51
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
52
|
Fang Y, Gong H, Yang R, Lai KWC, Quan M. An Active Biomechanical Model of Cell Adhesion Actuated by Intracellular Tensioning-Taxis. Biophys J 2020; 118:2656-2669. [PMID: 32380000 PMCID: PMC7264853 DOI: 10.1016/j.bpj.2020.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 04/16/2020] [Indexed: 11/23/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is highly active and plays a crucial role in various physiological functions. The active response of cells to physicochemical cues has been universally discovered in multiple microenvironments. However, the mechanisms to rule these active behaviors of cells are still poorly understood. Here, we establish an active model to probe the biomechanical mechanisms governing cell adhesion. The framework of cells is modeled as a tensional integrity that is maintained by cytoskeletons and extracellular matrices. Active movement of the cell model is self-driven by its intrinsic tendency to intracellular tensioning, defined as tensioning-taxis in this study. Tensioning-taxis is quantified as driving potential to actuate cell adhesion, and the traction forces are solved by our proposed numerical method of local free energy adaptation. The modeling results account for the active adhesion of cells with dynamic protruding of leading edge and power-law development of mechanical properties. Furthermore, the morphogenesis of cells evolves actively depending on actin filaments alignments by a predicted mechanism of scaling and directing traction forces. The proposed model provides a quantitative way to investigate the active mechanisms of cell adhesion and holds the potential to guide studies of more complex adhesion and motion of cells coupled with multiple external cues.
Collapse
Affiliation(s)
- Yuqiang Fang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| | - He Gong
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - King W C Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Meiling Quan
- Department of Orthopedics, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea.
| |
Collapse
|
53
|
Conrad B, Hayashi C, Yang F. Gelatin-Based Microribbon Hydrogels Support Robust MSC Osteogenesis across a Broad Range of Stiffness. ACS Biomater Sci Eng 2020; 6:3454-3463. [PMID: 33463171 PMCID: PMC10154176 DOI: 10.1021/acsbiomaterials.9b01792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Scaffold macroporosity has been shown to be critical for promoting bone regeneration. Although injectable materials are preferred for minimally invasive delivery, conventional macroporous scaffolds were not injectable and do not support homogeneous cell encapsulation. We recently reported a gelatin-based microribbon (μRB) scaffold that offers macroporosity while also supporting homogeneous cell encapsulation. Compared to conventional gelatin hydrogels, macroporous gelatin μRB scaffolds demonstrated great advantage in enhancing mesenchymal stem cell (MSC)-based cartilage formation. However, whether gelatin-based μRBs support MSC osteogenesis and bone formation remains unknown. The goal of this study is to assess the potential of gelatin-based μRBs for supporting MSC-based osteogenesis and bone formation in vitro. Given recent evidence from the literature that osteogenesis is sensitive to substrate stiffness, we further investigate how varying μRB stiffness modulates MSC osteogenesis. We first determine the maximal stiffness range of gelatin μRBs that can be fabricated (13-57 kPa), which supports both retention of μRB shape and macroporosity within scaffolds after inter-cross-linking. Interestingly, varying μRB stiffness across a broad range of stiffness did not significantly impact osteogenesis, with all groups supporting upregulation of bone markers and extensive collagen deposition. All gelatin μRBs also supported a comparable level of cell spreading and upregulation of mechanosensing markers. However, soft μRB (13 kPa) scaffolds did not maintain structural integrity and condensed into a pellet over time. Both intermediate and stiff gelatin μRB-based scaffolds maintained their integrity and supported robust bone formation, leading to a more than 10-fold increase in the compressive moduli of engineered bone after 5 weeks of culture in osteogenic media. Incorporating hydroxyapatite (HA) nanoparticle coating onto the gelatin μRB surface further accelerated the maturation of MSCs into osteoblasts and mineralization. Together, these results validate that gelatin μRBs can support MSC osteogenesis across a broad range of stiffness and offers an injectable macroporous scaffold for enhancing stem-cell-based bone regeneration.
Collapse
Affiliation(s)
- Bogdan Conrad
- Program of Stem Cell Biology and Regenerative Medicine, Stanford University, 300 Pasteur Drive, Edward Building Room 114, Stanford, California94305, United States
| | - Camila Hayashi
- Department of Chemical Engineering, Stanford University Shriram Center, Room 129, Stanford, California94305, United States
| | - Fan Yang
- Department of Orthopaedic Surgery Department of Bioengineering, Stanford University300 Pasteur Drive, Edward Building Room 114, Stanford, California94305, United States
| |
Collapse
|
54
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
55
|
Grünherz L, Prein C, Winkler T, Kirsch M, Hopfner U, Streichert T, Clausen-Schaumann H, Zustin J, Kirchhof K, Morlock MM, Machens HG, Schilling AF. Osteoidosis leads to altered differentiation and function of osteoclasts. J Cell Mol Med 2020; 24:5665-5674. [PMID: 32283567 PMCID: PMC7214153 DOI: 10.1111/jcmm.15227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
In patients with osteomalacia, a defect in bone mineralization leads to changed characteristics of the bone surface. Considering that the properties of the surrounding matrix influence function and differentiation of cells, we aimed to investigate the effect of osteoidosis on differentiation and function of osteoclasts. Based on osteomalacic bone biopsies, a model for osteoidosis in vitro (OIV) was established. Peripheral blood mononuclear cells were differentiated to osteoclasts on mineralized surfaces (MS) as internal control and on OIV. We observed a significantly reduced number of osteoclasts and surface resorption on OIV. Atomic force microscopy revealed a significant effect of the altered degree of mineralization on surface mechanics and an unmasking of collagen fibres on the surface. Indeed, coating of MS with RGD peptides mimicked the resorption phenotype observed in OIV, suggesting that the altered differentiation of osteoclasts on OIV might be associated with an interaction of the cells with amino acid sequences of unmasked extracellular matrix proteins containing RGD sequences. Transcriptome analysis uncovered a strong significant up‐regulation of transmembrane glycoprotein TROP2 in osteoclastic cultures on OIV. TROP2 expression on OIV was also confirmed on the protein level and found on the bone surface of patients with osteomalacia. Taken together, our results show a direct influence of the mineralization state of the extracellular matrix surface on differentiation and function of osteoclasts on this surface which may be important for the pathophysiology of osteomalacia and other bone disorders with changed ratio of osteoid to bone.
Collapse
Affiliation(s)
- Lisanne Grünherz
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany.,Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich, Germany
| | - Carina Prein
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich, Germany.,Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| | - Thomas Winkler
- Institute of Biomechanics, Technische Universität Hamburg-Harburg, Hamburg, Germany
| | - Manuela Kirsch
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany
| | - Ursula Hopfner
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Hospital of Cologne, Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich, Germany.,Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| | - Jozef Zustin
- Gerhard Domagk Institute of Pathology, University Medical Center Muenster, Muenster, Germany
| | | | - Michael M Morlock
- Institute of Biomechanics, Technische Universität Hamburg-Harburg, Hamburg, Germany
| | - Hans-Günter Machens
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany
| | - Arndt Friedrich Schilling
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany.,Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
56
|
Malik AA, Wennberg B, Gerlee P. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration. Bull Math Biol 2020; 82:49. [PMID: 32248312 PMCID: PMC7128007 DOI: 10.1007/s11538-020-00721-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/15/2020] [Indexed: 01/06/2023]
Abstract
The mechanical properties of the extracellular matrix, in particular its stiffness, are known to impact cell migration. In this paper, we develop a mathematical model of a single cell migrating on an elastic matrix, which accounts for the deformation of the matrix induced by forces exerted by the cell, and investigate how the stiffness impacts the direction and speed of migration. We model a cell in 1D as a nucleus connected to a number of adhesion sites through elastic springs. The cell migrates by randomly updating the position of its adhesion sites. We start by investigating the case where the cell springs are constant, and then go on to assuming that they depend on the matrix stiffness, on matrices of both uniform stiffness as well as those with a stiffness gradient. We find that the assumption that cell springs depend on the substrate stiffness is necessary and sufficient for an efficient durotactic response. We compare simulations to recent experimental observations of human cancer cells exhibiting durotaxis, which show good qualitative agreement.
Collapse
Affiliation(s)
- A A Malik
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden.
| | - B Wennberg
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden
| | - P Gerlee
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, Gothenburg, Sweden
| |
Collapse
|
57
|
Obenaus AM, Mollica MY, Sniadecki NJ. (De)form and Function: Measuring Cellular Forces with Deformable Materials and Deformable Structures. Adv Healthc Mater 2020; 9:e1901454. [PMID: 31951099 PMCID: PMC7274881 DOI: 10.1002/adhm.201901454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Indexed: 12/29/2022]
Abstract
The ability for biological cells to produce mechanical forces is important for the development, function, and homeostasis of tissue. The measurement of cellular forces is not a straightforward task because individual cells are microscopic in size and the forces they produce are at the nanonewton scale. Consequently, studies in cell mechanics rely on advanced biomaterials or flexible structures that permit one to infer these forces by the deformation they impart on the material or structure. Herein, the scientific progression on the use of deformable materials and deformable structures to measure cellular forces are reviewed. The findings and insights made possible with these approaches in the field of cell mechanics are summarized.
