51
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
52
|
Alper SL, Sharma AK. The SLC26 gene family of anion transporters and channels. Mol Aspects Med 2013; 34:494-515. [PMID: 23506885 DOI: 10.1016/j.mam.2012.07.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/21/2012] [Indexed: 02/08/2023]
Abstract
The phylogenetically ancient SLC26 gene family encodes multifunctional anion exchangers and anion channels transporting a broad range of substrates, including Cl(-), HCO3(-), sulfate, oxalate, I(-), and formate. SLC26 polypeptides are characterized by N-terminal cytoplasmic domains, 10-14 hydrophobic transmembrane spans, and C-terminal cytoplasmic STAS domains, and appear to be homo-oligomeric. SLC26-related SulP proteins of marine bacteria likely transport HCO3(-) as part of oceanic carbon fixation. SulP genes present in antibiotic operons may provide sulfate for antibiotic biosynthetic pathways. SLC26-related Sultr proteins transport sulfate in unicellular eukaryotes and in plants. Mutations in three human SLC26 genes are associated with congenital or early onset Mendelian diseases: chondrodysplasias for SLC26A2, chloride diarrhea for SLC26A3, and deafness with enlargement of the vestibular aqueduct for SLC26A4. Additional disease phenotypes evident only in mouse knockout models include oxalate urolithiasis for Slc26a6 and Slc26a1, non-syndromic deafness for Slc26a5, gastric hypochlorhydria for Slc26a7 and Slc26a9, distal renal tubular acidosis for Slc26a7, and male infertility for Slc26a8. STAS domains are required for cell surface expression of SLC26 proteins, and contribute to regulation of the cystic fibrosis transmembrane regulator in complex, cell- and tissue-specific ways. The protein interactomes of SLC26 polypeptides are under active investigation.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
53
|
Romero MF, Chen AP, Parker MD, Boron WF. The SLC4 family of bicarbonate (HCO₃⁻) transporters. Mol Aspects Med 2013; 34:159-82. [PMID: 23506864 DOI: 10.1016/j.mam.2012.10.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023]
Abstract
The SLC4 family consists of 10 genes (SLC4A1-5; SLC4A7-11). All encode integral membrane proteins with very similar hydropathy plots-consistent with 10-14 transmembrane segments. Nine SLC4 members encode proteins that transport HCO3(-) (or a related species, such as CO3(2-)) across the plasma membrane. Functionally, eight of these proteins fall into two major groups: three Cl-HCO3 exchangers (AE1-3) and five Na(+)-coupled HCO3(-) transporters (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE). Two of the Na(+)-coupled transporters (NBCe1, NBCe2) are electrogenic; the other three Na(+)-coupled HCO3(-) transporters and all three AEs are electroneutral. In addition, two other SLC4 members (AE4, SLC4A9 and BTR1, SLC4A11) do not yet have a firmly established function. Most, though not all, SLC4 members are functionally inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). SLC4 proteins play important roles many modes of acid-base homeostasis: the carriage of CO2 by erythrocytes, the transport of H(+) or HCO3(-) by several epithelia, as well as the regulation of cell volume and intracellular pH.
Collapse
Affiliation(s)
- Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
54
|
Hu MY, Lee JR, Lin LY, Shih TH, Stumpp M, Lee MF, Hwang PP, Tseng YC. Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Front Zool 2013; 10:51. [PMID: 23988184 PMCID: PMC3844404 DOI: 10.1186/1742-9994-10-51] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/26/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Regulation of pH homeostasis is a central feature of all animals to cope with acid-base disturbances caused by respiratory CO2. Although a large body of knowledge is available for vertebrate and mammalian pH regulatory systems, the mechanisms of pH regulation in marine invertebrates remain largely unexplored. RESULTS We used squid (Sepioteuthis lessoniana), which are known as powerful acid-base regulators to investigate the pH regulatory machinery with a special focus on proton secretion pathways during environmental hypercapnia. We cloned a Rhesus protein (slRhP), V-type H+-ATPase (slVHA) and the Na+/H+ exchanger 3 (slNHE3) from S. lessoniana, which are hypothesized to represent key players in proton secretion pathways among different animal taxa. Specifically designed antibodies for S. lessoniana demonstrated the sub-cellular localization of NKA, VHA (basolateral) and NHE3 (apical) in epidermal ionocytes of early life stages. Gene expression analyses demonstrated that slNHE3, slVHA and slRhP are up regulated in response to environmental hypercapnia (pH 7.31; 0.46 kPa pCO2) in body and yolk tissues compared to control conditions (pH 8.1; 0.045 kPa pCO2). This observation is supported by H+ selective electrode measurements, which detected increased proton gradients in CO2 treated embryos. This compensatory proton secretion is EIPA sensitive and thus confirms the central role of NHE based proton secretion in cephalopods. CONCLUSION The present work shows that in convergence to teleosts and mammalian pH regulatory systems, cephalopod early life stages have evolved a unique acid-base regulatory machinery located in epidermal ionocytes. Using cephalopod molluscs as an invertebrate model this work provides important insights regarding the unifying evolutionary principles of pH regulation in different animal taxa that enables them to cope with CO2 induced acid-base disturbances.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Tin-Han Shih
- Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Meike Stumpp
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
| | - Mong-Fong Lee
- Department of Aquaculture, National Penghu University of Science and Technology, Penghu, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, Taiwan
| | - Yung-Che Tseng
- Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| |
Collapse
|
55
|
Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Büsst CJ, Jayat M, Cornière N, Hassan H, Aronson PS, Hennings JC, Hübner CA, Nelson RD, Chambrey R, Eladari D. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 2013; 24:1104-13. [PMID: 23766534 DOI: 10.1681/asn.2012080787] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Inherited and acquired disorders that enhance the activity of transporters mediating renal tubular Na(+) reabsorption are well established causes of hypertension. It is unclear, however, whether primary activation of an Na(+)-independent chloride transporter in the kidney can also play a pathogenic role in this disease. Here, mice overexpressing the chloride transporter pendrin in intercalated cells of the distal nephron (Tg(B1-hPDS) mice) displayed increased renal absorption of chloride. Compared with normal mice, these transgenic mice exhibited a delayed increase in urinary NaCl and ultimately, developed hypertension when exposed to a high-salt diet. Administering the same sodium intake as NaHCO3 instead of NaCl did not significantly alter BP, indicating that the hypertension in the transgenic mice was chloride-sensitive. Moreover, excessive chloride absorption by pendrin drove parallel absorption of sodium through the epithelial sodium channel ENaC and the sodium-driven chloride/bicarbonate exchanger (Ndcbe), despite an appropriate downregulation of these sodium transporters in response to the expanded vascular volume and hypertension. In summary, chloride transport in the distal nephron can play a primary role in driving NaCl transport in this part of the kidney, and a primary abnormality in renal chloride transport can provoke arterial hypertension. Thus, we conclude that the chloride/bicarbonate exchanger pendrin plays a major role in controlling net NaCl absorption, thereby influencing BP under conditions of high salt intake.
