51
|
Howell LL, Kimmel HL. Monoamine transporters and psychostimulant addiction. Biochem Pharmacol 2007; 75:196-217. [PMID: 17825265 DOI: 10.1016/j.bcp.2007.08.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/25/2007] [Accepted: 08/02/2007] [Indexed: 12/27/2022]
Abstract
Psychostimulants are a broadly defined class of drugs that stimulate the central and peripheral nervous systems as their primary pharmacological effect. The abuse liability of psychostimulants is well established and represents a significant public health concern. An extensive literature documents the critical importance of monoamines (dopamine, serotonin and norepinephrine) in the behavioral pharmacology and addictive properties of psychostimulants. In particular, the dopamine transporter plays a primary role in the reinforcing and behavioral-stimulant effects of psychostimulants in animals and humans. Moreover, both serotonin and norepinephrine systems can reliably modulate the neurochemical and behavioral effects of psychostimulants. However, there is a growing body of evidence that highlights complex interactions among additional neurotransmitter systems. Cortical glutamatergic systems provide important regulation of dopamine function, and inhibitory amino acid gamma-aminobutyric acid (GABA) systems can modulate basal dopamine and glutamate release. Repeated exposure to psychostimulants can lead to robust and enduring changes in neurobiological substrates, including monoamines, and corresponding changes in sensitivity to acute drug effects on neurochemistry and behavior. Significant advances in the understanding of neurobiological mechanisms underlying psychostimulant abuse and dependence have guided pharmacological treatment strategies to improve clinical outcome. In particular, functional agonist treatments may be used effectively to stabilize monoamine neurochemistry, influence behavior and lead to long-term abstinence. However, additional clinical studies are required in order to identify safe and efficacious pharmacotherapies.
Collapse
Affiliation(s)
- Leonard L Howell
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
52
|
Weerts EM, Froestl W, Kaminski BJ, Griffiths RR. Attenuation of cocaine-seeking by GABA B receptor agonists baclofen and CGP44532 but not the GABA reuptake inhibitor tiagabine in baboons. Drug Alcohol Depend 2007; 89:206-13. [PMID: 17234367 PMCID: PMC1933605 DOI: 10.1016/j.drugalcdep.2006.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 11/17/2022]
Abstract
The current study evaluated the effects of drugs that increase GABA levels by activation of GABA(B) receptors (baclofen and CGP44532) or by inhibition of GABA reuptake (tiagabine) on the reinstatement of extinguished lever responding produced by priming doses of cocaine in baboons (i.e., cocaine-seeking). Cocaine self-injection was established and maintained under a fixed ratio (FR10) schedule of reinforcement during daily 2h sessions. Lever responding was extinguished by substituting vehicle (saline) for cocaine until the number of self-injections decreased to 10 or less per session for two consecutive sessions (defined as extinction). Once extinction occurred, priming doses of cocaine (0.1-3.2mg/kg, i.v.) were administered during extinction conditions. Administration of priming doses of cocaine significantly increased cocaine-seeking in a dose-dependent manner. Cocaine-seeking produced by priming doses of cocaine were attenuated by pretreatment with baclofen (N=5) or CGP44532 (N=5) but not tiagabine (N=3). The doses of baclofen (0.32 mg/kg), and CGP445532 (0.32 mg/kg) that reduced cocaine-seeking produced by cocaine priming doses did not reinstate cocaine-seeking and did not produce overt effects when administered alone. These data indicate that GABA(B) agonists may reduce relapse to cocaine taking.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Bayview Behavioral Biology Research Center, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
53
|
Abstract
Despite huge advances in the neuroscience of substance abuse and dependence in the past 20 years, no approved pharmacological treatment exists for cocaine abuse. The available drugs for the treatment of cocaine abuse are poorly effective, hence the need for new compounds to be screened and tested for efficacy: targeting symptoms might improve the effectiveness of the treatment of cocaine abuse and dependence. On the basis of the known neurochemistry of cocaine, some target compounds have been studied: among others, BP-897, a D3 partial agonist; vanoxerine, a highly selective inhibitor of dopamine uptake; aripiprazole, a partial mixed-action agonist approved for the treatment of schizophrenia. Recently modafinil, approved for the treatment of narcolepsy, proved effective in favouring cocaine abstinence in cocaine-abusing people. Some placebo-controlled studies also reported the effectiveness of topiramate, a licensed antiepileptic drug, and of tiagabine, a gamma-aminobutyric acid (GABA) re-uptake inhibitor also approved as an anticonvulsant; both compounds increased cocaine abstinence with no serious adverse events. Promising results came from two more compounds acting on the GABA circuits, baclofen and valproic acid. Finally disulfiram, prescribed with active psychosocial therapy, was found to favour higher retention rates and longer abstinence periods from both alcohol and cocaine in polydrug-abusing patients. An alternative approach rests on the use of vaccines, to date in the experimental stage still. Psychosocial treatments are a useful companion in the pharmacotherapy of cocaine abuse, with group therapy and contingency management therapies improving motivation and social functioning, particularly in patients abusing alcohol as well.
Collapse
Affiliation(s)
- Antonio Preti
- Department of Psychology, University of Cagliari, Italy and Genneruxi Medical Center, Italy.
| |
Collapse
|
54
|
Mooney ME, Schmitz JM, Moeller FG, Grabowski J. Safety, tolerability and efficacy of levodopa-carbidopa treatment for cocaine dependence: two double-blind, randomized, clinical trials. Drug Alcohol Depend 2007; 88:214-23. [PMID: 17134849 PMCID: PMC2693095 DOI: 10.1016/j.drugalcdep.2006.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 11/25/2022]
Abstract
RATIONALE The role of dopamine in cocaine abuse has been long recognized. Cocaine use can profoundly alter dopaminergic functioning through depletion of this monoamine and changes in receptor functioning. Based on these facts, levodopa (L-dopa) pharmacotherapy may be helpful in reducing or abolishing cocaine use. OBJECTIVE The current studies sought to evaluate the safety, tolerability and efficacy of L-dopa as a treatment for cocaine dependence. METHODS In Study 1, 67 cocaine-dependent subjects were randomized in a 5-week, double-blind, placebo-controlled safety trial. Subjects received either placebo, or 400 mg L-dopa plus 100 mg of the peripheral decarboxylase inhibitor, carbidopa, in a sustained-release preparation (Sinemet CR). In Study 2, 122 cocaine-dependent subjects were enrolled in a 9-week, randomized, double-blind, placebo-controlled trial to compare placebo to 400/100 mg and 800/200 mg L-dopa/carbidopa treatments. Placebo or L-dopa were administered twice daily in both studies. RESULTS L-dopa was well tolerated with similar retention and medication adherence rates compared to placebo. Only two side effects occurred more often in L-dopa-treated patients: nausea and dizziness. L-dopa lowered diastolic blood pressure in a dose-dependent fashion. In these trials, L-dopa had no effect on cocaine use, cocaine craving, or mood. CONCLUSION These two studies demonstrate the safety and tolerability of L-dopa pharmacotherapy in cocaine-dependent patients. No evidence for greater efficacy of L-dopa compared to placebo was observed. The possibility of enhancing treatment effects by combining L-dopa with other behavioral or pharmacological interventions is discussed.
Collapse
Affiliation(s)
- Marc E Mooney
- Department of Psychiatry, University of Minnesota, Transdisciplinary Tobacco Use Research Center, 2701 University Avenue, S.E., Suite 201, Minneapolis, MN 55414, USA.
| | | | | | | |
Collapse
|
55
|
Abstract
The US FDA has approved a limited number of treatments for alcohol, nicotine and opioid dependence; however, no treatments for other abused drugs such as marijuana, cocaine or methamphetamine are approved. This review focuses on research into drug pharmacotherapies, particularly single-drug therapies, for substance abuse and dependence contributing to the most important dual substance use disorders (SUDs). Given the implications of poly-substance abuse, it is essential that clinicians and researchers be aware of potential pharmacotherapies for the treatment of dual SUDs.A substantial number of patients abuse more than one drug concurrently, complicating the treatment of SUD and leaving clinicians with few FDA-approved drug options for their patients. In this era of evidence-based medicine, such patients are typically treated with therapeutically proven medications, but in ways that are outside the scope of a drug's original indication by the FDA. Such 'off-label' prescribing has become an important therapeutic strategy for practitioners seeking treatments for other diseases in subpopulations such as paediatrics and gerontology or for medical conditions such as oncology or mental illness. Similarly, the information that most clinicians use to make their decisions for treating patients abusing multiple drugs stems from trials treating a single SUD, anecdotal experiences from their own practice or that of their colleagues, or single-case studies reported in the literature. The existing evidence suggests there are few treatments for SUDs that confer significant reductions in substance use across a broad patient population. Moreover, even fewer clinical efficacy trials have been conducted that provide evidence of therapeutic benefit for these drugs. Recognising the difficulty in making the proper drug choice for facilitating maximum treatment success, this review highlights the single drugs or drug combinations that show some potential for treating dual SUDs. This review finds strongest support for the use of disulfiram for treatment of alcohol and cocaine dependence (with or without concomitant methadone maintenance), baclofen for alcohol and cocaine dependence (but not opioid-dependent cocaine users), tiagabine for cocaine dependence in methadone-maintained patients, and topiramate for alcohol, nicotine and cocaine dependence. While ondansetron and olanzapine show some efficacy in treating alcohol and cocaine dependence, more research is needed to better delineate the subpopulation in which these drugs may provide their maximum effect.
Collapse
Affiliation(s)
- George A Kenna
- Department of Community Health, Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island, USA.
| | | | | | | | | |
Collapse
|
56
|
Filip M, Frankowska M, Zaniewska M, Gołda A, Przegaliński E, Vetulani J. Diverse effects of GABA-mimetic drugs on cocaine-evoked self-administration and discriminative stimulus effects in rats. Psychopharmacology (Berl) 2007; 192:17-26. [PMID: 17256126 DOI: 10.1007/s00213-006-0694-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Recent data indicate that gamma-aminobutyric acid (GABA) is a modulator of behavioral responses to cocaine. OBJECTIVE The efficacy of gabapentin (a cyclic GABA analogue), tiagabine (a GABA reuptake inhibitor), or vigabatrin (an inhibitor of GABA transaminase and reuptake) to alter cocaine-seeking behavior and discriminative effects was examined in rats. MATERIALS AND METHODS Rats were trained to press a lever for cocaine (0.5 mg/kg per infusion) paired with a cue (light + tone) using a fixed ratio (FR) 5 schedule of reinforcement. After extinction, the cocaine-seeking behavior was reinstated by cocaine priming (10 mg/kg). Another group of rats was trained to discriminate cocaine (10 mg/kg) from saline in a two-lever FR 20 task. RESULTS Vigabatrin (150-250 mg/kg) decreased cocaine-maintained responding, whereas tiagabine (10 mg/kg) significantly reduced responses on the "active" lever. Vigabatrin (150-250 mg/kg) significantly decreased responding to the cocaine-priming dose and a nonsignificant attenuation of cocaine-induced reinstatement was seen after tiagabine (5-10 mg/kg). Gabapentin (10-30 mg/kg) failed to alter maintenance of cocaine self-administration or drug-induced reinstatement. Pretreatment with either gabapentin, tiagabine, or vigabatrin resulted in neither reinstatement of cocaine seeking nor alterations in cocaine discrimination. CONCLUSIONS Our study demonstrates that vigabatrin (only at the 150 mg/kg dose) exerted inhibitory actions on cocaine-maintained responding and attenuated the reinstatement of extinguishing responding more effectively than gabapentin or tiagabine and with less evidence of motor impairment than the latter drugs. Present findings do not support a role for gabapentin or tiagabine for the possible treatment of cocaine relapse, whereas albeit limited effects of vigabatrin may be seen.
Collapse
Affiliation(s)
- Małgorzata Filip
- Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
57
|
Tatsuta T, Kitanaka N, Kitanaka J, Morita Y, Takemura M. Lack of effect of anticonvulsant topiramate on methamphetamine-induced stereotypy and rewarding property in mice. Pharmacol Biochem Behav 2007; 87:48-55. [PMID: 17482247 DOI: 10.1016/j.pbb.2007.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 03/09/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
The effects of topiramate, a structurally novel anticonvulsant, on the methamphetamine (METH)-induced expression of stereotypy and conditioned place preference (CPP) in male ICR mice were investigated. After a single administration of METH (10 mg/kg, i.p.), mice showed stereotyped behaviors with a plateau level 25 min after drug challenge. Pretreatment with topiramate (1, 10, and 100 mg/kg, i.p.) 30 min prior to METH challenge had no effect on the expression frequency of stereotypy, compared with saline challenge. No differential effects of topiramate on METH-induced stereotyped behavior (that is, head-bobbing, circling, continuous sniffing, nail and/or wood-chip biting, and vigorous and compulsive grooming) were observed. In saline-challenged groups, the doses of topiramate examined did not induce any stereotyped behaviors. Although mice showed a significant CPP for METH (0.5 mg/kg, i.p.), pretreatment with subchronic topiramate did not affect the magnitude of CPP. Locomotor activity was not affected by the doses of topiramate tested. Conditioned rewarding or aversive effects of topiramate were not observed as indexed by the place preference procedure. These results suggested the lack of effect of topiramate on METH-induced stereotypy and rewarding property in mice.
Collapse
Affiliation(s)
- Tomohiro Tatsuta
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | |
Collapse
|
58
|
Murthy V, Davies HML, Hedley SJ, Childers SR. Irreversible binding of a novel phenylisothiocyanate tropane analog to monoamine transporters in rat brain. Biochem Pharmacol 2007; 74:336-44. [PMID: 17540345 PMCID: PMC4701044 DOI: 10.1016/j.bcp.2007.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 11/17/2022]
Abstract
Irreversible tropane analogs have been useful in identifying binding sites of cocaine on biogenic amine transporters, including transporters for dopamine (DAT), serotonin (SERT) and norepinephrine (NET). The present study characterizes the properties of the novel phenylisothiocyanate tropane HD-205, synthesized from the highly potent 2-napthyl tropane analog WF-23. In radioligand binding studies in brain membranes, direct IC(50) values of HD-205 were 4.1, 14 and 280nM at DAT, SERT and NET, respectively. Wash-resistant binding was characterized by preincubation of HD-205 with brain membranes, followed by extensive washing before performing transporter radioligand binding. Results for HD-205 showed wash-resistant IC(50) values of 191, 230 and 840nM at DAT, SERT and NET, respectively. Saturation binding studies with [(125)I]RTI-55 in membranes pretreated with 100nM HD-205 showed that HD-205 significantly decreased the B(max) but not K(D) of DAT and SERT binding. To further characterize its irreversible binding, an iodinated analog of HD-205, HD-244, was prepared from a trimethylsilyl precursor. The direct IC(50) of HD-244 at DAT was 20nM. [(125)I]HD-244 was synthesized with chloramine-T, purified on HPLC, reacted with rat striatal membranes, and proteins were separated by SDS-PAGE. Results showed several non-specific labeled bands, but only a single specific band of radioactivity co-migrating with an immunoreactive DAT band at approx. 80 kilodaltons was detected, suggesting that [(125)I]HD-244 covalently labeled DAT protein in striatal membranes. These results demonstrate that phenylisothiocyanate analogs of WF-23 can be used as potential ligands to map distinct binding sites of cocaine analogs at DAT.
