51
|
Gao X, Liu Y, Li Y, Fan H, Wu R, Zhang R, Faubert B, He YY, Bissonnette MB, Xia S, Chen D, Mao H, Boggon TJ, Chen J. Lyso-PAF, a biologically inactive phospholipid, contributes to RAF1 activation. Mol Cell 2022; 82:1992-2005.e9. [PMID: 35417664 DOI: 10.1016/j.molcel.2022.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Phospholipase A2, group VII (PLA2G7) is widely recognized as a secreted, lipoprotein-associated PLA2 in plasma that converts phospholipid platelet-activating factor (PAF) to a biologically inactive product Lyso-PAF during inflammatory response. We report that intracellular PLA2G7 is selectively important for cell proliferation and tumor growth potential of melanoma cells expressing mutant NRAS, but not cells expressing BRAF V600E. Mechanistically, PLA2G7 signals through its product Lyso-PAF to contribute to RAF1 activation by mutant NRAS, which is bypassed by BRAF V600E. Intracellular Lyso-PAF promotes p21-activated kinase 2 (PAK2) activation by binding to its catalytic domain and altering ATP kinetics, while PAK2 significantly contributes to S338-phosphorylation of RAF1 in addition to PAK1. Furthermore, the PLA2G7-PAK2 axis is also required for full activation of RAF1 in cells stimulated by epidermal growth factor (EGF) or cancer cells expressing mutant KRAS. Thus, PLA2G7 and Lyso-PAF exhibit intracellular signaling functions as key elements of RAS-RAF1 signaling.
Collapse
Affiliation(s)
- Xue Gao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Yijie Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rukang Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Brandon Faubert
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yu-Ying He
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Marc B Bissonnette
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
52
|
Boscolo E, Pastura P, Schrenk S, Goines J, Kang R, Pillis D, Malik P, Le Cras TD. NRAS Q61R mutation in human endothelial cells causes vascular malformations. Angiogenesis 2022; 25:331-342. [PMID: 35391614 DOI: 10.1007/s10456-022-09836-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Somatic mutations in NRAS drive the pathogenesis of melanoma and other cancers but their role in vascular anomalies and specifically human endothelial cells is unclear. The goals of this study were to determine whether the somatic-activating NRASQ61R mutation in human endothelial cells induces abnormal angiogenesis and to develop in vitro and in vivo models to identify disease-causing pathways and test inhibitors. Here, we used mutant NRASQ61R and wild-type NRAS (NRASWT) expressing human endothelial cells in in vitro and in vivo angiogenesis models. These studies demonstrated that expression of NRASQ61R in human endothelial cells caused a shift to an abnormal spindle-shaped morphology, increased proliferation, and migration. NRASQ61R endothelial cells had increased phosphorylation of ERK compared to NRASWT cells indicating hyperactivation of MAPK/ERK pathways. NRASQ61R mutant endothelial cells generated abnormal enlarged vascular channels in a 3D fibrin gel model and in vivo, in xenografts in nude mice. These studies demonstrate that NRASQ61R can drive abnormal angiogenesis in human endothelial cells. Treatment with MAP kinase inhibitor U0126 prevented the change to a spindle-shaped morphology in NRASQ61R endothelial cells, whereas mTOR inhibitor rapamycin did not.
Collapse
Affiliation(s)
- Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| | - Patricia Pastura
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Sandra Schrenk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Rachael Kang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Devin Pillis
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Punam Malik
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Timothy D Le Cras
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
53
|
Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol 2022; 32:338-350. [PMID: 35144882 DOI: 10.1016/j.tcb.2022.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Aging is a universal biological process that increases the risk of multiple diseases including cancer. Growing evidence shows that alterations in the genome and epigenome, driven by similar mechanisms, are found in both aged cells and cancer cells. In this review, we detail the genetic and epigenetic changes associated with normal aging and the mechanisms responsible for these changes. By highlighting genetic and epigenetic alterations in the context of tumorigenesis, cancer progression, and the aging tumor microenvironment, we examine the possible impacts of the normal aging process on malignant transformation. Finally, we examine the implications of age-related genetic and epigenetic alterations in both tumors and patients for the treatment of cancer.
Collapse
|
54
|
Novel treatment strategy for NRAS-mutated melanoma through a selective inhibitor of CD147/VEGFR-2 interaction. Oncogene 2022; 41:2254-2264. [PMID: 35217792 DOI: 10.1038/s41388-022-02244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
More than 70% of human NRASmut melanomas are resistant to MEK inhibitors highlighting the crucial need for efficient therapeutic strategies for these tumors. CD147, a membrane receptor, is overexpressed in most cancers including melanoma and is associated with poor prognosis. We show here that CD147i, a specific inhibitor of CD147/VEGFR-2 interaction represents a potential therapeutic strategy for NRASmut melanoma cells. It significantly inhibited the malignant properties of NRASmut melanomas ex vivo and in vivo. Importantly, NRASmut patient's-derived xenografts, which were resistant to MEKi, became sensitive when combined with CD147i leading to decreased proliferation ex vivo and tumor regression in vivo. Mechanistic studies revealed that CD147i effects were mediated through STAT3 pathway. These data bring a proof of concept on the impact of the inhibition of CD147/VEGFR-2 interaction on melanoma progression and represents a new therapeutic opportunity for NRASmut melanoma when combined with MEKi.
Collapse
|
55
|
Yelland T, Garcia E, Parry C, Kowalczyk D, Wojnowska M, Gohlke A, Zalar M, Cameron K, Goodwin G, Yu Q, Zhu PC, ElMaghloob Y, Pugliese A, Archibald L, Jamieson A, Chen YX, McArthur D, Bower J, Ismail S. Stabilization of the RAS:PDE6D Complex Is a Novel Strategy to Inhibit RAS Signaling. J Med Chem 2022; 65:1898-1914. [PMID: 35104933 PMCID: PMC8842248 DOI: 10.1021/acs.jmedchem.1c01265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
RAS is a major anticancer
drug target which requires membrane localization
to activate downstream signal transduction. The direct inhibition
of RAS has proven to be challenging. Here, we present a novel strategy
for targeting RAS by stabilizing its interaction with the prenyl-binding
protein PDE6D and disrupting its localization. Using rationally designed
RAS point mutations, we were able to stabilize the RAS:PDE6D complex
by increasing the affinity of RAS for PDE6D, which resulted in the
redirection of RAS to the cytoplasm and the primary cilium and inhibition
of oncogenic RAS/ERK signaling. We developed an SPR fragment screening
and identified fragments that bind at the KRAS:PDE6D interface, as
shown through cocrystal structures. Finally, we show that the stoichiometric
ratios of KRAS:PDE6D vary in different cell lines, suggesting that
the impact of this strategy might be cell-type-dependent. This study
forms the foundation from which a potential anticancer small-molecule
RAS:PDE6D complex stabilizer could be developed.
Collapse
Affiliation(s)
- Tamas Yelland
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Esther Garcia
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Charles Parry
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | | | - Marta Wojnowska
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Andrea Gohlke
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Matja Zalar
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,School of Chemical Engineering and Analytical Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Kenneth Cameron
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Gillian Goodwin
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Qing Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | - Angelo Pugliese
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Lewis Archibald
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Jamieson
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Duncan McArthur
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Justin Bower
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Shehab Ismail
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,Department of Chemistry, KU Leuven, Celestijnenlaan 200G, Heverlee 3001, Belgium
| |
Collapse
|
56
|
Su S, Chhabra G, Singh CK, Ndiaye MA, Ahmad N. PLK1 inhibition-based combination therapies for cancer management. Transl Oncol 2022; 16:101332. [PMID: 34973570 PMCID: PMC8728518 DOI: 10.1016/j.tranon.2021.101332] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase I (PLK1), a cell cycle regulating kinase, has been shown to have oncogenic function in several cancers. Although PLK1 inhibitors, such as BI2536, BI6727 (volasertib) and NMS-1286937 (onvansertib) are generally well-tolerated with a favorable pharmacokinetic profile, clinical successes are limited due to partial responses in cancer patients, especially those in advanced stages. Recently, combination therapies targeting multiple pathways are being tested for cancer management. In this review, we first discuss structure and function of PLK1, role of PLK1 in cancers, PLK1 specific inhibitors, and advantages of using combination therapy versus monotherapy followed by a critical account on PLK1-based combination therapies in cancer treatments, especially highlighting recent advancements and challenges. PLK1 inhibitors in combination with chemotherapy drugs and targeted small molecules have shown superior effects against cancer both in vitro and in vivo. PLK1-based combination therapies have shown increased apoptosis, disrupted cell cycle, and potential to overcome resistance in cancer cells/tissues over monotherapies. Further, with successes in preclinical experiments, researchers are validating such approaches in clinical trials. Although PLK1-based combination therapies have achieved initial success in clinical studies, there are examples where they have failed to improve patient survival. Therefore, further research is needed to identify and validate novel biologically informed co-targets for PLK1-based combinatorial therapies. Employing a network-based analysis, we identified potential PLK1 co-targets that could be examined further. In addition, understanding the mechanisms of synergism between PLK1 inhibitors and other agents may lead to a better approach on which agents to pair with PLK1 inhibition for optimum cancer treatment.
