51
|
Findeis MA. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol Ther 2007; 116:266-86. [PMID: 17716740 DOI: 10.1016/j.pharmthera.2007.06.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023]
Abstract
During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.
Collapse
Affiliation(s)
- Mark A Findeis
- Satori Pharmaceuticals Incorporated, 222 Berkeley Street, Suite 1040, Boston, MA 02116, USA.
| |
Collapse
|
52
|
Soto M, Reynish E, Nourhashémi F, Vellas B. [Clinical aspects of Alzheimer disease]. Presse Med 2007; 36:1491-9. [PMID: 17560762 DOI: 10.1016/j.lpm.2007.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 11/16/2022] Open
Abstract
Alzheimer disease is diagnosed in only half of the patients with this disease in France. In its typical form, it is characterized at the onset by short-term memory problems, repetitive and unusual oversights and forgetfulness, and difficulties in learning new information. Dementia is responsible for more than 50% of the need for care in the elderly. Disease progression is accompanied by noncognitive complications. The 3 most frequent are psychological and behavioral symptoms, weight loss, and impaired balance and walking. Its progressive nature and potential complications underline the need for multidisciplinary management for patients and their families, with regular medical follow-up.
Collapse
Affiliation(s)
- Maria Soto
- Service de médecine interne et de gérontologie clinique, CHU Purpan-Casselardit, Toulouse (31)
| | | | | | | |
Collapse
|
53
|
Abstract
Donepezil hydrochloride is the most widely prescribed drug for Alzheimer's disease (AD). The main mechanism of action through which it influences cognition and function is presumed to be the inhibition of acetylcholinesterase enzyme in the brain; however, donepezil may also impact the pathophysiology of AD at several other points. Officially approved for mild-to-moderate and severe AD, donepezil has also been shown to be effective in early-stage AD, vascular dementia, Parkinson's disease dementia/Lewy body disease and cognitive symptoms associated with multiple sclerosis. In addition, one study suggested that donepezil may delay the onset of AD in subjects with mild cognitive impairment, a prodrome to AD. The pharmacokinetics, pharmacodynamics, safety/tolerability profile and drug interaction properties of donepezil make it an easy and safe agent to use. However, in general, the efficacy of donepezil is limited, and ongoing studies are investigating other agents that may ultimately overtake its present position as the mainstay of anti-AD therapy.
Collapse
Affiliation(s)
- Ben Seltzer
- V.A. Boston Healthcare System, Department of Neurology, Harvard Medical School, Geriatric Research Center, Boston, MA 02130, USA.
| |
Collapse
|
54
|
Abstract
Currently, there are no disease-modifying therapies available for Alzheimer's disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets. The metabolism of the amyloid-precursor protein and the aggregation of its Abeta fragment are the focus of current studies. Abeta peptides are produced by the enzymes beta- and gamma-secretase. Inhibition of gamma-secretase has been shown to reduce Abeta production. However, gamma-secretase activity is also involved in other vital physiological pathways. Involvement of gamma-secretase in cell differentiation may preclude complete blockade of gamma-secretase for prolonged times in vivo. Inhibition of beta-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting beta-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Abeta sequence such as alpha-secretase and neprilysin. Stimulation of the expression or activity of alpha-secretase or neprilysin has been shown to enhance Abeta degradation. Furthermore, inhibitors of Abeta aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-gamma agonists and selected NSAIDs may be suitable to modulate both Abeta production and inflammatory activation. On the basis of autopsy reports, active immunisation against Abeta in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Abeta peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
55
|
Abstract
Delirium and dementia are syndromes with multiple cognitive impairments common to the elderly and to medically ill patients. While strides have been made in recognition of both delirium and dementia, underdiagnosis is common. Delirium and dementia cause great suffering in patients, families and caregivers. Both necessitate further advancement in assessment methods and treatment, especially when they overlap. Differentiating delirium and dementia requires recognizing that both may present with cognitive, behavioral and neuropsychiatric symptoms, but attentional disturbance and acute onset are cardinal discriminators in delirium. Superimposed delirium on dementia presents a particularly vexing problem in terms of recognition, treatment and prognosis. The pathophysiology of delirium results from diffuse cortical dysfunction or impairment in susceptible areas of the cortex and the reticular activating system. The pathophysiology of dementia is varied across dementias although several share histolological features. Treatment for both delirium and dementia includes antipsychotic medications and cholinesterase inhibitors, among others, although the disadvantages of pharmacological treatment are becoming better understood and demand caution. Nevertheless, there is an array of treatments and preventive strategies being explored for dementia, and to a lesser degree for delirium, that hold promise for the future.
Collapse
Affiliation(s)
- Benjamin Shapiro
- VA Greater Los Angeles Healthcare, West Los Angeles Healthcare Center, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - James Randy Mervis
- Greater Los Angeles Veterans Health Care System, