51
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
52
|
Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, Grosshans D, Held KD, Mohan R, Moiseenko V, Niemierko A, Stewart RD, Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys 2019; 46:e53-e78. [PMID: 30661238 DOI: 10.1002/mp.13390] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/21/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Indra J Das
- New York University Langone Medical Center & Laura and Isaac Perlmutter Cancer Center, New York, NY, USA
| | - Lei Dong
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Stewart
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
53
|
Ricciotti E, Sarantopoulou D, Grant GR, Sanzari JK, Krigsfeld GS, Kiliti AJ, Kennedy AR, Grosser T. Distinct vascular genomic response of proton and gamma radiation-A pilot investigation. PLoS One 2019; 14:e0207503. [PMID: 30742630 PMCID: PMC6370185 DOI: 10.1371/journal.pone.0207503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5–200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response. While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes; q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation; p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships. Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel S. Krigsfeld
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber J. Kiliti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
54
|
A new facility for proton radiobiology at the Trento proton therapy centre: Design and implementation. Phys Med 2019; 58:99-106. [DOI: 10.1016/j.ejmp.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/26/2023] Open
|
55
|
Yepes P, Adair A, Frank SJ, Grosshans DR, Liao Z, Liu A, Mirkovic D, Poenisch F, Titt U, Wang Q, Mohan R. Fixed- versus Variable-RBE Computations for Intensity Modulated Proton Therapy. Adv Radiat Oncol 2018; 4:156-167. [PMID: 30706024 PMCID: PMC6349601 DOI: 10.1016/j.adro.2018.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022] Open
Abstract
Purpose To evaluate how using models of proton therapy that incorporate variable relative biological effectiveness (RBE) versus the current practice of using a fixed RBE of 1.1 affects dosimetric indices on treatment plans for large cohorts of patients treated with intensity modulated proton therapy (IMPT). Methods and Materials Treatment plans for 4 groups of patients who received IMPT for brain, head-and-neck, thoracic, or prostate cancer were selected. Dose distributions were recalculated in 4 ways: 1 with a fast-dose Monte Carlo calculator with fixed RBE and 3 with RBE calculated to 3 different models—McNamara, Wedenberg, and repair-misrepair-fixation. Differences among dosimetric indices (D02, D50, D98, and mean dose) for target volumes and organs at risk (OARs) on each plan were compared between the fixed-RBE and variable-RBE calculations. Results In analyses of all target volumes, for which the main concern is underprediction or RBE less than 1.1, none of the models predicted an RBE less than 1.05 for any of the cohorts. For OARs, the 2 models based on linear energy transfer, McNamara and Wedenberg, systematically predicted RBE >1.1 for most structures. For the mean dose of 25% of the plans for 2 OARs, they predict RBE equal to or larger than 1.4, 1.3, 1.3, and 1.2 for brain, head-and-neck, thorax, and prostate, respectively. Systematically lower increases in RBE are predicted by repair-misrepair-fixation, with a few cases (eg, femur) in which the RBE is less than 1.1 for all plans. Conclusions The variable-RBE models predict increased doses to various OARs, suggesting that strategies to reduce high-dose linear energy transfer in critical structures should be developed to minimize possible toxicity associated with IMPT.
Collapse
Affiliation(s)
- Pablo Yepes
- Physics and Astronomy Department, Rice University, Houston, Texas.,Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Antony Adair
- Physics and Astronomy Department, Rice University, Houston, Texas.,Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas.,Experimental Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Amy Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Dragan Mirkovic
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Falk Poenisch
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Qianxia Wang
- Physics and Astronomy Department, Rice University, Houston, Texas.,Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer, Houston, Texas
| |
Collapse
|
56
|
de Andrade Carvalho H, Villar RC. Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (Sao Paulo) 2018; 73:e557s. [PMID: 30540123 PMCID: PMC6257057 DOI: 10.6061/clinics/2018/e557s] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Technological developments have allowed improvements in radiotherapy delivery, with higher precision and better sparing of normal tissue. For many years, it has been well known that ionizing radiation has not only local action but also systemic effects by triggering many molecular signaling pathways. There is still a lack of knowledge of this issue. This review focuses on the current literature about the effects of ionizing radiation on the immune system, either suppressing or stimulating the host reactions against the tumor, and the factors that interact with these responses, such as the radiation dose and dose / fraction effects in the tumor microenvironment and vasculature. In addition, some implications of these effects in cancer treatment, mainly in combined strategies, are addressed from the perspective of their interactions with the more advanced technology currently available, such as heavy ion therapy and nanotechnology.
Collapse
Affiliation(s)
- Heloisa de Andrade Carvalho
- Departamento de Radiologia e Oncologia, Divisao de Radioterapia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Servico de Radioterapia, Centro de Oncologia, Hospital Sirio-Libanes, Sao Paulo, SP, BR
| | - Rosangela Correa Villar
- Departamento de Radiologia e Oncologia, Divisao de Radioterapia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Servico de Radioterapia, Centro Infantil Boldrini, Campinas, SP, BR
| |
Collapse
|
57
|
Proton therapy for prostate cancer: A review of the rationale, evidence, and current state. Urol Oncol 2018; 37:628-636. [PMID: 30527342 DOI: 10.1016/j.urolonc.2018.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Men diagnosed with localized prostate cancer have many curative treatment options including several different radiotherapeutic approaches. Proton radiation is one such radiation treatment modality and, due to its unique physical properties, offers the appealing potential of reduced side effects without sacrificing cancer control. In this review, we examine the intriguing dosimetric rationale and theoretical benefit of proton radiation for prostate cancer and highlight the results of preclinical modeling studies. We then discuss the current state of the clinical evidence for proton efficacy and toxicity, derived from both large claim-based datasets and prospective patient-reported data. The result is that the data are mixed, and clinical equipoise persists in this area. We place these studies into context by summarizing the economics of proton therapy and the changing practice patterns of prostate proton irradiation. Finally, we await the results of a large prospective randomized clinical trial currently accruing and also a large prospective pragmatic comparative study which will provide more rigorous evidence regarding the clinical and comparative effectiveness of proton therapy for prostate cancer.
Collapse
|
58
|
Prezado Y, Jouvion G, Patriarca A, Nauraye C, Guardiola C, Juchaux M, Lamirault C, Labiod D, Jourdain L, Sebrie C, Dendale R, Gonzalez W, Pouzoulet F. Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas. Sci Rep 2018; 8:16479. [PMID: 30405188 PMCID: PMC6220274 DOI: 10.1038/s41598-018-34796-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel strategy which has already shown a remarkable reduction in neurotoxicity as to compared with standard proton therapy. Here we report on the first evaluation of tumor control effectiveness in glioma bearing rats with highly spatially modulated proton beams. Whole brains (excluding the olfactory bulb) of Fischer 344 rats were irradiated. Four groups of animals were considered: a control group (RG2 tumor bearing rats), a second group of RG2 tumor-bearing rats and a third group of normal rats that received pMBRT (70 Gy peak dose in one fraction) with very heterogeneous dose distributions, and a control group of normal rats. The tumor-bearing and normal animals were followed-up for 6 months and one year, respectively. pMBRT leads to a significant tumor control and tumor eradication in 22% of the cases. No substantial brain damage which confirms the widening of the therapeutic window for high-grade gliomas offered by pMBRT. Additionally, the fact that large areas of the brain can be irradiated with pMBRT without significant side effects, would allow facing the infiltrative nature of gliomas.
Collapse
Affiliation(s)
- Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Gregory Jouvion
- Institut Pasteur, Neuropathologie Expérimentale, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Consuelo Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Marjorie Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Charlotte Lamirault
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Dalila Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - Laurene Jourdain
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Catherine Sebrie
- IR4M, UMR8081, Université Paris Sud, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Remi Dendale
- Institut Curie, PSL Research University, Radiation Oncology Department, Centre de Protonthérapie d'Orsay, 101, F-91898, Orsay, France
| | - Wilfredo Gonzalez
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Frederic Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
59
|
De Marzi L, Patriarca A, Nauraye C, Hierso E, Dendale R, Guardiola C, Prezado Y. Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study. Med Phys 2018; 45:5305-5316. [PMID: 30311639 DOI: 10.1002/mp.13209] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is an innovative approach that combines the advantages of minibeam radiation therapy with the more precise ballistics of protons to further reduce the side effects of radiation. One of the main challenges of this approach is the generation of very narrow proton pencil beams with an adequate dose-rate to treat patients within a reasonable treatment time (several minutes) in existing clinical facilities. The aim of this study was to demonstrate the feasibility of implementing pMBRT by combining the pencil beam scanning (PBS) technique with the use of multislit collimators. This proof of concept study of pMBRT with a clinical system is intended to guide upcoming biological experiments. METHODS Monte Carlo simulations (TOPAS v3.1.p2) were used to design a suitable multislit collimator to implement planar pMBRT for conventional pencil beam scanning settings. Dose distributions (depth-dose curves, lateral profiles, Peak-to-Valley Dose Ratio (PVDR) and dose-rates) for different proton beam energies were assessed by means of Monte Carlo simulations and experimental measurements in a water tank using commercial ionization chambers and a new p-type silicon diode, the IBA RAZOR. An analytical intensity-modulated dose calculation algorithm designed to optimize the weight of individual Bragg peaks composing the field was also developed and validated. RESULTS Proton minibeams were then obtained using a brass multislit collimator with five slits measuring 2 cm × 400 μm in width with a center-to-center distance of 4 mm. The measured and calculated dose distributions (depth-dose curves and lateral profiles) showed a good agreement. Spread-out Bragg peaks (SOBP) and homogeneous dose distributions around the target were obtained by means of intensity modulation of Bragg peaks, while maintaining spatial fractionation at shallow depths. Mean dose-rates of 0.12 and 0.09 Gy/s were obtained for one iso-energy layer and a SOBP conditions in the presence of multislit collimator. CONCLUSIONS This study demonstrates the feasibility of implementing pMBRT on a PBS system. It also confirms the reliability of RAZOR detector for pMBRT dosimetry. This newly developed experimental methodology will support the design of future preclinical research with pMBRT.
Collapse
Affiliation(s)
- Ludovic De Marzi
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Eric Hierso
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Rémi Dendale
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Consuelo Guardiola
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| |
Collapse
|
60
|
Ray S, Cekanaviciute E, Lima IP, Sørensen BS, Costes SV. Comparing Photon and Charged Particle Therapy Using DNA Damage Biomarkers. Int J Part Ther 2018; 5:15-24. [PMID: 31773017 DOI: 10.14338/ijpt-18-00018.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment modalities for cancer radiation therapy have become increasingly diversified given the growing number of facilities providing proton and carbon-ion therapy in addition to the more historically accepted photon therapy. An understanding of high-LET radiobiology is critical for optimization of charged particle radiation therapy and potential DNA damage response. In this review, we present a comprehensive summary and comparison of these types of therapy monitored primarily by using DNA damage biomarkers. We focus on their relative profiles of dose distribution and mechanisms of action from the level of nucleic acid to tumor cell death.
Collapse
Affiliation(s)
- Shayoni Ray
- USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | | | | | | | | |
Collapse
|
61
|
Paganetti H. Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 2018; 5:2-14. [PMID: 30370315 DOI: 10.14338/ijpt-18-00011.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proton therapy treatments are prescribed using a biological effectiveness relative to photon therapy of 1.1, that is, proton beams are considered to be 10% more biologically effective. Debate is ongoing as to whether this practice needs to be revised. This short review summarizes current knowledge on relative biological effectiveness variations and uncertainties in vitro and in vivo. Clinical relevance is discussed and strategies toward biologically guided treatment planning are presented.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
62
|
Morton LM, Ricks-Santi L, West CML, Rosenstein BS. Radiogenomic Predictors of Adverse Effects following Charged Particle Therapy. Int J Part Ther 2018; 5:103-113. [PMID: 30505881 PMCID: PMC6261418 DOI: 10.14338/ijpt-18-00009.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/16/2018] [Indexed: 12/31/2022] Open
Abstract
Radiogenomics is the study of genomic factors that are associated with response to radiation therapy. In recent years, progress has been made toward identifying genetic risk factors linked with late radiation-induced adverse effects. These advances have been underpinned by the establishment of an international Radiogenomics Consortium with collaborative studies that expand cohort sizes to increase statistical power and efforts to improve methodologic approaches for radiogenomic research. Published studies have predominantly reported the results of research involving patients treated with photons using external beam radiation therapy. These studies demonstrate our ability to pool international cohorts to identify common single nucleotide polymorphisms associated with risk for developing normal tissue toxicities. Progress has also been achieved toward the discovery of genetic variants associated with radiation therapy-related subsequent malignancies. With the increasing use of charged particle therapy (CPT), there is a need to establish cohorts for patients treated with these advanced technology forms of radiation therapy and to create biorepositories with linked clinical data. While some genetic variants are likely to impact toxicity and second malignancy risks for both photons and charged particles, it is plausible that others may be specific to the radiation modality due to differences in their biological effects, including the complexity of DNA damage produced. In recognition that the formation of patient cohorts treated with CPT for radiogenomic studies is a high priority, efforts are underway to establish collaborations involving institutions treating cancer patients with protons and/or carbon ions as well as consortia, including the Proton Collaborative Group, the Particle Therapy Cooperative Group, and the Pediatric Proton Consortium Registry. These important radiogenomic CPT initiatives need to be expanded internationally to build on experience gained from the Radiogenomics Consortium and epidemiologists investigating normal tissue toxicities and second cancer risk.