Collapse
Affiliation(s)
- Shengqin Su
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 7045, Madison, WI 53705, USA; William S. Middleton VA Medical Center, Madison, WI 53705, USA.
| |
Collapse
|
57
|
Rinonce HT, Sastri DJ, Trisnawati F, Kameswari B, Ferronika P, Irianiwati. The frequency and clinicopathological significance of NRAS mutations in primary cutaneous nodular melanoma in Indonesia. Cancer Rep (Hoboken) 2022; 5:e1454. [PMID: 34110110 PMCID: PMC8789608 DOI: 10.1002/cnr2.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Melanoma is a lethal skin malignancy with a high risk of metastasis, which prompts a need for research on treatment targets and prognostic factors. Recent studies show that the presence of neuroblastoma RAS viral oncogene homolog (NRAS) mutation can influence cell growth in melanomas. The NRAS mutation, which stimulates the mitogen-activated protein kinase (MAPK) signaling pathway, is associated with a lower survival rate. However, evidence from Indonesia population is still very rare. Further understanding of the role of NRAS mutations in Indonesian melanoma cases will be crucial in developing new management strategies for melanoma patients with NRAS mutations. AIMS To explore the frequency of NRAS mutations and their clinicopathological associations in patients with primary nodular cutaneous melanoma in Central Java and Yogyakarta, Indonesia. METHODS AND RESULTS Fifty-one paraffin-embedded tissue samples were collected from primary nodular skin melanoma cases between 2011 and 2019 from the two largest referral hospitals in Yogyakarta and Central Java, Indonesia. The NRAS mutation status was evaluated using qualitative real-time polymerase chain reaction (qRT-PCR). The association of NRAS mutation was analyzed with the following: age, gender, location, lymph node metastasis, ulceration, mitotic index, tumor-infiltrating lymphocytes (TILs), necrosis, tumor thickness, lymphovascular invasion (LVI), and tumor size. NRAS mutations were detected in 10 (19.6%) samples and predominantly observed (60%) in exon 2 (G12). These mutations were significantly correlated with lymph node metastases (p = .000); however, they were not associated with other variables analyzed in this study. CONCLUSIONS The prevalence of NRAS mutations in primary nodular cutaneous melanoma cases from Indonesia is consistent with previous studies and is significantly associated with increased lymph node metastases. However, the predominant mutation detected in exon 2 (G12) is different from previous studies conducted in other countries. This suggests that melanoma cases in Javanese people have different characteristics from other ethnicities.
Collapse
Affiliation(s)
- Hanggoro Tri Rinonce
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and NursingUniversitas Gadjah Mada/ Dr. Sardjito HospitalSlemanYogyakartaIndonesia
| | - Deflen Jumatul Sastri
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and NursingUniversitas Gadjah Mada/ Dr. Sardjito HospitalSlemanYogyakartaIndonesia
| | - Fita Trisnawati
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and NursingUniversitas Gadjah Mada/ Dr. Sardjito HospitalSlemanYogyakartaIndonesia
| | - Bidari Kameswari
- Department of Anatomical Pathologydr. Soeradji Tirtonegoro HospitalKlatenCentral JavaIndonesia
| | - Paranita Ferronika
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and NursingUniversitas Gadjah Mada/ Dr. Sardjito HospitalSlemanYogyakartaIndonesia
| | - Irianiwati
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and NursingUniversitas Gadjah Mada/ Dr. Sardjito HospitalSlemanYogyakartaIndonesia
| |
Collapse
|
58
|
Luo M, Chu EY. SnapshotDx Quiz: November 2021. J Invest Dermatol 2021. [DOI: 10.1016/j.jid.2021.08.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
59
|
Jandova J, Wondrak GT. Vemurafenib Drives Epithelial-to-Mesenchymal Transition Gene Expression in BRAF Inhibitor‒Resistant BRAF V600E/NRAS Q61K Melanoma Enhancing Tumor Growth and Metastasis in a Bioluminescent Murine Model. J Invest Dermatol 2021; 142:1456-1465.e1. [PMID: 34687745 PMCID: PMC9021323 DOI: 10.1016/j.jid.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 vs. BRAFi-resistant A375-BRAFV600E/NRASQ61K), we show that BRAFi (vemurafenib) treatment selectively targets BRAFV600E/NRASQ61K cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo. First, NanoString nCounter transcriptomic analysis identified the upregulation of specific gene expression networks (EMT and EMT to metastasis) as a function of NRASQ61K status. Strikingly, BRAFi treatment further exacerbated the upregulation of genes promoting EMT in BRAFV600E/NRASQ61K cells (with opposing downregulation of EMT-driver genes in the BRAFV600E/NRASQ61 genotype) as detected by EMT-focused RT2 Profiler qPCR array analysis. In BRAFV600E/NRASQ61K cells, BRAFi treatment enhanced proliferation and invasiveness, together with activation of phosphorylated protein kinase B (Ser473), with opposing phenotypic effects observable in BRAFV600E/NRASQ61 cells displaying downregulation of phosphorylated protein kinase B and phosphorylated extracellular signal-regulated kinase 1/2. In a SCID mouse bioluminescent melanoma metastasis model, BRAFi treatment enhanced lung tumor burden imposed by BRAFV600E/NRASQ61K cells while blocking BRAFV600E/NRASQ61 metastasis. These preclinical data document the BRAFi-driven enhancement of tumorigenesis and metastasis in BRAFi-resistant human BRAFV600E/NRASQ61K melanoma, a finding with potential clinical implications for patients with NRAS-driven BRAFi-resistant tumors receiving BRAFi treatment.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Georg T Wondrak
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA; UA Cancer Center, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
60
|
Jung T, Haist M, Kuske M, Grabbe S, Bros M. Immunomodulatory Properties of BRAF and MEK Inhibitors Used for Melanoma Therapy-Paradoxical ERK Activation and Beyond. Int J Mol Sci 2021; 22:ijms22189890. [PMID: 34576054 PMCID: PMC8469254 DOI: 10.3390/ijms22189890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
The advent of mitogen-activated protein kinase (MAPK) inhibitors that directly inhibit tumor growth and of immune checkpoint inhibitors (ICI) that boost effector T cell responses have strongly improved the treatment of metastatic melanoma. In about half of all melanoma patients, tumor growth is driven by gain-of-function mutations of BRAF (v-rat fibrosarcoma (Raf) murine sarcoma viral oncogene homolog B), which results in constitutive ERK activation. Patients with a BRAF mutation are regularly treated with a combination of BRAF and MEK (MAPK/ERK kinase) inhibitors. Next to the antiproliferative effects of BRAF/MEKi, accumulating preclinical evidence suggests that BRAF/MEKi exert immunomodulatory functions such as paradoxical ERK activation as well as additional effects in non-tumor cells. In this review, we present the current knowledge on the immunomodulatory functions of BRAF/MEKi as well as the non-intended effects of ICI and discuss the potential synergistic effects of ICI and MAPK inhibitors in melanoma treatment.
Collapse
|
61
|
Teo MYM, Fong JY, Lim WM, In LLA. Current Advances and Trends in KRAS Targeted Therapies for Colorectal Cancer. Mol Cancer Res 2021; 20:30-44. [PMID: 34462329 DOI: 10.1158/1541-7786.mcr-21-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Kirsten Rat Sarcoma (KRAS) gene somatic point mutations is one of the most prominently mutated proto-oncogenes known to date, and accounts for approximately 60% of all colorectal cancer cases. One of the most exciting drug development areas against colorectal cancer is the targeting of undruggable kinases and kinase-substrate molecules, although whether and how they can be integrated with other therapies remains a question. Current clinical trial data have provided supporting evidence on the use of combination treatment involving MEK inhibitors and either one of the PI3K inhibitors for patients with metastatic colorectal cancer to avoid the development of resistance and provide effective therapeutic outcome rather than using a single agent alone. Many clinical trials are also ongoing to evaluate different combinations of these pathway inhibitors in combination with immunotherapy for patients with colorectal cancer whose current palliative treatment options are limited. Nevertheless, continued assessment of these targeted cancer therapies will eventually allow patients with colorectal cancer to be treated using a personalized medicine approach. In this review, the most recent scientific approaches and clinical trials targeting KRAS mutations directly or indirectly for the management of colorectal cancer are discussed.
Collapse
Affiliation(s)
- Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jung Yin Fong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wan Ming Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
62
|
Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021; 10:cells10082048. [PMID: 34440824 PMCID: PMC8392422 DOI: 10.3390/cells10082048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous melanoma is a lethal disease, even when diagnosed in advanced stages. Although recent progress in biology and treatment has dramatically improved survival rates, new therapeutic approaches are still needed. Deregulation of epigenetics, which mainly controls DNA methylation status and chromatin remodeling, is implied not only in cancer initiation and progression, but also in resistance to antitumor drugs. Epigenetics in melanoma has been studied recently in both melanoma preclinical models and patient samples, highlighting its potential role in different phases of melanomagenesis, as well as in resistance to approved drugs such as immune checkpoint inhibitors and MAPK inhibitors. This review summarizes what is currently known about epigenetics in melanoma and dwells on the recognized and potential new targets for testing epigenetic drugs, alone or together with other agents, in advanced melanoma patients.
Collapse
|
63
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
64
|
Strashilov S, Yordanov A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int J Mol Sci 2021; 22:6395. [PMID: 34203771 PMCID: PMC8232613 DOI: 10.3390/ijms22126395] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Melanoma develops from malignant transformations of the pigment-producing melanocytes. If located in the basal layer of the skin epidermis, melanoma is referred to as cutaneous, which is more frequent. However, as melanocytes are be found in the eyes, ears, gastrointestinal tract, genitalia, urinary system, and meninges, cases of mucosal melanoma or other types (e.g., ocular) may occur. The incidence and morbidity of cutaneous melanoma (cM) are constantly increasing worldwide. Australia and New Zealand are world leaders in this regard with a morbidity rate of 54/100,000 and a mortality rate of 5.6/100,000 for 2015. The aim of this review is to consolidate and present the data related to the aetiology and pathogenesis of cutaneous melanoma, thus rendering them easier to understand. In this article we will discuss these problems and the possible impacts on treatment for this disease.
Collapse
Affiliation(s)
- Strahil Strashilov
- Department of Plastic Restorative, Reconstructive and Aesthetic Surgery, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Angel Yordanov
- Clinic of Gynecologic Oncology, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
65
|
Guhan S, Klebanov N, Tsao H. Melanoma genomics: a state-of-the-art review of practical clinical applications. Br J Dermatol 2021; 185:272-281. [PMID: 34096042 DOI: 10.1111/bjd.20421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/27/2022]
Abstract
Our collective understanding of melanoma genomics has rapidly expanded in the past decade, bringing great promise to patients affected with the most severe and aggressive cases of melanoma. In this review, we present the practical clinical impact of genetics and genomics on modern melanoma diagnosis and treatment. Characterization of somatic driver mutations, which can be used to distinguish different subtypes of melanoma such as nonacral cutaneous melanoma (NACM), desmoplastic melanoma (DM), acral melanoma (AM), mucosal melanoma (MM) and uveal melanoma (UM), has led to the development of many targeted therapies against these tumours. Although targeted therapies exist for certain mutations, such as BRAF and KIT, other genotypes respond to newer-generation immune therapies such as immune checkpoint inhibitors. Epigenetics also plays a critical role in melanoma pathogenesis and drug resistance, holding promise for new treatment avenues. In this review, special attention is placed on clinical trials and translational research, especially novel genomic tests aimed to benefit patients on an individualized level in the current emerging era of personalized therapy.
Collapse
Affiliation(s)
- S Guhan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston, MA, 02114, USA
| | - N Klebanov
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston, MA, 02114, USA
| | - H Tsao
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston, MA, 02114, USA
| |
Collapse
|
66
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
67
|
Argenziano G, Brancaccio G, Moscarella E, Dika E, Fargnoli MC, Ferrara G, Longo C, Pellacani G, Peris K, Pimpinelli N, Quaglino P, Rongioletti F, Simonacci M, Zalaudek I, Calzavara Pinton P. Management of cutaneous melanoma: comparison of the leading international guidelines updated to the 8th American Joint Committee on Cancer staging system and workup proposal by the Italian Society of Dermatology. GIORN ITAL DERMAT V 2021; 155:126-145. [PMID: 32394673 DOI: 10.23736/s0392-0488.19.06383-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giuseppe Argenziano
- Unit of Dermatology, Luigi Vanvitelli University of Campania, Naples, Italy -
| | | | - Elvira Moscarella
- Unit of Dermatology, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Emi Dika
- Unit of Dermatology (DIMES), University of Bologna, Bologna, Italy
| | - Maria C Fargnoli
- Department of Dermatology, University of L'Aquila, L'Aquila, Italy
| | - Gerardo Ferrara
- Unit of Anatomic Pathology, Hospital of Macerata, Area Vasta 3 ASUR Marche, Macerata, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ketty Peris
- Institute of Dermatology, Sacred Heart Catholic University, Rome, Italy.,A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy
| | - Nicola Pimpinelli
- Unit of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin Medical School, Turin, Italy
| | - Franco Rongioletti
- Unit of Dermatology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Simonacci
- Unit of Dermatology, Hospital of Macerata, Area Vasta 3 ASUR Marche, Macerata, Italy
| | - Iris Zalaudek
- Department of Dermatology, University Hospital of Trieste, Trieste, Italy
| | | |
Collapse
|
68
|
Appleton KM, Palsuledesai CC, Misek SA, Blake M, Zagorski J, Gallo KA, Dexheimer TS, Neubig RR. Inhibition of the Myocardin-Related Transcription Factor Pathway Increases Efficacy of Trametinib in NRAS-Mutant Melanoma Cell Lines. Cancers (Basel) 2021; 13:cancers13092012. [PMID: 33921974 PMCID: PMC8122681 DOI: 10.3390/cancers13092012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Malignant melanoma is the most aggressive skin cancer, and treatment is often ineffective due to the development of resistance to targeted therapeutic agents. The most prevalent form of melanoma with a mutated BRAF gene has an effective treatment, but the second most common mutation in melanoma (NRAS) leads to tumors that lack targeted therapies. In this study, we show that NRAS mutant human melanoma cells that are most resistant to inhibition of the oncogenic pathway have a second activated pathway (Rho). Inhibiting that pathway at one of several points can produce more effective cell killing than inhibition of the NRAS pathway alone. This raises the possibility that such a combination treatment could prove effective in those melanomas that fail to respond to existing targeted therapies such as vemurafenib and trametinib. Abstract The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.
Collapse
Affiliation(s)
- Kathryn M. Appleton
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Charuta C. Palsuledesai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Sean A. Misek
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (S.A.M.); (K.A.G.)
| | - Maja Blake
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Joseph Zagorski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Kathleen A. Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; (S.A.M.); (K.A.G.)
| | - Thomas S. Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (K.M.A.); (C.C.P.); (M.B.); (J.Z.); (T.S.D.)
- Department of Medicine, Division of Dermatology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-353-7145
| |
Collapse
|
69
|
Gui L, Liu S, Zhang Y, Shi Y. A Remarkable and Durable Response to Sintilimab and Anlotinib in the First-Line Treatment of an Anaplastic Thyroid Carcinoma without Targetable Genomic Alterations: A Case Report. Onco Targets Ther 2021; 14:2741-2746. [PMID: 33907417 PMCID: PMC8068508 DOI: 10.2147/ott.s305196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and highly aggressive fatal tumor. Most ATC patients using traditional surgery or radio-chemotherapy have poor prognosis and experience recurrence in a very short time. There is no optimal therapy for ATC, and the median survival time is about 5 months. We report a 67-year-old ATC patient, who experienced rapid local recurrence after radical thyroidectomy. The resected tumor tissue was sent for immunohistochemistry analysis and targeted next-generation sequencing. The results indicated high PD-L1 expression, a tumor mutation burden of 0.48 muts/Mb, microsatellite stable, and somatic mutations of TERT promoter, EIF1AX, NRAS and TP53. However, none of the mutations indicated corresponding target therapy. An immediate operation was unsuitable because of rapid recurrence after surgery. The patient was also not in a condition to tolerate chemotherapy. Based on the high expression of PD-L1, an optimum strategy was used, combining immunotherapeutic agent, sintilimab, with an anti-angiogenesis drug, anlotinib. The patient obtained remarkable tumor shrinkage and an 18.3-month-sustained remission period. This is an effective case of using immunotherapy and anti-angiogenesis agent in the first-line treatment of ATC. It demonstrates a feasible and novel therapeutic option for future treatment of ATC patients.
Collapse
Affiliation(s)
- Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, People's Republic of China
| |
Collapse
|
70
|
Sabbah M, Najem A, Krayem M, Awada A, Journe F, Ghanem GE. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers (Basel) 2021; 13:1685. [PMID: 33918490 PMCID: PMC8038208 DOI: 10.3390/cancers13071685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Awada
- Medical Oncolgy Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| |
Collapse
|
71
|
Synthesis and Pharmacological In Vitro Investigations of Novel Shikonin Derivatives with a Special Focus on Cyclopropane Bearing Derivatives. Int J Mol Sci 2021; 22:ijms22052774. [PMID: 33803437 PMCID: PMC7967198 DOI: 10.3390/ijms22052774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and accounts for about three quarters of all skin cancer deaths. Especially at an advanced stage, its treatment is challenging, and survival rates are very low. In previous studies, we showed that the constituents of the roots of Onosma paniculata as well as a synthetic derivative of the most active constituent showed promising results in metastatic melanoma cell lines. In the current study, we address the question whether we can generate further derivatives with optimized activity by synthesis. Therefore, we prepared 31, mainly novel shikonin derivatives and screened them in different melanoma cell lines (WM9, WM164, and MUG-Mel2 cells) using the XTT viability assay. We identified (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl 2-cyclopropyl-2-oxoacetate as a novel derivative with even higher activity. Furthermore, pharmacological investigations including the ApoToxGloTM Triplex assay, LDH assay, and cell cycle measurements revealed that this compound induced apoptosis and reduced cells in the G1 phase accompanied by an increase of cells in the G2/M phase. Moreover, it showed hardly any effects on the cell membrane integrity. However, it also exhibited cytotoxicity against non-tumorigenic cells. Nevertheless, in summary, we could show that shikonin derivatives might be promising drug leads in the treatment of melanoma.
Collapse
|
72
|
Assenmacher CA, Santagostino SF, Oyama MA, Marine JC, Bonvin E, Radaelli E. Classification and Grading of Melanocytic Lesions in a Mouse Model of NRAS-driven Melanomagenesis. J Histochem Cytochem 2020; 69:203-218. [PMID: 33283624 DOI: 10.1369/0022155420977970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse line carrying the Tg(Tyr-NRAS*Q61K)1Bee transgene is widely used to model in vivo NRAS-driven melanomagenesis. Although the pathological features of this model are well described, classification and interpretation of the resulting proliferative lesions-including their origin, evolution, grading, and pathobiological significance-are still unclear and not supported by molecular and biological evidence. Focusing on their classification and grading, this work combines histopathology and expression analysis (using both immunohistochemistry [IHC] and quantitative PCR) of selected biomarkers to study the full spectrum of cutaneous and lymph nodal melanocytic proliferations in the Tg(Tyr-NRAS*Q61K)1Bee mouse. The analysis of cutaneous and lymph nodal melanocytic proliferations has demonstrated that a linear correlation exists between tumor grade and Ki-67, microphthalmia-associated transcription factor (MITF), gp100, and nestin IHC, with a significantly increased expression in high-grade lesions compared with low-grade lesions. The accuracy of the assessment of MITF IHC in melanomas was also confirmed by quantitative PCR analysis. In conclusion, we believe the incorporation of MITF, Ki-67, gp100, and nestin analysis into the histopathological classification/grading scheme of melanocytic proliferations described for this model will help to assess with accuracy the nature and evolution of the phenotype, monitor disease progression, and predict response to experimental treatment or other preclinical manipulations.
Collapse
Affiliation(s)
| | | | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Elise Bonvin
- Laboratory of Cancer Epigenetics, Cancer Research Center, Université Libre de Bruxelles, Brussels, Belgium
| | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
73
|
Selective Oral MEK1/2 Inhibitor Pimasertib in Metastatic Melanoma: Antitumor Activity in a Phase I, Dose-Escalation Trial. Target Oncol 2020; 16:47-57. [PMID: 33211315 DOI: 10.1007/s11523-020-00767-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pimasertib is a selective, potent mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor. OBJECTIVES The aim of this study was to describe the efficacy, safety, and pharmacodynamics of pimasertib at pharmacologically active doses in a cohort of patients with locally advanced/metastatic melanoma from a first-in-human study of pimasertib. METHODS This was a phase I, open-label, two-part, dose-escalation study. Part 1 was conducted in patients with solid tumors and identified the maximum tolerated dose, while Part 2 was restricted to patients with advanced/metastatic melanoma. Endpoints included safety, pharmacodynamics, and antitumor activity. We present data for patients with melanoma only from both parts of the study. RESULTS In total, 93 patients with melanoma received pimasertib, 89 of whom received pharmacologically active doses (28-255 mg/day) across four dose regimens in the two parts of the study. The objective response rate was 12.4% (11/89): complete response (n = 1) and partial response (PR; n = 10). Six patients responded for > 24 weeks. Nine of the 11 responders had tumors with B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF; n = 6) and/or NRAS Proto-Oncogene, GTPase (NRAS; n = 3) mutations. Forty-six patients had stable disease (SD). In patients with ocular melanoma (n = 13), best overall response was PR (n = 1), SD (n = 11), and disease progression (n = 1). Phosphorylated extracellular signal-regulated kinase (pERK) levels were substantially reduced within 2 h of treatment and inhibition was sustained with continuous twice-daily dosing. Treatment-related, recurrent, grade 3 or higher adverse events were reported in eight patients, including diarrhea, and skin and ocular events. CONCLUSION Results from this phase I study indicate that pimasertib has clinical activity in patients with locally advanced/metastatic melanoma, particularly BRAF- and NRAS-mutated tumors, at clinically relevant doses associated with pERK inhibition in peripheral blood mononuclear cells. TRIAL REGISTRATION ClinicalTrials.gov, NCT00982865.
Collapse
|
74
|
Tran KB, Buchanan CM, Shepherd PR. Evolution of Molecular Targets in Melanoma Treatment. Curr Pharm Des 2020; 26:396-414. [PMID: 32000640 DOI: 10.2174/1381612826666200130091318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the deadliest type of skin cancers, accounting for more than 80% of skin cancer mortality. Although melanoma was known very early in the history of medicine, treatment for this disease had remained largely the same until very recently. Previous treatment options, including removal surgery and systemic chemotherapy, offered little benefit in extending the survival of melanoma patients. However, the last decade has seen breakthroughs in melanoma treatment, which all emerged following new insight into the oncogenic signaling of melanoma. This paper reviewed the evolution of drug targets for melanoma treatment based on the emergence of novel findings in the molecular signaling of melanoma. One of the findings that are most influential in melanoma treatment is that more than 50% of melanoma tumors contain BRAF mutations. This is fundamental for the development of BRAF inhibitors, which is the first group of drugs that significantly improves the overall survival of melanoma patients compared to the traditional chemotherapeutic dacarbazine. More recently, findings of the role of immune checkpoint molecules such as CTLA-4 and PD1/PD-L1 in melanoma biology have led to the development of a new therapeutic category: immune checkpoint inhibitors, which, for the first time in the history of cancer treatment, produced a durable response in a subset of melanoma patients. However, as this paper discussed next, there is still an unmet need for melanoma treatment. A significant population of patients did not respond to either BRAF inhibitors or immune checkpoint inhibitors. Of those patients who gained an initial response from those therapies, a remarkable percentage would develop drug resistance even when MEK inhibitors were added to the treatment. Finally, this paper discusses some possible targets for melanoma treatment.
Collapse
Affiliation(s)
- Khanh B Tran
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christina M Buchanan
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, New Zealand
| |
Collapse
|
75
|
Nisar S, Hashem S, Macha MA, Yadav SK, Muralitharan S, Therachiyil L, Sageena G, Al-Naemi H, Haris M, Bhat AA. Exploring Dysregulated Signaling Pathways in Cancer. Curr Pharm Des 2020; 26:429-445. [PMID: 31939726 DOI: 10.2174/1381612826666200115095937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Cancer cell biology takes advantage of identifying diverse cellular signaling pathways that are disrupted in cancer. Signaling pathways are an important means of communication from the exterior of cell to intracellular mediators, as well as intracellular interactions that govern diverse cellular processes. Oncogenic mutations or abnormal expression of signaling components disrupt the regulatory networks that govern cell function, thus enabling tumor cells to undergo dysregulated mitogenesis, to resist apoptosis, and to promote invasion to neighboring tissues. Unraveling of dysregulated signaling pathways may advance the understanding of tumor pathophysiology and lead to the improvement of targeted tumor therapy. In this review article, different signaling pathways and how their dysregulation contributes to the development of tumors have been discussed.
Collapse
Affiliation(s)
- Sabah Nisar
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States.,Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Santosh K Yadav
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ajaz A Bhat
- Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| |
Collapse
|
76
|
Gkiala A, Palioura S. Conjunctival Melanoma: Update on Genetics, Epigenetics and Targeted Molecular and Immune-Based Therapies. Clin Ophthalmol 2020; 14:3137-3152. [PMID: 33116365 PMCID: PMC7553763 DOI: 10.2147/opth.s271569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose To present the molecular mechanisms involved in the pathogenesis of conjunctival melanoma (CM) and review the existing literature on targeted molecular inhibitors as well as immune checkpoint inhibitors for the management of locally advanced and metastatic disease. Methods A comprehensive review of the literature was performed using the keywords "conjunctival melanoma", "immune checkpoint inhibitors", "BRAF inhibitors", "MEK inhibitors", "CTLA4 inhibitors", "PD1 inhibitors", "c-KIT mutations", "BRAF mutations", "NRAS mutations", "dabrafenib", "trametinib", "vemurafenib", "ipilimumab", "pembrolizumab", and "nivolumab". A total of 250 articles were reviewed and 120 were included in this report. Results Mutations of mediators in the MAP kinase pathway, such as RAS, BRAF, MEK and ERK, and mutations of the PI3K/AKT/mTOR pathway play a major role in the pathogenesis of conjunctival melanoma. In addition, alterations of c-KIT, NF1, TERT, chemokine receptors as well as chromosomal copy number alterations and micro RNAs are thought to have a causative association with CM development. Targeted molecular inhibitors, such as BRAF and MEK inhibitors, are currently being implemented in the therapy of BRAF-mutated CM. Furthermore, immune checkpoint PD-1 and CTLA4 inhibitors with favorable clinical outcomes in the treatment of cutaneous melanoma have increased recurrence-free survival and reduced metastatic spread in CM cases. Conclusion The complex molecular mechanisms that contribute to the development of CM can be targeted both by molecular inhibitors of oncogenic pathways as well as immune checkpoint inhibitors in order to halt progression of the disease and increase survival.
Collapse
Affiliation(s)
- Anastasia Gkiala
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | |
Collapse
|
77
|
Tumor Microenvironment: Implications in Melanoma Resistance to Targeted Therapy and Immunotherapy. Cancers (Basel) 2020; 12:cancers12102870. [PMID: 33036192 PMCID: PMC7601592 DOI: 10.3390/cancers12102870] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The response to pharmacological treatments is deeply influenced by the tight interactions between the tumor cells and the microenvironment. In this review we describe, for melanoma, the most important mechanisms of resistance to targeted therapy and immunotherapy mediated by the components of the microenvironment. In addition, we briefly describe the most recent therapeutic advances for this pathology. The knowledge of molecular mechanisms, which are underlying of drug resistance, is fundamental for the development of new therapeutic approaches for the treatment of melanoma patients. Abstract Antitumor therapies have made great strides in recent decades. Chemotherapy, aggressive and unable to discriminate cancer from healthy cells, has given way to personalized treatments that, recognizing and blocking specific molecular targets, have paved the way for targeted and effective therapies. Melanoma was one of the first tumor types to benefit from this new care frontier by introducing specific inhibitors for v-Raf murine sarcoma viral oncogene homolog B (BRAF), mitogen-activated protein kinase kinase (MEK), v-kit Hardy–Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and, recently, immunotherapy. However, despite the progress made in the melanoma treatment, primary and/or acquired drug resistance remains an unresolved problem. The molecular dynamics that promote this phenomenon are very complex but several studies have shown that the tumor microenvironment (TME) plays, certainly, a key role. In this review, we will describe the new melanoma treatment approaches and we will analyze the mechanisms by which TME promotes resistance to targeted therapy and immunotherapy.
