51
|
Pontes B, Monzo P, Gauthier NC. Membrane tension: A challenging but universal physical parameter in cell biology. Semin Cell Dev Biol 2017; 71:30-41. [PMID: 28851599 DOI: 10.1016/j.semcdb.2017.08.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 01/03/2023]
Abstract
The plasma membrane separates the interior of cells from the outside environment. The membrane tension, defined as the force per unit length acting on a cross-section of membrane, regulates many vital biological processes. In this review, we summarize the first historical findings and the latest advances, showing membrane tension as an important physical parameter in cell biology. We also discuss how this parameter must be better integrated and we propose experimental approaches for key unanswered questions.
Collapse
Affiliation(s)
- Bruno Pontes
- LPO-COPEA, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pascale Monzo
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Nils C Gauthier
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
52
|
Iturri J, Toca-Herrera JL. Characterization of Cell Scaffolds by Atomic Force Microscopy. Polymers (Basel) 2017; 9:E383. [PMID: 30971057 PMCID: PMC6418519 DOI: 10.3390/polym9080383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
This review reports on the use of the atomic force microscopy (AFM) in the investigation of cell scaffolds in recent years. It is shown how the technique is able to deliver information about the scaffold surface properties (e.g., topography), as well as about its mechanical behavior (Young's modulus, viscosity, and adhesion). In addition, this short review also points out the utilization of the atomic force microscope technique beyond its usual employment in order to investigate another type of basic questions related to materials physics, chemistry, and biology. The final section discusses in detail the novel uses that those alternative measuring modes can bring to this field in the future.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Wien, Austria.
| | - José L Toca-Herrera
- Institute for Biophysics, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Wien, Austria.
| |
Collapse
|
53
|
Te Riet J, Joosten B, Reinieren-Beeren I, Figdor CG, Cambi A. N-glycan mediated adhesion strengthening during pathogen-receptor binding revealed by cell-cell force spectroscopy. Sci Rep 2017; 7:6713. [PMID: 28751750 PMCID: PMC5532264 DOI: 10.1038/s41598-017-07220-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/23/2017] [Indexed: 01/13/2023] Open
Abstract
Glycan-protein lateral interactions have gained increased attention as important modulators of receptor function, by regulating surface residence time and endocytosis of membrane glycoproteins. The pathogen-recognition receptor DC-SIGN is highly expressed at the membrane of antigen-presenting dendritic cells, where it is organized in nanoclusters and binds to different viruses, bacteria and fungi. We recently demonstrated that DC-SIGN N-glycans spatially restrict receptor diffusion within the plasma membrane, favoring its internalization through clathrin-coated pits. Here, we investigated the involvement of the N-glycans of DC-SIGN expressing cells on pathogen binding strengthening when interacting with Candida fungal cells by using atomic force microscope (AFM)-assisted single cell-pathogen adhesion measurements. The use of DC-SIGN mutants lacking the N-glycans as well as blocking glycan-mediated lateral interactions strongly impaired cell stiffening during pathogen binding. Our findings demonstrate for the first time the direct involvement of the cell membrane glycans in strengthening cell-pathogen interactions. This study, therefore, puts forward a possible role for the glycocalyx as extracellular cytoskeleton contributing, possibly in connection with the intracellular actin cytoskeleton, to optimize strengthening of cell-pathogen interactions in the presence of mechanical forces.
Collapse
Affiliation(s)
- Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Medical Life Sciences, Radboud University Medical Center, Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Radboud Institute for Medical Life Sciences, Radboud University Medical Center, Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Medical Life Sciences, Radboud University Medical Center, Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
54
|
Sundar Rajan V, Laurent VM, Verdier C, Duperray A. Unraveling the Receptor-Ligand Interactions between Bladder Cancer Cells and the Endothelium Using AFM. Biophys J 2017; 112:1246-1257. [PMID: 28355551 DOI: 10.1016/j.bpj.2017.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 01/18/2023] Open
Abstract
Adhesion of cancer cells to endothelial cells is a key step in cancer metastasis; therefore, identifying the key molecules involved during this process promises to aid in efforts to block the metastatic cascade. We have previously shown that intercellular adhesion molecule-1 (ICAM-1) expressed by endothelial cells is involved in the interactions of bladder cancer cells (BCs) with the endothelium. However, the ICAM-1 ligands have never been investigated. In this study, we combined adhesion assays and atomic force microscopy (AFM) to identify the ligands involved and to quantify the forces relevant in such interactions. We report the expression of MUC1 and CD43 on BCs, and demonstrate that these ligands interact with ICAM-1 to mediate cancer cell-endothelial cell adhesion in the case of the more invasive BCs. This was achieved with the use of adhesion assays, which showed a strong decrease in the attachment of BCs to endothelial cells when MUC1 and CD43 were blocked by antibodies. In addition, AFM measurements showed a similar decrease, by up to 70%, in the number of rupture events that occurred when MUC1 and CD43 were blocked. When we applied a Gaussian mixture model to the AFM data, we observed a distinct force range for receptor-ligand bonds, which allowed us to precisely identify the interactions of ICAM-1 with MUC1 or CD43. Furthermore, a detailed analysis of the rupture events suggested that CD43 is strongly connected to the cytoskeleton and that its interaction with ICAM-1 mainly corresponds to force ramps followed by sudden jumps. In contrast, MUC1 seems to be weakly connected to the cytoskeleton, as its interactions with ICAM-1 are mainly associated with the formation of tethers. This analysis is quite promising and may also be applied to other types of cancer cells.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France
| | - Valérie M Laurent
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Claude Verdier
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Alain Duperray
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France.
| |
Collapse
|
55
|
Tóth EA, Oszvald Á, Péter M, Balogh G, Osteikoetxea-Molnár A, Bozó T, Szabó-Meleg E, Nyitrai M, Derényi I, Kellermayer M, Yamaji T, Hanada K, Vígh L, Matkó J. Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28645851 DOI: 10.1016/j.bbalip.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.
Collapse
Affiliation(s)
- Eszter A Tóth
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Ádám Oszvald
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Imre Derényi
- Department of Biological Physics, Eötvös Lorand University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary.
| |
Collapse
|
56
|
Ligand binding pocket of a novel Allatostatin receptor type C of stick insect, Carausius morosus. Sci Rep 2017; 7:41266. [PMID: 28117376 PMCID: PMC5259779 DOI: 10.1038/srep41266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/19/2016] [Indexed: 02/03/2023] Open
Abstract
Allatostatins (AST) are neuropeptides with variable function ranging from regulation of developmental processes to the feeding behavior in insects. They exert their effects by binding to cognate GPCRs, called Allatostatin receptors (AlstR), which emerge as promising targets for pesticide design. However, AlstRs are rarely studied. This study is the first reported structural study on AlstR-AST interaction. In this work, the first C type AlstR from the stick insect Carausius morosus (CamAlstR-C) was identified and its interaction with type C AST peptide was shown to be physically consistent with the experimental results. The proposed structure of CamAlstR-C revealed a conserved motif within the third extracellular loop, which, together with the N-terminus is essential for ligand binding. In this work, computational studies were combined with molecular and nano-scale approaches in order to introduce an unknown GPCR-ligand system. Consequently, the data obtained provided a reliable target region for future agonist/inverse agonist studies on AlstRs.
Collapse
|
57
|
|
58
|
Shao JY, Yu Y, Oswald SJ. From Surface Protrusion to Tether Extraction: A Mechanistic Model. ACS Biomater Sci Eng 2016; 3:3036-3042. [PMID: 33418724 DOI: 10.1021/acsbiomaterials.6b00553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human leukocyte rolling on the endothelium is essential for leukocyte emigration and it is a process regulated by many factors including shear stress, receptor-ligand kinetics, and mechanical properties of cells and molecules. During this process, both leukocytes and endothelial cells (ECs) are pulled by forces due to blood flow and both may experience surface protrusion and tether extraction. In this study, we established a two-scale (cellular and molecular) model of cellular deformation because of a point pulling force and illustrated how surface protrusion makes the transition to tether extraction, either gradually or abruptly. Our simulation results matched well with what was observed in the experiments conducted with the optical trap and the atomic force microscope. We found that, although the traditional method of determining the force loading rate and the protrusional stiffness were still reasonable, the crossover force should not be simply interpreted as the rupture force of the receptor-cytoskeleton linkage. With little modification, this model can be incorporated into any leukocyte rolling model as a module for more accurate and realistic simulation.
Collapse
Affiliation(s)
- Jin-Yu Shao
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| | - Yan Yu
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| | - Sara J Oswald
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
59
|
Smolyakov G, Thiebot B, Campillo C, Labdi S, Severac C, Pelta J, Dague É. Elasticity, Adhesion, and Tether Extrusion on Breast Cancer Cells Provide a Signature of Their Invasive Potential. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27426-27431. [PMID: 27701866 DOI: 10.1021/acsami.6b07698] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We use single-cell force spectroscopy to compare elasticity, adhesion, and tether extrusion on four breast cancer cell lines with an increasing invasive potential. We perform cell attachment/detachment experiments either on fibronectin or on another cell using an atomic force microscope. Our study on the membrane tether formation from cancer cells show that they are easier to extrude from aggressive invasive cells. Measured elastic modulus values confirm that more invasive cells are softer. Moreover, the adhesion force increases with the invasive potential. Our results provide a mechanical signature of breast cancer cells that correlates with their invasivity.
Collapse
Affiliation(s)
- Georges Smolyakov
- ITAV CNRS, Université de Toulouse, CNRS , Toulouse 31062, France
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse 31400, France
| | - Bénédicte Thiebot
- Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement LAMBE-CNRS, Université d'Evry , Evry F-91025, France
| | - Clément Campillo
- Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement LAMBE-CNRS, Université d'Evry , Evry F-91025, France
| | - Sid Labdi
- Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement LAMBE-CNRS, Université d'Evry , Evry F-91025, France
| | | | - Juan Pelta
- Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement LAMBE-CNRS, Université d'Evry , Evry F-91025, France
| | - Étienne Dague
- ITAV CNRS, Université de Toulouse, CNRS , Toulouse 31062, France
- LAAS-CNRS, Université de Toulouse, CNRS , Toulouse 31400, France
| |
Collapse
|
60
|
Sariisik E, Popov C, Müller JP, Docheva D, Clausen-Schaumann H, Benoit M. Decoding Cytoskeleton-Anchored and Non-Anchored Receptors from Single-Cell Adhesion Force Data. Biophys J 2016; 109:1330-3. [PMID: 26445433 PMCID: PMC4601042 DOI: 10.1016/j.bpj.2015.07.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/30/2015] [Accepted: 07/22/2015] [Indexed: 12/02/2022] Open
Abstract
Complementary to parameters established for cell-adhesion force curve analysis, we evaluated the slope before a force step together with the distance from the surface at which the step occurs and visualized the result in a two-dimensional density plot. This new tool allows detachment steps of long membrane tethers to be distinguished from shorter jumplike force steps, which are typical for cytoskeleton-anchored bonds. A prostate cancer cell line (PC3) immobilized on an atomic-force-microscopy sensor interacted with three different substrates: collagen-I (Col-I), bovine serum albumin, and a monolayer of bone marrow-derived stem cells (SCP1). To address PC3 cells’ predominant Col-I binding molecules, an antibody-blocking β1-integrin was used. Untreated PC3 cells on Col-I or SCP1 cells, which express Col-I, predominantly showed jumps in their force curves, while PC3 cells on bovine-serum-albumin- and antibody-treated PC3 cells showed long membrane tethers. The probability density plots thus revealed that β1-integrin-specific interactions are predominately anchored to the cytoskeleton, while the nonspecific interactions are mainly membrane-anchored. Experiments with latrunculin-A-treated PC3 cells corroborated these observations. The plots thus reveal details of the anchoring of bonds to the cell and provide a better understanding of receptor-ligand interactions.
Collapse
Affiliation(s)
- Ediz Sariisik
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-Universität München, Munich, Germany; Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, University of Applied Sciences, Munich, Germany
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen P Müller
- Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-Universität München, Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, University of Applied Sciences, Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, University of Applied Sciences, Munich, Germany
| | - Martin Benoit
- Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, University of Applied Sciences, Munich, Germany.
| |
Collapse
|
61
|
Benítez R, Bolós VJ. Searching events in AFM force-extension curves: A wavelet approach. Microsc Res Tech 2016; 80:153-159. [DOI: 10.1002/jemt.22720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 11/09/2022]
Affiliation(s)
- R. Benítez
- Dpto. Matemáticas; Centro Universitario de Plasencia, Universidad de Extremadura; Avda. Virgen del Puerto 2 Plasencia (Cáceres) 10600 Spain
| | - V. J. Bolós
- Dpto. Matemáticas para la Economía y la Empresa, Facultad de Economía; Universidad de Valencia; Avda. Tarongers s/n Valencia 46022 Spain
| |
Collapse
|
62
|
Nam JH, Peng AW, Ricci AJ. Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns. Biophys J 2016; 108:2633-47. [PMID: 26039165 PMCID: PMC4457497 DOI: 10.1016/j.bpj.2015.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 01/04/2023] Open
Abstract
Current-displacement (I-X) and the force-displacement (F-X) relationships characterize hair-cell mechano-transduction in the inner ear. A common technique for measuring these relationships is to deliver mechanical stimulations to individual hair bundles with microprobes and measure whole cell transduction currents through patch pipette electrodes at the basolateral membrane. The sensitivity of hair-cell mechano-transduction is determined by two fundamental biophysical properties of the mechano-transduction channel, the stiffness of the putative gating spring and the gating swing, which are derived from the I-X and F-X relationships. Although the hair-cell stereocilia in vivo deflect <100 nm even at high sound pressure levels, often it takes >500 nm of stereocilia displacement to saturate hair-cell mechano-transduction in experiments with individual hair cells in vitro. Despite such discrepancy between in vivo and in vitro data, key biophysical properties of hair-cell mechano-transduction to define the transduction sensitivity have been estimated from in vitro experiments. Using three-dimensional finite-element methods, we modeled an inner hair-cell and an outer hair-cell stereocilia bundle and simulated the effect of probe stimulation. Unlike the natural situation where the tectorial membrane stimulates hair-cell stereocilia evenly, probes deflect stereocilia unevenly. Because of uneven stimulation, 1) the operating range (the 10–90% width of the I-X relationship) increases by a factor of 2–8 depending on probe shapes, 2) the I-X relationship changes from a symmetric to an asymmetric function, and 3) the bundle stiffness is underestimated. Our results indicate that the generally accepted assumption of parallel stimulation leads to an overestimation of the gating swing and underestimation of the gating spring stiffness by an order of magnitude.
Collapse
Affiliation(s)
- Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, Rochester, New York; Department of Biomedical Engineering, University of Rochester, Rochester, New York.
| | - Anthony W Peng
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California
| | - Anthony J Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
63
|
El-Kirat-Chatel S, Dufrêne YF. Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages. NANOSCALE HORIZONS 2016; 1:69-74. [PMID: 32260605 DOI: 10.1039/c5nh00049a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of fungal infections is tightly controlled by the interaction of fungal pathogens with host immune cells. While the recognition of specific fungal cell wall components by immune receptors has been widely investigated, the molecular forces involved are not known. In this Communication, we show the ability of single-cell force spectroscopy to quantify the specific adhesion forces between the fungal pathogen Candida albicans and macrophages. The Candida-macrophage adhesion force is strong, up to ∼3000 pN, and corresponds to multiple cumulative bonds between lectin receptors expressed on the macrophage membrane and mannan carbohydrates on the fungal cell surface. Adhesion force signatures show constant force plateaus, up to >100 μm long, reflecting the extraction of elongated tethers from the macrophage membrane, a phenomenon which may increase the duration of intercellular adhesion. Adhesion strengthens with time, suggesting that the macrophage membrane engulfs the pathogen quickly after initial contact, leading to its internalization. The force nanoscopy method developed here holds great promise for understanding and controlling the early stages of microbe-immune interactions.
Collapse
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
64
|
Liu Y, Wang Z, Wang X, Huang Y. Quantitative analysis of dynamic adhesion properties in human hepatocellular carcinoma cells with fullerenol. Micron 2015; 79:74-83. [DOI: 10.1016/j.micron.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/27/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022]
|
65
|
Quantifying Molecular-Level Cell Adhesion on Electroactive Conducting Polymers using Electrochemical-Single Cell Force Spectroscopy. Sci Rep 2015; 5:13334. [PMID: 26335299 PMCID: PMC4558606 DOI: 10.1038/srep13334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 01/28/2023] Open
Abstract
Single Cell Force Spectroscopy was combined with Electrochemical-AFM to quantify the adhesion between live single cells and conducting polymers whilst simultaneously applying a voltage to electrically switch the polymer from oxidized to reduced states. The cell-conducting polymer adhesion represents the non-specific interaction between cell surface glycocalyx molecules and polymer groups such as sulfonate and dodecylbenzene groups, which rearrange their orientation during electrical switching. Single cell adhesion significantly increases as the polymer is switched from an oxidized to fully reduced state, indicating stronger cell binding to sulfonate groups as opposed to hydrophobic groups. This increase in single cell adhesion is concomitant with an increase in surface hydrophilicity and uptake of cell media, driven by cation movement, into the polymer film during electrochemical reduction. Binding forces between the glycocalyx and polymer surface are indicative of molecular-level interactions and during electrical stimulation there is a decrease in both the binding force and stiffness of the adhesive bonds. The study provides insight into the effects of electrochemical switching on cell adhesion at the cell-conducting polymer interface and is more broadly applicable to elucidating the binding of cell adhesion molecules in the presence of electrical fields and directly at electrode interfaces.
Collapse
|
66
|
Palmieri V, Lucchetti D, Maiorana A, Papi M, Maulucci G, Calapà F, Ciasca G, Giordano R, Sgambato A, De Spirito M. Mechanical and structural comparison between primary tumor and lymph node metastasis cells in colorectal cancer. SOFT MATTER 2015; 11:5719-5726. [PMID: 26083581 DOI: 10.1039/c5sm01089f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
SW480 and SW620 colon carcinoma cell lines derive from primary tumour and lymph-node metastasis of the same patient, respectively. For this reason, these cells represent an ideal system to analyse phenotypic variations associated with the metastatic process. In this study we analysed SW480 and SW620 cytoskeleton remodelling by measuring the cells' mechanics and morphological properties using different microscopic techniques. We observed that different specialized functions of cells, i.e. the capacity to metastasize of elongated cells inside the primary tumour and the ability to intravasate and resist shear forces of the stream of cells derived from lymph node metastasis, are reflected in their mechanical properties. We demonstrated that, together with stiffness and adhesion between the AFM tip and the cell surface, cell shape, actin organization and surface roughness are strictly related and are finely modulated by colorectal cancer cells to better accomplish their specific tasks in cancer growth and invasion.
Collapse
Affiliation(s)
- V Palmieri
- Institute of Physics, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Sens P, Plastino J. Membrane tension and cytoskeleton organization in cell motility. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:273103. [PMID: 26061624 DOI: 10.1088/0953-8984/27/27/273103] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.
Collapse
Affiliation(s)
- Pierre Sens
- Institut Curie, Centre de Recherche, Paris, F-75248 France. Centre National de la Recherche Scientifique, Unité Mixte de Recherche 168, Paris, F-75248 France. Université Pierre et Marie Curie, Paris F-75248, France
| | | |
Collapse
|
68
|
Tian J, Tu C, Liang Y, Zhou J, Ye X. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy. J Neurosci Methods 2015; 253:151-60. [PMID: 26149288 DOI: 10.1016/j.jneumeth.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 06/26/2015] [Indexed: 11/28/2022]
Abstract
Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting.
Collapse
Affiliation(s)
- Jian Tian
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, PR China; Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
69
|
Kashef J, Franz CM. Quantitative methods for analyzing cell–cell adhesion in development. Dev Biol 2015; 401:165-74. [DOI: 10.1016/j.ydbio.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/26/2022]
|
70
|
Beaussart A, Baker AE, Kuchma SL, El-Kirat-Chatel S, O’Toole GA, Dufrêne YF. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV Pili. ACS NANO 2014; 8:10723-10733. [PMID: 25286300 PMCID: PMC4212785 DOI: 10.1021/nn5044383] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/30/2014] [Indexed: 05/30/2023]
Abstract
A variety of bacterial pathogens use nanoscale protein fibers called type IV pili to mediate cell adhesion, a primary step leading to infection. Currently, how these nanofibers respond to mechanical stimuli and how this response is used to control adhesion is poorly understood. Here, we use atomic force microscopy techniques to quantify the forces guiding the adhesion of Pseudomonas aeruginosa type IV pili to surfaces. Using chemical force microscopy and single-cell force spectroscopy, we show that pili strongly bind to hydrophobic surfaces in a time-dependent manner, while they weakly bind to hydrophilic surfaces. Individual nanofibers are capable of withstanding forces up to 250 pN, thereby explaining how they can resist mechanical stress. Pulling on individual pili yields constant force plateaus, presumably reflecting conformational changes, as well as nanospring properties that may help bacteria to withstand physiological shear forces. Analysis of mutant strains demonstrates that these mechanical responses originate solely from type IV pili, while flagella and the cell surface localized and proposed pili-associated adhesin PilY1 play no direct role. We also demonstrate that bacterial-host interactions involve constant force plateaus, the extension of bacterial pili, and the formation of membrane tethers from host cells. We postulate that the unique mechanical responses of type IV pili unravelled here enable the bacteria to firmly attach to biotic and abiotic surfaces and thus maintain attachment when subjected to high shear forces under physiological conditions, helping to explain why pili play a critical role in colonization of the host.
Collapse
Affiliation(s)
- Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Amy E. Baker
- Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, United States
| | - Sherry L. Kuchma
- Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, United States
| | - Sofiane El-Kirat-Chatel
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - George A. O’Toole
- Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, United States
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
71
|
Metzger TA, Shudick JM, Seekell R, Zhu Y, Niebur GL. Rheological behavior of fresh bone marrow and the effects of storage. J Mech Behav Biomed Mater 2014; 40:307-313. [PMID: 25262201 DOI: 10.1016/j.jmbbm.2014.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Abstract
The progression of several diseases, such as osteoporosis and diabetes, are associated with changes in marrow composition and physiology. As these diseases are affected by aging and activity, the biomechanical properties and mechanobiology of marrow may play a role in their progression. Bone marrow is comprised primarily of cells, and provides a niche for several mechanosensitive cell lineages. The mechanical signals imparted to the cells depend on their interaction with one another, the extracellular matrix, and the intercellular fluid. At a macroscopic scale, these interactions manifest as viscosity in marrow. Marrow viscosity has been measured in human and bovine bone. However, a large range of storage, retrieval, and measurement techniques has resulted in inconsistent data. To provide physiologically relevant data, marrow samples from young adult pigs were harvested and tested within less than 8h of slaughter. The viscosity was over 100Pas at a shear rate of 1s(-1), and decreased with shear rate according to a power law. However, the marrow did not exhibit a measurable yield stress as some complex fluids do. The viscosity of samples that had been frozen and thawed prior to testing was lower by an order of magnitude. The difference in properties was associated with a loss of integrity of the marrow adipocyte membranes. Previous reports of bone marrow viscosity have shown inconsistent results, which may be due to different storage and handling prior to testing. The higher viscosity compared to previous reports would impact poroelastic models of bone, and suggests that the stress on marrow cells during whole bone loading may be higher than previously believed.
Collapse
Affiliation(s)
- Thomas A Metzger
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jonelle M Shudick
- Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Raymond Seekell
- Dept. of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Yingxi Zhu
- Dept. of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
72
|
Schubert R, Strohmeyer N, Bharadwaj M, Ramanathan SP, Krieg M, Friedrichs J, Franz CM, Muller DJ. Assay for characterizing the recovery of vertebrate cells for adhesion measurements by single-cell force spectroscopy. FEBS Lett 2014; 588:3639-48. [PMID: 24928443 DOI: 10.1016/j.febslet.2014.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022]
Abstract
Single-cell force spectroscopy (SCFS) is becoming a widely used method to quantify the adhesion of a living cell to a substrate, another cell or tissue. The high sensitivity of SCFS permits determining the contributions of individual cell adhesion molecules (CAMs) to the adhesion force of an entire cell. However, to prepare adherent cells for SCFS, they must first be detached from tissue-culture flasks or plates. EDTA and trypsin are often applied for this purpose. Because cellular properties can be affected by this treatment, cells need to recover before being further characterized by SCFS. Here we introduce atomic force microscopy (AFM)-based SCFS to measure the mechanical and adhesive properties of HeLa cells and mouse embryonic kidney fibroblasts while they are recovering after detachment from tissue-culture. We find that mechanical and adhesive properties of both cell lines recover quickly (<10 min) after detachment using EDTA, while trypsin-detached fibroblasts require >60 min to fully recover. Our assay introduced to characterize the recovery of mammalian cells after detachment can in future be used to estimate the recovery behavior of other adherent cell types.
Collapse
Affiliation(s)
- Rajib Schubert
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Subramanian P Ramanathan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michael Krieg
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Institute for Biofunctional Polymer Materials, Hohe Str. 6, 01069 Dresden, Germany
| | - Clemens M Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | - Daniel J Muller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
73
|
Fichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS One 2014; 9:e93123. [PMID: 24675966 PMCID: PMC3968077 DOI: 10.1371/journal.pone.0093123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.
Collapse
Affiliation(s)
- Dagmar Fichtner
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Bärbel Lorenz
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Sinem Engin
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Christina Deichmann
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Marieelen Oelkers
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andre Menke
- Justus-Liebig-University Gieβen, Molecular Oncology of Solid Tumors, Gieβen, Germany
| | - Doris Wedlich
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Clemens M. Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
74
|
Lu S, Walters G, Parg R, Dutcher JR. Nanomechanical response of bacterial cells to cationic antimicrobial peptides. SOFT MATTER 2014; 10:1806-1815. [PMID: 24652481 DOI: 10.1039/c3sm52801d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effectiveness of antimicrobial compounds can be easily screened, however their mechanism of action is much more difficult to determine. Many compounds act by compromising the mechanical integrity of the bacterial cell envelope, and our study introduces an AFM-based creep deformation technique to evaluate changes in the time-dependent mechanical properties of Pseudomonas aeruginosa PAO1 bacterial cells upon exposure to two different but structurally related antimicrobial peptides. We observed a distinctive signature for the loss of integrity of the bacterial cell envelope following exposure to the peptides. Measurements performed before and after exposure, as well as time-resolved measurements and those performed at different concentrations, revealed large changes to the viscoelastic parameters that are consistent with differences in the membrane permeabilizing effects of the peptides. The AFM creep deformation measurement provides new, unique insight into the kinetics and mechanism of action of antimicrobial peptides on bacteria.
Collapse
Affiliation(s)
- Shun Lu
- Department of Physics, University of Guelph, Guelph, N1G 2W1, Ontario, Canada.
| | | | | | | |
Collapse
|
75
|
Yi X, Shi X, Gao H. A universal law for cell uptake of one-dimensional nanomaterials. NANO LETTERS 2014; 14:1049-55. [PMID: 24459994 DOI: 10.1021/nl404727m] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Understanding cell interaction with one-dimensional nanomaterials, including nanotubes, nanowires, nanofibers, filamentous bacteria, and certain nanoparticle chains, has fundamental importance to many applications such as biomedical diagnostics, therapeutics, and nanotoxicity. Here we show that cell uptake of one-dimensional nanomaterials via receptor-mediated endocytosis is dominated by a single dimensionless parameter that scales with the membrane tension and radius of the nanomaterial and inversely with the membrane bending stiffness. It is shown that as cell membrane internalizes one-dimensional nanomaterials the uptake follows a near-perpendicular entry mode at small membrane tension but it switches to a near-parallel interaction mode at large membrane tension.
Collapse
Affiliation(s)
- Xin Yi
- School of Engineering, Brown University , Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|
76
|
Te Riet J, Helenius J, Strohmeyer N, Cambi A, Figdor CG, Müller DJ. Dynamic coupling of ALCAM to the actin cortex strengthens cell adhesion to CD6. J Cell Sci 2014; 127:1595-606. [PMID: 24496453 DOI: 10.1242/jcs.141077] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
At the immunological synapse, the activated leukocyte cell adhesion molecule (ALCAM) on a dendritic cell (DC) and CD6 molecules on a T cell contribute to sustained DC-T-cell contacts. However, little is known about how ALCAM-CD6 bonds resist and adapt to mechanical stress. Here, we combine single-cell force spectroscopy (SCFS) with total-internal reflection fluorescence microscopy to examine ALCAM-CD6-mediated cell adhesion. The combination of cells expressing ALCAM constructs with certain cytoplasmic tail mutations and improved SCFS analysis processes reveal that the affinity of ALCAM-CD6 bonds is not influenced by the linking of the intracellular domains of ALCAM to the actin cortex. By contrast, the recruitment of ALCAM to adhesion sites and the propensity of ALCAM to anchor plasma membrane tethers depend on actin cytoskeletal interactions. Furthermore, linking ALCAM to the actin cortex through adaptor proteins stiffens the cortex and strengthens cell adhesion. We propose a framework for how ALCAMs contribute to DC-T-cell adhesion, stabilize DC-T-cell contacts and form a mechanical link between CD6 and the actin cortex to strengthen cell adhesion at the immunological synapse.
Collapse
Affiliation(s)
- Joost Te Riet
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
77
|
Monserrate A, Casado S, Flors C. Correlative Atomic Force Microscopy and Localization-Based Super-Resolution Microscopy: Revealing Labelling and Image Reconstruction Artefacts. Chemphyschem 2013; 15:647-50. [DOI: 10.1002/cphc.201300853] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Indexed: 11/10/2022]
|
78
|
Moo E, Amrein M, Epstein M, Duvall M, Abu Osman N, Pingguan-Murphy B, Herzog W. The properties of chondrocyte membrane reservoirs and their role in impact-induced cell death. Biophys J 2013; 105:1590-600. [PMID: 24094400 PMCID: PMC3822719 DOI: 10.1016/j.bpj.2013.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/12/2013] [Accepted: 08/26/2013] [Indexed: 02/01/2023] Open
Abstract
Impact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%. However, experimental support for this proposal is lacking. The purpose of this study was to measure the accessible membrane reservoir size for different membrane strain rates using membrane tethering techniques with atomic force microscopy. We conducted atomic force spectroscopy on isolated chondrocytes (n = 87). A micron-sized cantilever was used to extract membrane tethers from cell surfaces at constant pulling rates. Membrane tethers could be identified as force plateaus in the resulting force-displacement curves. Six pulling rates were tested (1, 5, 10, 20, 40, and 80 μm/s). The size of the membrane reservoir, represented by the membrane tether surface areas, decreased exponentially with increasing pulling rates. The current results support our theoretical findings that chondrocytes exposed to impact loading die because of membrane ruptures caused by high tensile membrane strain rates.
Collapse
Affiliation(s)
- Eng Kuan Moo
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
| | - Matthias Amrein
- Departments of Cell Biology and Anatomy and Pathology and Laboratory Medicine, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Marcelo Epstein
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, Calgary, Alberta, Canada
| | - Mike Duvall
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, Alberta, Canada
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
79
|
Di Simone N, De Spirito M, Di Nicuolo F, Tersigni C, Castellani R, Silano M, Maulucci G, Papi M, Marana R, Scambia G, Gasbarrini A. Potential New Mechanisms of Placental Damage in Celiac Disease: Anti-Transglutaminase Antibodies Impair Human Endometrial Angiogenesis1. Biol Reprod 2013; 89:88. [DOI: 10.1095/biolreprod.113.109637] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
80
|
A new quantitative experimental approach to investigate single cell adhesion on multifunctional substrates. Biosens Bioelectron 2013; 48:172-9. [DOI: 10.1016/j.bios.2013.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/03/2013] [Accepted: 04/14/2013] [Indexed: 12/14/2022]
|
81
|
Alsteens D, Beaussart A, Derclaye S, El-Kirat-Chatel S, Park HR, Lipke PN, Dufrêne YF. Single-Cell Force Spectroscopy of Als-Mediated Fungal Adhesion. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:3657-3662. [PMID: 23956795 PMCID: PMC3743104 DOI: 10.1039/c3ay40473k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Macroscopic assays that are traditionally used to investigate the adhesion behaviour of microbial cells provide averaged information obtained on large populations of cells and do not measure the fundamental forces driving single-cell adhesion. Here, we use single-cell force spectroscopy (SCFS) to quantify the specific and non-specific forces engaged in the adhesion of the human fungal pathogen Candida albicans. Saccharomyces cerevisiae cells expressing the C. albicans adhesion protein Als5p were attached on atomic force microscopy tipless cantilevers using a bioinspired polydopamine wet polymer, and force-distance curves were recorded between the obtained cell probes and various solid surfaces. Force signatures obtained on hydrophobic substrates exhibited large adhesion forces (1.25 ± 0.2 nN) with extended rupture lengths (up to 400 nm), attributed to the binding and stretching of the hydrophobic tandem repeats of Als5p. Data collected on fibronectin (Fn) -coated substrates featured strong adhesion forces (2.8 ± 0.6 nN), reflecting specific binding between Fn and the N-terminal immunoglobulin-like regions of Als5p, followed by weakly adhesive macromolecular bonds. Both hydrophobic and Fn adhesion forces increased with contact time, emphasizing the important role that time plays in strengthening adhesion. Our SCFS methodology provides a versatile platform in biomedicine for understanding the fundamental forces driving adhesion and biofilm formation in fungal pathogens.
