51
|
Dear JW, Antoine DJ. Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Rev Clin Pharmacol 2014; 7:181-9. [PMID: 24450481 DOI: 10.1586/17512433.2014.880650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the most common causes of acute liver failure in the Western world is paracetamol (acetaminophen) overdose. Specific and sensitive detection of liver injury is important for the prompt and safe treatment of patients with the antidote N-acetylcysteine (NAC) and for the determination of NAC efficacy. Despite many years of intense research, the precise mechanisms of paracetamol-induced liver injury in humans are still not defined, and few studies have examined the optimal dosing regimen for clinical NAC use. It has been widely acknowledged that circulating biomarkers such as microRNA-122, keratin-18 and high mobility group box-1 hold potential to inform on the mechanistic-basis of human drug-induced liver injury. Here, we provide a perspective on the application of these mechanistic biomarkers to the deeper understanding of paracetamol hepatotoxicity in clinical and preclinical studies. Also, we discuss current barriers to using these experimental biomarkers to stratify patients presenting to hospital with this common medical emergency.
Collapse
Affiliation(s)
- James W Dear
- National Poisons Information Service Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
52
|
Civan JM, Navarro V, Herrine SK, Riggio JM, Adams P, Rossi S. Patterns of acetaminophen use exceeding 4 grams daily in a hospitalized population at a tertiary care center. Gastroenterol Hepatol (N Y) 2014; 10:27-34. [PMID: 24799836 PMCID: PMC4008956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Unintentional acetaminophen-induced hepatotoxicity has been increasingly recognized as a significant problem, prompting increased scrutiny and restrictions from the US Food and Drug Administration on products combining acetaminophen with narcotics. Patterns of acetaminophen use have not previously been reported in the hospitalized patient population, which may be especially vulnerable to liver injury. We aimed to quantify the frequency at which acetaminophen dosing exceeded the recommended maximum of 4 g/day in hospitalized patients. This was a retrospective, single-center, cohort study at a large tertiary care academic hospital. We queried our inpatient electronic medical record database to identify patients admitted between 2008 and 2010 who were receiving cumulative daily acetaminophen doses exceeding 4 g on at least 1 hospital day. Of 43,761 admissions involving acetaminophen administration, the recommended maximum cumulative daily dose of 4 g was exceeded in 1119 (2.6%) cases. Patients who were administered a larger number of acetaminophen-containing medications were more likely to receive doses in excess of the recommended maximum. Alanine aminotransferase (ALT) levels were checked within 14 days following acetaminophen exposure in excess of 4 g in 35 (3.1%) cases. Excessive acetaminophen dosing of hospitalized patients, who may be at increased risk for acetaminophen-induced hepatotoxicity, occurred in a minority of patients. The use of multiple acetaminophen-containing medication formulations contributed to excessive dosing. ALT level monitoring in this group was infrequent, precluding assessment of biochemical evidence of liver injury. This cohort of patients may represent an ideal population for further prospective study with more intensive and longer-term biochemical monitoring to assess for evidence of liver injury.
Collapse
Affiliation(s)
- Jesse M Civan
- Dr Civan is the director of the Liver Tumor Program, Dr Herrine is a professor in the Division of Gastroenterology & Hepatology, Dr Riggio is an associate professor in the Division of Hospital Medicine, and Dr Adams is a clinical informatics pharmacist in the Department of Pharmacy at Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Dr Navarro is a professor of medicine, pharmacology, and experimental therapeutics and the medical director of the Hepatology and the Liver Transplant Program at the Einstein Medical Center in Philadelphia, Pennsylvania, where Dr Rossi is the associate chair of the Division of Hepatology
| | - Victor Navarro
- Dr Civan is the director of the Liver Tumor Program, Dr Herrine is a professor in the Division of Gastroenterology & Hepatology, Dr Riggio is an associate professor in the Division of Hospital Medicine, and Dr Adams is a clinical informatics pharmacist in the Department of Pharmacy at Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Dr Navarro is a professor of medicine, pharmacology, and experimental therapeutics and the medical director of the Hepatology and the Liver Transplant Program at the Einstein Medical Center in Philadelphia, Pennsylvania, where Dr Rossi is the associate chair of the Division of Hepatology
| | - Steven K Herrine
- Dr Civan is the director of the Liver Tumor Program, Dr Herrine is a professor in the Division of Gastroenterology & Hepatology, Dr Riggio is an associate professor in the Division of Hospital Medicine, and Dr Adams is a clinical informatics pharmacist in the Department of Pharmacy at Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Dr Navarro is a professor of medicine, pharmacology, and experimental therapeutics and the medical director of the Hepatology and the Liver Transplant Program at the Einstein Medical Center in Philadelphia, Pennsylvania, where Dr Rossi is the associate chair of the Division of Hepatology
| | - Jeffrey M Riggio
- Dr Civan is the director of the Liver Tumor Program, Dr Herrine is a professor in the Division of Gastroenterology & Hepatology, Dr Riggio is an associate professor in the Division of Hospital Medicine, and Dr Adams is a clinical informatics pharmacist in the Department of Pharmacy at Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Dr Navarro is a professor of medicine, pharmacology, and experimental therapeutics and the medical director of the Hepatology and the Liver Transplant Program at the Einstein Medical Center in Philadelphia, Pennsylvania, where Dr Rossi is the associate chair of the Division of Hepatology
| | - Paul Adams
- Dr Civan is the director of the Liver Tumor Program, Dr Herrine is a professor in the Division of Gastroenterology & Hepatology, Dr Riggio is an associate professor in the Division of Hospital Medicine, and Dr Adams is a clinical informatics pharmacist in the Department of Pharmacy at Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Dr Navarro is a professor of medicine, pharmacology, and experimental therapeutics and the medical director of the Hepatology and the Liver Transplant Program at the Einstein Medical Center in Philadelphia, Pennsylvania, where Dr Rossi is the associate chair of the Division of Hepatology
| | - Simona Rossi
- Dr Civan is the director of the Liver Tumor Program, Dr Herrine is a professor in the Division of Gastroenterology & Hepatology, Dr Riggio is an associate professor in the Division of Hospital Medicine, and Dr Adams is a clinical informatics pharmacist in the Department of Pharmacy at Thomas Jefferson University Hospital in Philadelphia, Pennsylvania. Dr Navarro is a professor of medicine, pharmacology, and experimental therapeutics and the medical director of the Hepatology and the Liver Transplant Program at the Einstein Medical Center in Philadelphia, Pennsylvania, where Dr Rossi is the associate chair of the Division of Hepatology
| |
Collapse
|
53
|
Kim ID, Lee JK. HMGB1-Binding Heptamer Confers Anti-Inflammatory Effects in Primary Microglia Culture. Exp Neurobiol 2013; 22:301-7. [PMID: 24465145 PMCID: PMC3897691 DOI: 10.5607/en.2013.22.4.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an endogenous danger signal molecule. In the postischemic brain, HMGB1 is massively released during NMDA-induced acute damage and triggers inflammatory processes. In a previous study, we demonstrated that intranasally delivered HMGB1 binding heptamer peptide (HBHP; HMSKPVQ) affords robust neuroprotective effects in the ischemic brain after middle cerebral artery occlusion (MCAO, 60 minutes). In the present study, we investigated HBHP-induced anti-inflammatory effects on microglia activation. In LPS-treated primary microglia culture, HMGB1 was rapidly released and accumulated in culture media. Furthermore, LPS-conditioned media collected from primary microglia cultures (LCM) activated naïve microglia and markedly induced NO and proinflammatory cytokines. However, the suppression of HMGB1 by siRNA-HMGB1, HMGB1 A box, or anti-HMGB1 antibody significantly attenuated LCM-induced microglial activation, suggesting that HMGB1 plays a critical role in this process. A pull-down assay using biotin-labeled HBHP showed that HBHP binds directly to HMGB1 (more specifically to HMGB1 A box) in LCM. In addition, HBHP consistently inhibited LCM-induced microglial activation and suppressed the inductions of iNOS and proinflammatory cytokines. Together these results suggest that HBHP confers anti-inflammatory effects in activated microglia cultures by forming a complex with HMGB1.
Collapse
Affiliation(s)
- Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Incheon 400-712, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 400-712, Korea
| |
Collapse
|
54
|
Apoptosis or necrosis in acetaminophen-induced acute liver failure? New insights from mechanistic biomarkers*. Crit Care Med 2013; 41:2653-4. [PMID: 24162681 DOI: 10.1097/ccm.0b013e31829caf67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
55
|
Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX, Jaeschke H. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 2013; 58:2099-108. [PMID: 23744808 PMCID: PMC3791212 DOI: 10.1002/hep.26547] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/20/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is a major cause of hepatotoxicity and acute liver failure in the U.S., but the pathophysiology is incompletely understood. Despite evidence for apoptotic signaling, hepatic cell death after APAP is generally considered necrotic in mice and in humans. Recent findings suggest that the receptor interacting protein kinase 3 (RIP3) acts as a switch from apoptosis to necrosis (programmed necrosis). Thus, the aim of the current investigation was to determine if RIP3 is involved in APAP-induced liver cell death. APAP (200-300 mg/kg) caused glutathione depletion and protein adduct formation, oxidant stress, mitochondrial release of apoptosis inducing factor, and nuclear DNA fragmentation resulting in centrilobular necrosis in C57Bl/6J mice. Inhibiting RIP3 protein induction with antisense morpholinos in wild-type animals or using RIP3-deficient mice had no effect on protein adduct formation but attenuated all other parameters, including necrotic cell death, at 6 hours after APAP. In addition, cultured hepatocytes from RIP3-deficient mice showed reduced injury compared to wild-type cells after 24 hours. Interestingly, APAP-induced mitochondrial translocation of dynamin-related protein 1 (Drp1), the initiator of mitochondrial fission, was inhibited by reduced RIP3 protein expression and the Drp1 inhibitor MDIVI reduced APAP-induced cell death at 24 hours. All of these protective effects were lost after 24 hours in vivo or 48 hours in vitro. CONCLUSION RIP3 is an early mediator of APAP hepatotoxicity, involving modulation of mitochondrial dysfunction and oxidant stress. Controlling RIP3 expression could be a promising new approach to reduce APAP-induced liver injury, but requires complementary strategies to control mitochondrial dysfunction for long-term protection.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | | | | | | | | | | |
Collapse
|
56
|
Chen R, Hou W, Zhang Q, Kang R, Fan XG, Tang D. Emerging role of high-mobility group box 1 (HMGB1) in liver diseases. Mol Med 2013; 19:357-66. [PMID: 24306421 DOI: 10.2119/molmed.2013.00099] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular pattern (DAMP) molecules are essential for the initiation of innate inflammatory responses to infection and injury. The prototypic DAMP molecule, high-mobility group box 1 (HMGB1), is an abundant architectural chromosomal protein that has location-specific biological functions: within the nucleus as a DNA chaperone, within the cytosol to sustain autophagy and outside the cell as a DAMP molecule. Recent research indicates that aberrant activation of HMGB1 signaling can promote the onset of inflammatory and autoimmune diseases, raising interest in the development of therapeutic strategies to control their function. The importance of HMGB1 activation in various forms of liver disease in relation to liver damage, steatosis, inflammation, fibrosis, tumorigenesis and regeneration is discussed in this review.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
57
|