Collapse
Affiliation(s)
- Lindsay M. Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Catharine M. L. West
- Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, United Kingdom
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
63
|
Venkatesulu BP, Mahadevan LS, Aliru ML, Yang X, Bodd MH, Singh PK, Yusuf SW, Abe JI, Krishnan S. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl Sci 2018; 3:563-572. [PMID: 30175280 PMCID: PMC6115704 DOI: 10.1016/j.jacbts.2018.01.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/08/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022]
Abstract
In radiation therapy for cancer, the therapeutic ratio represents an optimal balance between tumor control and normal tissue complications. As improvements in the therapeutic arsenal against cancer extend longevity, the importance of late effects of radiation increases, particularly those caused by vascular endothelial injury. Radiation both initiates and accelerates atherosclerosis, leading to vascular events like stroke, coronary artery disease, and peripheral artery disease. Increased levels of proinflammatory cytokines in the blood of long-term survivors of the atomic bomb suggest that radiation evokes a systemic inflammatory state responsible for chronic vascular side effects. In this review, the authors offer an overview of potential mechanisms implicated in radiation-induced vascular injury.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- CD, cluster of differentiation
- EC, endothelial cell
- HUVEC, human umbilical vein endothelial cell
- IGF, insulin-like growth factor
- IGFBP, insulin-like growth factor binding protein
- LDL, low-density lipoprotein
- MAPK, mitogen-activated protein kinase
- NEMO, nuclear factor kappa B essential modulator
- NF-κB, nuclear factor-kappa beta
- ROS, reactive oxygen species
- SEK1, stress-activated protein kinase 1
- TNF, tumor necrosis factor
- XIAP, X-linked inhibitor of apoptosis
- angiogenesis
- apoptosis
- cytokines
- mTOR, mammalian target of rapamycin
- senescence
Collapse
Affiliation(s)
- Bhanu Prasad Venkatesulu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lakshmi Shree Mahadevan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen L Aliru
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xi Yang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monica Himaani Bodd
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pankaj K Singh
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
64
|
Calcitriol and Calcidiol Can Sensitize Melanoma Cells to Low⁻LET Proton Beam Irradiation. Int J Mol Sci 2018; 19:ijms19082236. [PMID: 30065179 PMCID: PMC6122082 DOI: 10.3390/ijms19082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Proton beam irradiation promises therapeutic utility in the management of uveal melanoma. Calcitriol (1,25(OH)2D3)—the biologically active metabolite of vitamin D3—and its precursor, calcidiol (25(OH)D3), exert pleiotropic effects on melanoma cells. The aim of the study was to evaluate the effect of both calcitriol and calcidiol on melanoma cell proliferation and their response to proton beam irradiation. Three melanoma cell lines (human SKMEL-188 and hamster BHM Ma and BHM Ab), pre-treated with 1,25(OH)2D3 or 25(OH)D3 at graded concentrations (0, 10, 100 nM), were irradiated with 0–5 Gy and then cultured in vitro. Growth curves were determined by counting the cell number every 24 h up to 120 h, which was used to calculate surviving fractions. The obtained survival curves were analysed using two standard models: linear-quadratic and multi-target single hit. Calcitriol inhibited human melanoma proliferation at 10 nM, while only calcidiol inhibited proliferation of hamster lines at 10 and 100 nM doses. Treatment with either 1,25(OH)2D3 or 25(OH)D3 radio sensitized melanoma cells to low doses of proton beam radiation. The strength of the effect increased with the concentration of vitamin D3. Our data suggest that vitamin D3 may be an adjuvant that modifies proton beam efficiency during melanoma therapy.
Collapse
|
65
|
Relative Biological Effectiveness Uncertainties and Implications for Beam Arrangements and Dose Constraints in Proton Therapy. Semin Radiat Oncol 2018; 28:256-263. [DOI: 10.1016/j.semradonc.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
66
|
Tsuboi K. Advantages and Limitations in the Use of Combination Therapies with Charged Particle Radiation Therapy. Int J Part Ther 2018; 5:122-132. [PMID: 31773024 DOI: 10.14338/ijpt-18-00019.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Studies are currently underway to help provide basic and clinical evidence for combination particle beam radiation therapy, on which there are few published reports. The purpose of this article is to summarize the current status in the use of particle beams combined with other modalities. Results Following from experiences in x-ray radiation therapy, combination therapy with proton beams (PBT) has been attempted, and several clinical studies have reported improved survival rates for patients with non-small cell lung cancer, pancreatic cancers, esophageal cancers, and glioblastomas. Recently, basic studies combining PBT with PARP inhibitors and histone deacetylase inhibitors have also reported promising results. In the area of carbon ion therapy (CIT), there are few clinical reports on combination therapy; however, the number of basic research reports exceeds that for PBT. So far, the combined use of cytotoxic drugs with CIT yields independent additive effects. In addition, it is notable that combination therapy with CIT is effective against radioresistant cancer stem-like cells. Recent evidence also suggests that local radiation therapy can induce an effective antitumor immune response. There has been an increased use of combination immune-modulating agents and cytokines with particle beams, especially CIT. The field of radiation therapy is evolving from a strong reliance on local-regional treatment to a growing reliance on systemic immunotherapy. Conclusions The combined use of anticancer agents with particle radiation therapy has a considerable potential effect. Future research in molecular targeting therapy and immunotherapy may help identify the most efficacious approach for combination therapy with protons and carbon ions.
Collapse
Affiliation(s)
- Koji Tsuboi
- Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
67
|
Proton therapy for pediatric malignancies: Fact, figures and costs. A joint consensus statement from the pediatric subcommittee of PTCOG, PROS and EPTN. Radiother Oncol 2018; 128:44-55. [PMID: 29937209 DOI: 10.1016/j.radonc.2018.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Radiotherapy plays an important role in the management of childhood cancer, with the primary aim of achieving the highest likelihood of cure with the lowest risk of radiation-induced morbidity. Proton therapy (PT) provides an undisputable advantage by reducing the radiation 'bath' dose delivered to non-target structures/volume while optimally covering the tumor with tumoricidal dose. This treatment modality comes, however, with an additional costs compared to conventional radiotherapy that could put substantial financial pressure to the health care systems with societal implications. In this review we assess the data available to the oncology community of PT delivered to children with cancer, discuss on the urgency to develop high-quality data. Additionally, we look at the advantage of combining systemic agents with protons and look at the cost-effectiveness data published so far.
Collapse
|
68
|
Teixeira ES, Uppulury K, Privett AJ, Stopera C, McLaurin PM, Morales JA. Electron Nuclear Dynamics Simulations of Proton Cancer Therapy Reactions: Water Radiolysis and Proton- and Electron-Induced DNA Damage in Computational Prototypes. Cancers (Basel) 2018; 10:E136. [PMID: 29734786 PMCID: PMC5977109 DOI: 10.3390/cancers10050136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Proton cancer therapy (PCT) utilizes high-energy proton projectiles to obliterate cancerous tumors with low damage to healthy tissues and without the side effects of X-ray therapy. The healing action of the protons results from their damage on cancerous cell DNA. Despite established clinical use, the chemical mechanisms of PCT reactions at the molecular level remain elusive. This situation prevents a rational design of PCT that can maximize its therapeutic power and minimize its side effects. The incomplete characterization of PCT reactions is partially due to the health risks associated with experimental/clinical techniques applied to human subjects. To overcome this situation, we are conducting time-dependent and non-adiabatic computer simulations of PCT reactions with the electron nuclear dynamics (END) method. Herein, we present a review of our previous and new END research on three fundamental types of PCT reactions: water radiolysis reactions, proton-induced DNA damage and electron-induced DNA damage. These studies are performed on the computational prototypes: proton + H₂O clusters, proton + DNA/RNA bases and + cytosine nucleotide, and electron + cytosine nucleotide + H₂O. These simulations provide chemical mechanisms and dynamical properties of the selected PCT reactions in comparison with available experimental and alternative computational results.
Collapse
Affiliation(s)
- Erico S Teixeira
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karthik Uppulury
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Austin J Privett
- Department of Chemistry and Biochemistry, Lipscomb University, Nashville, TN 37204, USA.
| | - Christopher Stopera
- Department of Chemistry and Industrial Hygiene, University of North Alabama, Florence, AL 35632, USA.
| | - Patrick M McLaurin
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Jorge A Morales
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
69
|
Cirrone GAP, Manti L, Margarone D, Petringa G, Giuffrida L, Minopoli A, Picciotto A, Russo G, Cammarata F, Pisciotta P, Perozziello FM, Romano F, Marchese V, Milluzzo G, Scuderi V, Cuttone G, Korn G. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness. Sci Rep 2018; 8:1141. [PMID: 29348437 PMCID: PMC5773549 DOI: 10.1038/s41598-018-19258-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 12/27/2017] [Indexed: 01/16/2023] Open
Abstract
Protontherapy is hadrontherapy's fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy's superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy's ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.