Collapse
Affiliation(s)
- Ava M Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
58
|
Patel NG, Nguyen A, Xu N, Ananthasekar S, Alvarez DF, Stevens T, Tambe DT. Unleashing shear: Role of intercellular traction and cellular moments in collective cell migration. Biochem Biophys Res Commun 2020; 522:279-285. [PMID: 31879014 PMCID: PMC6957749 DOI: 10.1016/j.bbrc.2019.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023]
Abstract
In the field of endothelial biology, the term "shear forces" is tied to the forces exerted by the flowing blood on the quiescent cells. But endothelial cells themselves also exert physical forces on their immediate and distant neighbors. Specific factors of such intrinsic mechanical signals most relevant to immediate neighbors include normal (Fn) and shear (Fs) components of intercellular tractions, and those factors most relevant to distant neighbors include contractile or dilatational (Mc) and shear (Ms) components of the moments of cytoskeletal forces. However, for cells within a monolayer, Fn, Fs, Mc, and Ms remain inaccessible to experimental evaluation. Here, we present an approach that enables quantitative assessment of these properties. Remarkably, across a collectively migrating sheet of pulmonary microvascular endothelial cells, Fs was of the same order of magnitude as Fn. Moreover, compared to the normal components (Fn, Mc) of the mechanical signals, the shear components (Fs, Ms) were more distinctive in the cells closer to the migration front. Individual cells had an innately collective tendency to migrate along the axis of maximum contractile moment - a collective migratory process we referred to as cellular plithotaxis. Notably, larger Fs and Ms were associated with stronger plithotaxis, but dilatational moment appeared to disengage plithotactic guidance. Overall, cellular plithotaxis was more strongly associated with the "shear forces" (Fs, Ms) than with the "normal forces" (Fn, Mc). Finally, the mechanical state of the cells with fast migration speed and those with highly circular shape were reminiscent of fluid-like and solid-like matter, respectively. The results repeatedly pointed to neighbors imposing shear forces on a cell as a highly significant event, and hence, the term "shear forces" must include not just the forces from flowing fluid but also the forces from the substrate and neighbors. Collectively, these advances set the stage for deeper understanding of mechanical signaling in cellular monolayers.
Collapse
Affiliation(s)
- Neel G Patel
- William B. Burnsed, Jr. Department of Mechanical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA
| | - Alyson Nguyen
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL, USA
| | - Ningyong Xu
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | | | - Diego F Alvarez
- Department of Physiology & Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dhananjay T Tambe
- William B. Burnsed, Jr. Department of Mechanical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA; Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA; Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
59
|
Vaeyens MM, Jorge-Peñas A, Barrasa-Fano J, Steuwe C, Heck T, Carmeliet P, Roeffaers M, Van Oosterwyck H. Matrix deformations around angiogenic sprouts correlate to sprout dynamics and suggest pulling activity. Angiogenesis 2020; 23:315-324. [PMID: 31997048 DOI: 10.1007/s10456-020-09708-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Angiogenesis is the formation of new blood vessels from the pre-existing vasculature. It is essential for normal tissue growth and regeneration, and also plays a key role in many diseases [Carmeliet in Nat Med 9:653-660, 2003]. Cytoskeletal components have been shown to be important for angiogenic sprout initiation and maintenance [Kniazeva and Putnam in Am J Physiol 297:C179-C187, 2009] as well as endothelial cell shape control during invasion [Elliott et al. in Nat Cell Biol 17:137-147, 2015]. The exact nature of cytoskeleton-mediated forces for sprout initiation and progression, however, remains poorly understood. Questions on the importance of tip cell pulling versus stalk cell pushing are to a large extent unanswered, which among others has to do with the difficulty of quantifying and resolving those forces in time and space. We developed methods based on time-lapse confocal microscopy and image processing-further termed 4D displacement microscopy-to acquire detailed, spatially and temporally resolved extracellular matrix (ECM) deformations, indicative of cell-ECM mechanical interactions around invading sprouts. We demonstrate that matrix deformations dependent on actin-mediated force generation are spatio-temporally correlated with sprout morphological dynamics. Furthermore, sprout tips were found to exert radially pulling forces on the extracellular matrix, which were quantified by means of a computational model of collagen ECM mechanics. Protrusions from extending sprouts mostly increase their pulling forces, while retracting protrusions mainly reduce their pulling forces. Displacement microscopy analysis further unveiled a characteristic dipole-like deformation pattern along the sprout direction that was consistent among seemingly very different sprout shapes-with oppositely oriented displacements at sprout tip versus sprout base and a transition zone of negligible displacements in between. These results demonstrate that sprout-ECM interactions are dominated by pulling forces and underline the key role of tip cell pulling for sprouting angiogenesis.
Collapse
Affiliation(s)
- Marie-Mo Vaeyens
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alvaro Jorge-Peñas
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorge Barrasa-Fano
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Christian Steuwe
- Department of Microbial and Molecular Systems (M2S), Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Leuven, Belgium
| | - Tommy Heck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Maarten Roeffaers
- Department of Microbial and Molecular Systems (M2S), Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium. .,Prometheus, Div. Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
60
|
Schulz C, Krüger-Genge A, Jung F, Lendlein A. Aptamer supported in vitro endothelialization of poly(ether imide) films. Clin Hemorheol Microcirc 2020; 75:201-217. [PMID: 31985458 DOI: 10.3233/ch-190775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Implantation of synthetic small-diameter vascular bypass grafts is often associated with an increased risk of failure, due to thrombotic events or late intimal hyperplasia. As one of the causes an insufficient hemocompatibility of the artificial surface is discussed. Endothelialization of synthetic grafts is reported to be a promising strategy for creating a self-renewing and regulative anti-thrombotic graft surface. However, the establishment of a shear resistant cell monolayer is still challenging. In our study, cyto- and immuno-compatible poly(ether imide) (PEI) films were explored as potential biomaterial for cardiovascular applications. Recently, we reported that the initial adherence of primary human umbilical vein endothelial cells (HUVEC) was delayed on PEI-films and about 9 days were needed to establish a confluent and almost shear resistant HUVEC monolayer. To accelerate the initial adherence of HUVEC, the PEI-film surface was functionalized with an aptamer-cRGD peptide based endothelialization supporting system. With this functionalization the initial adherence as well as the shear resistance of HUVEC on PEI-films was considerable improved compared to the unmodified polymer surface. The in vitro results confirm the general applicability of aptamers for an efficient functionalization of substrate surfaces.
Collapse
Affiliation(s)
- Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
61
|
Anguiano M, Morales X, Castilla C, Pena AR, Ederra C, Martínez M, Ariz M, Esparza M, Amaveda H, Mora M, Movilla N, Aznar JMG, Cortés-Domínguez I, Ortiz-de-Solorzano C. The use of mixed collagen-Matrigel matrices of increasing complexity recapitulates the biphasic role of cell adhesion in cancer cell migration: ECM sensing, remodeling and forces at the leading edge of cancer invasion. PLoS One 2020; 15:e0220019. [PMID: 31945053 PMCID: PMC6964905 DOI: 10.1371/journal.pone.0220019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022] Open
Abstract
The migration of cancer cells is highly regulated by the biomechanical properties of their local microenvironment. Using 3D scaffolds of simple composition, several aspects of cancer cell mechanosensing (signal transduction, EMC remodeling, traction forces) have been separately analyzed in the context of cell migration. However, a combined study of these factors in 3D scaffolds that more closely resemble the complex microenvironment of the cancer ECM is still missing. Here, we present a comprehensive, quantitative analysis of the role of cell-ECM interactions in cancer cell migration within a highly physiological environment consisting of mixed Matrigel-collagen hydrogel scaffolds of increasing complexity that mimic the tumor microenvironment at the leading edge of cancer invasion. We quantitatively show that the presence of Matrigel increases hydrogel stiffness, which promotes β1 integrin expression and metalloproteinase activity in H1299 lung cancer cells. Then, we show that ECM remodeling activity causes matrix alignment and compaction that favors higher tractions exerted by the cells. However, these traction forces do not linearly translate into increased motility due to a biphasic role of cell adhesions in cell migration: at low concentration Matrigel promotes migration-effective tractions exerted through a high number of small sized focal adhesions. However, at high Matrigel concentration, traction forces are exerted through fewer, but larger focal adhesions that favor attachment yielding lower cell motility.
Collapse
Affiliation(s)
- María Anguiano
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Xabier Morales
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Carlos Castilla
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Alejandro Rodríguez Pena
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cristina Ederra
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Mikel Ariz
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maider Esparza
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Hippolyte Amaveda
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Mario Mora
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Nieves Movilla
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Iván Cortés-Domínguez
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
62
|
Sztilkovics M, Gerecsei T, Peter B, Saftics A, Kurunczi S, Szekacs I, Szabo B, Horvath R. Single-cell adhesion force kinetics of cell populations from combined label-free optical biosensor and robotic fluidic force microscopy. Sci Rep 2020; 10:61. [PMID: 31919421 PMCID: PMC6952389 DOI: 10.1038/s41598-019-56898-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
Single-cell adhesion force plays a crucial role in biological sciences, however its in-depth investigation is hindered by the extremely low throughput and the lack of temporal resolution of present techniques. While atomic force microcopy (AFM) based methods are capable of directly measuring the detachment force values between individual cells and a substrate, their throughput is limited to few cells per day, and cannot provide the kinetic evaluation of the adhesion force over the timescale of several hours. In this study a high spatial and temporal resolution resonant waveguide grating based label-free optical biosensor was combined with robotic fluidic force microscopy to monitor the adhesion of living cancer cells. In contrast to traditional fluidic force microscopy methods with a manipulation range in the order of 300-400 micrometers, the robotic device employed here can address single cells over mm-cm scale areas. This feature significantly increased measurement throughput, and opened the way to combine the technology with the employed microplate-based, large area biosensor. After calibrating the biosensor signals with the direct force measuring technology on 30 individual cells, the kinetic evaluation of the adhesion force and energy of large cell populations was performed for the first time. We concluded that the distribution of the single-cell adhesion force and energy can be fitted by log-normal functions as cells are spreading on the surface and revealed the dynamic changes in these distributions. The present methodology opens the way for the quantitative assessment of the kinetics of single-cell adhesion force and energy with an unprecedented throughput and time resolution, in a completely non-invasive manner.
Collapse
Affiliation(s)
- Milan Sztilkovics
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Tamas Gerecsei
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Beatrix Peter
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Andras Saftics
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Sandor Kurunczi
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Balint Szabo
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary.
| |
Collapse
|
63
|
Mularski A, Niedergang F. Force Measurement of Living Professional Phagocytes of the Immune System. Aust J Chem 2020. [DOI: 10.1071/ch19409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In higher organisms, the professional phagocytes of the immune system (dendritic cells, neutrophils, monocytes, and macrophages) are responsible for pathogen clearance, the development of immune responses via cytokine secretion and presentation of antigens derived from internalized material, and the normal turnover and remodelling of tissues and disposal of dead cells. These functions rely on the ability of phagocytes to migrate and adhere to sites of infection, dynamically probe their environments to make contact with phagocytic targets, and perform phagocytosis, a mechanism of internalization of large particles, microorganisms, and cellular debris for intracellular degradation. The cell-generated forces that are necessary for the professional phagocytes to act in their roles as ‘first responders’ of the immune system have been the subject of mechanical studies in recent years. Methods of force measurement such as atomic force microscopy, traction force microscopy, micropipette aspiration, magnetic and optical tweezers, and exciting new variants of these have accompanied classical biological methods to perform mechanical investigations of these highly dynamic immune cells.
Collapse
|
64
|
Steeves AJ, Variola F. Elucidating structure–function relationships governing the interfacial response of human mesenchymal stem cells to polydopamine coatings. J Mater Chem B 2020; 8:199-215. [DOI: 10.1039/c9tb02188d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deposition of mussel-inspired polydopamine (PDA) has rapidly emerged as a simple yet effective strategy to functionalize the surface of biomaterials.
Collapse
Affiliation(s)
- Alexander J. Steeves
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Ottawa-Carleton Institute for Biomedical Engineering
| | - Fabio Variola
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Ottawa-Carleton Institute for Biomedical Engineering
| |
Collapse
|
65
|
Rens EG, Edelstein-Keshet L. From energy to cellular forces in the Cellular Potts Model: An algorithmic approach. PLoS Comput Biol 2019; 15:e1007459. [PMID: 31825952 PMCID: PMC6927661 DOI: 10.1371/journal.pcbi.1007459] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/23/2019] [Accepted: 10/05/2019] [Indexed: 11/30/2022] Open
Abstract
Single and collective cell dynamics, cell shape changes, and cell migration can be conveniently represented by the Cellular Potts Model, a computational platform based on minimization of a Hamiltonian. Using the fact that a force field is easily derived from a scalar energy (F = −∇H), we develop a simple algorithm to associate effective forces with cell shapes in the CPM. We predict the traction forces exerted by single cells of various shapes and sizes on a 2D substrate. While CPM forces are specified directly from the Hamiltonian on the cell perimeter, we approximate the force field inside the cell domain using interpolation, and refine the results with smoothing. Predicted forces compare favorably with experimentally measured cellular traction forces. We show that a CPM model with internal signaling (such as Rho-GTPase-related contractility) can be associated with retraction-protrusion forces that accompany cell shape changes and migration. We adapt the computations to multicellular systems, showing, for example, the forces that a pair of swirling cells exert on one another, demonstrating that our algorithm works equally well for interacting cells. Finally, we show forces exerted by cells on one another in classic cell-sorting experiments. Cells exert forces on their surroundings and on one another. In simulations of cell shape using the Cellular Potts Model (CPM), the dynamics of deforming cell shapes is traditionally represented by an energy-minimization method. We use this CPM energy, the Hamiltonian, to derive and visualize the corresponding forces exerted by the cells. We use the fact that force is the negative gradient of energy to assign forces to the CPM cell edges, and then extend the results to approximate interior forces by interpolation. We show that this method works for single as well as multiple interacting model cells, both static and motile. Finally, we show favorable comparison between predicted forces and real forces measured experimentally.
Collapse
Affiliation(s)
- Elisabeth G. Rens
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
66
|
Wang L, Chen W, Guo H, Qian A. Response of membrane tension to gravity in an approximate cell model. Theor Biol Med Model 2019; 16:19. [PMID: 31801614 PMCID: PMC6894217 DOI: 10.1186/s12976-019-0116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/29/2019] [Indexed: 12/03/2022] Open
Abstract
Background Gravity, especially hypergravity, can affect the morphology of membranes, and further influence most biological processes. Since vesicle structures are relatively simple, the vesicle can be treated as a vital model to study the mechanical properties of membranes in most cases. Basic research on membrane tension has become a vital research topic in cellular biomechanics. Methods In this study, a new vesicle model is proposed to quantitatively investigate the response of membrane tension to gravity. In the model, the aqueous lumen inside the vesicle is represented by water, and the vesicle membrane is simplified as a closed, thin, linear elastic shell. Then, the corresponding static equilibrium differential equations of membrane tension are established, and the analytical expression is obtained by the semi-inverse method. The model parameters of the equations are accurately obtained by fitting the reported data, and the values calculated by the model agree well with the reported results. Results The results are as follows: First, both the pseudo-ellipsoidal cap and the pseudo-spherical cap can be used to describe the deformed vesicle model; however, the former can better represent the deformation of the vesicle model because the variance of the pseudo-ellipsoidal cap is smaller. Second, the value of membrane tension is no longer a constant for both models. Interestingly, it varies with the vesicle height under the action of gravity. The closer it is to the substrate, the greater the membrane tension. Finally, the inclination between the tangent and the radial lines at a certain point is nearly proportional to the radius of the cross section in both models. Conclusion These findings may be helpful to study the vesicle model spreading more accurately by taking into account the influence of gravity because it could affect the distribution of membrane tension. Furthermore, it may also provide some guidance for cell spreading and may have some implications for membrane tension-related mechanobiology studies, especially in the hypergravity conditions.
Collapse
Affiliation(s)
- Lili Wang
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.,National Demonstration Center for Experimental Mechanics Education (Taiyuan university of Technology), Taiyuan, 030024, China
| | - Weiyi Chen
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China. .,National Demonstration Center for Experimental Mechanics Education (Taiyuan university of Technology), Taiyuan, 030024, China.
| | - Hongmei Guo
- Shanxi Key Laboratory of Material Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.,National Demonstration Center for Experimental Mechanics Education (Taiyuan university of Technology), Taiyuan, 030024, China
| | - Airong Qian
- Key Laboratory for Space Biosciences & Biotechnology, Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
67
|
Kumar R, Saha S, Sinha B. Cell spread area and traction forces determine myosin-II-based cortex thickness regulation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118516. [PMID: 31348954 PMCID: PMC7617199 DOI: 10.1016/j.bbamcr.2019.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
Actomyosin network under the plasma membrane of cells forms a cortical layer that regulates cellular deformations during different processes. What regulates the cortex? Characterized by its thickness, it is believed to be regulated by actin dynamics, filament-length regulators and myosin motor proteins. However, its regulation by cellular morphology (e.g. cell spread area) or mechanical microenvironment (e.g. substrate stiffness) has remained largely unexplored. In this study, super- and high-resolution imaging of actin in CHO cells demonstrates that at high spread areas (>450 μm2), the cortex is thinner, better separated as layers, and sensitive to deactivation of myosin II motors or reduction of substrate stiffness (and traction forces). In less spread cells (<400 μm2) such perturbations do not elicit a response. Myosin IIA's mechanosensing is limited here due to its lowered actin-bound fraction and higher turnover rate. Cofilin, in line with its competitive inhibitory role, is found to be overexpressed in these cells. To establish the causal relation, we initiate a spread area drop by de-adhesion and find enhanced actin dynamics and fragmentation along with oscillations and increase in thickness. This is more correlated to the reduction of traction forces than the endocytosis-based reduction in cell volume. Cortex thickness control by spread area is also found be true during differentiation of THP-1 monocytes to macrophages. Thus, we propose that spread area regulates cortex and its thickness by traction-based mechanosensing of myosin II.
Collapse
Affiliation(s)
- Rinku Kumar
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sajjita Saha
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Bidisha Sinha
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
68
|
Bajpai A, Tong J, Qian W, Peng Y, Chen W. The Interplay Between Cell-Cell and Cell-Matrix Forces Regulates Cell Migration Dynamics. Biophys J 2019; 117:1795-1804. [PMID: 31706566 DOI: 10.1016/j.bpj.2019.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
Cells in vivo encounter and exert forces as they interact with the extracellular matrix (ECM) and neighboring cells during migration. These mechanical forces play crucial roles in regulating cell migratory behaviors. Although a variety of studies have focused on describing single-cell or the collective cell migration behaviors, a fully mechanistic understanding of how the cell-cell (intercellular) and cell-ECM (extracellular) traction forces individually and cooperatively regulate single-cell migration and coordinate multicellular movement in a cellular monolayer is still lacking. Here, we developed an integrated experimental and analytical system to examine both the intercellular and extracellular traction forces acting on individual cells within an endothelial cell colony as well as their roles in guiding cell migratory behaviors (i.e., cell translation and rotation). Combined with force, multipole, and moment analysis, our results revealed that traction force dominates in regulating cell active translation, whereas intercellular force actively modulates cell rotation. Our findings advance the understanding of the intricacies of cell-cell and cell-ECM forces in regulating cellular migratory behaviors that occur during the monolayer development and may yield deeper insights into the single-cell dynamic behaviors during tissue development, embryogenesis, and wound healing.
Collapse
Affiliation(s)
| | - Jie Tong
- Department of Mechanical and Aerospace Engineering
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering
| | - Yansong Peng
- Department of Mechanical and Aerospace Engineering
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; Department of Biomedical Engineering, New York University, Brooklyn, New York.
| |
Collapse
|
69
|
Jana A, Nookaew I, Singh J, Behkam B, Franco AT, Nain AS. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response. FASEB J 2019; 33:10618-10632. [PMID: 31225977 PMCID: PMC6766658 DOI: 10.1096/fj.201900131r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/30/2019] [Indexed: 01/14/2023]
Abstract
Biomechanical cues within tissue microenvironments are critical for maintaining homeostasis, and their disruption can contribute to malignant transformation and metastasis. Once transformed, metastatic cancer cells can migrate persistently by adapting (plasticity) to changes in the local fibrous extracellular matrix, and current strategies to recapitulate persistent migration rely exclusively on the use of aligned geometries. Here, the controlled interfiber spacing in suspended crosshatch networks of nanofibers induces cells to exhibit plasticity in migratory behavior (persistent and random) and the associated cytoskeletal arrangement. At dense spacing (3 and 6 µm), unexpectedly, elongated cells migrate persistently (in 1 dimension) at high speeds in 3-dimensional shapes with thick nuclei, and short focal adhesion cluster (FAC) lengths. With increased spacing (18 and 36 µm), cells attain 2-dimensional morphologies, have flattened nuclei and longer FACs, and migrate randomly by rapidly detaching their trailing edges that strain the nuclei by ∼35%. At 54-µm spacing, kite-shaped cells become near stationary. Poorly developed filamentous actin stress fibers are found only in cells on 3-µm networks. Gene-expression profiling shows a decrease in transcriptional potential and a differential up-regulation of metabolic pathways. The consistency in observed phenotypes across cell lines supports using this platform to dissect hallmarks of plasticity in migration in vitro.-Jana, A., Nookaew, I., Singh, J., Behkam, B., Franco, A. T., Nain, A. S. Crosshatch nanofiber networks of tunable interfiber spacing induce plasticity in cell migration and cytoskeletal response.
Collapse
Affiliation(s)
- Aniket Jana
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Intawat Nookaew
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jugroop Singh
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aime T. Franco
- Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
70
|
Zhang Y, Naguro I, Herr AE. In Situ Single-Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019; 58:13929-13934. [PMID: 31390130 PMCID: PMC6759404 DOI: 10.1002/anie.201906920] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Integrating 2D culture of adherent mammalian cells with single-cell western blotting (in situ scWB) uses microfluidic design to eliminate the requirement for trypsin release of cells to suspension, prior to single-cell isolation and protein analysis. To assay HeLa cells from an attached starting state, we culture adherent cells in fibronectin-functionalized microwells formed in a thin layer of polyacrylamide gel. To integrate the culture, lysis, and assay workflow, we introduce a one-step copolymerization process that creates protein-decorated microwells. After single-cell culture, we lyse each cell in the microwell and perform western blotting on each resultant lysate. We observe cell spreading after overnight microwell-based culture. scWB reports increased phosphorylation of MAP kinases (ERK1/2, p38) under hypertonic conditions. We validate the in situ scWB with slab-gel western blot, while revealing cell-to-cell heterogeneity in stress responses.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Isao Naguro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
71
|
Zhang Y, Naguro I, Herr AE. In Situ Single‐Cell Western Blot on Adherent Cell Culture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yizhe Zhang
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| | - Isao Naguro
- Graduate School of Pharmaceutical SciencesThe University of Tokyo Tokyo Japan
| | - Amy E. Herr
- Department of BioengineeringUniversity of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
72
|
Zanotelli MR, Reinhart-King CA. Mechanical Forces in Tumor Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1092:91-112. [PMID: 30368750 PMCID: PMC6986816 DOI: 10.1007/978-3-319-95294-9_6] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A defining hallmark of cancer and cancer development is upregulated angiogenesis. The vasculature formed in tumors is structurally abnormal, not organized in the conventional hierarchical arrangement, and more permeable than normal vasculature. These features contribute to leaky, tortuous, and dilated blood vessels, which act to create heterogeneous blood flow, compression of vessels, and elevated interstitial fluid pressure. As such, abnormalities in the tumor vasculature not only affect the delivery of nutrients and oxygen to the tumor, but also contribute to creating an abnormal tumor microenvironment that further promotes tumorigenesis. The role of chemical signaling events in mediating tumor angiogenesis has been well researched; however, the relative contribution of physical cues and mechanical regulation of tumor angiogenesis is less understood. Growing research indicates that the physical microenvironment plays a significant role in tumor progression and promoting abnormal tumor vasculature. Here, we review how mechanical cues found in the tumor microenvironment promote aberrant tumor angiogenesis. Specifically, we discuss the influence of matrix stiffness and mechanical stresses in tumor tissue on tumor vasculature, as well as the mechanosensory pathways utilized by endothelial cells to respond to the physical cues found in the tumor microenvironment. We also discuss the impact of the resulting aberrant tumor vasculature on tumor progression and therapeutic treatment.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
73
|
Gooch KJ, Firstenberg MS, Shrefler BS, Scandling BW. Biomechanics and Mechanobiology of Saphenous Vein Grafts. J Biomech Eng 2019; 140:2666246. [PMID: 29222565 DOI: 10.1115/1.4038705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 11/08/2022]
Abstract
Within several weeks of use as coronary artery bypass grafts (CABG), saphenous veins (SV) exhibit significant intimal hyperplasia (IH). IH predisposes vessels to thrombosis and atherosclerosis, the two major modes of vein graft failure. The fact that SV do not develop significant IH in their native venous environment coupled with the rapidity with which they develop IH following grafting into the arterial circulation suggests that factors associated with the isolation and preparation of SV and/or differences between the venous and arterial environments contribute to disease progression. There is strong evidence suggesting that mechanical trauma associated with traditional techniques of SV preparation can significantly damage the vessel and might potentially reduce graft patency though modern surgical techniques reduces these injuries. In contrast, it seems possible that modern surgical technique, specifically endoscopic vein harvest, might introduce other mechanical trauma that could subtly injure the vein and perhaps contribute to the reduced patency observed in veins harvested using endoscopic techniques. Aspects of the arterial mechanical environment influence remodeling of SV grafted into the arterial circulation. Increased pressure likely leads to thickening of the medial wall but its role in IH is less clear. Changes in fluid flow, including increased average wall shear stress, may reduce IH while disturbed flow likely increase IH. Nonmechanical stimuli, such as exposure to arterial levels of oxygen, may also have a significant but not widely recognized role in IH. Several potentially promising approaches to alter the mechanical environment to improve graft patency are including extravascular supports or altered graft geometries are covered.