Possamai LA, McPhail MJW, Quaglia A, Zingarelli V, Abeles RD, Tidswell R, Puthucheary Z, Rawal J, Karvellas CJ, Leslie EM, Hughes RD, Ma Y, Jassem W, Shawcross DL, Bernal W, Dharwan A, Heaton ND, Thursz M, Wendon JA, Mitry RR, Antoniades CG. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*. Crit Care Med 2013; 41:2543-50. [PMID: 23949472 PMCID: PMC3939768 DOI: 10.1097/ccm.0b013e31829791a2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure. DESIGN AND SETTING A prospective observational study in two tertiary liver transplant units. PATIENTS Eighty-eight patients with acetaminophen-induced acute liver failure were recruited. Control groups included patients with nonacetaminophen-induced acute liver failure (n = 13), nonhepatic multiple organ failure (n = 28), chronic liver disease (n = 19), and healthy controls (n = 11). MEASUREMENTS Total and caspase-cleaved cytokeratin-18 (M65 and M30) measured at admission and sequentially on days 3, 7, and 10 following admission. Levels were also determined from hepatic vein, portal vein, and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from patients with acetaminophen-induced acute liver failure were assessed for apoptosis-associated proteins, and histological assessment of liver tissue was performed. MAIN RESULTS Admission M30 levels were significantly elevated in acetaminophen-induced acute liver failure and non-acetaminophen induced acute liver failure patients compared with multiple organ failure, chronic liver disease, and healthy controls. Admission M30 levels correlated with outcome with area under receiver operating characteristic of 0.755 (0.639-0.885, p < 0.001). Peak levels in patients with acute liver failure were seen at admission then fell significantly but did not normalize over 10 days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in patients with acetaminophen-induced acute liver failure (p = 0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in acetaminophen-induced acute liver failure compared with controls (p < 0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. CONCLUSIONS Hepatocellular apoptosis occurs in the early phases of human acetaminophen-induced acute liver failure, peaking on day 1 of hospital admission, and correlates strongly with poor outcome. Hepatic regenerative/tissue repair responses prevail during the later stages of acute liver failure where elevated levels of M30 are likely to reflect epithelial cell death in extrahepatic organs.
Collapse
Affiliation(s)
| | - Mark JW McPhail
- Department of Hepatology, Imperial College London
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Alberto Quaglia
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Valentina Zingarelli
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - R Daniel Abeles
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | | | - Zudin Puthucheary
- Institute of Human Health and Performance, University College London
- Department of Asthma Allergy and Lung Biology, King’s College London
| | - Jakirty Rawal
- Institute of Human Health and Performance, University College London
| | | | | | - Robin D Hughes
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Yun Ma
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Wayel Jassem
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Debbie L Shawcross
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - William Bernal
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | | | - Nigel D Heaton
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Mark Thursz
- Department of Hepatology, Imperial College London
| | - Julia A Wendon
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | - Ragai R Mitry
- Institute of Liver Studies at King’s College School of Medicine at King’s College Hospital
| | | |
Collapse
|
58
|
Hohmann MSN, Cardoso RDR, Pinho-Ribeiro FA, Crespigio J, Cunha TM, Alves-Filho JC, da Silva RV, Pinge-Filho P, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. BIOMED RESEARCH INTERNATIONAL 2013; 2013:627046. [PMID: 24288682 PMCID: PMC3832964 DOI: 10.1155/2013/627046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023]
Abstract
5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO⁻/⁻) mice and background wild type mice were challenged with APAP (0.3-6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB₄, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO⁻/⁻ mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α , IFN- γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91(phox) mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2'-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO⁻/⁻ mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage.
Collapse
Affiliation(s)
- Miriam S. N. Hohmann
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Renato D. R. Cardoso
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Felipe A. Pinho-Ribeiro
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Jefferson Crespigio
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Rosiane V. da Silva
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Phileno Pinge-Filho
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| | - Sergio H. Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Health Sciences Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380, Cx. Postal 10011, 86051-990 Londrina, PR, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Biological Science Centre, State University of Londrina, Rodovia Celso Garcia Cid Pr 445, Km 380. Cx. Postal 6001, 86051-990 Londrina PR, Brazil
| |
Collapse
|
59
|
Woolbright BL, Antoine DJ, Jenkins RE, Bajt ML, Park BK, Jaeschke H. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 2013; 273:524-31. [PMID: 24096036 DOI: 10.1016/j.taap.2013.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
Abstract
Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6-72 h, or sham operation. Another group of mice were given d-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48-72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | |
Collapse
|
60
|
Inhibition of high-mobility group box 1 as therapeutic option in autoimmune disease: lessons from animal models. Curr Opin Rheumatol 2013; 25:254-9. [PMID: 23249831 DOI: 10.1097/bor.0b013e32835cee2d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW High-mobility group box 1 (HMGB1) is a molecule that has gained much attention in the last couple of years as an important player in innate immune responses and modulating factor in several (auto)immune diseases. Furthermore, advancements have been made in identifying the diverse functions that HMGB1 can play in the body by studying its receptors, pathways and effects. This review will focus on the modulation of HMGB1 in animal models of (auto)immune diseases. RECENT FINDINGS In different disease models like sepsis, ischemia-reperfusion and arthritis, HMGB1-blocking therapies have been tested and the disease course was shown to be ameliorated. SUMMARY These findings indicate that HMGB1 is an important mediator in innate immunity, inflammation and sterile injury. Furthermore, HMGB1 might be a new therapeutic target in inflammation and autoimmune diseases, which may be translated to the clinic.