Collapse
Affiliation(s)
- G A P Cirrone
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy.
| | - L Manti
- Physics Department, University of Naples Federico II, Naples, Italy
- INFN Naples Section, Complesso Universitario di Monte S. Angelo, Via Cintia, Naples, Italy
| | - D Margarone
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| | - G Petringa
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Physics Department, University of Catania, via S. Sofia, 64, Catania, Italy
| | - L Giuffrida
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| | - A Minopoli
- Physics Department, University of Naples Federico II, Naples, Italy
| | - A Picciotto
- Fondazione Bruno Kessler, Micro-Nano Facility, Via Sommarive 18, 38123, Povo-Trento, Italy
| | - G Russo
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Institute of Molecular Bioimaging and Physiology - National Research Council - (IBFM-CNR), Cefalù, (PA), Italy
| | - F Cammarata
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Institute of Molecular Bioimaging and Physiology - National Research Council - (IBFM-CNR), Cefalù, (PA), Italy
| | - P Pisciotta
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Physics Department, University of Catania, via S. Sofia, 64, Catania, Italy
| | - F M Perozziello
- Physics Department, University of Naples Federico II, Naples, Italy
- INFN Naples Section, Complesso Universitario di Monte S. Angelo, Via Cintia, Naples, Italy
| | - F Romano
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- National Physical Laboratory, Acoustic and Ionizing Radiation Division, Teddington, TW11 0LW, Middlesex, United Kingdom
| | - V Marchese
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
| | - G Milluzzo
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Physics Department, University of Catania, via S. Sofia, 64, Catania, Italy
| | - V Scuderi
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| | - G Cuttone
- Istituto Nazionale di Fisica Nucleare- Laboratori Nazionali dei Sud, via S. Sofia, 62, Catania, Italy
| | - G Korn
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, Prague, 18221, Czech Republic
| |
Collapse
|
70
|
Ilicic K, Combs SE, Schmid TE. New insights in the relative radiobiological effectiveness of proton irradiation. Radiat Oncol 2018; 13:6. [PMID: 29338744 PMCID: PMC5771069 DOI: 10.1186/s13014-018-0954-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Proton radiotherapy is a form of charged particle therapy that is preferentially applied for the treatment of tumors positioned near to critical structures due to their physical characteristics, showing an inverted depth-dose profile. The sparing of normal tissue has additional advantages in the treatment of pediatric patients, in whom the risk of secondary cancers and late morbidity is significantly higher. Up to date, a fixed relative biological effectiveness (RBE) of 1.1 is commonly implemented in treatment planning systems with protons in order to correct the physical dose. This value of 1.1 comes from averaging the results of numerous in vitro experiments, mostly conducted in the middle of the spread-out Bragg peak, where RBE is relatively constant. However, the use of a constant RBE value disregards the experimental evidence which clearly demonstrates complex RBE dependency on dose, cell- or tissue type, linear energy transfer and biological endpoints. In recent years, several in vitro studies indicate variations in RBE of protons which translate to an uncertainty in the biological effective dose delivery to the patient. Particularly for regions surrounding the Bragg peak, the more localized pattern of energy deposition leads to more complex DNA lesions. These RBE variations of protons bring the validity of using a constant RBE into question. MAIN BODY This review analyzes how RBE depends on the dose, different biological endpoints and physical properties. Further, this review gives an overview of the new insights based on findings made during the last years investigating the variation of RBE with depth in the spread out Bragg peak and the underlying differences in radiation response on the molecular and cellular levels between proton and photon irradiation. Research groups such as the Klinische Forschergruppe Schwerionentherapie funded by the German Research Foundation (DFG, KFO 214) have included work on this topic and the present manuscript highlights parts of the preclinical work and summarizes the research activities in this context. SHORT CONCLUSION In summary, there is an urgent need for more coordinated in vitro and in vivo experiments that concentrate on a realistic dose range of in clinically relevant tissues like lung or spinal cord.
Collapse
Affiliation(s)
- K Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany.,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany
| | - S E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany.,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - T E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany. .,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
71
|
Blyth BJ, Cole AJ, MacManus MP, Martin OA. Radiation therapy-induced metastasis: radiobiology and clinical implications. Clin Exp Metastasis 2017; 35:223-236. [PMID: 29159430 DOI: 10.1007/s10585-017-9867-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
Abstract
Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia. .,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.
| | - Aidan J Cole
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
72
|
Nakajima K, Iwata H, Ogino H, Hattori Y, Hashimoto S, Nakanishi M, Toshito T, Umemoto Y, Iwatsuki S, Shibamoto Y, Mizoe JE. Acute toxicity of image-guided hypofractionated proton therapy for localized prostate cancer. Int J Clin Oncol 2017; 23:353-360. [PMID: 29098520 DOI: 10.1007/s10147-017-1209-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/26/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypofractionated proton therapy (HFPT) is expected to become an effective treatment approach for localized prostate cancer (PCa). The purpose of this study was to evaluate differences in acute toxicity among patients with localized PCa treated with either conventional fractionated proton therapy (CFPT) or HFPT. METHODS A total of 526 eligible patients treated with proton therapy between February 2013 and May 2016 in three phase II trials were analyzed. We prescribed 74 gray relative biological effectiveness equivalents [Gy (RBE)]/37 fractions for low-risk patients and 78 Gy (RBE)/39 fractions for intermediate- and high-risk patients in the CFPT group (n = 254) and 60 Gy (RBE)/20 fractions for low-risk and 63 Gy (RBE)/21 fractions for intermediate- and high-risk patients in the HFPT group (n = 272). Patients were evaluated for acute toxicity with the Common Terminology Criteria for Adverse Events, version 4.0, and urinary quality-of-life change using the International Prostate Symptom Score (IPSS). RESULTS No grade ≥3 acute toxicity was observed in either group. Among acute genitourinary toxicities, grade 2 rates were 15% (n = 38) in CFPT and 5.9% (n = 16) in HFPT (P ≤ 0.001). The median baseline IPSSs of the CFPT and HFPT groups were 7 (0-29) and 6 (0-31), respectively (P = 0.70). One-month post-treatment scores were 9 (0-32) and 11 (0-32), respectively (P = 0.036), and 6-month post-treatment scores were 7 (0-30) and 7 (0-33), respectively (P = 0.88). There were no significant differences in acute gastrointestinal toxicity between the two groups. CONCLUSION Our results demonstrated the safety of HFPT for localized PCa patients in terms of acute toxicity.
Collapse
Affiliation(s)
- Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan.
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shingo Hashimoto
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mikiko Nakanishi
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Toshiyuki Toshito
- Proton Therapy Physics, Nagoya Proton Therapy Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
| | - Yukihiro Umemoto
- Department of Nephro-Urology, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
| | - Shoichiro Iwatsuki
- Department of Nephro-Urology, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Jun-Etsu Mizoe
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya, 462-8508, Japan
| |
Collapse
|
73
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Andreassen CN, Overgaard J, Alsner J, Sørensen BS. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation. Acta Oncol 2017; 56:1406-1412. [PMID: 28885067 DOI: 10.1080/0284186x.2017.1351623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Proton beam therapy delivers a more conformal dose distribution than conventional radiotherapy, thus improving normal tissue sparring. Increasing linear energy transfer (LET) along the proton track increases the relative biological effectiveness (RBE) near the distal edge of the Spread-out Bragg peak (SOBP). The severity of normal tissue side effects following photon beam radiotherapy vary considerably between patients. AIM The dual study aim was to identify gene expression patterns specific to radiation type and proton beam position, and to assess whether individual radiation sensitivity influences gene expression levels in fibroblast cultures irradiated in vitro. METHODS The study includes 30 primary fibroblast cell cultures from patients previously classified as either radiosensitive or radioresistant. Cells were irradiated at three different positions in the proton beam profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis and angiogenesis. RESULTS Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated by different radiation qualities. Radiosensitive patient samples had the strongest regulation of gene expression; irrespective of radiation type. CONCLUSIONS Our findings indicate that the increased LET at the SOBP distal edge position did not generally lead to increased transcriptive response in primary fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy.