Collapse
Affiliation(s)
- David Alsteens
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Sylvie Derclaye
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Sofiane El-Kirat-Chatel
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Hye Rim Park
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
| | - Peter N. Lipke
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, New York 11210, USA
| | - Yves F. Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium
- Corresponding author: Phone: (32) 10 47 36 00, Fax: (32) 10 47 20 05,
| |
Collapse
|
82
|
El-Kirat-Chatel S, Mil-Homens D, Beaussart A, Fialho AM, Dufrêne YF. Single-molecule atomic force microscopy unravels the binding mechanism of aBurkholderia cenocepaciatrimeric autotransporter adhesin. Mol Microbiol 2013; 89:649-59. [DOI: 10.1111/mmi.12301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Sofiane El-Kirat-Chatel
- Université catholique de Louvain; Institute of Life Sciences; Croix du Sud, 1, bte L7.04.01.; B-1348; Louvain-la-Neuve; Belgium
| | - Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering; Instituto Superior Técnico; Lisbon; 1049-001; Portugal
| | - Audrey Beaussart
- Université catholique de Louvain; Institute of Life Sciences; Croix du Sud, 1, bte L7.04.01.; B-1348; Louvain-la-Neuve; Belgium
| | | | - Yves F. Dufrêne
- Université catholique de Louvain; Institute of Life Sciences; Croix du Sud, 1, bte L7.04.01.; B-1348; Louvain-la-Neuve; Belgium
| |
Collapse
|
83
|
Giverso C, Grillo A, Preziosi L. Influence of nucleus deformability on cell entry into cylindrical structures. Biomech Model Mechanobiol 2013; 13:481-502. [PMID: 23838726 DOI: 10.1007/s10237-013-0510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 06/20/2013] [Indexed: 01/12/2023]
Abstract
The mechanical properties of cell nuclei have been demonstrated to play a fundamental role in cell movement across extracellular networks and micro-channels. In this work, we focus on a mathematical description of a cell entering a cylindrical channel composed of extracellular matrix. An energetic approach is derived in order to obtain a necessary condition for which cells enter cylindrical structures. The nucleus of the cell is treated either (i) as an elastic membrane surrounding a liquid droplet or (ii) as an incompressible elastic material with Neo-Hookean constitutive equation. The results obtained highlight the importance of the interplay between mechanical deformability of the nucleus and the capability of the cell to establish adhesive bonds and generate active forces in the cytoskeleton due to myosin action.
Collapse
Affiliation(s)
- C Giverso
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 , Torino, Italy,
| | | | | |
Collapse
|
84
|
Lieber AD, Yehudai-Resheff S, Barnhart EL, Theriot JA, Keren K. Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr Biol 2013; 23:1409-17. [PMID: 23831292 DOI: 10.1016/j.cub.2013.05.063] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 04/23/2013] [Accepted: 05/31/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Membrane tension plays an essential role in cell motility. The load imposed by the tensed membrane restrains actin polymerization, promotes rear retraction, and influences membrane transport. Moreover, membrane tension is crucial for large-scale coordination of cell boundary dynamics. Despite its importance, little is known about how membrane tension is set and regulated in cells. The prevailing hypothesis is that membrane tension is largely controlled by membrane-cytoskeleton adhesion and/or changes in membrane area. RESULTS In this work, we measure the apparent membrane tension in rapidly moving fish epithelial keratocytes under normal and perturbed conditions with a tether-pulling assay. We find that enlargement of the cell surface area by fusion with giant unilamellar vesicles (GUVs) has only minor effects on membrane tension and on cell movement. However, modulation of the cytoskeletal forces has a substantial influence on tension: reduction of the actin-pushing forces along the cell's leading edge leads to a significant decrease in membrane tension, whereas increase of the strength of adhesion and/or decrease of myosin-induced contraction leads to higher tension. CONCLUSIONS We find that the membrane tension in rapidly moving keratocytes is primarily determined by a mechanical force balance between the cell membrane and cytoskeletal forces. Our results highlight the role of membrane tension as a global mechanical regulator of cell behavior.
Collapse
Affiliation(s)
- Arnon D Lieber
- Department of Physics, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
85
|
Liu B, Shao JY. Tangential tether extraction and spontaneous tether retraction of human neutrophils. Biophys J 2013; 103:2257-64. [PMID: 23283224 DOI: 10.1016/j.bpj.2012.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/11/2012] [Accepted: 10/17/2012] [Indexed: 12/26/2022] Open
Abstract
Membrane tethers are extracted when neutrophils roll on the endothelium to initiate their transendothelial migration. Tether extraction from both neutrophils and endothelial cells stabilizes neutrophil rolling, so it has been studied extensively and the force-velocity relationship for tether extraction is of great interest. Due to limitations of the techniques used in previous studies, this relationship has been obtained only from tethers perpendicular to the cell surface. Here, with the microcantilever technique, where latex beads affixed on silicon cantilevers were used as the force transducer, we extracted tethers either perpendicular or tangential to the neutrophil surface. We found that the force-velocity relationship was not sensitive to tether pulling direction. Little movement of the tether-cell junction was observed during tangential tether extraction, and no coalescence was observed during multiple tether extraction. Following adhesion rupture, spontaneous tether retraction was visualized by membrane staining, which revealed two phases: one was fast and exponential, whereas the other was slow and linear. Both phases can be reproduced with a mechanical model. These results show for the first time, to our knowledge, how neutrophil tethers shorten upon instantaneous force removal, and furthermore, they illustrate how membrane tethers contribute to neutrophil rolling stability during the inflammatory response.
Collapse
Affiliation(s)
- Baoyu Liu
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, USA
| | | |
Collapse
|
86
|
Destabilization induced by electropermeabilization analyzed by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2223-9. [PMID: 23756780 DOI: 10.1016/j.bbamem.2013.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/04/2023]
Abstract
Electropermeabilization is a physical method that uses electric field pulses to deliver molecules into cells and tissues. Despite its increasing interest in clinics, little is known about plasma membrane destabilization process occurring during electropermeabilization. In this work, we took advantage of atomic force microscopy to directly visualize the consequences of electropermeabilization in terms of membrane reorganization and to locally measure the membrane elasticity. We visualized transient rippling of membrane surface and measured a decrease in membrane elasticity by 40%. Our results obtained both on fixed and living CHO cells give evidence of an inner effect affecting the entire cell surface that may be related to cytoskeleton destabilization. Thus, AFM appears as a useful tool to investigate basic process of electroporation on living cells in absence of any staining or cell preparation.