Collapse
Affiliation(s)
- Vishakantha Murthy
- Department of Physiology/Pharmacology, Center for the Neurobiological Investigation of Drug Abuse, Wake Forest University Health Sciences, Winston-Salem, NC 27157, United States
| | | | | | | |
Collapse
|
59
|
Sundaresan K, Ziemann U, Stanley J, Boutros N. Cortical inhibition and excitation in abstinent cocaine-dependent patients: a transcranial magnetic stimulation study. Neuroreport 2007; 18:289-92. [PMID: 17314673 DOI: 10.1097/wnr.0b013e3280143cf0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prior transcranial magnetic stimulation studies showed that resting motor threshold is elevated in abstinent cocaine-dependent patients, suggesting a decrease in axonal excitability. In contrast, the increased incidence of seizures and psychosis in this group suggests increased excitability or decreased inhibition. Here, we studied long-interval intracortical facilitation and long-interval intracortical inhibition, paired-pulse transcranial magnetic stimulation measures that are more directly linked to glutamatergic cortical facilitation and GABAergic inhibition, respectively. Ten cocaine-dependent and 10 healthy controls were examined. Resting motor threshold, long-interval intracortical facilitation and long-interval intracortical inhibition were tested from the left motor cortex. The cocaine group showed an elevated resting motor threshold and an increased long-interval intracortical facilitation, whereas long-interval intracortical inhibition was normal. Although the increase in long-interval intracortical facilitation suggests exaggerated cortical glutamatergic excitability, the increase in resting motor threshold may signify a protective mechanism against seizures and psychosis.
Collapse
Affiliation(s)
- Karthik Sundaresan
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, USA
| | | | | | | |
Collapse
|
60
|
Abstract
Alprazolam is successful in reducing anxiety but has a high addictive/misuse potential. Topiramate is a novel anticonvulsant which has been used as a mood stabilizer. Other anticonvulsants, such as carbamazepine and valproate, have been used in alcohol and benzodiazepine withdrawal. Topiramate has recently been used in alcohol, cocaine and opiates withdrawal. There has been also one report of topiramate use in midazolam withdrawal. In our case of a patient with recurrent major depressive disorder, subthreshold anxiety disorder and addiction to alprazolam, topiramate appears to be efficient and safe in alprazolam withdrawal.
Collapse
Affiliation(s)
- Ioannis Michopoulos
- Department of General Hospital Psychiatry, Athens University Medical School, Attikon Hospital, Athens, Greece
| | | | | | | |
Collapse
|
61
|
Ko MC, Bowen LD, Narasimhan D, Berlin AA, Lukacs NW, Sunahara RK, Cooper ZD, Woods JH. Cocaine esterase: interactions with cocaine and immune responses in mice. J Pharmacol Exp Ther 2007; 320:926-33. [PMID: 17114567 DOI: 10.1124/jpet.106.114223] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine esterase (CocE) is the most efficient protein catalyst for the hydrolysis of cocaine characterized to date. The aim of this study was to investigate the in vivo potency of CocE in blocking cocaine-induced toxicity in the mouse and to assess CocE's potential immunogenicity. Cocaine toxicity was quantified by measuring the occurrence of convulsions and lethality. Intravenous administration of CocE (0.1-1 mg) 1 min before cocaine administration produced dose-dependent rightward shifts of the dose-response curve for cocaine toxicity. More important, i.v. CocE (0.1-1 mg), given 1 min after the occurrence of cocaine-induced convulsions, shortened the recovery time after the convulsions and saved the mice from subsequent death. Effects of repeated exposures to CocE were evaluated by measuring anti-CocE antibody titers and the protective effects of i.v. CocE (0.32 mg) against toxicity elicited by i.p. cocaine (320 mg/kg) (i.e., 0-17% occurrence of convulsions and lethality). CocE retained its potency against cocaine toxicity in mice after a single prior CocE exposure (0.1-1 mg), and these mice did not show an immune response. CocE retained similar effectiveness in mice after three prior CocE exposures (0.1-1 mg/week for 3 weeks), although these mice displayed 10-fold higher antibody titers. CocE partially lost effectiveness (i.e., 33-50% occurrence of convulsions and lethality) in mice with four prior exposures to CocE (0.1-1 mg/2 week for four times), and these mice displayed approximately 100-fold higher antibody titers. These results suggest that CocE produces robust protection and reversal of cocaine toxicity, indicating CocE's therapeutic potential for acute cocaine toxicity. Repeated CocE exposures may increase its immunogenicity and partially reduce its protective ability.
Collapse
Affiliation(s)
- Mei-Chuan Ko
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kjellström S, Bruun A, Isaksson B, Eriksson T, Andréasson S, Ponjavic V. Retinal function and histopathology in rabbits treated with Topiramate. Doc Ophthalmol 2006; 113:179-86. [PMID: 17111186 DOI: 10.1007/s10633-006-9027-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate retinal function and histopathology in rabbits treated orally with the anti-epileptic drug topiramate. METHODS Six rabbits were treated with a daily oral dose of topiramate during a period of eight months. Six rabbits receiving water served as controls. Blood samples were analyzed for determination of topiramate serum levels in order to ensure successful drug exposition. Standardized full-field electroretinograms (ERGs) were performed before treatment and then at 2, 3 and 8 months during the treatment period. After terminating treatment the rabbits were sacrificed and the morphology of the sectioned retina was studied. RESULTS After eight months of treatment the full-field ERG demonstrated normal rod function in treated and control rabbits, but the light adapted 30 Hz flicker b-wave amplitude was significantly reduced in the treated rabbits. This was the case for both the light adapted (Wilcoxon signed ranks test, P = 0.046) and the dark adapted (Wilcoxon signed ranks test, P = 0.028) 30 Hz flicker response from the treated rabbits. Retinal immunohistology revealed a severe accumulation of GABA in amacrine cells and in the inner plexiform layer in 4 of 6 treated rabbits compared to the controls. CONCLUSIONS Topiramate, orally administrated to rabbits, may cause a significant reduction of the retinal function demonstrated by the reduced b-wave amplitude in the full-field ERG, as well as changes in immunohistology characterized by a severe accumulation of GABA in the inner retina. The retinal dysfunction and the morphological changes indicate that topiramat may damage the retina, similarly to vigabatrin (another anti-epileptic drug).
Collapse
Affiliation(s)
- S Kjellström
- Department of Ophthalmology, University of Lund, S 221 85, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
63
|
Do Carmo GP, Mello NK, Rice KC, Folk JE, Negus SS. Effects of the selective delta opioid agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Eur J Pharmacol 2006; 547:92-100. [PMID: 16934797 PMCID: PMC1850968 DOI: 10.1016/j.ejphar.2006.06.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/27/2022]
Abstract
Delta agonists such as SNC80 ((+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) produce some cocaine-like behavioral effects and warrant evaluation as candidate "agonist" medications for cocaine abuse. The present study examined acute and chronic effects of the systemically active delta agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Acute SNC80 (0.32-3.2 mg/kg, i.m.) pretreatment dose-dependently decreased cocaine self-administration (0.0032 mg/kg/injection), but doses of SNC80 that decreased cocaine self-administration also decreased food-maintained responding. In chronic studies, SNC80 (0.32-3.2 mg/kg/h, i.v.) was delivered for 7 days, and food or cocaine (0.01 mg/kg/injection) was available during 4 daily components of food availability and 4 daily components of drug availability. Chronic SNC80 (1.8 mg/kg/h) tended to decrease cocaine self-administration but produced greater reductions in food-maintained responding. A higher dose of 3.2 mg/kg/h SNC80 eliminated both cocaine- and food-maintained responding and produced profound sedation in one monkey and was not tested in other monkeys. These findings indicate that SNC80 produced dose-dependent and non-selective reductions in cocaine self-administration. These results suggest that SNC80 is unlikely to be useful as a treatment for cocaine dependence.
Collapse
Affiliation(s)
- Gail Pereira Do Carmo
- Alcohol and Drug Abuse Research Center, McLean Hospital - Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | |
Collapse
|
64
|
Newton TF, Roache JD, De La Garza R, Fong T, Wallace CL, Li SH, Elkashef A, Chiang N, Kahn R. Bupropion reduces methamphetamine-induced subjective effects and cue-induced craving. Neuropsychopharmacology 2006; 31:1537-44. [PMID: 16319910 DOI: 10.1038/sj.npp.1300979] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bupropion is an antidepressant with stimulant properties, which inhibits the reuptake of dopamine (DA) and norepinepherine, and is purported to enhance DA neurotransmission. Bupropion is considered an appealing candidate medication for the treatment of methamphetamine dependence. The current laboratory study was set forth to assess the impact of bupropion treatment on the subjective effects produced by methamphetamine in the laboratory. We also assessed the effects of bupropion treatment on craving elicited by exposure to videotaped methamphetamine cues. A total of 26 participants were enrolled and 20 completed the entire study (n=10 placebo and n=10 bupropion, parallel groups design). Bupropion treatment was associated with reduced ratings of 'any drug effect' (p<0.02), and 'high' (p<0.02) following methamphetamine administration. There was also a significant bupropion-by-cue exposure interaction on General Craving Scale total score (p<0.002), and on the Behavioral Intention subscale (p<0.001). Overall, the data reveal that bupropion reduced acute methamphetamine-induced subjective effects and reduced cue-induced craving. Importantly, these data provide a rationale for the evaluation of bupropion in the treatment of methamphetamine dependence.
Collapse
Affiliation(s)
- Thomas F Newton
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at The University of California at Los Angeles, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bates B, Zhang L, Nawoschik S, Kodangattil S, Tseng E, Kopsco D, Kramer A, Shan Q, Taylor N, Johnson J, Sun Y, Chen HM, Blatcher M, Paulsen JE, Pausch MH. Characterization of Gpr101 expression and G-protein coupling selectivity. Brain Res 2006; 1087:1-14. [PMID: 16647048 DOI: 10.1016/j.brainres.2006.02.123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 02/15/2006] [Accepted: 02/26/2006] [Indexed: 11/21/2022]
Abstract
This report describes the identification and characterization of the murine orphan GPCR, Gpr101. Both human and murine genes were localized to chromosome X. Similar to its human ortholog, murine Gpr101 mRNA was detected predominantly in the brain within discrete nuclei. A knowledge-restricted hidden Markov model-based algorithm, capable of accurately predicting G-protein coupling selectivity, indicated that both human and murine GPR101 were likely coupled to Gs. This prediction was supported by the elevation of cyclic AMP levels and the activation of a cyclic AMP response element-luciferase reporter gene in HEK293 cells over-expressing human GPR101. Consistent with this, over-expression of human GPR101 in a yeast-based system yielded an elevated, agonist-independent reporter gene response in the presence of a yeast chimeric Galphas protein. These results indicate that GPR101 participates in a potentially wide range of activities in the CNS via modulation of cAMP levels.
Collapse
Affiliation(s)
- Brian Bates
- Wyeth Research, Biological Technologies, 87 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zhu X, Dickerson TJ, Rogers CJ, Kaufmann GF, Mee JM, McKenzie KM, Janda KD, Wilson IA. Complete reaction cycle of a cocaine catalytic antibody at atomic resolution. Structure 2006; 14:205-16. [PMID: 16472740 DOI: 10.1016/j.str.2005.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/27/2005] [Accepted: 10/04/2005] [Indexed: 11/30/2022]
Abstract
Antibody 7A1 hydrolyzes cocaine to produce nonpsychoactive metabolites ecgonine methyl ester and benzoic acid. Crystal structures of 7A1 Fab' and six complexes with substrate cocaine, the transition state analog, products ecgonine methyl ester and benzoic acid together and individually, as well as heptaethylene glycol have been analyzed at 1.5-2.3 angstroms resolution. Here, we present snapshots of the complete cycle of the cocaine hydrolytic reaction at atomic resolution. Significant structural rearrangements occur along the reaction pathway, but they are generally limited to the binding site, including the ligands themselves. Several interacting side chains either change their rotamers or alter their mobility to accommodate the different reaction steps. CDR loop movements (up to 2.3 angstroms) and substantial side chain rearrangements (up to 9 angstroms) alter the shape and size (approximately 320-500 angstroms3) of the antibody active site from "open" to "closed" to "open" for the substrate, transition state, and product states, respectively.
Collapse
Affiliation(s)
- Xueyong Zhu
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Metabotropic gamma-aminobutyric acid(B) (GABAB) receptors for the major inhibitory transmitter GABA, together with metabotropic glutamate (mGLuRs) receptors, the extracellular calcium-sensing receptors (CaSRs), some V2R pheromone receptors and T1R taste receptors, belong to the family of 3 G-protein-coupled receptors (GPCRs). GABAB receptors are known to control neuronal excitability and modulate synaptic neurotransmission, playing a very important role in many physiological activities. These receptors are widely expressed and distributed in the nervous system and have been implicated in a variety of neurodegenerative and pathophysiological disorders including epilepsy, spasticity, chronic pain, depression, schizophrenia and drug addiction. To form a functional receptor entity, GABAB receptors must exist as a heterodimer consisting of GABAB1 and GABAB2 receptor subtypes with two 7-transmembrane proteins, and these subunits arise from distinct genes. The GABAB1 subunit binds the endogenous ligand within its extracellular N-terminus, whilst the GABAB2 subunit is not only essential for the correct trafficking of the GABAB1 subunit to the cell surface, but is also responsible for the interaction of the receptor with its cognate G-protein. Allosteric modulation has recently been recognized as an alternative pharmacological approach to gain selectivity in drug action. It is now generally accepted that modulators acting at the allosteric sites provide a novel perspective for the development of subtype-selective agents acting at GPCRs. These agents interact with allosteric binding sites quite separate from the highly conserved agonist binding region. In this review, we present a new class of phenylalkylamines, based on the lead compound fendiline, that are potent positive potentiators of GABAB receptor-mediated function and discuss their putative clinical applications. It is proposed that these new modulators may have therapeutic value in GABAB receptor pharmacology and are capable of selectively modifying GABAB receptor function. The allosteric modulators are offering an attractive and novel means to identify new leads, that are devoid of side effects associated with GABAB receptor agonists, and may, therefore, represent a major advance in the drug discovery process.
Collapse
Affiliation(s)
- Jennifer Ong
- Department of Anaesthesia and Intensive Care, The University of Adelaide, Australia.