Collapse
Affiliation(s)
- Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
74
|
Prezado Y, Jouvion G, Hardy D, Patriarca A, Nauraye C, Bergs J, González W, Guardiola C, Juchaux M, Labiod D, Dendale R, Jourdain L, Sebrie C, Pouzoulet F. Proton minibeam radiation therapy spares normal rat brain: Long-Term Clinical, Radiological and Histopathological Analysis. Sci Rep 2017; 7:14403. [PMID: 29089533 PMCID: PMC5663851 DOI: 10.1038/s41598-017-14786-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 11/16/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel strategy for minimizing normal tissue damage resulting from radiotherapy treatments. This strategy partners the inherent advantages of protons for radiotherapy with the gain in normal tissue preservation observed upon irradiation with narrow, spatially fractionated beams. In this study, whole brains (excluding the olfactory bulb) of Fischer 344 rats (n = 16) were irradiated at the Orsay Proton Therapy Center. Half of the animals received standard proton irradiation, while the other half were irradiated with pMBRT at the same average dose (25 Gy in one fraction). The animals were followed-up for 6 months. A magnetic resonance imaging (MRI) study using a 7-T small-animal MRI scanner was performed along with a histological analysis. Rats treated with conventional proton irradiation exhibited severe moist desquamation, permanent epilation and substantial brain damage. In contrast, rats in the pMBRT group exhibited no skin damage, reversible epilation and significantly reduced brain damage; some brain damage was observed in only one out of the eight irradiated rats. These results demonstrate that pMBRT leads to an increase in normal tissue resistance. This net gain in normal tissue sparing can lead to the efficient treatment of very radio-resistant tumours, which are currently mostly treated palliatively.
Collapse
Affiliation(s)
- Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Gregory Jouvion
- Institut Pasteur, Histopathologie Humaine et Modèles Animaux, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - David Hardy
- Institut Pasteur, Histopathologie Humaine et Modèles Animaux, Institut Pasteur, 28 Rue du Docteur Roux, 75015, Paris, France
| | - Annalisa Patriarca
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay, 91898, France
| | - Catherine Nauraye
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay, 91898, France
| | - Judith Bergs
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Wilfredo González
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Consuelo Guardiola
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Marjorie Juchaux
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS); Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France
| | - Dalila Labiod
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| | - Remi Dendale
- Institut Curie - Centre de Protonthérapie d'Orsay, Campus Universitaire, Bât. 101, Orsay, 91898, France
| | - Laurène Jourdain
- Imagerie par Résonance Magnétique Médicale et Multi-modalités (IR4M-UMR8081), Université Paris Sud, 91405, Orsay, France
| | - Catherine Sebrie
- Imagerie par Résonance Magnétique Médicale et Multi-modalités (IR4M-UMR8081), Université Paris Sud, 91405, Orsay, France
| | - Frederic Pouzoulet
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
- Paris Sud University, Paris -Saclay University, 91405, Orsay, France
| |
Collapse
|
75
|
Jasińska-Konior K, Pochylczuk K, Czajka E, Michalik M, Romanowska-Dixon B, Swakoń J, Urbańska K, Elas M. Proton beam irradiation inhibits the migration of melanoma cells. PLoS One 2017; 12:e0186002. [PMID: 29016654 PMCID: PMC5634624 DOI: 10.1371/journal.pone.0186002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Materials and methods Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Results Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. Conclusions We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.
Collapse
Affiliation(s)
| | - Katarzyna Pochylczuk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Elżbieta Czajka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Cracow, Poland
| | - Jan Swakoń
- Institute of Nuclear Physics, PAS, Cracow, Poland
| | - Krystyna Urbańska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
- * E-mail:
| |
Collapse
|
76
|
Stokkevåg CH, Schneider U, Muren LP, Newhauser W. Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Phys Med 2017; 42:259-262. [DOI: 10.1016/j.ejmp.2017.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/01/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
|
77
|
Bettega D, Calzolari P, Ciocca M, Facoetti A, Lafiandra M, Marchesini R, Molinelli S, Pignoli E, Vischioni B. Combining proton or photon irradiation with epothilone B. An
in vitro
study of cytotoxicity in human cancer cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa818f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
78
|
Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93:457-469. [PMID: 28134023 PMCID: PMC5411327 DOI: 10.1080/09553002.2017.1287454] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. CONCLUSIONS In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.
Collapse
Affiliation(s)
- Isabelle R Miousse
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kristy R Kutanzi
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
79
|
Exploring water radiolysis in proton cancer therapy: Time-dependent, non-adiabatic simulations of H+ + (H2O)1-6. PLoS One 2017; 12:e0174456. [PMID: 28376128 PMCID: PMC5380356 DOI: 10.1371/journal.pone.0174456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/09/2017] [Indexed: 11/23/2022] Open
Abstract
To elucidate microscopic details of proton cancer therapy (PCT), we apply the simplest-level electron nuclear dynamics (SLEND) method to H+ + (H2O)1-6 at ELab = 100 keV. These systems are computationally tractable prototypes to simulate water radiolysis reactions—i.e. the PCT processes that generate the DNA-damaging species against cancerous cells. To capture incipient bulk-water effects, ten (H2O)1-6 isomers are considered, ranging from quasi-planar/multiplanar (H2O)1-6 to “smallest-drop” prism and cage (H2O)6 structures. SLEND is a time-dependent, variational, non-adiabatic and direct method that adopts a nuclear classical-mechanics description and an electronic single-determinantal wavefunction in the Thouless representation. Short-time SLEND/6-31G* (n = 1–6) and /6-31G** (n = 1–5) simulations render cluster-to-projectile 1-electron-transfer (1-ET) total integral cross sections (ICSs) and 1-ET probabilities. In absolute quantitative terms, SLEND/6-31G* 1-ET ICS compares satisfactorily with alternative experimental and theoretical results only available for n = 1 and exhibits almost the same accuracy of the best alternative theoretical result. SLEND/6-31G** overestimates 1-ET ICS for n = 1, but a comparable overestimation is also observed with another theoretical method. An investigation on H+ + H indicates that electron direct ionization (DI) becomes significant with the large virtual-space quasi-continuum in large basis sets; thus, SLEND/6-31G** 1-ET ICS is overestimated by DI contributions. The solution to this problem is discussed. In relative quantitative terms, both SLEND/6-31* and /6-31G** 1-ET ICSs precisely fit into physically justified scaling formulae as a function of the cluster size; this indicates SLEND’s suitability for predicting properties of water clusters with varying size. Long-time SLEND/6-31G* (n = 1–4) simulations predict the formation of the DNA-damaging radicals H, OH, O and H3O. While “smallest-drop” isomers are included, no early manifestations of bulk water PCT properties are observed and simulations with larger water clusters will be needed to capture those effects. This study is the largest SLEND investigation on water radiolysis to date.