Collapse
Affiliation(s)
- Thibaut Jacques
- Faculté de Médecine, Université Paris-Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:119-30. [DOI: 10.1016/j.cbpa.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 01/09/2023]
|
57
|
Wall SM, Weinstein AM. Cortical distal nephron Cl(-) transport in volume homeostasis and blood pressure regulation. Am J Physiol Renal Physiol 2013; 305:F427-38. [PMID: 23637202 DOI: 10.1152/ajprenal.00022.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Renal intercalated cells mediate the secretion or absorption of Cl(-) and OH(-)/H(+) equivalents in the connecting segment (CNT) and cortical collecting duct (CCD). In so doing, they regulate acid-base balance, vascular volume, and blood pressure. Cl(-) absorption is either electrogenic and amiloride-sensitive or electroneutral and thiazide-sensitive. However, which Cl(-) transporter(s) are targeted by these diuretics is debated. While epithelial Na(+) channel (ENaC) does not transport Cl(-), it modulates Cl(-) transport probably by generating a lumen-negative voltage, which drives Cl(-) flux across tight junctions. In addition, recent evidence indicates that ENaC inhibition increases electrogenic Cl(-) secretion via a type A intercalated cells. During ENaC blockade, Cl(-) is taken up across the basolateral membrane through the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and then secreted across the apical membrane through a conductive pathway (a Cl(-) channel or an electrogenic exchanger). The mechanism of this apical Cl(-) secretion is unresolved. In contrast, thiazide diuretics inhibit electroneutral Cl(-) absorption mediated by a Na(+)-dependent Cl(-)/HCO3(-) exchanger. The relative contribution of the thiazide and the amiloride-sensitive components of Cl(-) absorption varies between studies and probably depends on the treatment model employed. Cl(-) absorption increases markedly with angiotensin and aldosterone administration, largely by upregulating the Na(+)-independent Cl(-)/HCO3(-) exchanger pendrin. In the absence of pendrin [Slc26a4((-/-)) or pendrin null mice], aldosterone-stimulated Cl(-) absorption is significantly reduced, which attenuates the pressor response to this steroid hormone. Pendrin also modulates aldosterone-induced changes in ENaC abundance and function through a kidney-specific mechanism that does not involve changes in the concentration of a circulating hormone. Instead, pendrin changes ENaC abundance and function, at least in part, by altering luminal HCO3(-). This review summarizes mechanisms of Cl(-) transport in CNT and CCD and how these transporters contribute to the regulation of extracellular volume and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Renal Division, WMB Rm. 338, 1639 Pierce Dr., NE, Atlanta, GA 30322.
| | | |
Collapse
|
58
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
59
|
Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant 2013; 27:3691-704. [PMID: 23114896 DOI: 10.1093/ndt/gfs442] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The primary or hereditary forms of distal renal tubular acidosis (dRTA) have received increased attention because of advances in the understanding of the molecular mechanism, whereby mutations in the main proteins involved in acid-base transport result in impaired acid excretion. Dysfunction of intercalated cells in the collecting tubules accounts for all the known genetic causes of dRTA. These cells secrete protons into the tubular lumen through H(+)-ATPases functionally coupled to the basolateral anion exchanger 1 (AE1). The substrate for both transporters is provided by the catalytic activity of the cytosolic carbonic anhydrase II (CA II), an enzyme which is also present in the proximal tubular cells and osteoclasts. Mutations in ATP6V1B1, encoding the B-subtype unit of the apical H(+) ATPase, and ATP6V0A4, encoding the a-subtype unit, lead to the loss of function of the apical H(+) ATPase and are usually responsible for patients with autosomal recessive dRTA often associated with early or late sensorineural deafness. Mutations in the gene encoding the cytosolic CA II are associated with the autosomal recessive syndrome of osteopetrosis, mixed distal and proximal RTA and cerebral calcification. Mutations in the AE1, the gene that encodes the Cl(-)/HCO(3)(-) exchanger, usually present as dominant dRTA, but a recessive pattern has been recently described. Several studies have shown trafficking defects in the mutant protein rather than the lack of function as the major mechanism underlying the pathogenesis of dRTA from AE1 mutations.
Collapse
|
60
|
Mohebbi N, Perna A, van der Wijst J, Becker HM, Capasso G, Wagner CA. Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One 2013; 8:e55286. [PMID: 23383138 PMCID: PMC3561381 DOI: 10.1371/journal.pone.0055286] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/21/2012] [Indexed: 01/14/2023] Open
Abstract
The renal handling of salt and protons and bicarbonate are intricately linked through shared transport mechanisms for sodium, chloride, protons, and bicarbonate. In the collecting duct, the regulated fine-tuning of salt and acid-base homeostasis is achieved by a series of transport proteins located in different cell types, intercalated and principal cells. Intercalated cells are considered to be of less importance for salt handling but recent evidence has suggested that the anion exchanger pendrin may participate in salt reabsorption and blood pressure regulation. Here, we examined the regulated expression of two functionally related but differentially expressed anion exchangers, AE1 and pendrin, by dietary electrolyte intake and aldosterone. Cortical expression of pendrin was regulated on mRNA and protein level. The combination of NaHCO3 and DOCA enhanced pendrin mRNA and protein levels, whereas DOCA or NaHCO3 alone had no effect. NaCl or KHCO3 increased pendrin mRNA, KCl decreased its mRNA abundance. On protein level, NH4Cl, NaCl, and KCl reduced pendrin expression, the other treatments were without effect. In contrast, AE1 mRNA or protein expression in kidney cortex was regulated by none of these treatments. In kidney medulla, NaHCO3/DOCA or NaHCO3 alone enhanced AE1 mRNA levels. AE1 protein abundance was increased by NH4Cl, NaHCO3/DOCA, and NaCl. Immunolocalization showed that during NH4Cl treatment the relative number of AE1 positive cells was increased and pendrin expressing cells reduced. Thus, pendrin and AE1 are differentially regulated with distinct mechanisms that separately affect mRNA and protein levels. Pendrin is regulated by acidosis and chloride intake, whereas AE1 is enhanced by acidosis, NaCl, and the combination of DOCA and NaHCO3.
Collapse
Affiliation(s)
- Nilufar Mohebbi
- Institute of Physiology and Zurich Center for Integrative Human Physiology-ZIHP, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
61
|
Hailey DW, Roberts B, Owens KN, Stewart AK, Linbo T, Pujol R, Alper SL, Rubel EW, Raible DW. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone. PLoS Genet 2012; 8:e1002971. [PMID: 23071446 PMCID: PMC3469417 DOI: 10.1371/journal.pgen.1002971] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Dale W. Hailey
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
| | - Brock Roberts
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
| | - Kelly N. Owens
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Andrew K. Stewart
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Remy Pujol
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
- INSERM Unit 583, Universite de Montpellier, Institut des Neurosciences de Montpellier, Hopital St. Eloi, Montpellier, France
| | - Seth L. Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Edwin W. Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
62
|
Hennings JC, Picard N, Huebner AK, Stauber T, Maier H, Brown D, Jentsch TJ, Vargas-Poussou R, Eladari D, Hübner CA. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol Med 2012; 4:1057-71. [PMID: 22933323 PMCID: PMC3491836 DOI: 10.1002/emmm.201201527] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/19/2012] [Accepted: 07/10/2012] [Indexed: 11/09/2022] Open
Abstract
The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms.
Collapse
|
63
|
Berend K, van Hulsteijn LH, Gans ROB. Chloride: the queen of electrolytes? Eur J Intern Med 2012; 23:203-11. [PMID: 22385875 DOI: 10.1016/j.ejim.2011.11.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/20/2011] [Accepted: 11/22/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Channelopathies, defined as diseases that are caused by mutations in genes encoding ion channels, are associated with a wide variety of symptoms and have been documented extensively over the past decade. In contrast, despite the important role of chloride in serum, textbooks in general do not allocate chapters exclusively on hypochloremia or hyperchloremia and information on chloride other than channelopathies is scattered in the literature. STUDY DESIGN To systematically review the function of chloride in man, data for this review include searches of MEDLINE, PubMed, and references from relevant articles including the search terms "chloride," "HCl," "chloride channel" "acid-base," "acidosis," "alkalosis," "anion gap" "strong anion gap" "Stewart," "base excess" and "lactate." In addition, internal medicine, critical care, nephrology and gastroenterology textbooks were evaluated on topics pertaining the assessment and management of acid-base disorders, including reference lists from journals or textbooks. CONCLUSION Chloride is, after sodium, the most abundant electrolyte in serum, with a key role in the regulation of body fluids, electrolyte balance, the preservation of electrical neutrality, acid-base status and it is an essential component for the assessment of many pathological conditions. When assessing serum electrolytes, abnormal chloride levels alone usually signify a more serious underlying metabolic disorder, such as metabolic acidosis or alkalosis. Chloride is an important component of diagnostic tests in a wide array of clinical situations. In these cases, chloride can be tested in sweat, serum, urine and feces. Abnormalities in chloride channel expression and function in many organs can cause a range of disorders.
Collapse
Affiliation(s)
- Kenrick Berend
- Nephrology department, St. Elisabeth Hospital, Willemstad, Curaçao, The Netherlands.
| | | | | |
Collapse
|
64
|
Iversen NK, Malte H, Baatrup E, Wang T. The normal acid-base status of mice. Respir Physiol Neurobiol 2011; 180:252-7. [PMID: 22172772 DOI: 10.1016/j.resp.2011.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022]
Abstract
Rodent models are commonly used for various physiological studies including acid-base regulation. Despite the widespread use of especially genetic modified mice, little attention have been made to characterise the normal acid-base status in these animals in order to reveal proper control values. Furthermore, several studies report blood gas values obtained in anaesthetised animals. We, therefore, decided to characterise blood CO(2) binding characteristic of mouse blood in vitro and to characterise normal acid-base status in conscious BALBc mice. In vitro CO(2) dissociation curves, performed on whole blood equilibrated to various PCO₂ levels in rotating tonometers, revealed a typical mammalian pK' (pK'=7.816-0.234 × pH (r=0.34)) and a non-bicarbonate buffer capacity (16.1 ± 2.6 slyke). To measure arterial acid-base status, small blood samples were taken from undisturbed mice with indwelling catheters in the carotid artery. In these animals, pH was 7.391 ± 0.026, plasma [HCO(3)(-)] 18.4 ± 0.83 mM, PCO₂ 30.3 ± 2.1 mm Hg and lactate concentration 4.6 ± 0.7 mM. Our study, therefore, shows that mice have an arterial pH that resembles other mammals, although arterial PCO₂ tends to be lower than in larger mammals. However, pH from arterial blood sampled from mice anaesthetised with isoflurane was significantly lower (pH 7.239 ± 0.021), while plasma [HCO(3)(-)] was 18.5 ± 1.4 mM, PCO₂ 41.9 ± 2.9 mm Hg and lactate concentration 4.48 ± 0.67 mM. Furthermore, we measured metabolism and ventilation (V(E)) in order to determine the ventilation requirements (VE/VO₂) to answer whether small mammals tend to hyperventilate. We recommend, therefore, that studies on acid-base regulation in mice should be based on samples taken for indwelling catheters rather than cardiac puncture of terminally anaesthetised mice.