| | | |
Collapse
|
68
|
Velasco-García R, Zaldívar-Machorro VJ, Mújica-Jiménez C, González-Segura L, Muñoz-Clares RA. Disulfiram irreversibly aggregates betaine aldehyde dehydrogenase--a potential target for antimicrobial agents against Pseudomonas aeruginosa. Biochem Biophys Res Commun 2006; 341:408-15. [PMID: 16426571 DOI: 10.1016/j.bbrc.2006.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/03/2006] [Indexed: 11/21/2022]
Abstract
In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacterium against the high-osmolality stress prevalent in the infected tissues. This tetrameric enzyme contains four cysteine residues per subunit and is a potential drug target. In our search for specific inhibitors, we mutated the catalytic Cys286 to alanine and chemically modified the recombinant wild-type and the four Cys-->Ala single mutants with thiol reagents. The small methyl-methanethiosulfonate inactivated the enzymes without affecting their stability while the bulkier dithionitrobenzoic acid (DTNB) and bis[diethylthiocarbamyl] disulfide (disulfiram) induced enzyme dissociation--at 23 degrees C--and irreversible aggregation--at 37 degrees C. Of the four Cys-->Ala mutants only C286A retained its tetrameric structure after DTNB or disulfiram treatments, suggesting that steric constraints arising upon the covalent attachment of a bulky group to C286 resulted in distortion of the backbone configuration in the active site region followed by a severe decrease in enzyme stability. Since neither NAD(P)H nor betaine aldehyde prevented disulfiram-induced PaBADH inactivation or aggregation, and reduced glutathione was unable to restore the activity of the modified enzyme, we propose that disulfiram could be a useful drug to combat infection by P. aeruginosa.
Collapse
Affiliation(s)
- Roberto Velasco-García
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios, Tlalnepantla, Estado de México, 54090 México, Mexico
| | | | | | | | | |
Collapse
|
69
|
O'Brien CP, Gardner EL. Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 2006; 108:18-58. [PMID: 16183393 DOI: 10.1016/j.pharmthera.2005.06.018] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Laboratory models, both animal and human, have made enormous contributions to our understanding of addiction. For addictive disorders, animal models have the great advantage of possessing both face validity and a significant degree of predictive validity, already demonstrated. Another important advantage to this field is the ability of reciprocal interplay between preclinical and clinical experiments. These models have made important contributions to the development of medications to treat addictive disorders and will likely result in even more advances in the future. Human laboratory models have gone beyond data obtained from patient histories and enabled investigators to make direct observations of human drug self-administration and test the effects of putative medications on this behavior. This review examines in detail some animal and human models that have led not only to important theories of addiction mechanisms but also to medications shown to be effective in the clinic.
Collapse
Affiliation(s)
- Charles P O'Brien
- Philadelphia VA Medical Center, Mental Illness Research and Education Center, 3900 Chestnut Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
70
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
71
|
Weerts EM, Froestl W, Griffiths RR. Effects of GABAergic modulators on food and cocaine self-administration in baboons. Drug Alcohol Depend 2005; 80:369-76. [PMID: 16005580 DOI: 10.1016/j.drugalcdep.2005.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/17/2022]
Abstract
Drugs that indirectly alter dopaminergic systems may alter the reinforcing effects of cocaine. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has extensive neural connections in mesolimbic regions that appear to modulate dopamine. The current study evaluated the effects of GABA(B) receptor agonists baclofen and CGP44532, the benzodiazepine agonist alprazolam, and the GABA reuptake inhibitor tiagabine on lever responding maintained by low dose cocaine injections (0.032 mg/kg) or by food pellet (1 g) delivery in baboons. The benzodiazepine antagonist flumazenil was tested as a negative control. Cocaine or food was available under a fixed ratio (FR 10) schedule of reinforcement during daily 2-h sessions. During baseline conditions, cocaine and pellets maintained similar numbers of reinforcers per session. Baclofen, CGP44532 and tiagabine dose-dependently reduced the number of cocaine injections, where as the benzodiazepine antagonist flumazenil did not. Baclofen, CGP44532 and tiagabine also produced dose-related decreases in food-maintained behavior. In contrast, the benzodiazepine agonist alprazolam, which positively modulates GABA(A) receptors via the benzodiazepine site, produced decreases in cocaine self-injection, but not food-maintained behavior. Thus, the effects of alprazolam were specific for cocaine-maintained behavior, where as the effects of baclofen and CGP44532 were not.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Behavioral Biology Research Center, 5510 Nathan Shock Dr./Suite 3000, Baltimore, MD 21224-6823, USA.
| | | | | |
Collapse
|
72
|
Slattery DA, Markou A, Froestl W, Cryan JF. The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intracranial self-stimulation studies in the rat. Neuropsychopharmacology 2005; 30:2065-72. [PMID: 15841108 DOI: 10.1038/sj.npp.1300734] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing interest in the development of nondopaminergic pharmacotherapies for cocaine abuse. Emerging preclinical and clinical data with the metabotropic GABAB receptor agonist baclofen support a role for the modulation of GABAB receptors in the treatment of drug addiction. Nevertheless, the muscle relaxant, hypothermic, and sedative properties of baclofen somewhat limit its widespread potential therapeutic utility. Recently, positive modulators of the GABAB receptor such as GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine) have been identified. These positive modulators enhance the effects of GABA (gamma-aminobutyric acid) through actions at an allosteric site and are devoid of intrinsic agonistic efficacy. The aim of the present study was to assess the ability of the novel GABAB-positive modulator GS39873 or baclofen to modulate the behavioral effects of cocaine. Drugs of abuse such as cocaine lower brain reward thresholds obtained using intracranial self-stimulation (ICSS). We demonstrate here that GS39783 had no intrinsic effects on ICSS reward thresholds (10-100 mg/kg p.o.) in rats, whereas the full GABAB receptor agonist baclofen (2.5-5 mg/kg p.o.) dose dependently elevated thresholds. Moreover, both GS39783 and baclofen attenuated the threshold lowering effect of cocaine administration (10 mg/kg intraperitoneally) in a dose-related manner. These data strongly suggest that activation of GABAB receptors attenuates the rewarding effects of acute cocaine. Therefore, GABAB-positive modulation may represent a novel therapeutic strategy for the treatment of cocaine dependence and possibly other drugs of abuse without the side effects of full GABAB receptor agonists.