Collapse
|
78
|
Sharma S, Dincer C, Weidemüller P, Wright GJ, Petsalaki E. CEN-tools: an integrative platform to identify the contexts of essential genes. Mol Syst Biol 2020; 16:e9698. [PMID: 33073517 PMCID: PMC7569414 DOI: 10.15252/msb.20209698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
An emerging theme from large-scale genetic screens that identify genes essential for cell fitness is that essentiality of a given gene is highly context-specific. Identification of such contexts could be the key to defining gene function and also to develop novel therapeutic interventions. Here, we present Context-specific Essentiality Network-tools (CEN-tools), a website and python package, in which users can interrogate the essentiality of a gene from large-scale genome-scale CRISPR screens in a number of biological contexts including tissue of origin, mutation profiles, expression levels and drug responses. We show that CEN-tools is suitable for the systematic identification of genetic dependencies and for more targeted queries. The associations between genes and a given context are represented as dependency networks (CENs), and we demonstrate the utility of these networks in elucidating novel gene functions. In addition, we integrate the dependency networks with existing protein-protein interaction networks to reveal context-dependent essential cellular pathways in cancer cells. Together, we demonstrate the applicability of CEN-tools in aiding the current efforts to define the human cellular dependency map.
Collapse
Affiliation(s)
- Sumana Sharma
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
- Cell Surface Signalling LaboratoryWellcome Sanger InstituteCambridgeUK
- Present address:
MRC Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Cansu Dincer
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| | - Paula Weidemüller
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| | - Gavin J Wright
- Cell Surface Signalling LaboratoryWellcome Sanger InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| |
Collapse
|
79
|
Aminzadeh-Gohari S, Weber DD, Catalano L, Feichtinger RG, Kofler B, Lang R. Targeting Mitochondria in Melanoma. Biomolecules 2020; 10:biom10101395. [PMID: 33007949 PMCID: PMC7599575 DOI: 10.3390/biom10101395] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Drastically elevated glycolytic activity is a prominent metabolic feature of cancer cells. Until recently it was thought that tumor cells shift their entire energy production from oxidative phosphorylation (OXPHOS) to glycolysis. However, new evidence indicates that many cancer cells still have functional OXPHOS, despite their increased reliance on glycolysis. Growing pre-clinical and clinical evidence suggests that targeting mitochondrial metabolism has anti-cancer effects. Here, we analyzed mitochondrial respiration and the amount and activity of OXPHOS complexes in four melanoma cell lines and normal human dermal fibroblasts (HDFs) by Seahorse real-time cell metabolic analysis, immunoblotting, and spectrophotometry. We also tested three clinically approved antibiotics, one anti-parasitic drug (pyrvinium pamoate), and a novel anti-cancer agent (ONC212) for effects on mitochondrial respiration and proliferation of melanoma cells and HDFs. We found that three of the four melanoma cell lines have elevated glycolysis as well as OXPHOS, but contain dysfunctional mitochondria. The antibiotics produced different effects on the melanoma cells and HDFs. The anti-parasitic drug strongly inhibited respiration and proliferation of both the melanoma cells and HDFs. ONC212 reduced respiration in melanoma cells and HDFs, and inhibited the proliferation of melanoma cells. Our findings highlight ONC212 as a promising drug for targeting mitochondrial respiration in cancer.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.A.-G.); (D.D.W.); (L.C.); (R.G.F.)
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: (B.K.); (R.L.); Tel.: +43-57255-26274 (B.K.); +43-57255-58200 (R.L.)
| |
Collapse
|
80
|
Characterization of BRCA1-deficient premalignant tissues and cancers identifies Plekha5 as a tumor metastasis suppressor. Nat Commun 2020; 11:4875. [PMID: 32978388 PMCID: PMC7519681 DOI: 10.1038/s41467-020-18637-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Single-cell whole-exome sequencing (scWES) is a powerful approach for deciphering intratumor heterogeneity and identifying cancer drivers. So far, however, simultaneous analysis of single nucleotide variants (SNVs) and copy number variations (CNVs) of a single cell has been challenging. By analyzing SNVs and CNVs simultaneously in bulk and single cells of premalignant tissues and tumors from mouse and human BRCA1-associated breast cancers, we discover an evolution process through which the tumors initiate from cells with SNVs affecting driver genes in the premalignant stage and malignantly progress later via CNVs acquired in chromosome regions with cancer driver genes. These events occur randomly and hit many putative cancer drivers besides p53 to generate unique genetic and pathological features for each tumor. Upon this, we finally identify a tumor metastasis suppressor Plekha5, whose deficiency promotes cancer metastasis to the liver and/or lung.
Collapse
|
81
|
Manrique-Silva E, Rachakonda S, Millán-Esteban D, García-Casado Z, Requena C, Través V, Kumar R, Nagore E. Clinical, environmental and histological distribution of BRAF, NRAS and TERT promoter mutations among patients with cutaneous melanoma: a retrospective study of 563 patients. Br J Dermatol 2020; 184:504-513. [PMID: 32506424 DOI: 10.1111/bjd.19297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The distinct somatic mutations that define clinical and histopathological heterogeneity in cutaneous melanoma could be dependent on host susceptibility to exogenous factors like ultraviolet radiation. OBJECTIVES Firstly, to characterize patients with cutaneous melanoma clinically and pathologically based on the mutational status of BRAF, NRAS and TERT promoter. Secondly, to elucidate the modified features due to the presence of TERT promoter mutations over the background of either BRAF or NRAS mutations. METHODS We performed a retrospective study on 563 patients with melanoma by investigating somatic mutations in BRAF, NRAS and TERT promoter. RESULTS We observed co-occurrence of TERT promoter mutations with BRAF and NRAS mutations in 26.3% and 6.9% of melanomas, respectively. Multivariate analysis showed an independent association between BRAF mutations and a decreased presence of cutaneous lentigines at the melanoma site, and an increased association with the presence of any MC1R polymorphism. We also observed an independent association between TERT promoter mutations and increased tumour mitotic rate. Co-occurrence of BRAF and TERT promoter mutations was independently associated with occurrence of primary tumours at usually sun-exposed sites, lack of histological chronic sun damage in surrounding unaffected skin at the melanoma site, and increased tumour mitotic rate. Co-occurrence of NRAS and TERT promoter mutations was independently associated with increased tumour mitotic rate. The presence of TERT promoter together with BRAF or NRAS mutations was associated with statistically significantly worse survival. CONCLUSIONS The presence of TERT promoter mutations discriminates BRAF- and NRAS-mutated tumours and indicates a higher involvement of ultraviolet-induced damage and tumours with worse melanoma-specific survival than those without any mutation. These observations refine classification of patients with melanoma based on mutational status.
Collapse
Affiliation(s)
- E Manrique-Silva
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Department of Dermatology, Instituto Valenci, Valencia, Spain
| | - S Rachakonda
- Division of Molecular Genetic Epidemiology, Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - D Millán-Esteban
- Department of Molecular Biology, Instituto Valenciano de Oncologia (IVO), Valencia, Spain
| | - Z García-Casado
- Department of Molecular Biology, Instituto Valenciano de Oncologia (IVO), Valencia, Spain
| | - C Requena
- Department of Dermatology, Instituto Valenci, Valencia, Spain
| | - V Través
- Department of Pathology, Instituto Valenciano de Oncologia (IVO), Valencia, Spain
| | - R Kumar
- Division of Molecular Genetic Epidemiology, Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - E Nagore
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
82
|
Shattuck-Brandt RL, Chen SC, Murray E, Johnson CA, Crandall H, O'Neal JF, Al-Rohil RN, Nebhan CA, Bharti V, Dahlman KB, Ayers GD, Yan C, Kelley MC, Kauffmann RM, Hooks M, Grau A, Johnson DB, Vilgelm AE, Richmond A. Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition. Clin Cancer Res 2020; 26:3803-3818. [PMID: 32234759 PMCID: PMC7367743 DOI: 10.1158/1078-0432.ccr-19-1895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Over 60% of patients with melanoma respond to immune checkpoint inhibitor (ICI) therapy, but many subsequently progress on these therapies. Second-line targeted therapy is based on BRAF mutation status, but no available agents are available for NRAS, NF1, CDKN2A, PTEN, and TP53 mutations. Over 70% of melanoma tumors have activation of the MAPK pathway due to BRAF or NRAS mutations, while loss or mutation of CDKN2A occurs in approximately 40% of melanomas, resulting in unregulated MDM2-mediated ubiquitination and degradation of p53. Here, we investigated the therapeutic efficacy of over-riding MDM2-mediated degradation of p53 in melanoma with an MDM2 inhibitor that interrupts MDM2 ubiquitination of p53, treating tumor-bearing mice with the MDM2 inhibitor alone or combined with MAPK-targeted therapy. EXPERIMENTAL DESIGN To characterize the ability of the MDM2 antagonist, KRT-232, to inhibit tumor growth, we established patient-derived xenografts (PDX) from 15 patients with melanoma. Mice were treated with KRT-232 or a combination with BRAF and/or MEK inhibitors. Tumor growth, gene mutation status, as well as protein and protein-phosphoprotein changes, were analyzed. RESULTS One-hundred percent of the 15 PDX tumors exhibited significant growth inhibition either in response to KRT-232 alone or in combination with BRAF and/or MEK inhibitors. Only BRAFV600WT tumors responded to KRT-232 treatment alone while BRAFV600E/M PDXs exhibited a synergistic response to the combination of KRT-232 and BRAF/MEK inhibitors. CONCLUSIONS KRT-232 is an effective therapy for the treatment of either BRAFWT or PAN WT (BRAFWT, NRASWT) TP53WT melanomas. In combination with BRAF and/or MEK inhibitors, KRT-232 may be an effective treatment strategy for BRAFV600-mutant tumors.