Collapse
|
61
|
Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013; 93:865-73. [PMID: 23446148 PMCID: PMC4051189 DOI: 10.1189/jlb.1212662] [Citation(s) in RCA: 424] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 01/09/2023] Open
Abstract
HMGB1 is a ubiquitous nuclear protein present in almost all cell types. In addition to its intracellular functions, HMGB1 can be extracellularly released, where it mediates activation of innate immune responses, including chemotaxis and cytokine release. HMGB1 contains three conserved redox-sensitive cysteines (C23, C45, and C106); modification of these cysteines determines the bioactivity of extracellular HMGB1. Firstly, the cytokine-stimulating activity of HMGB1 requires C23 and C45 to be in a disulfide linkage, at the same time that C106 must remain in its reduced form as a thiol. This distinctive molecular conformation enables HMGB1 to bind and signal via the TLR4/MD-2 complex to induce cytokine release in macrophages. Secondly, for HMGB1 to act as a chemotactic mediator, all three cysteines must be in the reduced form. This all-thiol HMGB1 exerts its chemotactic activity to initiate inflammation by forming a heterocomplex with CXCL12; that complex binds exclusively to CXCR4 to initiate chemotaxis. Thirdly, binding of the HMGB1 to CXCR4 or to TLR4 is completely prevented by all-cysteine oxidation. Also, the initial post-translational redox modifications of HMGB1 are reversible processes, enabling HMGB1 to shift from acting as a chemotactic factor to acting as a cytokine and vice versa. Lastly, post-translational acetylation of key lysine residues within NLSs of HMGB1 affects HMGB1 to promote inflammation; hyperacetylation of HMGB1 shifts its equilibrium from a predominant nuclear location toward a cytosolic and subsequent extracellular presence. Hence, post-translational modifications of HMGB1 determine its role in inflammation and immunity.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | | | | | |
Collapse
|
62
|
Williams CD, McGill MR, Farhood A, Jaeschke H. Fas receptor-deficient lpr mice are protected against acetaminophen hepatotoxicity due to higher glutathione synthesis and enhanced detoxification of oxidant stress. Food Chem Toxicol 2013; 58:228-35. [PMID: 23628456 DOI: 10.1016/j.fct.2013.04.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is a classical model of hepatocellular necrosis; however, the involvement of the Fas receptor in the pathophysiology remains controversial. Fas receptor-deficient (lpr) and C57BL/6 mice were treated with APAP to compare the mechanisms of hepatotoxicity. Lpr mice were partially protected against APAP hepatotoxicity as indicated by reduced plasma ALT and GDH levels and liver necrosis. Hepatic Cyp2e1 protein, adduct formation and hepatic glutathione (GSH) depletion were similar, demonstrating equivalent reactive metabolite generation. There was no difference in cytokine formation or hepatic neutrophil recruitment. Interestingly, hepatic GSH recovered faster in lpr mice than in wild type animals resulting in enhanced detoxification of reactive oxygen species. Driving the increased GSH levels, mRNA induction and protein expression of glutamate-cysteine ligase (gclc) were higher in lpr mice. Inducible nitric oxide synthase (iNOS) mRNA and protein levels at 6h were significantly lower in lpr mice, which correlated with reduced nitrotyrosine staining. Heat shock protein 70 (Hsp70) mRNA levels were substantially higher in lpr mice after APAP. CONCLUSION Our data suggest that the faster recovery of hepatic GSH levels during oxidant stress and peroxynitrite formation, reduced iNOS expression and enhanced induction of Hsp70 attenuated the susceptibility to APAP-induced cell death in lpr mice.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
63
|
Corsini A, Ganey P, Ju C, Kaplowitz N, Pessayre D, Roth R, Watkins PB, Albassam M, Liu B, Stancic S, Suter L, Bortolini M. Current challenges and controversies in drug-induced liver injury. Drug Saf 2013. [PMID: 23137150 DOI: 10.2165/11632970-000000000-00000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current key challenges and controversies encountered in the identification of potentially hepatotoxic drugs and the assessment of drug-induced liver injury (DILI) are covered in this article. There is substantial debate over the classification of DILI itself, including the definition and validity of terms such as 'intrinsic' and 'idiosyncratic'. So-called idiosyncratic DILI is typically rare and requires one or more susceptibility factors in individuals. Consequently, it has been difficult to reproduce in animal models, which has limited the understanding of its underlying mechanisms despite numerous hypotheses. Advances in predictive models would also help to enable preclinical elimination of drug candidates and development of novel biomarkers. A small number of liver laboratory tests have been routinely used to help identify DILI, but their interpretation can be limited and confounded by multiple factors. Improved preclinical and clinical biomarkers are therefore needed to accurately detect early signals of liver injury, distinguish drug hepatotoxicity from other forms of liver injury, and differentiate mild from clinically important liver injury. A range of potentially useful biomarkers are emerging, although so far most have only been used preclinically, with only a few validated and used in the clinic for specific circumstances. Advances in the development of genomic biomarkers will improve the prediction and detection of hepatic injury in future. Establishing a definitive clinical diagnosis of DILI can be difficult, since it is based on circumstantial evidence by excluding other aetiologies and, when possible, identifying a drug-specific signature. DILI signals based on standard liver test abnormalities may be affected by underlying diseases such as hepatitis B and C, HIV and cancer, as well as the concomitant use of hepatotoxic drugs to treat some of these conditions. Therefore, a modified approach to DILI assessment is justified in these special populations and a suggested framework is presented that takes into account underlying disease when evaluating DILI signals in individuals. Detection of idiosyncratic DILI should, in some respects, be easier in the postmarketing setting compared with the clinical development programme, since there is a much larger and more varied patient population exposure over longer timeframes. However, postmarketing safety surveillance is currently limited by the quantity and quality of information available to make an accurate diagnosis, the lack of a control group and the rarity of cases. The pooling of multiple healthcare databases, which could potentially contain different types of patient data, is advised to address some of these deficiencies.
Collapse
Affiliation(s)
- Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universit degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wang W, Sun L, Deng Y, Tang J. Synergistic effects of antibodies against high-mobility group box 1 and tumor necrosis factor-α antibodies on D-(+)-galactosamine hydrochloride/lipopolysaccharide-induced acute liver failure. FEBS J 2013; 280:1409-19. [PMID: 23331758 DOI: 10.1111/febs.12132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
High-mobility group box 1 (HMGB1) protein is released into the serum after tissue damage, and serves as a warning signal to enhance the inflammatory response. Acute liver injury is one of the diseases that starts with tissue damage and ends with systemic inflammation. We used D-(+)-galactosamine hydrochloride (D-GalN)/lipopolysaccharide (LPS)-treated mice as an acute liver injury model to explore the functions of HMGB1 in more detail. HMGB1 is released into the serum at a very early stage of D-GalN/LPS-induced acute liver injury. It upregulates the expression of tumor necrosis factor-α (TNF-α), interleukin-6, inducible nitric oxide synthase, and tissue factor. TNF-α and HMGB1 form a positive feedback loop to amplify the downstream signals. mAbs against HMGB1 and TNF-α have synergistic effects in protecting mice from D-GalN/LPS-induced acute liver failure. The results suggest that HMGB1 is a key mediator in D-GalN/LPS-induced acute liver injury. Tissue damage and cell necrosis shortly after administration of D-GalN and LPS lead to early HMGB1 release, and HMGB1 acts synergistically with TNF-α to promote pathological processes in acute liver failure.
Collapse
Affiliation(s)
- Wei Wang
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
65
|
Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013; 55:279-89. [PMID: 23353004 DOI: 10.1016/j.fct.2012.12.063] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
Extracts from medicinal plants, many of which have been used for centuries, are increasingly tested in models of hepatotoxicity. One of the most popular models to evaluate the hepatoprotective potential of natural products is acetaminophen (APAP)-induced liver injury, although other hepatotoxicity models such as carbon tetrachloride, thioacetamide, ethanol and endotoxin are occasionally used. APAP overdose is a clinically relevant model of drug-induced liver injury. Critical mechanisms and signaling pathways, which trigger necrotic cell death and sterile inflammation, are discussed. Although there is increasing understanding of the pathophysiology of APAP-induced liver injury, the mechanism is complex and prone to misinterpretation, especially when unknown chemicals such as plant extracts are tested. This review discusses the fundamental aspects that need to be considered when using this model, such as selection of the animal species or in vitro system, timing and dose-responses of signaling events, metabolic activation and protein adduct formation, the role of lipid peroxidation and apoptotic versus necrotic cell death, and the impact of the ensuing sterile inflammatory response. The goal is to enable researchers to select the appropriate model and experimental conditions for testing of natural products that will yield clinically relevant results and allow valid interpretations of the pharmacological mechanisms.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
66
|
|
67
|
Williams DP, Shipley R, Ellis MJ, Webb S, Ward J, Gardner I, Creton S. Novel in vitro and mathematical models for the prediction of chemical toxicity. Toxicol Res (Camb) 2013; 2:40-59. [PMID: 26966512 PMCID: PMC4765367 DOI: 10.1039/c2tx20031g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/24/2012] [Indexed: 01/17/2023] Open
Abstract
The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.
Collapse
Affiliation(s)
- Dominic P Williams
- MRC Centre for Drug Safety Science , Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine , The University of Liverpool , Sherrington Building , Ashton St. , Liverpool , L69 3GE , UK . ; ; Tel: +44 (0)151 794 5791
| | - Rebecca Shipley
- Department of Mechanical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Marianne J Ellis
- Department of Chemical Engineering , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Steve Webb
- Department of Mathematics and Statistics , University of Strathclyde , Livingstone Tower , 26 Richmond Street , Glasgow , G1 1XH , UK
| | - John Ward
- School of Mathematical Sciences , Loughborough University , Loughborough , LE11 3TU , UK
| | - Iain Gardner
- Simcyp Limited , Blades Enterprise Centre , John Street , Sheffield S2 4SU , UK
| | - Stuart Creton
- NC3Rs Gibbs Building , 215 Euston Road , London , NW1 2BE , UK
| |
Collapse
|
68
|
|
69
|
van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion. Cytokine Growth Factor Rev 2012; 23:69-84. [PMID: 22609105 DOI: 10.1016/j.cytogfr.2012.04.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
Hepatic ischemia and reperfusion elicits an immune response that lacks a microbial constituent yet poses a potentially lethal threat to the host. In this sterile setting, the immune system is alarmed by endogenous danger signals that are release by stressed and dying liver cells. The detection of these immunogenic messengers by sentinel leukocyte populations constitutes the proximal trigger for a self-perpetuating cycle of inflammation, in which consecutive waves of cytokines and chemokines orchestrate the influx of various leukocyte subsets that ultimately confer tissue destruction. This review focuses on the temporal organization of sterile hepatic inflammation, using surgery-induced trauma as a template disease state.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
70
|
Yang R, Zhang S, Cotoia A, Oksala N, Zhu S, Tenhunen J. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity. BMC Gastroenterol 2012; 12:45. [PMID: 22569100 PMCID: PMC3444430 DOI: 10.1186/1471-230x-12-45] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/08/2012] [Indexed: 02/06/2023] Open
Abstract
Background Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Necrotic tissue releases high mobility group B1 (HMGB1), and HMGB1 contributes to liver injury. Even though blockade of HMGB1 does not protect against APAP-induced acute liver injury (ALI) at 9 h time point, the later time points are not studied and the role of HMGB1 in APAP overdose is unknown, it is possible that neutralization of HMGB1 might improve hepatocyte regeneration. This study aims to test whether blockade of HMGB1 improves hepatocyte regeneration after APAP overdose. Methods Male C57BL/6 mice were treated with a single dose of APAP (350 mg/kg). 2 hrs after APAP administration, the APAP challenged mice were randomized to receive treatment with either anti-HMGB1 antibody (400 μg per dose) or non-immune (sham) IgG every 24 hours for a total of 2 doses. Results 24 hrs after APAP injection, anti-HMGB1 therapy instead of sham IgG therapy significantly improved hepatocyte regeneration microscopically; 48 hrs after APAP challenge, the sham IgG treated mice showed 14.6% hepatic necrosis; in contrast, blockade of HMGB1 significantly decreased serum transaminases (ALT and AST), markedly reduced the number of hepatic inflammatory cells infiltration and restored liver structure to nearly normal; this beneficial effect was associated with enhanced hepatic NF-κB DNA binding and increased the expression of cyclin D1, two important factors related to hepatocyte regeneration. Conclusion HMGB1 impairs hepatocyte regeneration after APAP overdose; Blockade of HMGB1 enhances liver recovery and may present a novel therapy to treat APAP overdose.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Intensive Care Medicine, University of Tampere Medical School, Tampere 33014, Finland.
| | | | | | | | | | | |
Collapse
|
71
|
RETRACTED: Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity. J Hepatol 2012; 56:1070-1079. [PMID: 22266604 PMCID: PMC4127883 DOI: 10.1016/j.jhep.2011.12.019] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Full length keratin-18 (FL-K18) and High Mobility Group Box-1 (HMGB1) represent circulating indicators of necrosis during acetaminophen (APAP) hepatotoxicity in vivo. In addition, the caspase-cleaved fragment of K18 (cK18) and hyper-acetylated HMGB1 represent serum indicators of apoptosis and immune cell activation, respectively. The study aim was to assess their mechanistic utility to establish the balance between apoptosis, necrosis, and immune cell activation throughout the time course of clinical APAP hepatotoxicity. METHODS HMGB1 (total, acetylated) and K18 (apoptotic, necrotic) were identified and quantified by novel LC-MS/MS assays in APAP overdose patients (n=78). RESULTS HMGB1 (total; 15.4±1.9ng/ml, p<0.01, acetylated; 5.4±2.6ng/ml, p<0.001), cK18 (5649.8±721.0U/L, p<0.01), and FL-K18 (54770.2±6717.0U/L, p<0.005) were elevated in the sera of APAP overdose patients with liver injury compared to overdose patients without liver injury and healthy volunteers. HMGB1 and FL-K18 correlated with alanine aminotransferase (ALT) activity (R(2)=0.60 and 0.58, respectively, p<0.0001) and prothrombin time (R(2)=0.62 and 0.71, respectively, p<0.0001). Increased total and acetylated HMGB1 and FL-K18 were associated with worse prognosis (King's College Criteria) or patients that died/required liver transplant compared to spontaneous survivors (all p<0.05-0.001), a finding not reflected by ALT and supported by ROC analysis. Acetylated HMGB1 was a better predictor of outcome than the other markers of cell death. CONCLUSIONS K18 and HMGB1 represent blood-based tools to investigate the cell death balance clinical APAP hepatotoxicity. Activation of the immune response was seen later in the time course as shown by the distinct profile of acetylated HMGB1 and was associated with worse outcome.
Collapse
|
72
|
Zaldivar MM, Berres ML, Sahin H, Nellen A, Heinrichs D, Schmitz P, Gassler N, Streetz KL, Trautwein C, Wasmuth HE. The chemokine receptor CXCR3 limits injury after acute toxic liver damage. J Transl Med 2012; 92:724-734. [PMID: 22430509 DOI: 10.1038/labinvest.2012.48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although acute liver failure is a rare disease, its presence is associated with high morbidity and mortality in affected patients. While a contribution of the immune system to the outcome of toxic liver failure is anticipated, functionally relevant immune cell receptors for liver cell damage need to be better defined. We here investigate the relevance of the chemokine receptor CXCR3, which is important for hepatic immune cell infiltration, in a model of experimental acute liver failure. Liver injury was induced by a single intraperitoneal injection of carbon tetrachloride (CCl(4)) in CXCR3(-/-), CCR1(-/-), CCR5(-/-) and wild-type mice. In this model, CXCR3(-/-) mice displayed augmented liver damage compared with all other mouse strains as assessed by liver histology and serum transaminases 24 and 72 h after injury. Phenotypically, CXCR3(-/-) mice had significantly reduced intrahepatic NK and NKT cells after injury at all investigated time points (all P<0.05), but strongly elevated expression levels of IL1-β, TNF-α and IFN-γ. In line with a functional role of innate immune cells, wild-type mice depleted for NK cells with an anti-ASIALO GM1 antibody before liver injury also displayed increased liver injury after CCl(4) challenge. CXCR3(-/-) and NK cell-depleted mice show reduced apoptotic liver cells (TUNEL assay), but more necrotic hepatocytes. Functionally, the augmented liver cell necrosis in CXCR3(-/-) and NK cell-depleted mice was associated with increased expression of high mobility group 1 (HMGB1) protein and a consecutive enhanced infiltration of neutrophils into the liver. In conclusion, the results demonstrate a primarily unexpected beneficial role of CXCR3 in acute toxic liver injury. These findings should be taken into account when planning trials with CXCR3 antagonists.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/pharmacology
- HMGB1 Protein/immunology
- HMGB1 Protein/metabolism
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Liver Failure, Acute/chemically induced
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Receptors, CCR1/immunology
- Receptors, CCR1/metabolism
- Receptors, CCR5/immunology
- Receptors, CCR5/metabolism
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR3/metabolism
- Transaminases/metabolism
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
|
73
|
Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ, Antoine DJ. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 2012; 18:250-9. [PMID: 22105604 DOI: 10.2119/molmed.2011.00389] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/07/2011] [Indexed: 11/06/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is released passively during cell injury and necrosis, and secreted actively by immune cells. HMGB1 contains three conserved redox-sensitive cysteine residues: C23 and C45 can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. Using tandem mass spectrometric analysis, we now have established that the C106 thiol and the C23-C45 disulfide bond are required for HMGB1 to induce nuclear NF-κB translocation and tumor necrosis factor (TNF) production in macrophages. Both irreversible oxidation to sulphonates and complete reduction to thiols of these cysteines inhibited TNF production markedly. In a proof of concept murine model of hepatic necrosis induced by acetaminophen, during inflammation, the predominant form of serum HMGB1 is the active one, containing a C106 thiol group and a disulfide bond between C23 and C45, whereas the inactive form of HMGB1, containing terminally oxidized cysteines, accumulates during inflammation resolution and hepatic regeneration. These results reveal critical posttranslational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during pathogenesis.