Collapse
Affiliation(s)
- David A Slattery
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | | | |
Collapse
|
73
|
Heidbreder C. Novel pharmacotherapeutic targets for the management of drug addiction. Eur J Pharmacol 2005; 526:101-12. [PMID: 16253234 DOI: 10.1016/j.ejphar.2005.09.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/12/2005] [Accepted: 09/23/2005] [Indexed: 11/20/2022]
Abstract
Despite individual variation in the liability to the abuse of psychoactive substances, there is substantial commonality shared by drugs of abuse. The knowledge of these common mechanisms together with the continued elucidation of the neurobiological underpinnings of withdrawal symptoms, drug intake, craving, relapse, and co-morbid psychiatric associations are critically important for the development of new therapeutic strategies. The present review will focus on recent advances in the development of innovative pharmacotherapeutic agents, which should promote higher efficacy (abstinence, prevention of relapse, long-term recovery) and patient compliance, as well as improved safety profiles.
Collapse
Affiliation(s)
- Christian Heidbreder
- Department of Neuropsychopharmacology, Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, Via A. Fleming 4, 37135 Verona, Italy.
| |
Collapse
|
74
|
Kresina TF, Eldred L, Bruce RD, Francis H. Integration of pharmacotherapy for opioid addiction into HIV primary care for HIV/hepatitis C virus-co-infected patients. AIDS 2005; 19 Suppl 3:S221-6. [PMID: 16251822 DOI: 10.1097/01.aids.0000192093.46506.e5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pharmacotherapy for substance abuse is a rapidly evolving field comprising both old and new effective treatments for substance use. Opiate agonist therapy has been shown to diminish and often eliminate opiate use. This behavior change has resulted in the reduced transmission of many infections, including HIV, hepatitis C virus (HCV), and an enhanced quality of life. For the past 35 years, the provision of opioid agonist therapy has been limited to opioid treatment programmes. Opioid treatment programmes treat approximately 200,000 of the estimated million opiate-addicted individuals in the United States. With the need to increase the number of treatment opportunities available for opioid-dependent patients, Congress passed the Drug Addiction Treatment Act of 2000, which allows for the treatment of opioid dependence using buprenorphine by a properly licensed physician, including HIV primary care physicians. The integration of buprenorphine treatment for opioid addiction into HIV primary care thus provides a new treatment paradigm to address substance abuse in patients with HIV and HCV infections.
Collapse
Affiliation(s)
- Thomas F Kresina
- Center on AIDS and other Medical Consequences of Drug Abuse, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
75
|
|
76
|
Kodama H, Sato E, Gu YH, Shiga K, Fujisawa C, Kozuma T. Effect of copper and diethyldithiocarbamate combination therapy on the macular mouse, an animal model of Menkes disease. J Inherit Metab Dis 2005; 28:971-8. [PMID: 16435190 DOI: 10.1007/s10545-005-0150-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
Menkes disease (MD) is a neurodegenerative disorder characterized by a copper deficiency in the brain. It is caused by the defective intestinal absorption of copper resulting from a deficiency of a copper-transporting ATPase, ATP7A. This gives rise to an accumulation of copper in the intestine. The copper deficiency in the brain of MD patients cannot be improved by copper injections, because the administered copper accumulates at the blood-brain barrier and is not transported across to the neurons. To resolve this problem, we investigated the effect of a combination therapy of copper and sodium diethyldithiocarbamate (DEDTC), a lypophilic chelator, in an animal model of MD, the macular mouse. Four-week-old macular mice treated with 50 mug of CuCl2 on the 7th day after birth were used. Experimental mice were given a subcutaneous injection of CuCl2 (4 microg) and an intraperitoneal injection of DEDTC (0.2 mg/g body weight) twice a week for 4 weeks and then sacrificed. Copper concentrations and cytochrome-c oxidase activity in the brains of treated mice were higher than those of control macular mice, which received only copper or saline. The ratios of brain noradrenaline to dopamine and of adrenaline to dopamine were also increased by the treatment, suggesting that the activity of dopamine beta-hydroxylase, a copper-dependent enzyme, was improved by the treatment. Liver and renal function tests showed no abnormalities in the treated mice, although copper concentrations in the kidneys of treated mice were higher than those of control macular mice. These results suggest that DEDTC facilitates the passage of copper across the blood-brain barrier and that the combination therapy of copper and DEDTC may be an effective treatment for the neurological disturbances suffered by patients with MD.
Collapse
Affiliation(s)
- H Kodama
- Department of Pediatrics, Teikyo University School of Medicine, 11-1, Kaga-2, Itabashi-ku, Tokyo, 176-8605, Japan
| | | | | | | | | | | |
Collapse
|