Collapse
Affiliation(s)
- Nina K Iversen
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
65
|
Welsh-Bacic D, Nowik M, Kaissling B, Wagner CA. Proliferation of acid-secretory cells in the kidney during adaptive remodelling of the collecting duct. PLoS One 2011; 6:e25240. [PMID: 22039408 PMCID: PMC3200326 DOI: 10.1371/journal.pone.0025240] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023] Open
Abstract
The renal collecting duct adapts to changes in acid-base metabolism by remodelling and altering the relative number of acid or alkali secreting cells, a phenomenon termed plasticity. Acid secretory A intercalated cells (A-IC) express apical H(+)-ATPases and basolateral bicarbonate exchanger AE1 whereas bicarbonate secretory B intercalated cells (B-IC) express basolateral (and apical) H(+)-ATPases and the apical bicarbonate exchanger pendrin. Intercalated cells were thought to be terminally differentiated and unable to proliferate. However, a recent report in mouse kidney suggested that intercalated cells may proliferate and that this process is in part dependent on GDF-15. Here we extend these observations to rat kidney and provide a detailed analysis of regional differences and demonstrate that differentiated A-IC proliferate massively during adaptation to systemic acidosis. We used markers of proliferation (PCNA, Ki67, BrdU incorporation) and cell-specific markers for A-IC (AE1) and B-IC (pendrin). Induction of remodelling in rats with metabolic acidosis (with NH(4)Cl for 12 hrs, 4 and 7 days) or treatment with acetazolamide for 10 days resulted in a larger fraction of AE1 positive cells in the cortical collecting duct. A large number of AE1 expressing A-IC was labelled with proliferative markers in the cortical and outer medullary collecting duct whereas no labeling was found in B-IC. In addition, chronic acidosis also increased the rate of proliferation of principal collecting duct cells. The fact that both NH(4)Cl as well as acetazolamide stimulated proliferation suggests that systemic but not urinary pH triggers this response. Thus, during chronic acidosis proliferation of AE1 containing acid-secretory cells occurs and may contribute to the remodelling of the collecting duct or replace A-IC due to a shortened life span under these conditions.
Collapse
Affiliation(s)
- Desa Welsh-Bacic
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marta Nowik
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
66
|
Wu F, Satchwell TJ, Toye AM. Anion exchanger 1 in red blood cells and kidney: Band 3's in a pod. Biochem Cell Biol 2011; 89:106-14. [PMID: 21455263 DOI: 10.1139/o10-146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bicarbonate/chloride exchanger 1 (AE1, Band 3) is abundantly expressed in the red blood cell membrane, where it is involved in gas exchange and functions as a major site of cytoskeletal attachment to the erythrocyte membrane. A truncated kidney isoform (kAE1) is highly expressed in type A intercalated cells of the distal tubules, where it is vital for urinary acidification. Recently, kAE1 has emerged as a novel physiologically significant protein in the kidney glomerulus. This minireview will discuss the known interactions of kAE1 in the podocytes and the possible mechanisms whereby this important multispanning membrane protein may contribute to the function of the glomerular filtration barrier and prevent proteinuria.
Collapse
Affiliation(s)
- Fiona Wu
- School of Clinical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
67
|
Almomani EY, Chu CY, Cordat E. Mis-trafficking of bicarbonate transporters: implications to human diseasesThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:157-77. [DOI: 10.1139/o10-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bicarbonate is a waste product of mitochondrial respiration and one of the main buffers in the human body. Thus, bicarbonate transporters play an essential role in maintaining acid-base balance but also during fetal development as they ensure tight regulation of cytosolic and extracellular environments. Bicarbonate transporters belong to two gene families, SLC4A and SLC26A. Proteins from these two families are widely expressed, and thus mutations in their genes result in various diseases that affect bones, pancreas, reproduction, brain, kidneys, eyes, heart, thyroid, red blood cells, and lungs. In this minireview, we discuss the current state of knowledge regarding the effect of SLC4A and SLC26A mutants, with a special emphasis on mutants that have been studied in mammalian cell lines and how they correlate with phenotypes observed in mice models.
Collapse
Affiliation(s)
- Ensaf Y. Almomani
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carmen Y.S. Chu
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
68
|
Fenton RA, Praetorius J. Molecular Physiology of the Medullary Collecting Duct. Compr Physiol 2011; 1:1031-56. [DOI: 10.1002/cphy.c100064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
Courbebaisse M, Souberbielle JC. Équilibre phosphocalcique : régulation et explorations. Nephrol Ther 2011; 7:118-38. [DOI: 10.1016/j.nephro.2010.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
70
|
Quigley IK, Stubbs JL, Kintner C. Specification of ion transport cells in the Xenopus larval skin. Development 2011; 138:705-14. [PMID: 21266406 DOI: 10.1242/dev.055699] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specialized epithelial cells in the amphibian skin play important roles in ion transport, but how they arise developmentally is largely unknown. Here we show that proton-secreting cells (PSCs) differentiate in the X. laevis larval skin soon after gastrulation, based on the expression of a `kidney-specific' form of the H(+)v-ATPase that localizes to the plasma membrane, orthologs of the Cl(-)/HCO(-)(3) antiporters ae1 and pendrin, and two isoforms of carbonic anhydrase. Like PSCs in other species, we show that the expression of these genes is likely to be driven by an ortholog of foxi1, which is also sufficient to promote the formation of PSC precursors. Strikingly, the PSCs form in the skin as two distinct subtypes that resemble the alpha- and beta-intercalated cells of the kidney. The alpha-subtype expresses ae1 and localizes H(+)v-ATPases to the apical plasma membrane, whereas the beta-subtype expresses pendrin and localizes the H(+)v-ATPase cytosolically or basolaterally. These two subtypes are specified during early PSC differentiation by a binary switch that can be regulated by Notch signaling and by the expression of ubp1, a transcription factor of the grainyhead family. These results have implications for how PSCs are specified in vertebrates and become functionally heterogeneous.
