51
|
Abstract
The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Thibaud T Renault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, F-33000 Bordeaux, France
| | | |
Collapse
|
52
|
Martínez-Abundis E, Correa F, Rodríguez E, Soria-Castro E, Rodríguez-Zavala JS, Pacheco-Alvarez D, Zazueta C. A CRAC-like motif in BAX sequence: relationship with protein insertion and pore activity in liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1888-95. [PMID: 21440528 DOI: 10.1016/j.bbamem.2011.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 02/08/2023]
Abstract
Several proteins that interact with cholesterol have a highly conserved sequence, corresponding to the cholesterol recognition/interaction amino acid consensus. Since cholesterol has been proposed to modulate both oligomerization and insertion of the pro-apoptotic protein BAX, we investigated the existence of such a motif in the BAX sequence. Residues 113 to 119 of the recombinant BAX α5-helix, LFYFASK, correspond with the sequence motif described for the consensus pattern, -L/V-(X)(1-5)-Y-(X)(1-5)-R/K. Functional characterization of the point mutations, K119A, Y115F, and L113A in BAX, was performed in liposomes supplemented with cholesterol, comparing binding, integration, and pore forming activities. Our results show that the mutations Y115F and L113A changed the cholesterol-dependent insertion observed in the wild type protein. In addition, substitutions in the BAX sequence modified the concentration dependency of carboxyfluorescein release in liposomes, although neither pore activity of the wild type or of any of the mutants significantly increased in cholesterol-enriched liposomes. Thus, while it is likely that the putative CRAC motif in BAX accounts for its enhanced insertion in cholesterol-enriched liposomes; the pore forming properties of BAX did not depend on cholesterol content in the membranes, albeit those mutations changed the pore channeling activity of the protein.
Collapse
|
53
|
A lipocentric view of peptide-induced pores. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:399-415. [PMID: 21442255 PMCID: PMC3070086 DOI: 10.1007/s00249-011-0693-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/03/2011] [Indexed: 01/26/2023]
Abstract
Although lipid membranes serve as effective sealing barriers for the passage of most polar solutes, nonmediated leakage is not completely improbable. A high activation energy normally keeps unassisted bilayer permeation at a very low frequency, but lipids are able to self-organize as pores even in peptide-free and protein-free membranes. The probability of leakage phenomena increases under conditions such as phase coexistence, external stress or perturbation associated to binding of nonlipidic molecules. Here, we argue that pore formation can be viewed as an intrinsic property of lipid bilayers, with strong similarities in the structure and mechanism between pores formed with participation of peptides, lipidic pores induced by different types of stress, and spontaneous transient bilayer defects driven by thermal fluctuations. Within such a lipocentric framework, amphipathic peptides are best described as pore-inducing rather than pore-forming elements. Active peptides bound to membranes can be understood as a source of internal surface tension which facilitates pore formation by diminishing the high activation energy barrier. This first or immediate action of the peptide has some resemblance to catalysis. However, the presence of membrane-active peptides has the additional effect of displacing the equilibrium towards the pore-open state, which is then maintained over long times, and reducing the size of initial individual pores. Thus, pore-inducing peptides, regardless of their sequence and oligomeric organization, can be assigned a double role of increasing the probability of pore formation in membranes to high levels as well as stabilizing these pores after they appear.
Collapse
|
54
|
Landeta O, Landajuela A, Gil D, Taneva S, DiPrimo C, Sot B, Valle M, Frolov VA, Basañez G. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process. J Biol Chem 2011; 286:8213-8230. [PMID: 21196599 PMCID: PMC3048708 DOI: 10.1074/jbc.m110.165852] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/18/2010] [Indexed: 12/11/2022] Open
Abstract
BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.
Collapse
Affiliation(s)
- Olatz Landeta
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Ane Landajuela
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - David Gil
- CIC-BIOGUNE Structural Biology Unit, Parque Tecnologico Zamudio, Bizkaia, 48160 Derio, Spain
| | - Stefka Taneva
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Carmelo DiPrimo
- Université de Bordeaux, INSERM U869, Institut Européen de Chimie et de Biologie, Pessac F-33607, France, and
| | - Begoña Sot
- the MRC Centre for Protein Engineering and MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - Mikel Valle
- CIC-BIOGUNE Structural Biology Unit, Parque Tecnologico Zamudio, Bizkaia, 48160 Derio, Spain
| | - Vadim A Frolov
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain,; the Departamento de Bioquímica y Biología Molecular, UPV/EHU, Leioa 48940, Spain,; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Gorka Basañez
- From the Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain,.
| |
Collapse
|
55
|
Valero JG, Sancey L, Kucharczak J, Guillemin Y, Gimenez D, Prudent J, Gillet G, Salgado J, Coll JL, Aouacheria A. Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells. J Cell Sci 2011; 124:556-64. [PMID: 21245196 PMCID: PMC3428271 DOI: 10.1242/jcs.076745] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although many cancer cells are primed for apoptosis, they usually develop resistance to cell death at several levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members such as Bax, is considered as a point of no return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on minimal active versions of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic factors and commit tumor cells promptly and irreversibly to caspase-dependent apoptosis. On this basis, we designed a peptide encompassing part of the Bax pore-forming domain, which can target mitochondria, induce cytochrome c release and trigger caspase-dependent apoptosis. Moreover, this Bax-derived 'poropeptide' produced effective tumor regression after peritumoral injection in a nude mouse xenograft model. Thus, peptides derived from proteins that form pores in the mitochondrial outer membrane represent novel templates for anticancer agents.
Collapse
Affiliation(s)
- Juan Garcia Valero
- IBCP, Institut de biologie et chimie des protéines [Lyon]
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Lucie Sancey
- Institut d'oncologie/développement Albert Bonniot de Grenoble
INSERM : U823CHU GrenobleEFSUniversité Joseph Fourier - Grenoble IInstitut Albert Bonniot, BP170, 38042 Grenoble Cedex 9,FR
| | - Jérôme Kucharczak
- IBCP, Institut de biologie et chimie des protéines [Lyon]
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Yannis Guillemin
- IBCP, Institut de biologie et chimie des protéines [Lyon]
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Diana Gimenez
- Instituto de Ciencia Molecular
Universidad de ValenciaPolígono La Coma, s/n, 46980 Paterna, Valencia,ES
| | - Julien Prudent
- IBCP, Institut de biologie et chimie des protéines [Lyon]
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Germain Gillet
- IBCP, Institut de biologie et chimie des protéines [Lyon]
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| | - Jesús Salgado
- Instituto de Ciencia Molecular
Universidad de ValenciaPolígono La Coma, s/n, 46980 Paterna, Valencia,ES
- Departamento de Bioquímica y Biología Molecular
Universidad de ValenciaC/ Doctor Moliner, 50, 46100 Burjassot, Valencia,ES
| | - Jean-Luc Coll
- Institut d'oncologie/développement Albert Bonniot de Grenoble
INSERM : U823CHU GrenobleEFSUniversité Joseph Fourier - Grenoble IInstitut Albert Bonniot, BP170, 38042 Grenoble Cedex 9,FR
| | - Abdel Aouacheria
- IBCP, Institut de biologie et chimie des protéines [Lyon]
CNRS : UMR5086Université Claude Bernard - Lyon I7 Passage du Vercors 69367 LYON CEDEX 07,FR
| |
Collapse
|
56
|
Fuertes G, García-Sáez AJ, Esteban-Martín S, Giménez D, Sánchez-Muñoz OL, Schwille P, Salgado J. Pores formed by Baxα5 relax to a smaller size and keep at equilibrium. Biophys J 2011; 99:2917-25. [PMID: 21044589 DOI: 10.1016/j.bpj.2010.08.068] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 01/01/2023] Open
Abstract
Pores made by amphipathic cationic peptides (e.g., antimicrobials and fragments of pore-forming proteins) are typically studied by examining the kinetics of vesicle leakage after peptide addition or obtaining structural measurements in reconstituted peptide-lipid systems. In the first case, the pores have been considered transient phenomena that allow the relaxation of the peptide-membrane system. In the second, they correspond to equilibrium structures at minimum free energy. Here we reconcile both approaches by investigating the pore activity of the α5 fragment from the proapoptotic protein Bax (Baxα5) before and after equilibrium of peptide/vesicle complexes. Quenching assays on suspensions of large unilamellar vesicles suggest that in the presence of Baxα5, the vesicles maintain a leaky state for hours under equilibrium conditions. We proved and analyzed stable pores on single giant unilamellar vesicles (GUVs) in detail by monitoring the entrance of dyes added at different times after incubation with the peptide. When the GUVs came in contact with Baxα5, leakage started stochastically, was delayed for various periods of time, and in the majority of cases proceeded rapidly to completion. After hours in the presence of the peptide, the same individual GUVs that refilled completely at first instance maintained a porated state, which could be observed in subsequent leak-in events for serially added dyes. However, these long-term pores were smaller in size than the initial equilibration pores. Stable pores were also detected in GUVs made in the presence of Baxα5. The latter pores can be considered equilibrium states and may correspond to structures measured previously in bilayer stacks. Although pore formation may occur as a kinetic process, equilibrium pores may also be functionally relevant structures, especially in highly regulated systems such as the apoptotic mitochondrial pores induced by Bax.