Collapse
Affiliation(s)
- Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University, 290 Bevis Hall 1080 Carmack Drive, Columbus, OH 43210.,Davis Heart Lung Research Institute, The Ohio State University, Columbus, OH 43210 e-mail:
| | - Michael S Firstenberg
- Surgery and Integrative Medicine, Northeast Ohio Medical Universities, Akron, OH 44309
| | - Brittany S Shrefler
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Benjamin W Scandling
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
74
|
Schwager SC, Bordeleau F, Zhang J, Antonyak MA, Cerione RA, Reinhart-King CA. Matrix stiffness regulates microvesicle-induced fibroblast activation. Am J Physiol Cell Physiol 2019; 317:C82-C92. [PMID: 31017799 PMCID: PMC6689748 DOI: 10.1152/ajpcell.00418.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles released by cancer cells have recently been implicated in the differentiation of stromal cells to their activated, cancer-supporting states. Microvesicles, a subset of extracellular vesicles released from the plasma membrane of cancer cells, contain biologically active cargo, including DNA, mRNA, and miRNA, which are transferred to recipient cells and induce a phenotypic change in behavior. While it is known that microvesicles can alter recipient cell phenotype, little is known about how the physical properties of the tumor microenvironment affect fibroblast response to microvesicles. Here, we utilized cancer cell-derived microvesicles and synthetic substrates designed to mimic the stiffness of the tumor and tumor stroma to investigate the effects of microvesicles on fibroblast phenotype as a function of the mechanical properties of the microenvironment. We show that microvesicles released by highly malignant breast cancer cells cause an increase in fibroblast spreading, α-smooth muscle actin expression, proliferation, cell-generated traction force, and collagen gel compaction. Notably, our data indicate that these phenotypic changes occur only on stiff matrices mimicking the stiffness of the tumor periphery and are dependent on the cell type from which the microvesicles are shed. Overall, these results show that the effects of cancer cell-derived microvesicles on fibroblast activation are regulated by the physical properties of the microenvironment, and these data suggest that microvesicles may have a more robust effect on fibroblasts located at the tumor periphery to influence cancer progression.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell University , Ithaca, New York
| | - Richard A Cerione
- Department of Biomedical Science, Cornell University , Ithaca, New York
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York
| | | |
Collapse
|
75
|
Jackson S, Meeks C, Vézina A, Robey RW, Tanner K, Gottesman MM. Model systems for studying the blood-brain barrier: Applications and challenges. Biomaterials 2019; 214:119217. [PMID: 31146177 DOI: 10.1016/j.biomaterials.2019.05.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) poses a serious impediment to the delivery of effective therapies to the central nervous system (CNS). Over time, various model systems have been crafted and used to evaluate the complexities of the BBB, which includes an impermeable physical barrier and a series of energy-dependent efflux pumps. Models of the BBB have mainly sought to assess changes in endothelial cell permeability, the role of ATP-dependent efflux transporters in drug disposition, and alterations in communication between BBB cells and the microenvironment. In the context of disease, various animal models have been utilized to examine real time BBB drug permeability, CNS dynamic changes, and overall treatment response. In this review, we outline the use of these in vitro and in vivo blood-brain barrier model systems to study normal physiology and diseased states. These current models each have their own advantages and disadvantages for studying the response of biologic processes to physiological and pathological conditions. Additional models are needed to mimic more closely the dynamic quality of the BBB, with the goal focused on potential clinical applications.
Collapse
Affiliation(s)
- Sadhana Jackson
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Caitlin Meeks
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amélie Vézina
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert W Robey
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kandice Tanner
- Tissue Morphodynamics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Michael M Gottesman
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
76
|
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. NATURE REVIEWS. MATERIALS 2019; 4:294-311. [PMID: 32435512 PMCID: PMC7238390 DOI: 10.1038/s41578-019-0099-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.
Collapse
Affiliation(s)
- Yongzhi Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - David R. Myers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Corresponding author,
| |
Collapse
|
77
|
Jalal S, Shi S, Acharya V, Huang RYJ, Viasnoff V, Bershadsky AD, Tee YH. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci 2019; 132:jcs.220780. [PMID: 30787030 PMCID: PMC6432717 DOI: 10.1242/jcs.220780] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/24/2019] [Indexed: 12/23/2022] Open
Abstract
Actin cytoskeleton self-organization in two cell types, fibroblasts and epitheliocytes, was studied in cells confined to isotropic adhesive islands. In fibroblasts plated onto islands of optimal size, an initially circular actin pattern evolves into a radial pattern of actin bundles that undergo asymmetric chiral swirling before finally producing parallel linear stress fibers. Epitheliocytes, however, did not exhibit succession through all the actin patterns described above. Upon confinement, the actin cytoskeleton in non-keratinocyte epitheliocytes was arrested at the circular stage, while in keratinocytes it progressed as far as the radial pattern but still could not break symmetry. Epithelial–mesenchymal transition pushed actin cytoskeleton development from circular towards radial patterns but remained insufficient to cause chirality. Knockout of cytokeratins also did not promote actin chirality development in keratinocytes. Left–right asymmetric cytoskeleton swirling could, however, be induced in keratinocytes by treatment with small doses of the G-actin sequestering drug, latrunculin A in a transcription-independent manner. Both the nucleus and the cytokeratin network followed the induced chiral swirling. Development of chirality in keratinocytes was controlled by DIAPH1 (mDia1) and VASP, proteins involved in regulation of actin polymerization. This article has an associated First Person interview with the first author of the paper. Summary: Epitheliocytes cannot develop the F-actin patterns typically observed in fibroblasts, but can do so after treatments affecting actin polymerization. Regulators of actin polymerization, DIAPH1 and VASP, control this process.
Collapse
Affiliation(s)
- Salma Jalal
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shidong Shi
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599.,Department of Obstetrics & Gynaecology, National University Hospital, Singapore 119228.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre National Pour la Recherche Scientifique, Singapore 117411.,Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411 .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yee Han Tee
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| |
Collapse
|
78
|
Cao Y, Karmakar R, Ghabache E, Gutierrez E, Zhao Y, Groisman A, Levine H, Camley BA, Rappel WJ. Cell motility dependence on adhesive wetting. SOFT MATTER 2019; 15:2043-2050. [PMID: 30724956 DOI: 10.1039/c8sm01832d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adhesive cell-substrate interactions are crucial for cell motility and are responsible for the necessary traction that propels cells. These interactions can also change the shape of the cell, analogous to liquid droplet wetting on adhesive substrates. To address how these shape changes affect cell migration and cell speed we model motility using deformable, 2D cross-sections of cells in which adhesion and frictional forces between cell and substrate can be varied separately. Our simulations show that increasing the adhesion results in increased spreading of cells and larger cell speeds. We propose an analytical model which shows that the cell speed is inversely proportional to an effective height of the cell and that increasing this height results in increased internal shear stress. The numerical and analytical results are confirmed in experiments on motile eukaryotic cells.
Collapse
Affiliation(s)
- Yuansheng Cao
- Department of Physics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Charbonier FW, Zamani M, Huang NF. Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment. ADVANCED BIOSYSTEMS 2019; 3:e1800252. [PMID: 31328152 PMCID: PMC6640152 DOI: 10.1002/adbi.201800252] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 12/11/2022]
Abstract
The vascular endothelial cells (ECs) that line the inner layer of blood vessels are responsible for maintaining vascular homeostasis under physiological conditions. In the presence of disease or injury, ECs can become dysfunctional and contribute to a progressive decline in vascular health. ECs are constantly exposed to a variety of dynamic mechanical stimuli, including hemodynamic shear stress, pulsatile stretch, and passive signaling cues derived from the extracellular matrix. This review describes the molecular mechanisms by which ECs perceive and interpret these mechanical signals. The translational applications of mechanosensing are then discussed in the context of endothelial-to-mesenchymal transition and engineering of vascular grafts.
Collapse
Affiliation(s)
- Frank W. Charbonier
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305
- Stanford University, 300 Pasteur Drive, MC 5407, Stanford, CA 94305-5407, USA
| |
Collapse
|
80
|
Bell S, Redmann AL, Terentjev EM. Universal Kinetics of the Onset of Cell Spreading on Substrates of Different Stiffness. Biophys J 2019; 116:551-559. [PMID: 30665696 PMCID: PMC6369430 DOI: 10.1016/j.bpj.2018.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
When plated onto substrates, cell morphology and even stem-cell differentiation are influenced by the stiffness of their environment. Stiffer substrates give strongly spread (eventually polarized) cells with strong focal adhesions and stress fibers; very soft substrates give a less developed cytoskeleton and much lower cell spreading. The kinetics of this process of cell spreading is studied extensively, and important universal relationships are established on how the cell area grows with time. Here, we study the population dynamics of spreading cells, investigating the characteristic processes involved in the cell response to the substrate. We show that unlike the individual cell morphology, this population dynamics does not depend on the substrate stiffness. Instead, a strong activation temperature dependence is observed. Different cell lines on different substrates all have long-time statistics controlled by the thermal activation over a single energy barrier ΔG ≈ 18 kcal/mol, whereas the early-time kinetics follows a power law ∼t5. This implies that the rate of spreading depends on an internal process of adhesion complex assembly and activation; the operational complex must have five component proteins, and the last process in the sequence (which we believe is the activation of focal adhesion kinase) is controlled by the binding energy ΔG.