Collapse
|
80
|
Guardiola C, Peucelle C, Prezado Y. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy. Med Phys 2017; 44:1470-1478. [DOI: 10.1002/mp.12131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/11/2022] Open
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| | - Cécile Peucelle
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| | - Yolanda Prezado
- IMNC-UMR 8165; CNRS; Paris 7 and Paris 11 Universities; 15 rue Georges Clemenceau Orsay Cedex 91405 France
| |
Collapse
|
81
|
Fernandez-Gonzalo R, Baatout S, Moreels M. Impact of Particle Irradiation on the Immune System: From the Clinic to Mars. Front Immunol 2017; 8:177. [PMID: 28275377 PMCID: PMC5319970 DOI: 10.3389/fimmu.2017.00177] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/07/2017] [Indexed: 11/29/2022] Open
Abstract
Despite the generalized use of photon-based radiation (i.e., gamma rays and X-rays) to treat different cancer types, particle radiotherapy (i.e., protons and carbon ions) is becoming a popular, and more effective tool to treat specific tumors due to the improved physical properties and biological effectiveness. Current scientific evidence indicates that conventional radiation therapy affects the tumor immunological profile in a particular manner, which in turn, might induce beneficial effects both at local and systemic (i.e., abscopal effects) levels. The interaction between radiotherapy and the immune system is being explored to combine immune and radiation (including particles) treatments, which in many cases have a greater clinical effect than any of the therapies alone. Contrary to localized, clinical irradiation, astronauts are exposed to whole body, chronic cosmic radiation, where protons and heavy ions are an important component. The effects of this extreme environment during long periods of time, e.g., a potential mission to Mars, will have an impact on the immune system that could jeopardize the health of the astronauts, hence the success of the mission. To this background, the purpose of this mini review is to briefly present the current knowledge in local and systemic immune alterations triggered by particle irradiation and to propose new lines of future research. Immune effects induced by particle radiation relevant to clinical applications will be covered, together with examples of combined radiotherapy and immunotherapy. Then, the focus will move to outer space, where the immune system alterations induced by cosmic radiation during spaceflight will be discussed.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalo
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Sarah Baatout
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| | - Marjan Moreels
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, SCK-CEN , Mol , Belgium
| |
Collapse
|
82
|
Abstract
OBJECTIVE This article considered why the proton therapy (PT) relative biological effect (RBE) should be a variable rather than a constant. METHODS The reasons for a variable proton RBE are enumerated, with qualitative and quantitative arguments. The heterogeneous data sets collated by Paganetti et al (2002) and the more homogeneous data of Britten et al (2013) are further analyzed using linear regression fitting and RBE-inclusive adaptations of the linear-quadratic (LQ) radiation model. RESULTS The in vitro data show RBE increasing as dose per fraction is lowered. In the Paganetti et al (2002) data sets, the differences between observed and expected effects are smaller when the LQ model is used, but with such data heterogeneity, firm statistical conclusions cannot be obtained. The more homogeneous data set shows an unequivocal variation in RBE with dose per faction. The in vivo data are inappropriate for assessments of late normal tissue effects in radiotherapy. Also, if there is the same degree of uncertainty in an RBE of 1.1 or in an RBE of 2-3 for C ions, the fractional and biological effective doses can vary considerably and be greater in the proton case. So, errors in RBE assignment are important for protons, just as with C ions. CONCLUSION Further experimental programmes are proposed, including late normal tissue end points. Better RBE allocations might further improve PT outcomes. ADVANCES IN KNOWLEDGE This study provides a rigorous critique of the 1.1 RBE used for protons, from theoretical and practical standpoints. Data analysis shows that the LQ model is more appropriate than simple linear regression. Comprehensive research programmes are suggested.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, University of Oxford, Oxford, UK
| |
Collapse
|
83
|
Souici M, Khalil TT, Muller D, Raffy Q, Barillon R, Belafrites A, Champion C, Fromm M. Single- and Double-Strand Breaks of Dry DNA Exposed to Protons at Bragg-Peak Energies. J Phys Chem B 2017; 121:497-507. [DOI: 10.1021/acs.jpcb.6b11060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mounir Souici
- Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 Route de Gray, 25030 Besançon Cedex, France
- Laboratoire
de Physique des Rayonnements et Applications, Université de Jijel, BP 98, Ouled Aissa, Jijel 18000, Algérie
| | - Talat T. Khalil
- Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Dominique Muller
- Laboratoire
ICube, CNRS-Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg, France
| | - Quentin Raffy
- Institut Pluridisciplinaire Hubert Curien, UMR CNRS 7178, 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2, France
| | - Rémi Barillon
- Institut Pluridisciplinaire Hubert Curien, UMR CNRS 7178, 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2, France
| | - Abdelfettah Belafrites
- Laboratoire
de Physique des Rayonnements et Applications, Université de Jijel, BP 98, Ouled Aissa, Jijel 18000, Algérie
| | - Christophe Champion
- Université de Bordeaux, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP 120, 33175 Gradignan, France
| | - Michel Fromm
- Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 Route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
84
|
Ford E, Emery R, Huff D, Narayanan M, Schwartz J, Cao N, Meyer J, Rengan R, Zeng J, Sandison G, Laramore G, Mayr N. An image-guided precision proton radiation platform for preclinicalin vivoresearch. Phys Med Biol 2016; 62:43-58. [DOI: 10.1088/1361-6560/62/1/43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
85
|
Templin T, Sharma P, Guida P, Grabham P. Short-Term Effects of Low-LET Radiation on the Endothelial Barrier: Uncoupling of PECAM-1 and the Production of Endothelial Microparticles. Radiat Res 2016; 186:602-613. [PMID: 27905868 DOI: 10.1667/rr14510.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A significant target for radiation-induced effects is the microvascular system, which is critical to healthy tissue function and its pathology is linked to disrupted endothelial barrier function. Low-linear energy transfer (LET) ionizing radiation is a source of noncancer pathologies in humans and little is known about the early events that could initiate subsequent diseases. However, it is well known that gamma radiation causes a very early disruption of the endothelial barrier at doses below those required for cytotoxic effects. After irradiation of human umbilical vein endothelial cells (HUVECs) to doses as low as 2 Gy, transendothelial electrical resistance (TEER) is transiently reduced at 3 h, and the platelet-derived endothothelial cell adhesion molecule (PECAM-1 or CD31) is uncoupled from the cells along with the release of endothelial microparticles (EMPs). In this study, we measured TEER reduction as an indicator of barrier function loss, and specifically examined the shedding of EMPs from human endothelial barrier models after a variety of low-LET irradiations, including photons and charged particles. Our findings showed two TEER responses, dependent on radiation type and environmental conditions. The first response was diminishing oscillations of TEER, which occurred during the first 10 h postirradiation. This response occurred after a 5 Gy proton or helium-ion (1 GeV/n) dose in addition to a 5 Gy gamma or X radiation dose. This occurred only in the presence of multiple growth factors and did not show a dose response, nor was it associated with EMP release. The second response was a single acute drop in TEER at 3 h after photon irradiation. Dose response was observed and was associated with the shedding of EMPs in 2D barrier cultures and in 3D vessel models. In this case, helium-ion and proton irradiations did not induce a drop in TEER or shedding of EMPs. The photon radiation effects was observed both in serum-free media and in the presence of multiple growth factors, indicating that it occurs under a range of environmental conditions. These results show an acute response of the human endothelial barrier that is relevant to photon irradiation. Significantly, it involves the release of EMPs, which have recently attracted attention due to their emerging clinical importance.