Collapse
Affiliation(s)
- Gustavo Fuertes
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, Spain
| | | | | | | | | | | | | |
Collapse
|
57
|
Galindo MF, Ikuta I, Zhu X, Casadesus G, Jordán J. Mitochondrial biology in Alzheimer's disease pathogenesis. J Neurochem 2010; 114:933-45. [PMID: 20492350 DOI: 10.1111/j.1471-4159.2010.06814.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the increasing knowledge of Alzheimer's disease (AD) management with novel pharmacologic agents, most of them are only transiently fixing symptomatic pathology. Currently there is rapid growth in the field of neuroprotective pharmacology and increasing focus on the involvement of mitochondria in this devastating disease. This review is directed at understanding the role of mitochondria-mediated pathways in AD and integrating basic biology of the mitochondria with knowledge of possible pharmacologic targets for AD treatment in an attempt to elucidate novel mitochondria-driven therapeutic interventions useful to both clinical and basic research.
Collapse
Affiliation(s)
- María F Galindo
- Unidad de Neuropsicofarmacología Translacional, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | | | | | | | | |
Collapse
|
58
|
Guillemin Y, Lopez J, Gimenez D, Fuertes G, Valero JG, Blum L, Gonzalo P, Salgado J, Girard-Egrot A, Aouacheria A. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. PLoS One 2010; 5:e9066. [PMID: 20140092 PMCID: PMC2816717 DOI: 10.1371/journal.pone.0009066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. METHODOLOGY/PRINCIPAL FINDINGS Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. CONCLUSION/SIGNIFICANCE BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.
Collapse
Affiliation(s)
- Yannis Guillemin
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Jonathan Lopez
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Diana Gimenez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
| | - Gustavo Fuertes
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
| | - Juan Garcia Valero
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Loïc Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, University of Lyon, Villeurbanne, France
| | - Philippe Gonzalo
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Jesùs Salgado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia, España
| | - Agnès Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, University of Lyon, Villeurbanne, France
| | - Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
59
|
García-Sáez AJ, Fuertes G, Suckale J, Salgado J. Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:91-105. [DOI: 10.1007/978-1-4419-6327-7_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Role of membrane lipids for the activity of pore forming peptides and proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:31-55. [PMID: 20687479 DOI: 10.1007/978-1-4419-6327-7_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bilayer lipids, far from being passive elements, have multiple roles in polypeptide-dependent pore formation. Lipids participate at all stages of the formation of pores by providing the binding site for proteins and peptides, conditioning their active structure and modulating the molecular reorganization of the membrane complex. Such general functions of lipids superimpose to other particular roles, from electrostatic and curvature effects to more specific actions in cases like cholesterol, sphingolipids or cardiolipin. Pores are natural phenomena in lipid membranes. Driven by membrane fluctuations and packing defects, transient water pores are related to spontaneous lipid flip-flop and non-assisted ion permeation. In the absence ofproteins or peptides, these are rare short living events, with properties dependent on the lipid composition of the membrane. Their frequency increases under conditions of internal membrane disturbance of the lipid packing, like in the presence of membrane-bound proteins or peptides. These latter molecules, in fact, form dynamic supramolecular assemblies together with the lipids and transmembrane pores are one of the possible structures of the complex. Active peptides and proteins can thus be considered inducers or enhancers of pores which increase their probability and lifetime by modifying the thermodynamic membrane balance. This includes destabilizing the membrane lamellar structure, lowering the activation energy for pore formation and stabilizing the open pore structure.
Collapse
|
61
|
Esteban-Martín S, Giménez D, Fuertes G, Salgado J. Orientational Landscapes of Peptides in Membranes: Prediction of 2H NMR Couplings in a Dynamic Context. Biochemistry 2009; 48:11441-8. [DOI: 10.1021/bi901017y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santi Esteban-Martín
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
| | - Diana Giménez
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
| | - Gustavo Fuertes
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
| | - Jesús Salgado
- Instituto de Ciencia Molecular, Universitat de València, Polígono La Coma s/n, 46980 Paterna, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Universitat de València, C/Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
62
|
Petit PX, Dupaigne P, Pariselli F, Gonzalvez F, Etienne F, Rameau C, Bernard S. Interaction of the alpha-helical H6 peptide from the pro-apoptotic protein tBid with cardiolipin. FEBS J 2009; 276:6338-54. [DOI: 10.1111/j.1742-4658.2009.07345.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Esteban-Martín S, Risselada HJ, Salgado J, Marrink SJ. Stability of Asymmetric Lipid Bilayers Assessed by Molecular Dynamics Simulations. J Am Chem Soc 2009; 131:15194-202. [DOI: 10.1021/ja904450t] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santi Esteban-Martín
- Instituto de Ciencia Molecular, Universitat de València. Polígono La Coma, s/n. 46980 Paterna (Valencia), Spain, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - H. Jelger Risselada
- Instituto de Ciencia Molecular, Universitat de València. Polígono La Coma, s/n. 46980 Paterna (Valencia), Spain, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Jesús Salgado
- Instituto de Ciencia Molecular, Universitat de València. Polígono La Coma, s/n. 46980 Paterna (Valencia), Spain, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Siewert J. Marrink
- Instituto de Ciencia Molecular, Universitat de València. Polígono La Coma, s/n. 46980 Paterna (Valencia), Spain, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
64
|
Abstract
Bid, a pro-apoptotic member of the Bcl-2 family, was initially discovered through binding to both pro-apoptotic Bax and anti-apoptotic Bcl-2. During apoptosis, Bid can be cleaved not only by caspase-8 during death receptor apoptotic signaling, but also by other caspases, granzyme B, calpains and cathepsins. Protease-cleaved Bid migrates to mitochondria where it induces permeabilization of the outer mitochondrial membrane that is dependent on the pro-apoptotic proteins Bax and/or Bak, and thus Bid acts as a sentinel for protease-mediated death signals. Although sequence analysis suggests that Bid belongs to the BH3-only subgroup of the Bcl-2 family, structural and phylogenetic analysis suggests that Bid may be more related to multi-BH region proteins such as pro-apoptotic Bax. Analysis of membrane binding by protease-cleaved Bid reveals mechanistic similarities with the membrane binding of Bax. For both proteins, membrane binding is characterized by relief of N-terminal inhibition of sequences promoting migration to membranes, insertion into the bilayer of the central hydrophobic hairpin helices and exposure of the BH3 region. These findings implicate Bid as a BH3-only protein that is both structurally and functionally related to multi-BH region Bcl-2 family proteins such as Bax.
Collapse
|
65
|
Esteban-Martín S, Strandberg E, Fuertes G, Ulrich AS, Salgado J. Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis. Biophys J 2009; 96:3233-41. [PMID: 19383467 DOI: 10.1016/j.bpj.2008.12.3950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/12/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022] Open
Abstract
Membrane proteins and peptides exhibit a preferred orientation in the lipid bilayer while fluctuating in an anisotropic manner. Both the orientation and the dynamics have direct functional implications, but motions are usually not accessible, and structural descriptions are generally static. Using simulated data, we analyze systematically the impact of whole-body motions on the peptide orientations calculated from two-dimensional polarization inversion spin exchange at the magic angle (PISEMA) NMR. Fluctuations are found to have a significant effect on the observed spectra. Nevertheless, wheel-like patterns are still preserved, and it is possible to determine the average peptide tilt and azimuthal rotation angles using simple static models for the spectral fitting. For helical peptides undergoing large-amplitude fluctuations, as in the case of transmembrane monomers, improved fits can be achieved using an explicit dynamics model that includes Gaussian distributions of the orientational parameters. This method allows extracting the amplitudes of fluctuations of the tilt and azimuthal rotation angles. The analysis is further demonstrated by generating first a virtual PISEMA spectrum from a molecular dynamics trajectory of the model peptide, WLP23, in a lipid membrane. That way, the dynamics of the system from which the input spectrum originates is completely known at atomic detail and can thus be directly compared with the dynamic output obtained from the fit. We find that fitting our dynamics model to the polar index slant angles wheel gives an accurate description of the amplitude of underlying motions, together with the average peptide orientation.
Collapse
Affiliation(s)
- Santi Esteban-Martín
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna (Valencia), Spain
| | | | | | | | | |
Collapse
|
66
|
Bleicken S, Zeth K. Conformational changes and protein stability of the pro-apoptotic protein Bax. J Bioenerg Biomembr 2009; 41:29-40. [PMID: 19255832 PMCID: PMC2778690 DOI: 10.1007/s10863-009-9202-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/24/2009] [Indexed: 11/03/2022]
Abstract
Pro-apoptotic Bax is a soluble and monomeric protein under normal physiological conditions. Upon its activation substantial structural rearrangements occur: The protein inserts into the mitochondrial outer membrane and forms higher molecular weight oligomers. Subsequently, the cells can undergo apoptosis. In our studies, we focused on the structural rearrangements of Bax during oligomerization and on the protein stability. Both protein conformations exhibit high stability against thermal denaturation, chemically induced unfolding and proteolytic processing. The oligomeric protein is stable up to 90 degrees C as well as in solutions of 8 M urea or 6 M guanidinium hydrochloride. Helix 9 appears accessible in the monomer but hidden in the oligomer assessed by proteolysis. Tryptophan fluorescence indicates that the environment of the C-terminal protein half becomes more apolar upon oligomerization, whereas the loop region between helices 1 and 2 gets solvent exposed.
Collapse
Affiliation(s)
- Stephanie Bleicken
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
67
|
Feng Y, Zhang L, Hu T, Shen X, Ding J, Chen K, Jiang H, Liu D. A conserved hydrophobic core at Bcl-xL mediates its structural stability and binding affinity with BH3-domain peptide of pro-apoptotic protein. Arch Biochem Biophys 2009; 484:46-54. [PMID: 19161970 DOI: 10.1016/j.abb.2009.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Bcl-2 family proteins regulate apoptosis through their homo- and heterodimerization. By protein sequence analysis and structural comparison, we have identified a conserved hydrophobic core at the BH1 and BH2 domains of Bcl-2 family proteins. The hydrophobic core is stabilized by hydrophobic interactions among the residues of Trp137, Ile140, Trp181, Ile182, Trp188 and Phe191 in Bcl-x(L). Destabilization of the hydrophobic core can promote the protein unfolding and pore formation in synthetic lipid vesicles. Interestingly, though the hydrophobic core does not participate in binding with BH3 domain of pro-apoptotic proteins, disruption of the hydrophobic core can reduce the affinity of Bcl-x(L) with BH3-domain peptide by changing the conformation of Bcl-x(L) C-terminal residues that are involved in the peptide interaction. The BH3-domain peptide binding affinity and pore forming propensity of Bcl-x(L) were correlated to its death-repressor activity, which provides new information to help study the regulatory mechanism of anti-apoptotic proteins. Meanwhile, as the tryptophans are conserved in the hydrophobic core, in vitro binding assay based on FRET of "Trp-->AEDANS" can be devised to screen for new modulators targeting anti-apoptotic proteins as well as "multi-BH domains" pro-apoptotic proteins.
Collapse
Affiliation(s)
- Yu Feng
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci U S A 2008; 105:17379-83. [PMID: 18987313 DOI: 10.1073/pnas.0807764105] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures of transmembrane pores formed by a large family of pore-forming proteins and peptides are unknown. These proteins, whose secondary structures are predominantly alpha-helical segments, and many peptides form pores in membranes without a crystallizable protein assembly, contrary to the family of beta-pore-forming proteins, which form crystallizable beta-barrel pores. Nevertheless, a protein-induced pore in membranes is commonly assumed to be a protein channel. Here, we show a type of peptide-induced pore that is not framed by a peptide structure. Peptide-induced pores in multiple bilayers were long-range correlated into a periodically ordered lattice and analyzed by X-ray diffraction. We found the pores induced by Bax-derived helical peptides were at least partially framed by a lipid monolayer. Evidence suggests that the formation of such lipidic pores is a major mechanism for alpha-pore-forming proteins, including apoptosis-regulator Bax.
Collapse
|
69
|
Anderluh G, Lakey JH. Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 2008; 33:482-90. [PMID: 18778941 DOI: 10.1016/j.tibs.2008.07.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/22/2008] [Accepted: 07/24/2008] [Indexed: 01/30/2023]
Abstract
Membrane disruption can efficiently alter cellular function; indeed, pore-forming toxins (PFTs) are well known as important bacterial virulence factors. However, recent data have revealed that structures similar to those found in PFTs are found in membrane active proteins across disparate phyla. Many similarities can be identified only at the 3D-structural level. Of note, domains found in membrane-attack complex proteins of complement and perforin (MACPF) resemble cholesterol-dependent cytolysins from Gram-positive bacteria, and the Bcl family of apoptosis regulators share similar architectures with Escherichia coli pore-forming colicins. These and other correlations provide considerable help in understanding the structural requirements for membrane binding and pore formation.