Collapse
|
87
|
Chu C, Celik E, Rico F, Moy VT. Elongated membrane tethers, individually anchored by high affinity α4β1/VCAM-1 complexes, are the quantal units of monocyte arrests. PLoS One 2013; 8:e64187. [PMID: 23691169 PMCID: PMC3656870 DOI: 10.1371/journal.pone.0064187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The α4β1 integrin facilitates both monocyte rolling and adhesion to the vascular endothelium and is physiologically activated by monocyte chemoattractant protein (MCP-1). The current study investigated the initial events in the adhesion of THP-1 cells to immobilized Vascular Cell Adhesion Molecule 1 (VCAM-1). Using AFM force measurements, cell adhesion was shown to be mediated by two populations of α4β1/VCAM-1 complexes. A low affinity form of α4β1 was anchored to the elastic elements of the cytoskeleton, while a higher affinity conformer was coupled to the viscous elements of the cell membrane. Within 100 ms of contact, THP-1 cells, stimulated by co-immobilized MCP-1, exhibited a tremendous increase in adhesion to VCAM-1. Enhanced cell adhesion was accompanied by a local decoupling of the cell membrane from the cytoskeleton and the formation of long membrane tethers. The tethers were individually anchored by multiple α4β1/VCAM-1 complexes that prolonged the extension of the viscous tethers. In vivo, the formation of these membrane tethers may provide the quantal structural units for the arrest of rolling monocytes within the blood vessels.
Collapse
Affiliation(s)
- Calvin Chu
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Emrah Celik
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Felix Rico
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Vincent T. Moy
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
88
|
Askarova S, Sun Z, Sun GY, Meininger GA, Lee JCM. Amyloid-β peptide on sialyl-Lewis(X)-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface. PLoS One 2013; 8:e60972. [PMID: 23593361 PMCID: PMC3625223 DOI: 10.1371/journal.pone.0060972] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.
Collapse
Affiliation(s)
- Sholpan Askarova
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Engineering, Cell Technologies, and Transplantation, Center for Life Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (JCML); (GAM)
| | - James C-M. Lee
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (JCML); (GAM)
| |
Collapse
|
89
|
Migliorini E, Ban J, Grenci G, Andolfi L, Pozzato A, Tormen M, Torre V, Lazzarino M. Nanomechanics controls neuronal precursors adhesion and differentiation. Biotechnol Bioeng 2013; 110:2301-10. [PMID: 23436578 DOI: 10.1002/bit.24880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022]
Abstract
The ability to control the differentiation of stem cells into specific neuronal types has a tremendous potential for the treatment of neurodegenerative diseases. In vitro neuronal differentiation can be guided by the interplay of biochemical and biophysical cues. Different strategies to increase the differentiation yield have been proposed, focusing everything on substrate topography, or, alternatively on substrate stiffness. Both strategies demonstrated an improvement of the cellular response. However it was often impossible to separate the topographical and the mechanical contributions. Here we investigate the role of the mechanical properties of nanostructured substrates, aiming at understanding the ultimate parameters which govern the stem cell differentiation. To this purpose a set of different substrates with controlled stiffness and with or without nanopatterning are used for stem cell differentiation. Our results show that the neuronal differentiation yield depends mainly on the substrate mechanical properties while the geometry plays a minor role. In particular nanostructured and flat polydimethylsiloxane (PDMS) substrates with comparable stiffness show the same neuronal yield. The improvement in the differentiation yield obtained through surface nanopatterning in the submicrometer scale could be explained as a consequence of a substrate softening effect. Finally we investigate by single cell force spectroscopy the neuronal precursor adhesion on the substrate immediately after seeding, as a possible critical step governing the neuronal differentiation efficiency. We observed that neuronal precursor adhesion depends on substrate stiffness but not on surface structure, and in particular it is higher on softer substrates. Our results suggest that cell-substrate adhesion forces and mechanical response are the key parameters to be considered for substrate design in neuronal regenerative medicine.
Collapse
|
90
|
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 2013; 8:e57147. [PMID: 23451167 PMCID: PMC3579816 DOI: 10.1371/journal.pone.0057147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.
Collapse
|
91
|
Askarova S, Tsoy A, Shalakhmetova T, Lee JCM. Effects of Amyloid Beta Peptide on Neurovascular Cells. Cent Asian J Glob Health 2013; 1:4. [PMID: 29755858 PMCID: PMC5927754 DOI: 10.5195/cajgh.2012.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder, which is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in specific regions of the brain, accompanied by impairment of the neurons, and progressive deterioration of cognition and memory of affected individuals. Although the cause and progression of AD are still not well understood, the amyloid hypothesis is dominant and widely accepted. According to this hypothesis, an increased deposition of amyloid-β peptide (Aβ) in the brain is the main cause of the AD’s onset and progression. There is increasing body of evidence that blood-brain barrier (BBB) dysfunction plays an important role in the development of AD, and may even precede neuron degeneration in AD brain. In the early stage of AD, microvasculature deficiencies, inflammatory reactions, surrounding the cerebral vasculature and endothelial dysfunctions are commonly observed. Continuous neurovascular degeneration and accumulation of Aβ on blood vessels resulting in cerebral amyloid angiopathy is associated with further progression of the disease and cognitive decline. However, little is known about molecular mechanisms that underlie Aβ induced damage of neurovascular cells. In this regards, this review is aimed to address how Aβ impacts the cerebral endothelium. Understanding the cellular pathways triggered by Aβ leading to alterations in cerebral endothelial cells structure and functions would provide insights into the mechanism of BBB dysfunction and inflammatory processes in Alzheimer’s, and may offer new approaches for prevention and treatment strategies for AD.
Collapse
Affiliation(s)
- Sholpan Askarova
- Nazarbayev University, Center for Life Sciences, Astana, Kazakhstan
| | - Andrey Tsoy
- Nazarbayev University, Center for Life Sciences, Astana, Kazakhstan.,Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - James C-M Lee
- Department of Biological Engineering, University of Missouri
| |
Collapse
|
92
|
Friedrichs J, Werner C, Müller DJ. Quantifying cellular adhesion to covalently immobilized extracellular matrix proteins by single-cell force spectroscopy. Methods Mol Biol 2013; 1046:19-37. [PMID: 23868580 DOI: 10.1007/978-1-62703-538-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) enables the quantitative study of cell adhesion under physiological conditions. SCFS probes adhesive interactions of single living cells with substrates such as extracellular matrix (ECM) proteins and other cells. Here, we present a protocol to quantitatively study the adhesion of HeLa cells to covalently immobilized fibronectin and Matrigel™ using SCFS. We describe procedures for (a) functionalization of AFM cantilevers, (b) preparation of maleic anhydride copolymer thin films, (c) covalent immobilization of ECM proteins on the thin films, (d) cell handling and attachment to the AFM cantilever, and (e) measurement of adhesion forces. The protocol can be easily modified for other cell types and substrate proteins.