Collapse
Affiliation(s)
- Samuel Bell
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anna-Lena Redmann
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
81
|
Tian H, Xu JY, Tian Y, Cao Y, Lian C, Ou Q, Wu B, Jin C, Gao F, Wang J, Zhang J, Zhang J, Li W, Lu L, Xu GT. A cell culture condition that induces the mesenchymal-epithelial transition of dedifferentiated porcine retinal pigment epithelial cells. Exp Eye Res 2018; 177:160-172. [PMID: 30096326 DOI: 10.1016/j.exer.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022]
Abstract
The pathological change of retinal pigment epithelial (RPE) cells is one of the main reasons for the development of age-related macular degeneration (AMD). Thus, cultured RPE cells are a proper cell model for studying the etiology of AMD in vitro. However, such cultured RPE cells easily undergo epithelial-mesenchymal transition (EMT) that results in changes of cellular morphology and functions of the cells. To restore and maintain the mesenchymal-epithelial transition (MET) of the cultured RPE cells, we cultivated dedifferentiated porcine RPE (pRPE) cells and compared their behaviors in four conditions: 1) in cell culture dishes with DMEM/F12 containing FBS (CC dish-FBS), 2) in petri dishes with DMEM/F12 containing FBS (Petri dish-FBS), 3) in cell culture dishes with DMEM/F12 containing N2 and B27 supplements (CC dish-N2B27), and 4) in petri dishes with DMEM/F12 containing N2 and B27 (Petri dish-N2B27). In addition to observing the cell morphology and behavior, RPE specific markers, as well as EMT-related genes and proteins, were examined by immunostaining, quantitative real-time PCR and Western blotting. The results showed that dedifferentiated pRPE cells maintained EMT in CC dish-FBS, Petri dish-FBS and CC dish-N2B27 groups, whereas MET was induced when the dedifferentiated pRPE cells were cultured in Petri dish-N2B27. Such induced pRPE cells showed polygonal morphology with increased expression of RPE-specific markers and decreased EMT-associated markers. Similar results were observed in induced pluripotent stem cell-derived RPE cells. Furthermore, during the re-differentiation of those dedifferentiated pRPE cells, Petri dish-N2B27 reduced the activity of RhoA and induced F-actin rearrangement, which promoted the nuclear exclusion of transcriptional co-activator with PDZ-binding motif (TAZ) and TAZ target molecule zinc finger E-box binding protein (ZEB1), both of which are EMT inducing factors. This study provides a simple and reliable method to reverse dedifferentiated phenotype of pRPE cells into epithelialized phenotype, which is more appropriate for studying AMD in vitro, and suggests that MET of other cell types might be induced by a similar approach.
Collapse
Affiliation(s)
- Haibin Tian
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Yu Tian
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Yaqi Cao
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Chunpin Lian
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Binxin Wu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Department of Physiology and Pharmacology, TUSM, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, USA.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth Hospital, Tongji Eye Institute, Tongji University School of Medicine (TUSM), Shanghai, China; Laboratory of Clinical Visual Science, Department of Regenerative Medicine and Stem Cell Research Center, TUSM, China; Department of Physiology and Pharmacology, TUSM, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
82
|
Izquierdo-Álvarez A, Vargas DA, Jorge-Peñas Á, Subramani R, Vaeyens MM, Van Oosterwyck H. Spatiotemporal Analyses of Cellular Tractions Describe Subcellular Effect of Substrate Stiffness and Coating. Ann Biomed Eng 2018; 47:624-637. [DOI: 10.1007/s10439-018-02164-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
|
83
|
Wang W, Miller JP, Pannullo SC, Reinhart-King CA, Bordeleau F. Quantitative assessment of cell contractility using polarized light microscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201800008. [PMID: 29931742 PMCID: PMC6226342 DOI: 10.1002/jbio.201800008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/20/2018] [Indexed: 06/01/2023]
Abstract
Cell contractility regulates multiple cell behaviors which contribute to both normal and pathological processes. However, measuring cell contractility remains a technical challenge in complex biological samples. The current state of the art technologies employed to measure cell contractility have inherent limitations that greatly limit the experimental conditions under which they can be used. Here, we use quantitative polarization microscopy to extract information about cell contractility. We show that the optical retardance signal measured from the cell body is proportional to cell contractility in 2-dimensional and 3-dimensional platforms, and as such can be used as a straightforward, tractable methodology to assess cell contractility in a variety of systems. This label-free optical method provides a novel and flexible way to assess cellular forces of single cells and monolayers in several cell types, fixed or live, in addition to cells present in situ in mouse tumor tissue samples. This easily implementable and experimentally versatile method will significantly contribute to the cell mechanics field.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Joseph P. Miller
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Susan C. Pannullo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Cynthia A. Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
84
|
Bowler MA, Bersi MR, Ryzhova LM, Jerrell RJ, Parekh A, Merryman WD. Cadherin-11 as a regulator of valve myofibroblast mechanobiology. Am J Physiol Heart Circ Physiol 2018; 315:H1614-H1626. [PMID: 30359089 DOI: 10.1152/ajpheart.00277.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cadherin-11 (CDH11) is upregulated in a variety of fibrotic diseases, including arthritis and calcific aortic valve disease. Our recent work has identified CDH11 as a potential therapeutic target and shown that treatment with a CDH11 functional blocking antibody can prevent hallmarks of calcific aortic valve disease in mice. The present study investigated the role of CDH11 in regulating the mechanobiological behavior of valvular interstitial cells believed to cause calcification. Aortic valve interstitial cells were harvested from Cdh11+/+, Cdh11+/-, and Cdh11-/- immortomice. Cells were subjected to inflammatory cytokines transforming growth factor (TGF)-β1 and IL-6 to characterize the molecular mechanisms by which CDH11 regulates their mechanobiological changes. Histology was performed on aortic valves from Cdh11+/+, Cdh11+/-, and Cdh11-/- mice to identify key responses to CDH11 deletion in vivo. We showed that CDH11 influences cell behavior through its regulation of contractility and its ability to bind substrates via focal adhesions. We also show that transforming growth factor-β1 overrides the normal relationship between CDH11 and smooth muscle α-actin to exacerbate the myofibroblast disease phenotype. This phenotypic switch is potentiated through the IL-6 signaling axis and could act as a paracrine mechanism of myofibroblast activation in neighboring aortic valve interstitial cells in a positive feedback loop. These data suggest CDH11 is an important mediator of the myofibroblast phenotype and identify several mechanisms by which it modulates cell behavior. NEW & NOTEWORTHY Cadherin-11 influences valvular interstitial cell contractility by regulating focal adhesions and inflammatory cytokine secretion. Transforming growth factor-β1 overrides the normal balance between cadherin-11 and smooth muscle α-actin expression to promote a myofibroblast phenotype. Cadherin-11 is necessary for IL-6 and chitinase-3-like protein 1 secretion, and IL-6 promotes contractility. Targeting cadherin-11 could therapeutically influence valvular interstitial cell phenotypes in a multifaceted manner.
Collapse
Affiliation(s)
- Meghan A Bowler
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Larisa M Ryzhova
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University , Nashville, Tennessee
| | - Aron Parekh
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Department of Otolaryngology, Vanderbilt University , Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
85
|
Hoesli CA, Tremblay C, Juneau PM, Boulanger MD, Beland AV, Ling SD, Gaillet B, Duchesne C, Ruel J, Laroche G, Garnier A. Dynamics of Endothelial Cell Responses to Laminar Shear Stress on Surfaces Functionalized with Fibronectin-Derived Peptides. ACS Biomater Sci Eng 2018; 4:3779-3791. [DOI: 10.1021/acsbiomaterials.8b00774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corinne A. Hoesli
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
- PROTEO Research Center, Québec, Canada
| | - Catherine Tremblay
- Département de Génie Mécanique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Pierre-Marc Juneau
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO Research Center, Québec, Canada
| | - Mariève D. Boulanger
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, De la Métallurgie et des Matériaux, Université Laval, Québec G1V 0A6,Canada
| | - Ariane V. Beland
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Si Da Ling
- Department of Chemical Engineering, Faculty of Engineering, McGill University, Wong Building, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Bruno Gaillet
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO Research Center, Québec, Canada
| | - Carl Duchesne
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
| | - Jean Ruel
- Département de Génie Mécanique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Gaétan Laroche
- Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, De la Métallurgie et des Matériaux, Université Laval, Québec G1V 0A6,Canada
- Centre de Recherche du CHU de Québec, Hôpital Saint-François d’Assise, 10 rue de l’Espinay, Bureau E0-165Québec, Québec G1L 3L5, Canada
| | - Alain Garnier
- Département de Génie Chimique, Faculté des Sciences et de Génie, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada
- PROTEO Research Center, Québec, Canada
| |
Collapse
|
86
|
Campbell KT, Stilhano RS, Silva EA. Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications. Biomaterials 2018; 179:109-121. [PMID: 29980073 PMCID: PMC6746553 DOI: 10.1016/j.biomaterials.2018.06.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
The objective of this study was to design an injectable biomaterial system that becomes porous in situ to deliver and control vascular progenitor cell release. Alginate hydrogels were loaded with outgrowth endothelial cells (OECs) and alginate lyase, an enzyme which cleaves alginate polymer chains. We postulated and confirmed that higher alginate lyase concentrations mediated loss of hydrogel mechanical properties. Hydrogels incorporating 5 and 50 mU/mL of alginate lyase experienced approximately 28% and 57% loss of mass as well as 81% and 91% reduction in storage modulus respectively after a week. Additionally, computational methods and mechanical analysis revealed that hydrogels with alginate lyase significantly increased in mesh size over time. Furthermore, alginate lyase was not found to inhibit OEC proliferation, viability or sprouting potential. Finally, alginate hydrogels incorporating OECs and alginate lyase promoted up to nearly a 10 fold increase in OEC migration in vitro than nondegradable hydrogels over the course of a week and increased functional vasculature in vivo via a chick chorioallantoic membrane (CAM) assay. Overall, these findings demonstrate that alginate lyase incorporated hydrogels can provide a simple and robust system to promote controlled outward cell migration into native tissue for potential therapeutic revascularization applications.