Collapse
Affiliation(s)
- Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000, Ljubljana, Slovenia.
| | | |
Collapse
|
70
|
Relationships between the orientation and the structural properties of peptides and their membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1537-44. [DOI: 10.1016/j.bbamem.2008.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 04/14/2008] [Accepted: 04/21/2008] [Indexed: 11/17/2022]
|
71
|
Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 2008; 95:691-8. [PMID: 18390598 DOI: 10.1529/biophysj.108.129981] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Equinatoxin II is a pore-forming protein of the actinoporin family. After membrane binding, it inserts its N-terminal alpha-helix and forms a protein/lipid pore. Equinatoxin II activity depends on the presence of sphingomyelin in the target membrane; however, the role of this specificity is unknown. On the other hand, sphingomyelin is considered an essential ingredient of lipid rafts and promotes liquid-ordered/liquid-disordered phase separation in model membranes that mimic raft composition. Here, we used giant unilamellar vesicles to simultaneously investigate the effect of sphingomyelin and phase separation on the membrane binding and permeabilizing activity of Equinatoxin II. Our results show that Equinatoxin II binds preferentially to the liquid-ordered phase over the liquid-disordered one and that it tends to concentrate at domain interfaces. In addition, sphingomyelin strongly enhances membrane binding of the toxin but is not sufficient for membrane permeabilization. Under the same experimental conditions, Equinatoxin II formed pores in giant unilamellar vesicles containing sphingomyelin only when liquid-ordered and -disordered phases coexisted. Our observations demonstrate the importance of phase boundaries for Equinatoxin II activity and suggest a double role of sphingomyelin as a specific receptor for the toxin and as a promoter of the membrane organization necessary for Equinatoxin II action.
Collapse
|
72
|
Terrones O, Etxebarria A, Landajuela A, Landeta O, Antonsson B, Basañez G. BIM and tBID Are Not Mechanistically Equivalent When Assisting BAX to Permeabilize Bilayer Membranes. J Biol Chem 2008; 283:7790-803. [DOI: 10.1074/jbc.m708814200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
73
|
Lins L, Brasseur R. Tilted peptides: a structural motif involved in protein membrane insertion? J Pept Sci 2008; 14:416-22. [DOI: 10.1002/psc.971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Abstract
Apoptosis has been implicated in mediating denervation-induced muscle wasting. In this study we determined the effect of interference of apoptosis on muscle wasting during denervation by using mice genetically deficient in pro-apoptotic Bax. After denervation, muscle wasting was evident in both wild-type and Bax(-/-) muscles but reduction of muscle weight was attenuated in Bax(-/-) mice. Apoptotic DNA fragmentation increased in wild-type denervated muscles whereas there was no statistical increase in DNA fragmentation in denervated muscles from Bax(-/-) mice. Mitochondrial AIF and Smac/DIABLO releases and Bcl-2, p53 and HSP27 increased whereas XIAP and MnSOD decreased to a similar extent in muscles from wild-type and Bax(-/-) mice following denervation. Mitochondrial cytochrome c release was elevated in denervated muscles from wild-type mice but the increase was suppressed in muscles from Bax(-/-) mice. Increases in caspase-3 and -9 activities and oxidative stress markers H(2)O(2), MDA/4-HAE and nitrotyrosine were all evident in denervated muscles from wild-type mice but these changes were absent in muscles from Bax(-/-) mice. Moreover, ARC increased exclusively in denervated Bax(-/-) muscle. Our data indicate that under conditions of denervation, pro-apoptotic signalling is suppressed and muscle wasting is attenuated when the Bax gene is lacking. These findings suggest that interventions targeting apoptosis may be valuable in ameliorating denervation-associated pathologic muscle wasting in certain neuromuscular disorders that involve partial or full denervation.