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Hreggvidsdóttir HS, Lundberg AM, Aveberger AC, Klevenvall L, Andersson U, Harris HE. High mobility group box protein 1 (HMGB1)-partner molecule complexes enhance cytokine production by signaling through the partner molecule receptor. Mol Med 2012; 18:224-30. [PMID: 22076468 DOI: 10.2119/molmed.2011.00327] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/03/2011] [Indexed: 01/08/2023] Open
Abstract
The nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators. Such complexes have the ability to enhance the induced immune response up to 100-fold, compared with induction by the ligand alone. To clarify the mechanisms for these strong synergistic effects, we studied receptor requirements. Interleukin (IL)-6 production was assessed in supernatants from cultured peritoneal macrophages from mice each deficient in one of the HMGB1 receptors (receptor for advanced glycation end products [RAGE], TLR2 or TLR4) or from wild-type controls. The cultures were stimulated with the TLR4 ligand lipopolysaccaride (LPS), the TLR2 ligand Pam₃CysSerLys₄ (Pam₃CSK₄), noninflammatory HMGB1 or each TLR ligand in complex with noninflammatory HMGB1. The activity of the HMGB1-TLR ligand complexes relied on engagement of the same receptor as for the noncomplexed TLR ligand, since HMGB1-LPS complexes used TLR4 and HMGB1-Pam₃CSK₄ complexes used TLR2. Deletion of any of the intracellular adaptor molecules used by TLR2 (myeloid differentiation factor-88 [MyD88], TIR domain-containing adaptor protein [TIRAP]) or TLR4 (MyD88, TIRAP, TIR domain-containing adaptor-inducing interferon-β [TRIF], TRIF-related adaptor molecule [TRAM]) had similar effects on HMGB1 complex activation compared with noncomplexed LPS or Pam₃CSK₄. This result implies that the enhancing effects of HMGB1-partner molecule complexes are not regulated by the induction of additional signaling cascades. Elucidating HMGB1 receptor usage in processes where HMGB1 acts alone or in complex with other molecules is essential for the understanding of basic HMGB1 biology and for designing HMGB1-targeted therapies.
Collapse
|
75
|
Beyer C, Stearns NA, Giessl A, Distler JHW, Schett G, Pisetsky DS. The extracellular release of DNA and HMGB1 from Jurkat T cells during in vitro necrotic cell death. Innate Immun 2012; 18:727-37. [PMID: 22344226 DOI: 10.1177/1753425912437981] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In innate immunity, dead and dying cells release internal constituents that can serve as damage-associated molecular patterns (DAMPs) or alarmins. This release occurs more abundantly during necrosis than apoptosis and may account for the differences in the immunologic properties of these death forms. To elucidate DAMP release in necrosis, we compared the levels of two nuclear molecules (DNA and HMGB1, a non-histone protein with alarmin activity) in media following necrosis of Jurkat T cells by freeze-thawing, ethanol, heat or hydrogen peroxide treatment. In our experiments, DNA release was measured by fluorimetry with the dye PicoGreen, while HMGB1 was measured by Western blotting. As the results of our study show, each form of necrosis is associated with a distinct pattern of DNA and HMGB1 release with respect to kinetics and amounts. Of these, freeze-thawing produced the highest and most rapid increase in HMGB1 and DNA levels, although the released DNA was subject to nuclease digestion; in addition, freeze-thawing led to the production of particles measured by flow cytometry. Together, these results indicate that experimental necrosis leads to diverse patterns of nuclear molecule release which could affect their immunologic activity.
Collapse
Affiliation(s)
- Christian Beyer
- Department for Internal Medicine and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
76
|
Abstract
HMGB1 is a non-histone nuclear protein that can serve as an alarmin to drive the pathogenesis of inflammatory and autoimmune disease. Although primarily located in the cell nucleus, HMGB1 can translocate to the cytoplasm, as well as the extracellular space, during cell activation and cell death; during activation, HMGB1 can undergo post-translational modifications. The activity of HMGB1 varies with the redox states of the cysteine residues, which are required for binding to TLR4. In addition to stimulating cells directly, HMGB1 can form immunostimulatory complexes with cytokines and other endogenous and exogenous factors. In the synovia of patients with rheumatoid arthritis, as well as animal models of this disease, extranuclear expression of HMGB1 is increased and blockade of HMGB1 expression attenuates disease in animal models. In systemic lupus erythematosus, HMGB1 can be a component of immune complexes containing anti-DNA because of its interaction with DNA. In myositis, expression of HMGB1 is enhanced in inflamed muscle and can perturb muscle function. Together, these findings indicate that HMGB1 might be an important mediator and biomarker in rheumatic diseases as well as a target of new therapy.