Collapse
Affiliation(s)
- Rebecca L Shattuck-Brandt
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily Murray
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Christopher Andrew Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly Crandall
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamye F O'Neal
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rami Nayef Al-Rohil
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Caroline A Nebhan
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vijaya Bharti
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Kimberly B Dahlman
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chi Yan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Mark C Kelley
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rondi M Kauffmann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary Hooks
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ana Grau
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B Johnson
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Vilgelm
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
83
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
84
|
Loo K, Gauvin G, Soliman I, Renzetti M, Deng M, Ross E, Luo B, Wu H, Reddy S, Olszanski AJ, Farma JM. Primary tumor characteristics and next-generation sequencing mutations as biomarkers for melanoma immunotherapy response. Pigment Cell Melanoma Res 2020; 33:878-888. [PMID: 32564504 DOI: 10.1111/pcmr.12909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Considerable advances in melanoma have been realized through immunotherapy. The principal aim was to determine whether primary tumor characteristics or next-generation sequencing (NGS) could serve as markers of immunotherapy response. METHODS AND RESULTS The study cohort consisted of 67 patients who received immunotherapy for recurrent or metastatic melanoma and for whom primary tumor biopsies and pathology reports were available. A subset of 59 patient tumors were profiled using an NGS panel of 50 cancer-related genes. Objective response rate to immunotherapy was assessed using RECIST v1.1 criteria. Progression-free survival (PFS) and overall survival (OS) were used as endpoints. Lymphovascular invasion (LVI) strongly correlated with an increased proportion of immunotherapy responders (p = .002). PFS interval (p = .003) and OS (p = .036) were significantly higher in patients with LVI. NRAS mutation was more strongly correlated with an increased proportion of immunotherapy responders (p =.050). PFS was significantly higher in patients with NRAS mutation (p = .042); no difference in OS (p = .111). DISCUSSION This analysis demonstrates an association between lymphovascular invasion and immunotherapy response. Additionally, NGS mutation analysis demonstrated a potential association between NRAS mutations and immunotherapy response.
Collapse
Affiliation(s)
- Kimberly Loo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Gabrielle Gauvin
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Iman Soliman
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Madelyn Renzetti
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Mengying Deng
- Department of Statistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Ross
- Department of Statistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Biao Luo
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hong Wu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sanjay Reddy
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anthony J Olszanski
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jeffrey M Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
85
|
Ecker A, Barbosa NV, Ardisson-Araujo D. Accessing the transcriptional status of selenoproteins in skin cancer-derived cell lines. J Trace Elem Med Biol 2020; 60:126476. [PMID: 32142958 DOI: 10.1016/j.jtemb.2020.126476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Selenoproteins are selenocysteine (Sec)-containing proteins that exhibit numerous physiological functions, mainly antioxidative activities. Studies have suggested that several human selenoproteins play an important role in tumor initiation and progression, including melanoma. METHODS Using RNA-seq data set from Sequence Reads Archive (SRA) experiments published at the National Center for Biotechnology Information (NCBI), we determined and compared the transcriptional levels of the 25 selenoproteins-coding sequences found in 16 human-derived melanoma cell lines and compared to four melanocyte controls. RESULTS 15 selenoprotein-coding genes were found to be expressed in melanoma and normal melanocyte cells, and their mRNA levels varied among the cell lines. All melanoma cells analyzed with BRAF or NRAS mutations presented upregulated levels of SELENOI, TXNRD1, and SELENOT transcripts and downregulated levels of SELENOW and SELENON transcripts in comparison with melanocytes controls. Moreover, SELENOW, SELENON, SELENOI, TXNRD1, and SELENOT-coding transcripts were affected when BRAF-mutated A375 cells were treated with CPI203, A771726 or Vorinostat drugs. CONCLUSION Our results indicate that melanoma cells can modify, in a different manner, the selenoprotein transcript levels, as a possible mechanism to control tumor progression. We suggest that the usage of diet and supplements containing selenium should be carefully used for patients with melanoma.
Collapse
Affiliation(s)
- Assis Ecker
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Nilda Vargas Barbosa
- Laboratory of Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Daniel Ardisson-Araujo
- Laboratory of Insect Virology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
86
|
Ny L, Hernberg M, Nyakas M, Koivunen J, Oddershede L, Yoon M, Wang X, Guyot P, Geisler J. BRAF mutational status as a prognostic marker for survival in malignant melanoma: a systematic review and meta-analysis. Acta Oncol 2020; 59:833-844. [PMID: 32285732 DOI: 10.1080/0284186x.2020.1747636] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: The analysis of the BRAF mutational status has been established as a standard procedure during diagnosis of advanced malignant melanoma due to the fact that BRAF inhibitors constitute a cornerstone in the treatment of metastatic disease. However, the general impact of BRAF mutational status on survival remains unclear. Our study aimed to assess the underlying prognostic significance of BRAF mutant versus wild type (WT) malignant melanoma on overall survival (OS), disease-free survival (DFS) and progression-free survival (PFS).Material and methods: A systematic literature search in EMBASE, Medline and Cochrane CENTRAL was performed. Studies were included if they reported survival outcomes for BRAF mutant versus WT patients as hazard ratios (HR) or in Kaplan-Meier (KM) curves. Random-effects meta-analysis models were used to pool HRs across the studies.Results: Data from 52 studies, representing 7519 patients, were pooled for analysis of OS. The presence of a BRAF mutation was statistically significantly associated with a reduced OS (HR [95% confidence interval (CI)]: 1.23 [1.09-1.38]), however, with substantial heterogeneity between the studies (I2: 58.0%). Meta-regression and sensitivity analyses showed that age, sex and BRAF mutation testing method did not have a significant effect on the OS HR. BRAF mutant melanoma showed comparable effect on DFS to non-BRAF mutant melanoma in stage I-III melanoma (combined HR: 1.16, 95% CI: 0.92-1.46), and on PFS in stage III-IV (HR: 0.98 (95% CI: 0.68-1.40)).Conclusion: Although there was substantial heterogeneity between the studies, the overall results demonstrated a poorer prognosis and OS in patients harbouring BRAF mutations. Future studies should take this into account when evaluating epidemiological data and treatment effects of new interventions in patients with malignant melanoma.
Collapse
Affiliation(s)
- L. Ny
- Department of Oncology, Institute of Clinical Science, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M. Hernberg
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - M. Nyakas
- Oslo University Hospital, Oslo, Norway
| | - J. Koivunen
- Department of Oncology and Radiotherapy, Oulu University Hospital, MRC Oulu, Oulu, Finland
| | | | - M. Yoon
- Novartis Healthcare A/S, Copenhagen, Denmark
| | - X. Wang
- Commercialization & Outcomes, ICON plc, Stockholm, Sweden
| | - P. Guyot
- Commercialization & Outcomes, ICON plc, Lyon, France
| | - J. Geisler
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
87
|
Grimes JM, Shah NV, Samie FH, Carvajal RD, Marr BP. Conjunctival Melanoma: Current Treatments and Future Options. Am J Clin Dermatol 2020; 21:371-381. [PMID: 31965542 DOI: 10.1007/s40257-019-00500-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conjunctival melanoma is a rare tumor of the conjunctival epithelium with a heterogenous clinical presentation and a propensity for regional and distant metastatic spread. Guidelines for the treatment of local conjunctival melanoma are well-established, but there are no standard efficacious therapies for metastatic disease. Given that conjunctival melanoma is genetically similar to cutaneous melanoma and mucosal melanomas, targeted therapies effective in the treatment of these diseases, such as BRAF inhibitors and KIT inhibitors, may be effective in the treatment of patients with metastatic conjunctival melanoma. Other targeted small-molecule drugs in the drug development pipeline for the treatment of more prevalent melanomas could also be applicable to conjunctival melanoma. Furthermore, systemic immunotherapy treatments that are now a mainstay in the treatment of cutaneous melanoma, such as programmed cell death-1 and cytotoxic T lymphocyte-associated antigen-4 inhibitors, could also stand to benefit patients with metastatic conjunctival melanoma. Limited case reports provide clues about the effectiveness of both targeted small-molecule inhibitors and immunotherapy in patients with advanced local and metastatic conjunctival melanoma and give credence to the argument that conjunctival melanoma patients should be included in major trials studying new therapies in both cutaneous and mucosal melanomas where applicable.
Collapse
|
88
|
Metabolic Reprogramming in Metastatic Melanoma with Acquired Resistance to Targeted Therapies: Integrative Metabolomic and Proteomic Analysis. Cancers (Basel) 2020; 12:cancers12051323. [PMID: 32455924 PMCID: PMC7280989 DOI: 10.3390/cancers12051323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Treatments of metastatic melanoma underwent an impressive development over the past few years, with the emergence of small molecule inhibitors targeting mutated proteins, such as BRAF, NRAS, or cKIT. However, since a significant proportion of patients acquire resistance to these therapies, new strategies are currently being considered to overcome this issue. For this purpose, melanoma cell lines with mutant BRAF, NRAS, or cKIT and with acquired resistances to BRAF, MEK, or cKIT inhibitors, respectively, were investigated using both 1H-NMR-based metabonomic and protein microarrays. The 1H-NMR profiles highlighted a similar go and return pattern in the metabolism of the BRAF, NRAS, and cKIT mutated cell lines. Indeed, melanoma cells exposed to mutation-specific inhibitors underwent metabolic disruptions following acute exposure but partially recovered their basal metabolism in long-term exposure, most likely acquiring resistance skills. The protein microarrays inquired about the potential cellular mechanisms used by the resistant cells to escape drug treatment, by showing decreased levels of proteins linked to the drug efficacy, especially in the downstream part of the MAPK signaling pathway. Integrating metabonomic and proteomic findings revealed some metabolic pathways (i.e., glutaminolysis, choline metabolism, glutathione production, glycolysis, oxidative phosphorylation) and key proteins (i.e., EPHA2, DUSP4, and HIF-1A) as potential targets to discard drug resistance.