Collapse
Affiliation(s)
- P M Siu
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia 26506, USA
| | | |
Collapse
|
75
|
García-Sáez AJ, Chiantia S, Schwille P. Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 2007; 282:33537-33544. [PMID: 17848582 DOI: 10.1074/jbc.m706162200] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The principles of organization and functioning of cellular membranes are currently not well understood. The raft hypothesis suggests the existence of domains or rafts in cell membranes, which behave as protein and lipid platforms. They have a functional role in important cellular processes, like protein sorting or cell signaling, among others. Theoretical work suggests that the interfacial energy at the domain edge, also known as line tension, is a key parameter determining the distribution of domain sizes, but there is little evidence of how line tension affects membrane organization. We have investigated the effects of the line tension on the formation and stability of liquid ordered domains in model lipid bilayers with raft-like composition by means of time-lapse confocal microscopy coupled to atomic force microscopy. We varied the hydrophobic mismatch between the two phases, and consequently the line tension, by modifying the thickness of the disordered phase with phosphatidylcholines of different acyl chain length. The temperature of domain formation, the dynamics of domain growth, and the distribution of domain sizes depend strongly on the thickness difference between the domains and the surrounding membrane, which is related to line tension. When considering line tension calculated from a theoretical model, our results revealed a linear increase of the temperature of domain formation and domain growth rate with line tension. Domain budding was also shown to depend on height mismatch. Our experiments contribute significantly to our knowledge of the physical-chemical parameters that control membrane organization. Importantly, the general trends observed can be extended to cellular membranes.
Collapse
Affiliation(s)
- Ana J García-Sáez
- Biotechnologisches Zentrum der Techische Universität Dresden, 1307 Dresden, Germany
| | - Salvatore Chiantia
- Biotechnologisches Zentrum der Techische Universität Dresden, 1307 Dresden, Germany
| | - Petra Schwille
- Biotechnologisches Zentrum der Techische Universität Dresden, 1307 Dresden, Germany.
| |
Collapse
|
76
|
Bernabeu A, Guillén J, Pérez-Berná AJ, Moreno MR, Villalaín J. Structure of the C-terminal domain of the pro-apoptotic protein Hrk and its interaction with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1659-70. [PMID: 17434443 DOI: 10.1016/j.bbamem.2007.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 12/22/2022]
Abstract
The protein harakiri (Hrk) is a pro-apoptotic BH3-only protein which belongs to the Bcl-2 family. Hrk appears associated to the mitochondrial outer membrane, apparently by a putative transmembrane domain, where it exerts its function. In this work we have identified a 27mer peptide supposed to be the putative membrane domain of the protein at the C-terminal region, and used infrared and fluorescence spectroscopies to study its secondary structure as well as to characterize its effect on the physical properties of phospholipid model membranes. The results presented here showed that the C-terminal region of Hrk adopts a predominantly alpha-helical structure whose proportion and destabilization capability varied depending on phospholipid composition. Moreover it was found that the orientation of the alpha-helical component of this C-terminal Hrk peptide was nearly perpendicular to the plane of the membrane. These results indicate that this domain is able of inserting into membranes, where it adopts a transmembrane alpha-helical structure as well as it considerably perturbs the physical properties of the membrane.
Collapse
Affiliation(s)
- Angela Bernabeu
- Instituto de Biología Molecular y Celular, Edf. Torregaitán, Campus de Elche, Universidad Miguel Hernández, Elche, Alicante, Spain
| | | | | | | | | |
Collapse
|
77
|
García-Sáez AJ, Chiantia S, Salgado J, Schwille P. Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM. Biophys J 2007; 93:103-12. [PMID: 17416629 PMCID: PMC1914428 DOI: 10.1529/biophysj.106.100370] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bax is a critical regulator of physiological cell death that increases the permeability of the outer mitochondrial membrane and facilitates the release of the so-called apoptotic factors during apoptosis. The molecular mechanism of action is unknown, but it probably involves the formation of partially lipidic pores induced by Bax. To investigate the interaction of Bax with lipid membranes and the physical changes underlying the formation of Bax pores, we used an active peptide derived from helix 5 of this protein (Bax-alpha5) that is able to induce Bax-like pores in lipid bilayers. We report the decrease of line tension due to peptide binding both at the domain interface in phase-separated lipid bilayers and at the pore edge in atomic force microscopy film-rupture experiments. Such a decrease in line tension may be a general strategy of pore-forming peptides and proteins, as it affects the energetics of the pore and stabilizes the open state.