Collapse
Affiliation(s)
- Ian K Quigley
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
71
|
Wagner CA, Devuyst O, Belge H, Bourgeois S, Houillier P. The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification. Kidney Int 2011; 79:154-61. [DOI: 10.1038/ki.2010.386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
72
|
Oehlschläger S, Fuessel S, Meye A, Herrmann J, Lotzkat U, Froehner M, Albrecht S, Wirth MP. Importance of erythrocyte band III anion transporter (SLC4A1) on oxalate clearance of calcium oxalate monohydrate stone-formering patients vs. normal controls. Urology 2010; 77:250.e1-5. [PMID: 20947140 DOI: 10.1016/j.urology.2010.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 05/30/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To examine erythrocyte band III transport protein (SLC4A1), erythrocyte oxalate flux, and plasmatic, cellular, and urine oxalate concentrations and blood gas analyses in calcium oxalate monohydrate stone-forming patients (COM) in comparison with normal controls (NC). METHODS Isolated red cells from 51 NC and 25 COM cases were divided for cellular oxalate measurement and for measurement of transcellular erythrocyte oxalate flux (pH 7.48-8.24). SLC4A1 protein levels were determined by Western blot analyses. Plasmatic and urinary oxalate levels and the venous blood gas analysis were measured simultaneously. RESULTS SLC4A1 protein levels were significantly higher in COM (8.76 ± 2.12) than in NC (4.17 ± 0.61; P < .02). Cellular oxalate and venous HCO(3)(-) were significantly lower in COM (2.35 ± 0.26 μmol/L) and (24.06 ± 0.24 mmo/l) than in NC (4.03 ± 0.49 μmol/L; P < .05) and (24.93 ± 0.17 mmol/L; P < .01). Urinary oxalate was significantly higher in COM (0.31 ± 0.02 mmol/L) than in NC (0.25 ± 0.01 mmol/L; P < .04). The erythrocyte transmembrane oxalate flux correlated with the pH value and with the urinary oxalate in both groups (r = .25-.55; P = .01). With increased pH values, the oxalate flux showed inverse effects in both groups. CONCLUSIONS SLC4A1 associated changes of HCO(3)(-) and pH levels influenced the cellular oxalate levels and urinary oxalate clearance. Under normal conditions (pH 7.55) the oxalate efflux in COM was comparable with the acid stimulated oxalate efflux in NC. The addition of HCO(3)(-) compensated the flux of COM stone formers to the levels of normal controls.
Collapse
|
73
|
Shmukler BE, Kedar PS, Warang P, Desai M, Madkaikar M, Ghosh K, Colah RB, Alper SL. Hemolytic anemia and distal renal tubular acidosis in two Indian patients homozygous for SLC4A1/AE1 mutation A858D. Am J Hematol 2010; 85:824-8. [PMID: 20799361 DOI: 10.1002/ajh.21836] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Familial distal renal tubular acidosis (dRTA) can be caused by mutations in the Cl2/HCO32 exchanger of the renal Type A intercalated cell, kidney AE1/SLC4A1. dRTA-associated AE1 mutations have been reported in families from North America, Europe, Thailand, Malaysia, Papua-New Guinea, Taiwan, and the Philippines, but not India. The dRTA mutation AE1 A858D has been detected only in the context of compound heterozygosity. We report here two unrelated Indian patients with combined hemolytic anemia and dRTA who share homozygous A858D mutations of the AE1/SLC4A1 gene. The mutation creates a novel restriction site that is validated for diagnostic screening.
Collapse
MESH Headings
- Acidosis, Renal Tubular/complications
- Acidosis, Renal Tubular/genetics
- Amino Acid Substitution
- Anemia, Hemolytic, Congenital/complications
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Macrocytic/complications
- Anemia, Macrocytic/drug therapy
- Anion Exchange Protein 1, Erythrocyte/genetics
- Anion Exchange Protein 1, Erythrocyte/physiology
- Child
- Codon/genetics
- Consanguinity
- Ethnicity/genetics
- Homozygote
- Humans
- India/epidemiology
- Infant
- Introns/genetics
- Mutation, Missense
- Pedigree
- Point Mutation
- Polymorphism, Restriction Fragment Length
- Tuberculosis, Multidrug-Resistant/complications
Collapse
|
74
|
Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S. Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol 2010; 21:1745-55. [PMID: 20798260 DOI: 10.1681/asn.2009050477] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Medicine, University of Cincinnati, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Bockenhauer D, van't Hoff W, Dattani M, Lehnhardt A, Subtirelu M, Hildebrandt F, Bichet DG. Secondary nephrogenic diabetes insipidus as a complication of inherited renal diseases. Nephron Clin Pract 2010; 116:p23-9. [PMID: 20733335 DOI: 10.1159/000320117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Nephrogenic diabetes insipidus (NDI) is a serious condition with large water losses in the urine and the risk of hypernatremic dehydration. Unrecognized, repeated episodes of hypernatremic dehydration can lead to permanent brain damage. Primary NDI is due to mutations in either AVPR2 or AQP2. NDI can also occur as a secondary complication, most commonly from obstructive uropathy or chronic lithium therapy. We observed NDI in patients with inherited tubulopathies and aimed to define the clinical and molecular phenotype. METHODS We reviewed the medical notes of 4 patients with clinical NDI and an underlying molecularly confirmed diagnosis of nephropathic cystinosis, Bartter syndrome, nephronophthisis and apparent mineralocorticoid excess, respectively. RESULTS The patients all failed to concentrate their urine after administration of 1-desamino[8-D-arginine] vasopressin. None had an identifiable mutation in AVPR2 or AQP2, consistent with secondary NDI. Patients experienced repeated episodes of hypernatremic dehydration, and in 2 cases, NDI was initially thought to be the primary diagnosis, delaying recognition of the underlying problem. CONCLUSION The recognition of this potential complication is important as it has direct implications for clinical management. The occurrence of NDI in association with these conditions provides clues for the etiology of aquaporin deficiency.