Collapse
|
89
|
González-Ruiz L, González-Moles MÁ, González-Ruiz I, Ruiz-Ávila I, Ayén Á, Ramos-García P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res 2020; 33:788-805. [PMID: 32147907 DOI: 10.1111/pcmr.12874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Cyclin D1 is a protein encoded by the CCND1 gene, located on 11q13 chromosome, which is a key component of the physiological regulation of the cell cycle. CCND1/cyclin D1 is upregulated in several types of human tumors including melanoma and is currently classified as an oncogene that promotes uncontrolled cell proliferation. Despite the demonstrated importance of CCND1/cyclin D1 as a central oncogene in several types of human tumors, its knowledge in melanoma is still limited. This review examines data published on upregulation of the CCND1 gene and cyclin D1 protein in the melanoma setting, focusing on the pathways and molecular mechanisms involved in the activation of the gene and on the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Lucia González-Ruiz
- Dermatology Service, Ciudad Real General University Hospital, Ciudad Real, Spain
| | | | | | - Isabel Ruiz-Ávila
- Biohealth Research Institute, Granada, Spain.,Pathology Service, San Cecilio Hospital Complex, Granada, Spain
| | - Ángela Ayén
- Dermatology Service, San Cecilio Hospital Complex, Granada, Spain
| | | |
Collapse
|
90
|
Song LB, Zhang QJ, Hou XY, Xiu YY, Chen L, Song NH, Lu Y. A twelve-gene signature for survival prediction in malignant melanoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:312. [PMID: 32355756 PMCID: PMC7186619 DOI: 10.21037/atm.2020.02.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Melanoma is defined as a highly mutational heterogeneous disease containing numerous alternations of the molecule. However, due to the phenotypically and genetically heterogeneity of malignant melanoma, conventional clinical characteristics remain restricted or limited in the ability to accurately predict individual outcomes and survival. This study aimed to establish an accurate gene expression signature to predict melanoma prognosis. Methods In this study, we established an RNA sequencing-based 12-gene signature data of melanoma patients obtained from 2 independent databases: the Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. We evaluated the quality of each gene to predict survival conditions in each database by employing univariate and multivariate regression models. A prognostic risk score based on a prognostic signature was determined. This prognostic gene signature further classified patients into low-risk and high-risk groups. Results Based on a prognostic signature, a prognostic risk score was determined. This prognostic gene signature further divided the patients into low-risk and high-risk groups. In the chemotherapy and radiotherapy groups of the TCGA cohort and V-raf murine sarcoma viral oncogene homolog B1 (BRAF) expression group in the GEO cohort, patients in the low-risk group had a longer survival duration compared to patients in the high-risk group. Nevertheless, the immunotherapy group in the TCGA database and neuroblastoma RAS viral oncogene homolog (NRAS) expression group in the GEO database had no significant differences in statistics. Moreover, this gene signature was associated with patient prognosis regardless of whether the Breslow depth was greater than or less than 3.75 mm. Stratified gene set enrichment analysis (GSEA) revealed that certain immune-related pathways, such as the T-cell signaling pathway, chemokine signaling pathway, and primary immunodeficiency, were significantly enriched in the low-risk group of both TCGA and GEO cohorts. This information implied the immune-related properties of the 12-gene signature. Conclusions Our study emphasizes the significance of the gene expression signature in that it may be an indispensable prognostic predictor in melanoma and has great potential for application in personalized treatment.
Collapse
Affiliation(s)
- Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Yuan Hou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan-Yan Xiu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lin Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
91
|
Stallinger A, Kretschmer N, Kleinegger F, Brvar L, Liegl-Atzwanger B, Prokesch A, Durchschein C, Bauer R, Deutsch A, Rinner B. β,β-Dimethylacrylshikonin Induces Apoptosis in Melanoma Cell Lines by NOXA Upregulation. JOURNAL OF NATURAL PRODUCTS 2020; 83:305-315. [PMID: 31961147 DOI: 10.1021/acs.jnatprod.9b00719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with high metastasis rates and poor prognosis. Survival rates and possible therapies depend on the state of the tumor and its mutational profile. BRAF and NRAS are the most frequent driver mutations. Currently, there is no efficient therapy for NRAS-mutated or late-stage melanoma. In this study, the therapeutic potential of β,β-dimethylacrylshikonin (DMAS) was investigated on melanoma. The influence of DMAS was determined in five different melanoma cell lines with different mutational profiles. The effects of this compound on cell viability, apoptosis, and gene and protein expression were examined. The results obtained were validated in vivo. DMAS significantly reduced the viability of several melanoma cell lines in a concentration- and time-dependent manner. Furthermore, DMAS induced caspase-3-dependent apoptosis via NOXA upregulation, as confirmed by NOXA knockdown experiments. This is the first time that NOXA-dependent apoptosis was shown with respect to a shikonin derivative and melanoma. Additionally, tumor regression and necrosis under DMAS treatment were demonstrated in vivo. Importantly, BRAF as well as NRAS-mutated metastatic human melanoma cell lines were treated successfully in vitro and in vivo. Taken together, DMAS showed promising results and is worthy of further study.
Collapse
Affiliation(s)
- Alexander Stallinger
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
| | - Nadine Kretschmer
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy , University of Graz , 8010 Graz , Austria
| | - Florian Kleinegger
- Diagnostic and Research Institute of Pathology , Medical University of Graz , 8010 Graz , Austria
| | - Luka Brvar
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
| | | | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging , Medical University of Graz , 8010 Graz , Austria
- Division of Cell Biology, Histology and Embryology , Medical University of Graz , 8010 Graz , Austria
| | - Christin Durchschein
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy , University of Graz , 8010 Graz , Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy , University of Graz , 8010 Graz , Austria
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz , 8036 Graz , Austria
| | - Beate Rinner
- Division of Biomedical Research , Medical University of Graz , 8036 Graz , Austria
| |
Collapse
|
92
|
Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel) 2020; 12:cancers12020482. [PMID: 32092958 PMCID: PMC7072236 DOI: 10.3390/cancers12020482] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. Melanoma is usually curable with surgery if detected early, however, treatment options for patients with metastatic melanoma are limited and the five-year survival rate for metastatic melanoma had been 15-20% before the advent of immunotherapy. Treatment with immune checkpoint inhibitors has increased long-term survival outcomes in patients with advanced melanoma to as high as 50% although individual response can vary greatly. A mutation within the MAPK pathway leads to uncontrollable growth and ultimately develops into cancer. The most common driver mutation that leads to this characteristic overactivation in the MAPK pathway is the B-RAF mutation. Current combinations of BRAF and MEK inhibitors that have demonstrated improved patient outcomes include dabrafenib with trametinib, vemurafenib with cobimetinib or encorafenib with binimetinib. Treatment with BRAF and MEK inhibitors has met challenges as patient responses began to drop due to the development of resistance to these inhibitors which paved the way for development of immunotherapies and other small molecule inhibitor approaches to address this. Resistance to these inhibitors continues to push the need to expand our understanding of novel mechanisms of resistance associated with treatment therapies. This review focuses on the current landscape of how resistance occurs with the chronic use of BRAF and MEK inhibitors in BRAF-mutant melanoma and progress made in the fields of immunotherapies and other small molecules when used alone or in combination with BRAF and MEK inhibitors to delay or circumvent the onset of resistance for patients with stage III/IV BRAF mutant melanoma.
Collapse
|
93
|
Lorusso C, De Summa S, Pinto R, Danza K, Tommasi S. miRNAs as Key Players in the Management of Cutaneous Melanoma. Cells 2020; 9:E415. [PMID: 32054078 PMCID: PMC7072468 DOI: 10.3390/cells9020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
The number of treatment options for melanoma patients has grown in the past few years, leading to considerable improvements in both overall and progression-free survival. Targeted therapies and immune checkpoint inhibitors have opened a new era in the management of melanoma patients. Despite the clinical advances, further research efforts are needed to identify other "druggable" targets and new biomarkers to improve the stratification of melanoma patients who could really benefit from targeted and immunotherapies. To this end, many studies have focused on the role of microRNAs (miRNAs) that are small non-coding RNAs (18-25 nucleotides in length), which post-transcriptionally regulate the expression of their targets. In cancer, they can behave either as oncogenes or oncosuppressive genes and play a central role in many intracellular pathways involved in proliferation and invasion. Given their modulating activity on the transcriptional landscape, their biological role is under investigation to study resistance mechanisms. They are able to mediate the communication between tumor cells and their microenvironment and regulate tumor immunity through direct regulation of the genes involved in immune activation or suppression. To date, a very promising miRNA-based strategy is to use them as prognosis and diagnosis biomarkers both as cell-free miRNAs and extracellular-vesicle miRNAs. However, miRNAs have a complex role since they target different genes in different cellular conditions. Thus, the ultimate aim of studies has been to recapitulate their role in melanoma in biological networks that account for miRNA/gene expression and mutational state. In this review, we will provide an overview of current scientific knowledge regarding the oncogenic or oncosuppressive role of miRNAs in melanoma and their use as biomarkers, with respect to approved therapies for melanoma treatment.
Collapse
|
94
|
Barceló C, Sisó P, Maiques O, de la Rosa I, Martí RM, Macià A. T-Type Calcium Channels: A Potential Novel Target in Melanoma. Cancers (Basel) 2020; 12:E391. [PMID: 32046241 PMCID: PMC7072457 DOI: 10.3390/cancers12020391] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
T-type calcium channels (TTCCs) are overexpressed in several cancers. In this review, we summarize the recent advances and new insights into TTCC biology, tumor progression, and prognosis biomarker and therapeutic potential in the melanoma field. We describe a novel correlation between the Cav3.1 isoform and the increased basal autophagy in BRAFV600E-mutant melanomas and after acquired resistance to BRAF inhibitors. Indeed, TTCC blockers reduce melanoma cell viability and migration/invasion in vitro and tumor growth in mice xenografts in both BRAF-inhibitor-sensitive and -resistant scenarios. These studies open a new, promising therapeutic approach for disseminated melanoma and improved treatment in BRAFi relapsed melanomas, but further validation and clinical trials are needed for it to become a real therapeutic option.