Collapse
Affiliation(s)
- Kevin T Campbell
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Roberta S Stilhano
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA; Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA.
| |
Collapse
|
87
|
Tanner K. Perspective: The role of mechanobiology in the etiology of brain metastasis. APL Bioeng 2018; 2:031801. [PMID: 31069312 PMCID: PMC6324204 DOI: 10.1063/1.5024394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor latency and dormancy are obstacles to effective cancer treatment. In brain
metastases, emergence of a lesion can occur at varying intervals from diagnosis
and in some cases following successful treatment of the primary tumor. Genetic
factors that drive brain metastases have been identified, such as those involved
in cell adhesion, signaling, extravasation, and metabolism. From this wealth of
knowledge, vexing questions still remain; why is there a difference in strategy
to facilitate outgrowth and why is there a difference in latency? One missing
link may be the role of tissue biophysics of the brain microenvironment in
infiltrating cells. Here, I discuss the mechanical cues that may influence
disseminated tumor cells in the brain, as a function of age and disease. I
further discuss in vitro and in vivo
preclinical models such as 3D culture systems and zebrafish to study the role of
the mechanical environment in brain metastasis in an effort of providing novel
targeted therapeutics.
Collapse
Affiliation(s)
- Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
88
|
Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018773044. [PMID: 29714090 PMCID: PMC5987909 DOI: 10.1177/2045894018773044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH.
Collapse
Affiliation(s)
- Pratap Karki
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
89
|
Chowdhury F, Doğanay S, Leslie BJ, Singh R, Amar K, Talluri B, Park S, Wang N, Ha T. Cdc42-dependent modulation of rigidity sensing and cell spreading in tumor repopulating cells. Biochem Biophys Res Commun 2018; 500:557-563. [PMID: 29673588 DOI: 10.1016/j.bbrc.2018.04.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/22/2023]
Abstract
Recently, a robust mechanical method has been established to isolate a small subpopulation of highly tumorigenic tumor repopulating cells (TRCs) from parental melanoma cells. In order to characterize the molecular and mechanical properties of TRCs, we utilized the tension gauge tether (TGT) single-molecule platform and investigated force requirements during early cell spreading events. TRCs required the peak single molecular tension of around 40 pN through integrins for initial adhesion like the parental control cells, but unlike the control cells, they did not spread and formed very few mature focal adhesions (FAs). Single molecule resolution RNA quantification of three Rho GTPases showed that downregulation of Cdc42, but not Rac1, is responsible for the unusual biophysical features of TRCs and that a threshold level of Cdc42 transcripts per unit cell area is required to initiate cell spreading. Cdc42 overexpression rescued TRC spreading through FA formation and restored the sensitivity to tension cues such that TRCs, like parental control cells, increase cell spreading with increasing single-molecular tension cues. Our single molecule studies identified an unusual biophysical feature of suppressed spreading of TRCs that may enable us to distinguish TRC population from a pool of heterogeneous tumor cell population.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.
| | - Sultan Doğanay
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benjamin J Leslie
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Rishi Singh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kshitij Amar
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Bhavana Talluri
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Seongjin Park
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taekjip Ha
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
90
|
Brookes NH. Riding the cell jamming boundary: Geometry, topology, and phase of human corneal endothelium. Exp Eye Res 2018; 172:171-180. [PMID: 29656016 DOI: 10.1016/j.exer.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
It is important to assess the viability of eye-banked corneas prior to transplantation due to inherent senescence and known loss of endothelial cells during surgical manipulation. Corneal endothelial cells have a complex basal and paracellular shape making them challenging to accurately measure, particularly in oedematous ex vivo tissue. This study used calibrated centroidal Voronoi Diagrams to segment cells in images of these human corneas, in order to characterize endothelial geometry, topology, and phase. Hexagonal cells dominated the endothelia, with most comprised of five different pleomorphs exhibiting self-similar topological coarsening through most of the endothelial cell density range. There was a linear relationship between cell size and shape, though cells with greater than six sides were present in larger proportions than cells with less. Hexagonal cell regularity was stable and largely independent of density. Cell and tissue phase was also examined, using the cell shape index relative to the recently discovered 'cell jamming' phase transition boundary. Images showed fluid endothelia with a range of shape indices spanning the boundary, independent of density but dependent on hexagonal regularity. The cells showed a bimodal distribution centred at the boundary, with the largest proportion of cells on the fluid side. A shoulder at the boundary suggested phase switching via shape transformation across the energy barrier, with cells either side having distinctly different size and shape characteristics. Regular hexagonal cells were closest to the boundary. This study showed the corneal endothelium acts as a glassy viscous foam characterized by well-established physical laws. Endothelial cell death transiently and locally increases cell fluidity, which is subsequently arrested by jamming of the pleomorphically diverse cell collective, via rearrangement and shape change of a small proportion of cells, which become locked in place by their neighbours thereby maintaining structural equilibrium with little energy expenditure.
Collapse
Affiliation(s)
- Nigel H Brookes
- New Zealand National Eye Bank and Department of Ophthalmology, University of Auckland, New Zealand.
| |
Collapse
|
91
|
Gharaei MA, Xue Y, Mustafa K, Lie SA, Fristad I. Human dental pulp stromal cell conditioned medium alters endothelial cell behavior. Stem Cell Res Ther 2018; 9:69. [PMID: 29562913 PMCID: PMC5861606 DOI: 10.1186/s13287-018-0815-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Background Angiogenesis is of utmost importance for tissue regeneration and repair. Human dental pulp stromal cells (hDPSCs) possess angiogenic potential, as they secrete paracrine factors that may alter the host microenvironment. However, more insight into how hDPSCs guide endothelial cells (ECs) in a paracrine fashion is yet to be obtained. Therefore, the current study aimed to investigate the effect(s) of conditioned medium derived from hDPSCs (hDPSC-CM) on EC behavior in vitro. Methods hDPSCs were harvested from third molars scheduled for surgical removal under informed consent. The angiogenic profile of hDPSC-CM was identified using human angiogenesis antibody array and enzyme-linked immunosorbent assay (ELISA). Using real-time reverse transcription-polymerase chain reaction (RT-PCR) and ELISA, the mRNA and protein expression level of specific angiogenic biomarkers was determined in human umbilical vein endothelial cells (HUVECs) exposed to hDPSC-CM. The effect of hDPSC-CM on HUVEC attachment, proliferation and migration was evaluated by crystal violet staining, MTT, transwell migration along with real-time cell monitoring assays (xCELLigence; ACEA Biosciences, Inc.). A Matrigel assay was included to examine the influence of hDPSC-CM on HUVEC network formation. Endothelial growth medium (EGM-2) and EGM-2 supplemented with hDPSC-CM served as experimental groups, whereas endothelial basal medium (EBM-2) was set as negative control. Results A wide range of proangiogenic and antiangiogenic factors, including vascular endothelial growth factor, tissue inhibitor of metalloproteinase protein 1, plasminogen activator inhibitor (serpin E1), urokinase plasminogen activator and stromal cell-derived factor 1, was abundantly detected in hDPSC-CM by protein profiling array and ELISA. hDPSC-CM significantly accelerated the adhesion phases, from sedimentation to attachment and spreading, the proliferation rate and migration of HUVECs as shown in both endpoint assays and real-time cell analysis recordings. Furthermore, Matrigel assay demonstrated that hDPSC-CM stimulated tubulogenesis, affecting angiogenic parameters such as the number of nodes, meshes and total tube length. Conclusions The sustained proangiogenic and promaturation effects of hDPSC-CM shown in this in vitro study strongly suggest that the trophic factors released by hDPSCs are able to trigger pronounced angiogenic responses, even beyond EGM-2 considered as an optimal culture condition for ECs.
Collapse
Affiliation(s)
- M A Gharaei
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - Y Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - K Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - S A Lie
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway
| | - I Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, N-5009, Bergen, Norway.
| |
Collapse
|
92
|
Vianay B, Senger F, Alamos S, Anjur-Dietrich M, Bearce E, Cheeseman B, Lee L, Théry M. Variation in traction forces during cell cycle progression. Biol Cell 2018; 110:91-96. [DOI: 10.1111/boc.201800006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Benoit Vianay
- University of Paris Diderot; INSERM; CEA; Hôpital Saint Louis; Institut Universitaire d'Hematologie; UMRS1160; CytoMorpho Lab; 75010 Paris France
| | - Fabrice Senger
- University of Grenoble-Alpes; CEA; CNRS; INRA; Biosciences & Biotechnology Institute of Grenoble; Laboratoire de Phyiologie Cellulaire & Végétale; CytoMorpho Lab; 38054 Grenoble France
| | - Simon Alamos
- Physiology Course; Marine Biology Laboratory; Woods Hole MA USA
| | | | | | - Bevan Cheeseman
- Physiology Course; Marine Biology Laboratory; Woods Hole MA USA
| | - Lisa Lee
- Physiology Course; Marine Biology Laboratory; Woods Hole MA USA
| | - Manuel Théry
- University of Paris Diderot; INSERM; CEA; Hôpital Saint Louis; Institut Universitaire d'Hematologie; UMRS1160; CytoMorpho Lab; 75010 Paris France
- University of Grenoble-Alpes; CEA; CNRS; INRA; Biosciences & Biotechnology Institute of Grenoble; Laboratoire de Phyiologie Cellulaire & Végétale; CytoMorpho Lab; 38054 Grenoble France
| |
Collapse
|
93
|
Abstract
The ability of adherent cells to sense changes in the mechanical properties of their extracellular environments is critical to numerous aspects of their physiology. It has been well documented that cell attachment and spreading are sensitive to substrate stiffness. Here, we demonstrate that this behavior is actually biphasic, with a transition that occurs around a Young's modulus of ∼7 kPa. Furthermore, we demonstrate that, contrary to established assumptions, this property is independent of myosin II activity. Rather, we find that cell spreading on soft substrates is inhibited due to reduced myosin-II independent nascent adhesion formation within the lamellipodium. Cells on soft substrates display normal leading-edge protrusion activity, but these protrusions are not stabilized due to impaired adhesion assembly. Enhancing integrin-ECM affinity through addition of Mn2+ recovers nascent adhesion assembly and cell spreading on soft substrates. Using a computational model to simulate nascent adhesion assembly, we find that biophysical properties of the integrin-ECM bond are optimized to stabilize interactions above a threshold matrix stiffness that is consistent with the experimental observations. Together, these results suggest that myosin II-independent forces in the lamellipodium are responsible for mechanosensation by regulating new adhesion assembly, which, in turn, directly controls cell spreading. This myosin II-independent mechanism of substrate stiffness sensing could potentially regulate a number of other stiffness-sensitive processes.
