2011.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/14/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022]
Abstract
LIM kinases (LIMK) exert their functions by recruiting many macromolecular partners that could contribute to modulate LIMK activity in a positive or negative manner. In addition to proteins that interact with LIMK in human or animal cells and tissues, recent data show that LIMK activity is also influenced by HIV-1 viral proteins. These results suggest new strategies for the treatment of HIV-1 infection, based on the inhibition of LIMK-mediated cofilin inactivation and consequent actin depolymerization. Further efforts are however required to unravel the mechanism by which the virus interferes with LIMK activity and with the right balance of actin remodeling.
Collapse
Affiliation(s)
- Fabrizio Manetti
- Dipartimento Farmaco Chimico Tecnologico, Via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|
100
|
Roselli F, Livrea P, Almeida OFX. CDK5 is essential for soluble amyloid β-induced degradation of GKAP and remodeling of the synaptic actin cytoskeleton. PLoS One 2011; 6:e23097. [PMID: 21829588 PMCID: PMC3146526 DOI: 10.1371/journal.pone.0023097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023] Open
Abstract
The early stages of Alzheimer's disease are marked by synaptic dysfunction and loss. This process results from the disassembly and degradation of synaptic components, in particular of scaffolding proteins that compose the post-synaptic density (PSD), namely PSD95, Homer and Shank. Here we investigated in rat frontal cortex dissociated culture the mechanisms involved in the downregulation of GKAP (SAPAP1), which links the PSD95 complex to the Shank complex and cytoskeletal structures within the PSD. We show that Aβ causes the rapid loss of GKAP from synapses through a pathway that critically requires cdk5 activity, and is set in motion by NMDAR activity and Ca(2+) influx. We show that GKAP is a direct substrate of cdk5 and that its phosphorylation results in polyubiquitination and proteasomal degradation of GKAP and remodeling (collapse) of the synaptic actin cytoskeleton; the latter effect is abolished in neurons expressing GKAP mutants that are resistant to phosphorylation by cdk5. Given that cdk5 also regulates degradation of PSD95, these results underscore the central position of cdk5 in mediating Aβ-induced PSD disassembly and synapse loss.
Collapse
Affiliation(s)
- Francesco Roselli
- Neuroadaptation Group, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
- * E-mail: (FR); (OFXA)
| | - Paolo Livrea
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Osborne F. X. Almeida
- Neuroadaptation Group, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (FR); (OFXA)
| |
Collapse
|