Collapse
Affiliation(s)
- Carla Barceló
- Oncologic Pathology Group, University of Lleida, IRBLleida, 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| | - Pol Sisó
- Oncologic Pathology Group, University of Lleida, IRBLleida, 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| | - Oscar Maiques
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Inés de la Rosa
- Oncologic Pathology Group, University of Lleida, IRBLleida, 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| | - Rosa M. Martí
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLleida, 25198 Lleida, Spain;
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Macià
- Oncologic Pathology Group, University of Lleida, IRBLleida, 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| |
Collapse
|
95
|
Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21030879. [PMID: 32013269 PMCID: PMC7037664 DOI: 10.3390/ijms21030879] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) represents the most common intraocular malignancy in adults and accounts for about 5% of all melanomas. Primary disease can be effectively controlled by several local therapy options, but UM has a high potential for metastatic spread, especially to the liver. Despite its clinical and genetic heterogeneity, therapy of metastatic UM has largely been adopted from cutaneous melanoma (CM) with discouraging results until now. The introduction of antibodies targeting CTLA-4 and PD-1 for immune checkpoint blockade (ICB) has revolutionized the field of cancer therapy and has achieved pioneering results in metastatic CM. Thus, expectations were high that patients with metastatic UM would also benefit from these new therapy options. This review provides a comprehensive and up-to-date overview on the role of ICB in UM. We give a summary of UM biology, its clinical features, and how it differs from CM. The results of several studies that have been investigating ICB in metastatic UM are presented. We discuss possible reasons for the lack of efficacy of ICB in UM compared to CM, highlight the pitfalls of ICB in this cancer entity, and explain why other immune-modulating therapies could still be an option for future UM therapies.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Michael Erdmann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
96
|
Ou YC, Wen X, Johnson CA, Shae D, Ayala OD, Webb JA, Lin EC, DeLapp RC, Boyd KL, Richmond A, Mahadevan-Jansen A, Rafat M, Wilson JT, Balko JM, Tantawy MN, Vilgelm AE, Bardhan R. Multimodal Multiplexed Immunoimaging with Nanostars to Detect Multiple Immunomarkers and Monitor Response to Immunotherapies. ACS NANO 2020; 14:651-663. [PMID: 31851488 PMCID: PMC7391408 DOI: 10.1021/acsnano.9b07326] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The overexpression of immunomarker programmed cell death protein 1 (PD-1) and engagement of PD-1 to its ligand, PD-L1, are involved in the functional impairment of cluster of differentiation 8+ (CD8+) T cells, contributing to cancer progression. However, heterogeneities in PD-L1 expression and variabilities in biopsy-based assays render current approaches inaccurate in predicting PD-L1 status. Therefore, PD-L1 screening alone is not predictive of patient response to treatment, which motivates us to simultaneously detect multiple immunomarkers engaged in immune modulation. Here, we have developed multimodal probes, immunoactive gold nanostars (IGNs), that accurately detect PD-L1+ tumor cells and CD8+ T cells simultaneously in vivo, surpassing the limitations of current immunoimaging techniques. IGNs integrate the whole-body imaging of positron emission tomography with high sensitivity and multiplexing of Raman spectroscopy, enabling the dynamic tracking of both immunomarkers. IGNs also monitor response to immunotherapies in mice treated with combinatorial PD-L1 and CD137 agonists and distinguish responders from those nonresponsive to treatment. Our results showed a multifunctional nanoscale probe with capabilities that cannot be achieved with either modality alone, allowing multiplexed immunologic tumor profiling critical for predicting early response to immunotherapies.
Collapse
Affiliation(s)
- Yu-Chuan Ou
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher A. Johnson
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Oscar D. Ayala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joseph A. Webb
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Eugene C. Lin
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Rossane C. DeLapp
- Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kelli L. Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Justin M. Balko
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohammed N. Tantawy
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna E. Vilgelm
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pathology, Ohio State University, Columbus, Ohio 43210, United States
| | - Rizia Bardhan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
97
|
Kim J, Novak D, Sachpekidis C, Utikal J, Larribère L. STAT3 Relays a Differential Response to Melanoma-Associated NRAS Mutations. Cancers (Basel) 2020; 12:E119. [PMID: 31906480 PMCID: PMC7016650 DOI: 10.3390/cancers12010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] Open
Abstract
Melanoma patients carrying an oncogenic NRAS mutation represent 20% of all cases and present worse survival, relapse rate and therapy response than patients with wild type NRAS or with BRAF mutations. Nevertheless, no efficient targeted therapy has emerged so far for this group of patients in comparison with the classical combination of BRAF and MEK inhibitors for the patient group carrying a BRAF mutation. NRAS key downstream actors should therefore be identified for drug targeting, possibly in combination with MEK inhibitors. Here, we investigated the influence of different melanoma-associated NRAS mutations (codon 12, 13 or 61) on several parameters such as oncogene-induced senescence, cell proliferation, migration or colony formation in immortalized melanocytes and in melanoma cell lines. We identified AXL/STAT3 axis as a main regulator of NRASQ61-induced oncogene-induced senescence (OIS) and observed that NRASQ61 mutations are not only more tumorigenic than NRASG12/13 mutations but also associated to STAT3 activation. In conclusion, these data bring new evidence of the potential tumorigenic role of STAT3 in NRAS-mutant melanomas and will help improving current therapy strategies for this particular patient group.
Collapse
Affiliation(s)
- James Kim
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
98
|
Aderhold K, Wilson M, Berger AC, Levi S, Bennett J. Precision Medicine in the Treatment of Melanoma. Surg Oncol Clin N Am 2020; 29:1-13. [DOI: 10.1016/j.soc.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
99
|
Luís R, Brito C, Pojo M. Melanoma Metabolism: Cell Survival and Resistance to Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:203-223. [PMID: 32130701 DOI: 10.1007/978-3-030-34025-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cutaneous melanoma is one of the most aggressive types of cancer, presenting the highest potential to form metastases, both locally and distally, which are associated with high death rates of melanoma patients. A high somatic mutation burden is characteristic of these tumours, with most common oncogenic mutations occurring in the BRAF, NRAS and NF1 genes. These intrinsic oncogenic pathways contribute to the metabolic switch between glycolysis and oxidative phosphorylation metabolisms of melanoma, facilitating tumour progression and resulting in a high plasticity and adaptability to unfavourable conditions. Moreover, melanoma microenvironment can influence its own metabolism and reprogram several immune cell subset functions, enabling melanoma to evade the immune system. The knowledge of the biology, molecular alterations and microenvironment of melanoma has led to the development of new targeted therapies and the improvement of patient care. In this work, we reviewed the impact of melanoma metabolism in the resistance to BRAF and MEK inhibitors and immunotherapies, emphasizing the requirement to evaluate metabolic alterations upon development of novel therapeutic approaches. Here we summarized the current understanding of the impact of metabolic processes in melanomagenesis, metastasis and microenvironment, as well as the involvement of metabolic pathways in the immune modulation and resistance to targeted and immunocheckpoint therapies.
Collapse
Affiliation(s)
- Rafael Luís
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| | - Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E, Lisbon, Portugal
| |
Collapse
|
100
|
Sun G, Su G, Liu F, Han W. NRAS Contributes to Retinoblastoma Progression Through SNHG16/miR-183-5p/NRAS Regulatory Network. Onco Targets Ther 2019; 12:10703-10715. [PMID: 31827328 PMCID: PMC6902855 DOI: 10.2147/ott.s232470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose The oncogene of wild type neuroblastoma RAS viral oncogene homolog (NRAS) has been found to involve in the tumorigenesis of cancers. However, the role of NRAS in retinoblastoma (RB) progression remains largely unknown. Methods The expression levels of NRAS, miR-183-5p and small nucleolar RNA host gene 16 (SNHG16) were measured using quantitative real-time polymerase chain reaction assay or Western blot assay, respectively. Cell proliferation and apoptosis were analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or flow cytometry, respectively. Transwell assay was used to determine cell migration and invasion abilities. The interaction between miR-183-5p and NRAS or SNHG16 was analyzed using bioinformatics analysis and dual-luciferase reporter assay. Results NRAS was elevated in RB tissues and cell lines, knockdown of NRAS could inhibit proliferation, migration and invasion but induced apoptosis in vitro and suppressed tumor growth in vivo. NRAS was confirmed to be a target of miR-183-5p and was negatively regulated by miR-183-5p in RB cells. Moreover, overexpressed NRAS reversed miR-183-5p mediated inhibition on RB cell progression. Besides that, SNHG16 directly interacted with miR-183-5p and reduced miR-183-5p expression in RB cells. The suppression of RB cell progression induced by SNHG16 silencing could be partially attenuated by the inhibition of miR-183-5p. Besides that, SNHG16 could regulate NRAS expression through competitively binding to miR-183-5p in RB cells. Conclusion NRAS functioned as an oncogene to contribute to RB progression by SNHG16/miR-183-5p/NRAS regulatory network, indicating a novel and promising therapeutic target for RB.
Collapse
Affiliation(s)
- Guangli Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Gang Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Fang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| | - Wenjie Han
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan, People's Republic of China
| |
Collapse
|