Collapse
Affiliation(s)
- D Bockenhauer
- Great Ormond Street Hospital for Children, London, UK.
| | | | | | | | | | | | | |
Collapse
|
76
|
Wu F, Saleem MA, Kampik NB, Satchwell TJ, Williamson RC, Blattner SM, Ni L, Toth T, White G, Young MT, Parker MD, Alper SL, Wagner CA, Toye AM. Anion exchanger 1 interacts with nephrin in podocytes. J Am Soc Nephrol 2010; 21:1456-67. [PMID: 20576809 DOI: 10.1681/asn.2009090921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The central role of the multifunctional protein nephrin within the macromolecular complex forming the glomerular slit diaphragm is well established, but the mechanisms linking the slit diaphragm to the cytoskeleton and to the signaling pathways involved in maintaining the integrity of the glomerular filter remain incompletely understood. Here, we report that nephrin interacts with the bicarbonate/chloride transporter kidney anion exchanger 1 (kAE1), detected by yeast two-hybrid assay and confirmed by immunoprecipitation and co-localization studies. We confirmed low-level glomerular expression of kAE1 in human and mouse kidneys by immunoblotting and immunofluorescence microscopy. We observed less kAE1 in human glomeruli homozygous for the NPHS1(FinMaj) nephrin mutation, whereas kAE1 expression remained unchanged in the collecting duct. We could not detect endogenous kAE1 expression in NPHS1(FinMaj) podocytes in primary culture, but heterologous re-introduction of wild-type nephrin into these podocytes rescued kAE1 expression. In kidneys of Ae1(-/-) mice, nephrin abundance was normal but its distribution was altered along with the reported kAE1-binding protein integrin-linked kinase (ILK). Ae1(-/-) mice had increased albuminuria with glomerular enlargement, mesangial expansion, mesangiosclerosis, and expansion of the glomerular basement membrane. Glomeruli with ILK-deficient podocytes also demonstrated altered AE1 and nephrin expression, further supporting the functional interdependence of these proteins. These data suggest that the podocyte protein kAE1 interacts with nephrin and ILK to maintain the structure and function of the glomerular basement membrane.
Collapse
Affiliation(s)
- Fiona Wu
- Department of Clinical Sciences, South Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM. Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A 2010; 107:9638-43. [PMID: 20457942 PMCID: PMC2906887 DOI: 10.1073/pnas.1003587107] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, NH(3) transport across cell membranes is facilitated by the Rh (rhesus) family of proteins. Human Rh C glycoprotein (RhCG) forms a trimeric complex that plays an essential role in ammonia excretion and renal pH regulation. The X-ray crystallographic structure of human RhCG, determined at 2.1 A resolution, reveals the mechanism of ammonia transport. Each monomer contains 12 transmembrane helices, one more than in the bacterial homologs. Reconstituted into proteoliposomes, RhCG conducts NH(3) to raise internal pH. Models of the erythrocyte Rh complex based on our RhCG structure suggest that the erythrocytic Rh complex is composed of stochastically assembled heterotrimers of RhAG, RhD, and RhCE.
Collapse
Affiliation(s)
- Franz Gruswitz
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Sarika Chaudhary
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Joseph D. Ho
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Avner Schlessinger
- Center for the Structure of Membrane Proteins, and
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 503B Byers Hall, University of California, San Francisco, CA 94158; and
| | - Bobak Pezeshki
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Chi-Min Ho
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Andrej Sali
- Center for the Structure of Membrane Proteins, and
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 503B Byers Hall, University of California, San Francisco, CA 94158; and
| | - Connie M. Westhoff
- American Red Cross, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19123
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| |
Collapse
|
78
|
Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA. Induction of Metabolic Acidosis with Ammonium Chloride (NH 4Cl) in Mice and Rats – Species Differences and Technical Considerations. Cell Physiol Biochem 2010; 26:1059-72. [DOI: 10.1159/000323984] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 11/19/2022] Open
|
79
|
Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, Riederer B, Bonhagen J, Arend LJ, Amlal H, Seidler U, Soleimani M. Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 2009; 284:29470-9. [PMID: 19723628 PMCID: PMC2785580 DOI: 10.1074/jbc.m109.044396] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/18/2009] [Indexed: 11/06/2022] Open
Abstract
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl(-)/HCO3(-) exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.
Collapse
Affiliation(s)
- Jie Xu
- From Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio 45220
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Penghong Song
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Suguru Nakamura
- the Department of Biological Sciences, Murray State University, Murray, Kentucky 42071
| | | | - Sharon Barone
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- the Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Seth L. Alper
- the Renal Division, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Brigitte Riederer
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Janina Bonhagen
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Lois J. Arend
- Pathology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Hassane Amlal
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- the Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Ursula Seidler
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Manoocher Soleimani
- From Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio 45220
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- the Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
80
|
Chang YH, Shaw CF, Jian SH, Hsieh KH, Chiou YH, Lu PJ. Compound mutations in human anion exchanger 1 are associated with complete distal renal tubular acidosis and hereditary spherocytosis. Kidney Int 2009; 76:774-83. [DOI: 10.1038/ki.2009.258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
81
|
Mohebbi N, Mihailova M, Wagner CA. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am J Physiol Renal Physiol 2009; 297:F499-509. [DOI: 10.1152/ajprenal.90489.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcineurin inhibitors like FK506 (tacrolimus) are routinely used for immunosuppression following transplantation. Its use is limited by many side effects, including renal tubular acidosis (RTA), mainly of the distal type. In this study, rats were treated with FK506 and at baseline (after 9 days) systemic acid-base status was similar to that in control animals. However, FK506-treated rats given NH4Cl in the drinking water for 2 days developed a more severe metabolic acidosis than control animals. Urine pH was more alkaline, but net acid excretion was normal. After 7 days of acid load, all differences related to acid-base homeostasis were equalized in both groups. Protein abundance of type IIa Na-Pi cotransporter, type 3 Na+/H+ exchanger, and electrogenic Na+-bicarbonate cotransporter, and both a4 and B2 subunits of the vacuolar H+-ATPase were reduced under baseline conditions, while induction of metabolic acidosis enhanced protein abundance of these transporters in FK506-treated animals. In parallel, protein expression of AE1 was reduced at baseline and increased together with pendrin during NH4Cl loading in FK506 rats. Protein abundance of the Na+-bicarbonate cotransporter NBCn1 was reduced under baseline conditions but remained downregulated during metabolic acidosis. Morphological analysis revealed an increase in the relative number of non-type A intercalated cells in the connecting tubule and cortical collecting duct at the expense of principal cells. Additionally, subcellular distribution of the a4 subunit of the vacuolar H+-ATPase was affected by FK506 with less luminal localization in the connecting tubule and outer medullary collecting duct. These data suggest that FK506 impacts on several major acid-base transport proteins in the kidney, and its use is associated with transient metabolic acidosis and altered expression of key renal acid-base transport proteins.