Collapse
Affiliation(s)
- Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Institute for Biofunctional Polymer Materials, Dresden, Germany
| | | | | |
Collapse
|
93
|
Hong Z, Staiculescu MC, Hampel P, Levitan I, Forgacs G. How cholesterol regulates endothelial biomechanics. Front Physiol 2012; 3:426. [PMID: 23162471 PMCID: PMC3498650 DOI: 10.3389/fphys.2012.00426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/19/2012] [Indexed: 11/13/2022] Open
Abstract
As endothelial cells form the barrier between blood flow and surrounding tissue, many of their functions depend on mechanical integrity, in particular those of the plasma membrane. As component and organizer of the plasma membrane, cholesterol is a regulator of cellular mechanical properties. Disruption of cholesterol balance leads to impairment of endothelial functions and eventually to disease. The mechanical properties of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in the endothelial plasma membrane. We investigated the connection between cholesterol and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol. Our findings confirm the specific role of cholesterol in endothelial cells and may have implications for cholesterol-dependent vascular pathologies.
Collapse
Affiliation(s)
- Zhongkui Hong
- Department of Physics and Astronomy, University of Missouri-Columbia Columbia, MO, USA
| | | | | | | | | |
Collapse
|
94
|
Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 2012; 23:47-53. [PMID: 23122885 DOI: 10.1016/j.tcb.2012.09.006] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/17/2012] [Accepted: 09/25/2012] [Indexed: 01/13/2023]
Abstract
Many cell phenomena that involve shape changes are affected by the intrinsic deformability of the plasma membrane (PM). Far from being a passive participant, the PM is now known to physically, as well as biochemically, influence cell processes ranging from vesicle trafficking to actin assembly. Here we review current understanding of how changes in PM tension regulate cell shape and movement, as well as how cells sense PM tension.
Collapse
|
95
|
Bertoncini P, Le Chevalier S, Lavenus S, Layrolle P, Louarn G. Early adhesion of human mesenchymal stem cells on TiO(2) surfaces studied by single-cell force spectroscopy measurements. J Mol Recognit 2012; 25:262-9. [PMID: 22528187 DOI: 10.1002/jmr.2193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding the interactions involved in the adhesion of living cells on surfaces is essential in the field of tissue engineering and biomaterials. In this study, we investigate the early adhesion of living human mesenchymal stem cells (hMSCs) on flat titanium dioxide (TiO(2) ) and on nanoporous crystallized TiO(2) surfaces with the use of atomic force microscopy-based single-cell force spectroscopy measurements. The choice of the substrate surfaces was motivated by the fact that implants widely used in orthopaedic and dental surgery are made in Ti and its alloys. Nanoporous TiO(2) surfaces were produced by anodization of Ti surfaces. In a typical force spectroscopy experiment, one living hMSC, immobilized onto a fibronectine-functionalized tipless lever is brought in contact with the surface of interest for 30 s before being detached while recording force-distance curves. Adhesion of hMSCs on nanoporous TiO(2) substrates having inner pore diameter of 45 nm was lower by approximately 25% than on TiO(2) flat surfaces. Force-distance curves exhibited also force steps that can be related to the pulling of membrane tethers from the cell membrane. The mean force step was equal to 35 pN for a given speed independently of the substrate surface probed. The number of tethers observed was substrate dependent. Our results suggest that the strength of the initial adhesion between hMSCs and flat or nanoporous TiO(2) surfaces is driven by the adsorption of proteins deposited from serum in the culture media.
Collapse
Affiliation(s)
- P Bertoncini
- Université de Nantes/CNRS, UMR 6502, Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, 44322 Nantes cedex 3, France.
| | | | | | | | | |
Collapse
|
96
|
Abstract
Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.
Collapse
|
97
|
Mescola A, Vella S, Scotto M, Gavazzo P, Canale C, Diaspro A, Pagano A, Vassalli M. Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy. J Mol Recognit 2012; 25:270-7. [DOI: 10.1002/jmr.2173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrea Mescola
- Nanophysics Unit; Italian Institute of Technology; Morego; Genova; Italy
| | - Serena Vella
- Department of Oncology, Biology and Genetics; University of Genova; Genova; Italy
| | - Marco Scotto
- Nanophysics Unit; Italian Institute of Technology; Morego; Genova; Italy
| | - Paola Gavazzo
- Institute of Biophysics; National Research Council; Genova; Italy
| | - Claudio Canale
- Nanophysics Unit; Italian Institute of Technology; Morego; Genova; Italy
| | | | | | - Massimo Vassalli
- Institute of Biophysics; National Research Council; Genova; Italy
| |
Collapse
|
98
|
Shinto H, Aso Y, Fukasawa T, Higashitani K. Adhesion of melanoma cells to the surfaces of microspheres studied by atomic force microscopy. Colloids Surf B Biointerfaces 2012; 91:114-21. [DOI: 10.1016/j.colsurfb.2011.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/22/2011] [Accepted: 10/26/2011] [Indexed: 11/28/2022]
|
99
|
Tosin A. Initial/boundary-value problems of tumor growth within a host tissue. J Math Biol 2012; 66:163-202. [PMID: 22290313 DOI: 10.1007/s00285-012-0505-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 12/20/2011] [Indexed: 01/16/2023]
Abstract
This paper concerns multiphase models of tumor growth in interaction with a surrounding tissue, taking into account also the interplay with diffusible nutrients feeding the cells. Models specialize in nonlinear systems of possibly degenerate parabolic equations, which include phenomenological terms related to specific cell functions. The paper discusses general modeling guidelines for such terms, as well as for initial and boundary conditions, aiming at both biological consistency and mathematical robustness of the resulting problems. Particularly, it addresses some qualitative properties such as a priori non-negativity, boundedness, and uniqueness of the solutions. Existence of the solutions is studied in the one-dimensional time-independent case.
Collapse
Affiliation(s)
- Andrea Tosin
- Istituto per le Applicazioni del Calcolo M. Picone, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
100
|
Frolov VA, Shnyrova AV, Zimmerberg J. Lipid polymorphisms and membrane shape. Cold Spring Harb Perspect Biol 2011; 3:a004747. [PMID: 21646378 DOI: 10.1101/cshperspect.a004747] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Morphological plasticity of biological membrane is critical for cellular life, as cells need to quickly rearrange their membranes. Yet, these rearrangements are constrained in two ways. First, membrane transformations may not lead to undesirable mixing of, or leakage from, the participating cellular compartments. Second, membrane systems should be metastable at large length scales, ensuring the correct function of the particular organelle and its turnover during cellular division. Lipids, through their ability to exist with many shapes (polymorphism), provide an adequate construction material for cellular membranes. They can self-assemble into shells that are very flexible, albeit hardly stretchable, which allows for their far-reaching morphological and topological behaviors. In this article, we will discuss the importance of lipid polymorphisms in the shaping of membranes and its role in controlling cellular membrane morphology.
Collapse
Affiliation(s)
- Vadim A Frolov
- Unidad de Biofisica (Centro Mixto CSIC-UPV/EHU), Leioa 48940, Spain
| | | | | |
Collapse
|