Collapse
Affiliation(s)
- Thomas Templin
- a Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Preety Sharma
- a Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Peter Guida
- b Brookhaven National Laboratory, Biosciences Department, Upton, New York
| | - Peter Grabham
- a Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
86
|
Grassberger C, Paganetti H. Methodologies in the modeling of combined chemo-radiation treatments. Phys Med Biol 2016; 61:R344-R367. [DOI: 10.1088/0031-9155/61/21/r344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
87
|
Lee KA, O'Sullivan C, Daly P, Pears J, Owens C, Timmermann B, Ares C, Combs SE, Indelicato D, Capra M. Proton therapy in paediatric oncology: an Irish perspective. Ir J Med Sci 2016; 186:577-582. [PMID: 27744643 DOI: 10.1007/s11845-016-1520-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Proton therapy (PT) is a radiotherapy treatment modality that uses protons, rather than conventional photons. PT is often used in paediatric oncology due to its reported capability to reduce acute and late adverse treatment effects. As PT is unavailable in Ireland, patients are referred abroad for treatment. AIMS To: (1) produce a descriptive study of Irish children referred abroad for PT, and (2) discuss the case for PT in general. METHODS A retrospective review of all children referred for PT before October 2015 was performed. Information was gathered regarding demographics, diagnosis, referral timeline, adverse effects attributable to PT, current status and cost. A review of the relevant literature was performed. RESULTS Seventeen children treated in Ireland have been referred abroad for PT. The largest number was in the 0-4 year old group. At initial diagnosis the median age was 4.8 years. The average cost per child was €37,312. Two patients suffered disease relapse. Four have encountered PT-related adverse effects. CONCLUSION Despite the fact that >100,000 patients worldwide have been treated with PT, the level of published evidence to support superiority over conventional treatment remains low. It is debated that randomised control trials in this area would be inconsistent with the principle of clinical equipoise. In contrast, there is a call for level 1 evidence to justify drastic changes in patient care, particularly in light of recent reports of unexpected toxicities. In time, careful evaluation, follow-up and clinical trials will likely support the preferential use of PT in children.
Collapse
Affiliation(s)
- K A Lee
- St. Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland. .,Our Lady's Children's Hospital Crumlin, Paediatic Oncology, Dublin, Ireland.
| | - C O'Sullivan
- St. Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland.,Our Lady's Children's Hospital Crumlin, Paediatic Oncology, Dublin, Ireland
| | - P Daly
- St. Luke's Radiation Oncology Network, Radiation Oncology, Dublin, Ireland.,Our Lady's Children's Hospital Crumlin, Paediatic Oncology, Dublin, Ireland
| | - J Pears
- Our Lady's Children's Hospital Crumlin, Paediatic Oncology, Dublin, Ireland
| | - C Owens
- Our Lady's Children's Hospital Crumlin, Paediatic Oncology, Dublin, Ireland
| | - B Timmermann
- Department of Radiation Sciences (DRS), Institute of Innovative Radiotherapy (iRT), HelmholtzZentrum Munchen (HMGU) Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Particle Therapy Department, West German Proton Therapy Centre Essen, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - C Ares
- Paul Scherrer Institute, Center for Proton Therapy, 5232, Villigen Psi, Switzerland.,Hopitaux Universitaires de Geneve, Service de Radio-oncologie, Geneve, GE, Switzerland
| | - S E Combs
- Universitätsklinikum Heidelberg, Klinik für Radioonkologie und Strahlentherapie Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - D Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, 32610-0385, USA
| | - M Capra
- Our Lady's Children's Hospital Crumlin, Paediatic Oncology, Dublin, Ireland
| |
Collapse
|
88
|
Prior S, Miousse IR, Nzabarushimana E, Pathak R, Skinner C, Kutanzi KR, Allen AR, Raber J, Tackett AJ, Hauer-Jensen M, Nelson GA, Koturbash I. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. ENVIRONMENTAL RESEARCH 2016; 150:470-481. [PMID: 27419368 PMCID: PMC5003736 DOI: 10.1016/j.envres.2016.06.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/15/2016] [Accepted: 06/27/2016] [Indexed: 05/26/2023]
Abstract
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.
Collapse
Affiliation(s)
- Sara Prior
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Etienne Nzabarushimana
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Charles Skinner
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alan J Tackett
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA 92350, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
89
|
Satyamitra MM, DiCarlo AL, Taliaferro L. Understanding the Pathophysiology and Challenges of Development of Medical Countermeasures for Radiation-Induced Vascular/Endothelial Cell Injuries: Report of a NIAID Workshop, August 20, 2015. Radiat Res 2016; 186:99-111. [PMID: 27387859 DOI: 10.1667/rr14436.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
After the events of September 11, 2001, a decade of research on the development of medical countermeasures (MCMs) to treat victims of a radiological incident has yielded two FDA-approved agents to mitigate acute radiation syndrome. These licensed agents specifically target the mitigation of radiation-induced neutropenia and infection potential, while the ramifications of the exposure event in a public health emergency incident could include the entire body, causing additional acute and/or delayed organ/tissue injuries. Anecdotal data as well as recent findings from both radiation accident survivors and animal experiments implicate radiation-induced injury or dysfunction of the vascular endothelium leading to tissue and organ injuries. There are significant gaps in our understanding of the disease processes and progression, as well as the optimum approaches to develop medical countermeasures to mitigate radiation vascular injury. To address this issue, the Radiation and Nuclear Countermeasures Program of the National Institute of Allergy and Infectious Diseases (NIAID) organized a one-day workshop to examine the current state of the science in radiation-induced vascular injuries and organ dysfunction, the natural history of the pathophysiology and the product development maturity of potential medical countermeasures to treat these injuries. Meeting presentations were followed by a NIAID-led open discussion among academic investigators, industry researchers and government agency representatives. This article provides a summary of these presentations and subsequent discussion from the workshop.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Andrea L DiCarlo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Lanyn Taliaferro
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
90
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
91
|
Czapla-Masztafiak J, Szlachetko J, Milne CJ, Lipiec E, Sá J, Penfold TJ, Huthwelker T, Borca C, Abela R, Kwiatek WM. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy. Biophys J 2016; 110:1304-11. [PMID: 27028640 PMCID: PMC4816689 DOI: 10.1016/j.bpj.2016.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 12/01/2022] Open
Abstract
The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA.
Collapse
Affiliation(s)
- Joanna Czapla-Masztafiak
- Paul Scherrer Institut, Villigen, Switzerland; Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland.
| | - Jakub Szlachetko
- Paul Scherrer Institut, Villigen, Switzerland; Institute of Physics, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Jacinto Sá
- Ångström Laboratory, Department of Chemistry, Uppsala University, Uppsala, Sweden; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Thomas J Penfold
- Department of Chemistry, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
92
|
Wage J, Ma L, Peluso M, Lamont C, Evens AM, Hahnfeldt P, Hlatky L, Beheshti A. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue. JOURNAL OF RADIATION RESEARCH 2015; 56:792-803. [PMID: 26253138 PMCID: PMC4577010 DOI: 10.1093/jrr/rrv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/22/2015] [Indexed: 05/08/2023]
Abstract
Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age.
Collapse
Affiliation(s)
- Justin Wage
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Lili Ma
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael Peluso
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Clare Lamont
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Andrew M Evens
- Molecular Oncology Research Institute, Tufts Medical Center, Tufts Cancer Center, Tufts University School of Medicine, Boston, MA, USA
| | - Philip Hahnfeldt
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Lynn Hlatky
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Afshin Beheshti
- Center of Cancer Systems Biology, Tufts University School of Medicine, Boston, MA, USA Molecular Oncology Research Institute, Tufts Medical Center, Tufts Cancer Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
93
|
Girdhani S, Sachs R, Hlatky L. Biological effects of proton radiation: an update. RADIATION PROTECTION DOSIMETRY 2015; 166:334-338. [PMID: 25897135 DOI: 10.1093/rpd/ncv178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes.