Collapse
|
78
|
Skommer J, Wlodkowic D, Deptala A. Larger than life: Mitochondria and the Bcl-2 family. Leuk Res 2007; 31:277-86. [PMID: 16911824 DOI: 10.1016/j.leukres.2006.06.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 06/04/2006] [Accepted: 06/16/2006] [Indexed: 01/09/2023]
Abstract
The intrinsic pathway of apoptosis relies on mitochondrial membrane permeabilization, with Bcl-2 proteins serving as its master regulators. They form a complex network of interactions both within the family and with multiple cellular factors outside the family. The understanding of the processes that regulate mitochondrial breach, and mechanisms that direct the pro- and anti-apoptotic functions of Bcl-2 proteins, should assist the development of novel anticancer therapies. Thus, it is of no surprise that research in the field is gaining momentum. In this review we outline the current concepts on regulatory circuits governing mitochondrial rupture and action of Bcl-2 proteins during cell death, and how this burgeoning knowledge is being translated into the clinics with the hope to combat cancer.
Collapse
Affiliation(s)
- Joanna Skommer
- Department of Clinical Sciences, University of Kuopio, Harjulantie 1 C, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
79
|
Abstract
The protein BAX of the Bcl-2-family is felt to be one of the two Bcl-2-family proteins that directly participate in the mitochondrial cytochrome c-translocating pore. We have studied the kinetics, stoichiometry and size of the pore formed by BAX in planar lipid bilayers and synthetic liposomes. Our data indicate that a cytochrome c-competent pore can be formed by in-membrane association of BAX monomers.
Collapse
Affiliation(s)
- P H Schlesinger
- Department of Physiology and Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
80
|
Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Lipid Dependence of the Channel Properties of a Colicin E1-Lipid Toroidal Pore. J Biol Chem 2006; 281:14408-16. [PMID: 16556601 DOI: 10.1074/jbc.m513634200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.
Collapse
Affiliation(s)
- Alexander A Sobko
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | | | | | | | |
Collapse
|
81
|
García-Sáez AJ, Coraiola M, Serra MD, Mingarro I, Müller P, Salgado J. Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS J 2006; 273:971-81. [PMID: 16478471 DOI: 10.1111/j.1742-4658.2006.05123.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins of the B-cell lymphoma protein 2 (Bcl2) family are key regulators of the apoptotic cascade, controlling the release of apoptotic factors from the mitochondrial intermembrane space. A helical hairpin found in the core of water-soluble folds of these proteins has been reported to be the pore-forming domain. Here we show that peptides including any of the two alpha-helix fragments of the hairpin of Bcl2 associated protein X (Bax) can independently induce release of large labelled dextrans from synthetic lipid vesicles. The permeability promoted by these peptides is influenced by intrinsic monolayer curvature and accompanied by fast transbilayer redistribution of lipids, supporting a toroidal pore mechanism as in the case of the full-length protein. However, compared with the pores made by complete Bax, the pores made by the Bax peptides are smaller and do not need the concerted action of tBid. These data indicate that the sequences of both fragments of the hairpin contain the principal physicochemical requirements for pore formation, showing a parallel between the permeabilization mechanism of a complex regulated protein system, such as Bax, and the much simpler pore-forming antibiotic peptides.
Collapse
Affiliation(s)
- Ana J García-Sáez
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Wu JM, Zelinski MB, Ingram DK, Ottinger MA. Ovarian aging and menopause: current theories, hypotheses, and research models. Exp Biol Med (Maywood) 2006; 230:818-28. [PMID: 16339746 DOI: 10.1177/153537020523001106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aging of the reproductive system has been studied in numerous vertebrate species. Although there are wide variations in reproductive strategies and hormone cycle components, many of the fundamental changes that occur during aging are similar. Evolutionary hypotheses attempt to explain why menopause occurs, whereas cellular hypotheses attempt to explain how it occurs. It is commonly believed that a disruption in the hypothalamic-pituitary-gonadal axis is responsible for the onset of menopause. Data exist to demonstrate that the first signs of menopause occur at the level of the brain or the ovary. Thus, finding an appropriate and representative animal model is especially important for the advancement of menopause research. In primates, there is a gradual decline in the function of the hypothalamic-pituitary-gonadal (HPG) axis ultimately resulting in irregularities in menstrual cycles and increasingly sporadic incidence of ovulation. Rodents also exhibit a progressive deterioration in HPG axis function; however, they also experience a period of constant estrus accompanied by intermittent ovulations, reduced progesterone levels, and elevated circulating estradiol levels. It is remarkable to observe that females of other classes also demonstrate deterioration in HPG axis function and ovarian failure. Comparisons of aging in various taxa provide insight into fundamental biological mechanisms of aging that could underlie reproductive decline.
Collapse
Affiliation(s)
- Julie M Wu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
83
|
Chapter 1 Piercing Lipid Bilayers with Peptides. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)05001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|