Collapse
|
77
|
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44:88-106. [PMID: 22229890 DOI: 10.3109/03602532.2011.602688] [Citation(s) in RCA: 672] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through the formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and, eventually, to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in a collapse of mitochondrial membrane potential and cessation of adenosine triphosphate synthesis. In addition, the release of intermembrane proteins, such as apoptosis-inducing factor and endonuclease G, and their translocation to the nucleus, leads to nuclear DNA fragmentation. Together, these events trigger necrotic cell death. Alternatively, the release of cytochrome c and other proapoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with the formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|
78
|
Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 2012; 32:8-20. [PMID: 21745276 PMCID: PMC3586825 DOI: 10.1111/j.1478-3231.2011.02501.x] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity because of overdose is the most frequent cause of acute liver failure in the western world. Metabolic activation of APAP and protein adduct formation, mitochondrial dysfunction, oxidant stress, peroxynitrite formation and nuclear DNA fragmentation are critical intracellular events in hepatocytes. However, the early cell necrosis causes the release of a number of mediators such as high-mobility group box 1 protein, DNA fragments, heat shock proteins (HSPs) and others (collectively named damage-associated molecular patterns), which can be recognized by toll-like receptors on macrophages, and leads to their activation with cytokine and chemokine formation. Although pro-inflammatory mediators recruit inflammatory cells (neutrophils, monocytes) into the liver, neither the infiltrating cells nor the activated resident macrophages cause any direct cytotoxicity. In contrast, pro- and anti-inflammatory cytokines and chemokines can directly promote intracellular injury mechanisms by inducing nitric oxide synthase or inhibit cell death mechanisms by the expression of acute-phase proteins (HSPs, heme oxygenase-1) and promote hepatocyte proliferation. In addition, the newly recruited macrophages (M2) and potentially neutrophils are involved in the removal of necrotic cell debris in preparation for tissue repair and resolution of the inflammatory response. Thus, as discussed in detail in this review, the preponderance of experimental evidence suggests that the extensive sterile inflammatory response during APAP hepatotoxicity is predominantly beneficial by limiting the formation and the impact of pro-inflammatory mediators and by promoting tissue repair.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
79
|
Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicol Appl Pharmacol 2011; 257:449-58. [PMID: 22023962 DOI: 10.1016/j.taap.2011.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only <0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, >20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. CONCLUSION Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change.
Collapse
|
80
|
Affiliation(s)
- U Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
81
|
Pisetsky D. Cell death in the pathogenesis of immune-mediated diseases: the role of HMGB1 and DAMP-PAMP complexes. Swiss Med Wkly 2011; 141:w13256. [PMID: 21877298 DOI: 10.4414/smw.2011.13256] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cell death is a ubiquitous process whose immunological consequences can influence the course of infectious, autoimmune and inflammatory diseases. While cell death has long been dichotomised in terms of apoptosis and necrosis, other forms of death can occur and they vary in their capacity to stimulate as well as inhibit inflammation. The pro-inflammatory activity of dead cells results from a wide variety of intracellular molecules that are released as cell permeability increases during death. These molecules have been termed as DAMPs (damage associated molecular patterns) or alarmins. Among these DAMPs, HMGB1, a non-histone nuclear protein, serves as the prototype. Although HMGB1 was originally thought to act alone as a cytokine, recent studies suggest that its immunological effects result from complexes of HMGB1 with either other DAMPs or with PAMPs (pathogen associated molecular patterns). Studies on the role of HMGB1 in pathogenesis suggest that the formation of extracellular complexes is an important mechanism for generating pro-inflammatory signals during cell death and therefore could be a potential target of new therapy.
Collapse
Affiliation(s)
- D Pisetsky
- Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705, USA.
| |
Collapse
|
82
|
Wähämaa H, Schierbeck H, Hreggvidsdottir HS, Palmblad K, Aveberger AC, Andersson U, Harris HE. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res Ther 2011; 13:R136. [PMID: 21871094 PMCID: PMC3239379 DOI: 10.1186/ar3450] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/21/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022] Open
Abstract
Introduction In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). Furthermore, we examined the toll-like receptor (TLR) 4 and IL-1RI requirement for the cytokine-enhancing effects of the investigated HMGB1-ligand complexes. Methods Synovial fibroblasts obtained from rheumatoid arthritis (RA) and osteoarthritis (OA) patients were stimulated with HMGB1 alone or in complex with LPS, IL-1α or IL-1β. Tumour necrosis factor (TNF) production was determined by enzyme-linked immunospot assay (ELISPOT) assessment. Levels of IL-10, IL-1-β, IL-6 and IL-8 were measured using Cytokine Bead Array and matrix metalloproteinase (MMP) 3 production was determined by ELISA. Results Stimulation with HMGB1 in complex with LPS, IL-1α or IL-1β enhanced production of TNF, IL-6 and IL-8. HMGB1 in complex with IL-1β increased MMP production from both RASF and OASF. The cytokine production was inhibited by specific receptor blockade using detoxified LPS or IL-1 receptor antagonist, indicating that the synergistic effects were mediated through the partner ligand-reciprocal receptors TLR4 and IL-1RI, respectively. Conclusions HMGB1 in complex with LPS, IL-1α or IL-1β boosted proinflammatory cytokine- and MMP production in synovial fibroblasts from RA and OA patients. A mechanism for the pathogenic role of HMGB1 in arthritis could thus be through enhancement of inflammatory and destructive mechanisms induced by other proinflammatory mediators present in the arthritic joint.
Collapse
Affiliation(s)
- Heidi Wähämaa
- Department of Women's and Children's Health, Pediatric Rheumatology Research Unit Karolinska Institutet, Astrid Lindgren Children Hospital/Karolinska University Hospital, Stockholm, 17176, Sweden.
| | | | | | | | | | | | | |
Collapse
|
83
|
Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A, Williams DP, Kanneganti TD, Park BK, Jaeschke H. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol Appl Pharmacol 2011; 252:289-97. [PMID: 21396389 DOI: 10.1016/j.taap.2011.03.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 12/20/2022]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1β (IL-1β), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1β is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300mg/kg APAP for 24h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1β and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|