Collapse
Affiliation(s)
- S Girdhani
- Center of Cancer Systems Biology, GRI, Tufts University School of Medicine, Boston, MA, USA
| | - R Sachs
- Center of Cancer Systems Biology, GRI, Tufts University School of Medicine, Boston, MA, USA Department of Mathematics, University of California, Berkeley, CA, USA
| | - L Hlatky
- Center of Cancer Systems Biology, GRI, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
94
|
Fuchs H, Alber M, Schreiner T, Georg D. Implementation of spot scanning dose optimization and dose calculation for helium ions in Hyperion. Med Phys 2015; 42:5157-66. [DOI: 10.1118/1.4927789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
95
|
Rabin BM, Heroux NA, Shukitt-Hale B, Carrihill-Knoll KL, Beck Z, Baxter C. Lack of reliability in the disruption of cognitive performance following exposure to protons. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:285-95. [PMID: 25935209 DOI: 10.1007/s00411-015-0597-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/23/2015] [Indexed: 05/27/2023]
Abstract
A series of three replications were run to determine the reliability with which exposure to protons produces a disruption of cognitive performance, using a novel object recognition task and operant responding on an ascending fixed-ratio task. For the first two replications, rats were exposed to head-only exposures to 1000 MeV/n protons at the NASA Space Radiation Laboratory. For the third replication, subjects were given head-only or whole-body exposures to both 1000 and 150 MeV/n protons. The results were characterized by a lack of consistency in the effects of exposure to protons on the performance of these cognitive tasks, both within and between replications. The factors that might influence the lack of consistency and the implications for exploratory class missions are discussed.
Collapse
|
96
|
Vyšín L, Pachnerová Brabcová K, Štěpán V, Moretto-Capelle P, Bugler B, Legube G, Cafarelli P, Casta R, Champeaux JP, Sence M, Vlk M, Wagner R, Štursa J, Zach V, Incerti S, Juha L, Davídková M. Proton-induced direct and indirect damage of plasmid DNA. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:343-352. [PMID: 26007308 DOI: 10.1007/s00411-015-0605-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Clustered DNA damage induced by 10, 20 and 30 MeV protons in pBR322 plasmid DNA was investigated. Besides determination of strand breaks, additional lesions were detected using base excision repair enzymes. The plasmid was irradiated in dry form, where indirect radiation effects were almost fully suppressed, and in water solution containing only minimal residual radical scavenger. Simultaneous irradiation of the plasmid DNA in the dry form and in the solution demonstrated the contribution of the indirect effect as prevalent. The damage composition slightly differed when comparing the results for liquid and dry samples. The obtained data were also subjected to analysis concerning different methodological approaches, particularly the influence of irradiation geometry, models used for calculation of strand break yields and interpretation of the strand breaks detected with the enzymes. It was shown that these parameters strongly affect the results.
Collapse
Affiliation(s)
- Luděk Vyšín
- Institute of Physics CAS, Na Slovance 1999/2, 182 21, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Paganetti H. Relating proton treatments to photon treatments via the relative biological effectiveness-should we revise current clinical practice? Int J Radiat Oncol Biol Phys 2015; 91:892-4. [PMID: 25832682 DOI: 10.1016/j.ijrobp.2014.11.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
98
|
Response of human lymphocytes to proton radiation of 60 MeV compared to 250 kV X-rays by the cytokinesis-block micronucleus assay. Radiother Oncol 2015; 115:128-34. [PMID: 25818831 DOI: 10.1016/j.radonc.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
Particle radiotherapy such as protons provides a new promising treatment modality to cancer. However, studies on its efficacy and risks are relatively sparse. Using the cytokinesis-blocked micronucleus assay, we characterized response of human peripheral blood lymphocytes, obtained from health donors irradiated in vitro in the dose range: 0-4. 0 Gy, to therapeutic proton radiation of 60 MeV from AIC-144 isochronous cyclotron, by studying nuclear division index and DNA damage and compared them with X-rays. Peripheral blood lymphocytes show decreased ability to proliferate with increasing radiation doses for both radiation types, however, in contrast to X-rays, irradiation with protons resulted in a higher proliferation index at lower doses of 0.75 and 1.0 Gy. Protons are more effective in producing MN at doses above 1.75 Gy compared to X-rays. Dose-response curves for micronucleus incidence can be best described by a cubic model for protons, while for X-rays the response was linear. The differences in the energy spectrum and intracellular distribution of energy between radiation types are also apparent at the intracellular distribution of cytogenetic damage as seen by the distribution of various numbers of micronuclei in binucleated cells. Our studies, although preliminary, further contribute to the understanding of the mechanistic differences in the response of HPBL in terms of cellular proliferation and cytogenetic damage induced by protons and X-rays as well as intra-cellular distribution of energy and thus radiobiological effectiveness.
Collapse
|
99
|
Laiakis EC, Trani D, Moon BH, Strawn SJ, Fornace AJ. Metabolomic profiling of urine samples from mice exposed to protons reveals radiation quality and dose specific differences. Radiat Res 2015; 183:382-90. [PMID: 25768838 DOI: 10.1667/rr3967.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As space travel is expanding to include private tourism and travel beyond low-Earth orbit, so is the risk of exposure to space radiation. Galactic cosmic rays and solar particle events have the potential to expose space travelers to significant doses of radiation that can lead to increased cancer risk and other adverse health consequences. Metabolomics has the potential to assess an individual's risk by exploring the metabolic perturbations in a biofluid or tissue. In this study, C57BL/6 mice were exposed to 0.5 and 2 Gy of 1 GeV/nucleon of protons and the levels of metabolites were evaluated in urine at 4 h after radiation exposure through liquid chromatography coupled to time-of-flight mass spectrometry. Significant differences were identified in metabolites that map to the tricarboxylic acid (TCA) cycle and fatty acid metabolism, suggesting that energy metabolism is severely impacted after exposure to protons. Additionally, various pathways of amino acid metabolism (tryptophan, tyrosine, arginine and proline and phenylalanine) were affected with potential implications for DNA damage repair and cognitive impairment. Finally, presence of products of purine and pyrimidine metabolism points to direct DNA damage or increased apoptosis. Comparison of these metabolomic data to previously published data from our laboratory with gamma radiation strongly suggests a more pronounced effect on metabolism with protons. This is the first metabolomics study with space radiation in an easily accessible biofluid such as urine that further investigates and exemplifies the biological differences at early time points after exposure to different radiation qualities.
Collapse
|
100
|
Abstract
In addition to the physical advantages (Bragg peak), the use of charged particles in cancer therapy can be associated with distinct biological effects compared to X-rays. While heavy ions (densely ionizing radiation) are known to have an energy- and charge-dependent increased Relative Biological Effectiveness (RBE), protons should not be very different from sparsely ionizing photons. A slightly increased biological effectiveness is taken into account in proton treatment planning by assuming a fixed RBE of 1.1 for the whole radiation field. However, data emerging from recent studies suggest that, for several end points of clinical relevance, the biological response is differentially modulated by protons compared to photons. In parallel, research in the field of medical physics highlighted how variations in RBE that are currently neglected might actually result in deposition of significant doses in healthy organs. This seems to be relevant in particular for normal tissues in the entrance region and for organs at risk close behind the tumor. All these aspects will be considered and discussed in this review, highlighting how a re-discussion of the role of a variable RBE in proton therapy might be well-timed.
Collapse
|