Collapse
|
82
|
Genetic basis of renal cellular dysfunction and the formation of kidney stones. ACTA ACUST UNITED AC 2009; 37:169-80. [PMID: 19517103 DOI: 10.1007/s00240-009-0201-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022]
Abstract
Nephrolithiasis is a result of formation and retention of crystals within the kidneys. The driving force behind crystal formation is urinary supersaturation with respect to the stone-forming salts, which means that crystals form when the concentrations of participating ions are higher than the thermodynamic solubility for that salt. Levels of supersaturation are kept low and under control by proper functioning of a variety of cells including those that line the renal tubules. It is our hypothesis that crystal deposition, i.e., formation and retention in the kidneys, is a result of impaired cellular function, which may be intrinsic and inherent or triggered by external stimuli and challenges. Cellular impairment or dysfunction affects the supersaturation, by influencing the excretion of participating ions such as calcium, oxalate and citrate and causing hypercalciuria, hyperoxaluria or hypocitraturia. The production and excretion of macromolecular promoters and inhibitors of crystallization is also dependent upon proper functioning of the renal epithelial cells. Insufficient or ineffective crystallization modulators such as osteopontin, Tamm-Horsfall protein, bikunin, etc. are most likely produced by the impaired cells.
Collapse
|
83
|
Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212:1672-83. [PMID: 19448077 PMCID: PMC2683012 DOI: 10.1242/jeb.029454] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Plasmalemmal Cl(-)/HCO(3)(-) exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl(-)] and cell volume. The Cl(-)/HCO(3)(-) exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid-base equivalents and Cl(-). This review focuses on Na(+)-independent electroneutral Cl(-)/HCO(3)(-) exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2(-/-) mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2(-/-) mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3(-/-) mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl(-)/anion exchange, but trout erythroid Ae1 also mediates Cl(-) conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl(-) conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO(4)(2-)/Cl(-) exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure-function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
84
|
Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 2009; 20:1705-13. [PMID: 19470676 DOI: 10.1681/asn.2008111195] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypercalciuria increases the risk for urolithiasis, but renal adaptive mechanisms reduce this risk. For example, transient receptor potential vanilloid 5 knockout (TPRV5(-/-)) mice lack kidney stones despite urinary calcium (Ca(2+)) wasting and hyperphosphaturia, perhaps as a result of their significant polyuria and urinary acidification. Here, we investigated the mechanisms linking hypercalciuria with these adaptive mechanisms. Exposure of dissected mouse outer medullary collecting ducts to high (5.0 mM) extracellular Ca(2+) stimulated H(+)-ATPase activity. In TRPV5(-/-) mice, activation of the renal Ca(2+)-sensing receptor promoted H(+)-ATPase-mediated H(+) excretion and downregulation of aquaporin 2, leading to urinary acidification and polyuria, respectively. Gene ablation of the collecting duct-specific B1 subunit of H(+)-ATPase in TRPV5(-/-) mice abolished the enhanced urinary acidification, which resulted in severe tubular precipitations of Ca(2+)-phosphate in the renal medulla. In conclusion, activation of Ca(2+)-sensing receptor by increased luminal Ca(2+) leads to urinary acidification and polyuria. These beneficial adaptations facilitate the excretion of large amounts of soluble Ca(2+), which is crucial to prevent the formation of kidney stones.
Collapse
Affiliation(s)
- Kirsten Y Renkema
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch 2009; 458:137-56. [DOI: 10.1007/s00424-009-0657-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
86
|
Abstract
The family of mammalian bicarbonate transport proteins are involved in a wide-range of physiological processes. The importance of bicarbonate transport follows from the biochemistry of HCO(3)(-) itself. Bicarbonate is the waste product of mitochondrial respiration. HCO(3)(-) undergoes pH-dependent conversion into CO(2) and in doing so converts from a membrane impermeant anion into a gas that can diffuse across membranes. The CO(2)-HCO(3)(-) equilibrium forms the most important pH buffering system of our bodies. Bicarbonate transport proteins facilitate the movement of membrane-impermeant HCO(3)(-) across membranes to accelerate disposal of waste CO(2), control cellular and whole-body pH, and to regulate fluid movement and acid/base secretion. Defects of bicarbonate transport proteins manifest in diseases of most organ systems. Fourteen gene products facilitate mammalian bicarbonate transport, whose physiology and pathophysiology is discussed in the present review.
Collapse
|
87
|
Jungers P, Joly D, Blanchard A, Courbebaisse M, Knebelmann B, Daudon M. [Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances]. Nephrol Ther 2008; 4:231-55. [PMID: 18499551 DOI: 10.1016/j.nephro.2007.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Hereditary monogenic kidney stone diseases are rare diseases, since they account for nearly 2% of nephrolithiasis cases in adults and 10% in children. Most of them are severe, because they frequently are associated with nephrocalcinosis and lead to progressive impairment of renal function unless an early and appropriate etiologic treatment is instituted. Unfortunately, treatment is often lacking or started too late since they are often misdiagnosed or overlooked. The present review reports the genotypic and phenotypic characteristics of monogenic nephrolithiases, with special emphasis on the recent advances in the field of diagnosis and therapeutics. Monogenic stone diseases will be classified into three groups according to their mechanism: (1) inborn errors of the metabolism of oxalate (primary hyperoxalurias), uric acid (hereditary hyperuricemias) or other purines (2,8-dihydroxyadeninuria), which, in addition to stone formation, result in crystal deposition in the renal parenchyma; (2) congenital tubulopathies affecting the convoluted proximal tubule (such as Dent's disease, Lowe syndrome or hypophosphatemic rickets), the thick ascending limb of Henlé's loop (such as familial hypomagnesemia and Bartter's syndromes) or the distal past of the nephron (congenital distal tubular acidosis with or without hearing loss), which are frequently associated with nephrocalcinosis, phosphatic stones and extensive tubulointerstitial fibrosis; (3) cystinuria, an isolated defect in tubular reabsorption of cystine and dibasic aminoacids, which results only in the formation of stones but requires a cumbersome treatment. Analysis of stones appears of crucial value for the early diagnosis of these diseases, as in several of them the morphology and composition of stones is specific. In other cases, especially if nephrocalcinosis, phosphatic stones or proteinuria are present, the evaluation of blood and urine chemistry, especially with regard to calcium, phosphate and magnesium, is the key of diagnosis. Search for mutations is now increasingly performed in as much as genetic counselling is important for the detection of heterozygotes in autosomic recessive diseases and of carrier women in X-linked diseases. In conclusion, better awareness to the rare monogenic forms of nephrolithiasis and/or nephrocalcinosis should allow early diagnosis and treatment which are needed to prevent or substantially delay progression of end-stage renal disease. Analysis of every first stone both in children and in adults should never be neglected, in order to early detect unusual forms of nephrolithiasis requiring laboratory evaluation and deep etiologic treatment.