Collapse
|
94
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|
95
|
Syed S, Schober J, Blanco A, Zustiak SP. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates. PLoS One 2017; 12:e0187853. [PMID: 29136040 PMCID: PMC5685588 DOI: 10.1371/journal.pone.0187853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/29/2017] [Indexed: 11/19/2022] Open
Abstract
Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration.
Collapse
Affiliation(s)
- Sana Syed
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Joseph Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Alexandra Blanco
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Silviya Petrova Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| |
Collapse
|
96
|
He S, Ji B. Mechanics of Cell Mechanosensing in Protrusion and Retraction of Lamellipodium. ACS Biomater Sci Eng 2017; 3:2943-2953. [PMID: 33418714 DOI: 10.1021/acsbiomaterials.6b00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lamellipodia (LP), a subcellular structure at cell front, plays a key role in cell spreading and migration. And its mechanosensing function is of crucial importance for cell activities. But the mechanism of the mechanosensing function remains poorly understood. Here we developed a multiscale model to consider its protrusion and retraction processes, and analyzed the forces acted on the key structural components of the LP and the effect of these forces on LP movement. Our results show that raising substrate rigidity increases the force acting on the focal adhesion (FA) and decreases the force on LP actin, thus promoting the maturation of FA while suppressing the detachment of LP actin from the cell membrane. The membrane tension also influences the LP movement, but its effect is opposite to that of the substrate rigidity. It turns out that the substrate rigidity and membrane tension together regulate the dynamics of FAs and the detachment of LP actin, which in turn determine the LP movement. Interestingly, we found that the effect of substrate rigidity and membrane tension on the LP movement both exhibit a biphasic manner. We show that our predictions agree, in general, with the experiments on cell mechanosensing behaviors at both subcellular and cellular levels.
Collapse
Affiliation(s)
- Shijie He
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
97
|
Adaptation trajectories during adhesion and spreading affect future cell states. Sci Rep 2017; 7:12308. [PMID: 28951547 PMCID: PMC5615062 DOI: 10.1038/s41598-017-12467-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
Cells are complex systems in which dynamic gene expression and protein-interaction networks adapt to changes in the environment. Seeding and subsequent spreading of cells on substrates represents an example of adaptation to a major perturbation. The formation of adhesive interactions and self-organisation of the cytoskeleton during initial spreading might prime future cell behaviour. To elucidate the role of these events on later cellular behaviour, we mapped the trajectories by which cells respond to seeding on substrates with different physical properties. Our experiments on cell spreading dynamics on collagen- or fibrin-coated polyacrylamide gels and collagen or fibrin hydrogels show that on each substrate, cells follow distinct trajectories of morphological changes, culminating in fundamentally different cell states as quantified by RNA-expression levels, YAP/TAZ localisation, proliferation and differentiation propensities. The continuous adaptation of the cell to environmental cues leaves traces due to differential cellular organisation and gene expression profiles, blurring correlations between a particular physical property and cellular phenotype.
Collapse
|
98
|
Urbaczek AC, Leão PAGC, Souza FZRD, Afonso A, Vieira Alberice J, Cappelini LTD, Carlos IZ, Carrilho E. Endothelial Cell Culture Under Perfusion On A Polyester-Toner Microfluidic Device. Sci Rep 2017; 7:10466. [PMID: 28874818 PMCID: PMC5585355 DOI: 10.1038/s41598-017-11043-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
This study presents an inexpensive and easy way to produce a microfluidic device that mimics a blood vessel, serving as a start point for cell culture under perfusion, cardiovascular research, and toxicological studies. Endpoint assays (i.e., MTT reduction and NO assays) were used and revealed that the components making up the microchip, which is made of polyester and toner (PT), did not induce cell death or nitric oxide (NO) production. Applying oxygen plasma and fibronectin improved the adhesion and proliferation endothelial cell along the microchannel. As expected, these treatments showed an increase in vascular endothelial growth factor (VEGF-A) concentration profiles, which is correlated with adherence and cell proliferation, thus promoting endothelialization of the device for neovascularization. Regardless the simplicity of the device, our “vein-on-a-chip” mimetic has a potential to serve as a powerful tool for those that demand a rapid microfabrication method in cell biology or organ-on-a-chip research.
Collapse
Affiliation(s)
- Ana Carolina Urbaczek
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Paulo Augusto Gomes Carneiro Leão
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Fayene Zeferino Ribeiro de Souza
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Ana Afonso
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,GHTM - Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal.,Laboratório de Parasitologia, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Juliana Vieira Alberice
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil
| | - Luciana Teresa Dias Cappelini
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil.,Escola Paulista de Medicina, Universidade Federal de São Paulo, Unifesp, São Paulo, SP, Brazil
| | - Iracilda Zeppone Carlos
- Faculdade de Ciências Farmacêuticas, FCFar, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, IQSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil. .,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP, Brazil.
| |
Collapse
|
99
|
Yeh YC, Corbin EA, Caliari SR, Ouyang L, Vega SL, Truitt R, Han L, Margulies KB, Burdick JA. Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials 2017; 145:23-32. [PMID: 28843064 DOI: 10.1016/j.biomaterials.2017.08.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/06/2023]
Abstract
Mechanics of the extracellular matrix (ECM) play a pivotal role in governing cell behavior, such as cell spreading and differentiation. ECM mechanics have been recapitulated primarily in elastic hydrogels, including with dynamic properties to mimic complex behaviors (e.g., fibrosis); however, these dynamic hydrogels fail to introduce the viscoelastic nature of many tissues. Here, we developed a two-step crosslinking strategy to first form (via platinum-catalyzed crosslinking) networks of polydimethylsiloxane (PDMS) and then to increase PDMS crosslinking (via thiol-ene click reaction) in a temporally-controlled manner. This photoinitiated reaction increased the compressive modulus of PDMS up to 10-fold within minutes and was conducted under cytocompatible conditions. With stiffening, cells displayed increased spreading, changing from ∼1300 to 1900 μm2 and from ∼2700 to 4600 μm2 for fibroblasts and mesenchymal stem cells, respectively. In addition, higher myofibroblast activation (from ∼2 to 20%) for cardiac fibroblasts was observed with increasing PDMS substrate stiffness. These results indicate a cellular response to changes in PDMS substrate mechanics, along with a demonstration of a mechanically dynamic and photoresponsive PDMS substrate platform to model the dynamic behavior of ECM.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Elise A Corbin
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven R Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Ouyang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Sebastián L Vega
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Truitt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | | | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
100
|
Zhao ZL, Liu ZY, Du J, Xu GK, Feng XQ. A Dynamic Biochemomechanical Model of Geometry-Confined Cell Spreading. Biophys J 2017; 112:2377-2386. [PMID: 28591610 DOI: 10.1016/j.bpj.2017.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/09/2023] Open
Abstract
Cell spreading is involved in many physiological and pathological processes. The spreading behavior of a cell significantly depends on its microenvironment, but the biochemomechanical mechanisms of geometry-confined cell spreading remain unclear. A dynamic model is here established to investigate the spreading of cells confined in a finite region with different geometries, e.g., rectangle, ellipse, triangle, and L-shape. This model incorporates both biophysical and biochemical mechanisms, including actin polymerization, integrin-mediated binding, plasma viscoelasticity, and the elasticity of membranes and microtubules. We simulate the dynamic configurational evolution of a cell under different geometric microenvironments, including the angular distribution of microtubule forces and the deformation of the nucleus. The results indicate that the positioning of the cell-division plane is affected by its boundary confinement: a cell divides in a plane perpendicular to its minimal principal axis of inertia of area. In addition, the effects of such physical factors as the adhesive bond density, membrane tension, and microtubule number are examined on the cell spreading dynamics. The theoretical predictions show a good agreement with relevant experimental results. This work sheds light on the geometry-confined spreading dynamics of cells and holds potential applications in regulating cell division and designing cell-based sensors.
Collapse
Affiliation(s)
- Zi-Long Zhao
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
| | - Zong-Yuan Liu
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China
| | - Jing Du
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, China
| | - Xi-Qiao Feng
- AML, Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing, China.
| |
Collapse
|