Collapse
Affiliation(s)
- Paul Jungers
- Service de Néphrologie, Hôpital Necker, AP-HP, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Nowik M, Lecca MR, Velic A, Rehrauer H, Brändli AW, Wagner CA. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 2007; 32:322-34. [PMID: 18056784 DOI: 10.1152/physiolgenomics.00160.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Production and excretion of acids are balanced to maintain systemic acid-base homeostasis. During metabolic acidosis (MA) excess acid accumulates and is removed from the body, a process achieved, at least in part, by increasing renal acid excretion. This acid-secretory process requires the concerted regulation of metabolic and transport pathways, which are only partially understood. Chronic MA causes also morphological remodeling of the kidney. Therefore, we characterized transcriptional changes in mammalian kidney during MA to gain insights into adaptive pathways. Total kidney RNA from control and 2- and 7-days NH(4)Cl treated mice was subjected to microarray gene profiling. We identified 4,075 transcripts significantly (P < 0.05) regulated after 2 and/or 7 days of treatment. Microarray results were confirmed by qRT-PCR. Analysis of candidate genes revealed that a large group of regulated transcripts was represented by different solute carrier transporters, genes involved in cell growth, proliferation, apoptosis, water homeostasis, and ammoniagenesis. Pathway analysis revealed that oxidative phosphorylation was the most affected pathway. Interestingly, the majority of acutely regulated genes after 2 days, returned to normal values after 7 days suggesting that adaptation had occurred. Besides these temporal changes, we detected also differential regulation of selected genes (SNAT3, PEPCK, PDG) between early and late proximal tubule. In conclusion, the mammalian kidney responds to MA by temporally and spatially altering the expression of a large number of genes. Our analysis suggests that many of these genes may participate in various processes leading to adaptation and restoration of normal systemic acid-base and electrolyte homeostasis.
Collapse
Affiliation(s)
- Marta Nowik
- Institute of Physiology and Zurich Center for Human Integrative Physiology (ZIHP), University of Zurich
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Metabolic acidosis is a severe disturbance of extracellular pH homeostasis that can be caused both by inborn or acquired defects in renal acid excretion or metabolic acid production. Chronic metabolic acidosis causes osteomalacia with nephrocalcinosis and urolithiasis. In the setting of end-stage renal disease, metabolic acidosis is often associated with increased peripheral insulin resistance, and represents an additional independent morbidity risk factor. This review summarizes recent insight, gained primarily from mouse models, into the mechanisms whereby the kidney regulates and adapts acid excretion. RECENT FINDINGS Human genetics and various mouse models have shed new light on mechanisms that contribute to the kidney's ability to excrete acid and adapt appropriately to metabolism. Progress in four specific areas will be highlighted: mechanisms contributing to the synthesis and excretion of ammonia; insights into adaptive processes during acidosis; mechanisms by which the kidney may sense acidosis; and the pathophysiology of acquired and inborn errors of renal acid handling. SUMMARY Genetic mouse models and various messenger RNA and proteome profiling and screening technologies demonstrate the importance of various acid-base transporting proteins and a metabolic and regulatory network that contributes to the kidney's ability to maintain the systemic acid-base balance.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology and Zurich Center for Human Integrative Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
91
|
Mohebbi N, Kovacikova J, Nowik M, Wagner CA. Thyroid hormone deficiency alters expression of acid-base transporters in rat kidney. Am J Physiol Renal Physiol 2007; 293:F416-27. [PMID: 17409279 DOI: 10.1152/ajprenal.00391.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypothyroidism in humans is associated with incomplete distal renal tubular acidosis, presenting as the inability to respond appropriately to an acid challenge by excreting less acid. Here, we induced hypothyroidism in rats with methimazole (HYPO) and in one group substituted with l-thyroxine (EU). After 4 wk, acid-base status was similar in both groups. However, after 24 h acid loading with NH(4)Cl HYPO rats displayed a more pronounced metabolic acidosis. The expression of the Na(+)/H(+) exchanger NHE3, the Na(+)-phosphate cotransporter NaPi-IIa, and the B2 subunit of the vacuolar H(+)-ATPase was reduced in the brush-border membrane of the proximal tubule of the HYPO group, paralleled by a lower abundance of the Na(+)/HCO(3)(-) cotransporter NBCe1 and a higher expression of the acid-secretory type A intercalated cell-specific Cl(-)/HCO(3)(-) exchanger AE1. In contrast to control conditions, the expression of NBCe1 was increased in the HYPO group during metabolic acidosis. In addition, net acid excretion was similar in both groups. The relative number of type A intercalated cells was increased in the connecting tubule and cortical collecting duct of the HYPO group during acidosis. Thus thyroid hormones modulate the renal response to an acid challenge and alter the expression of several key acid-base transporters. Mild hypothyroidism is associated only with a very mild defect in renal acid handling, which appears to be mainly located in the proximal tubule and is compensated by the distal nephron.
Collapse
Affiliation(s)
- Nilufar Mohebbi
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|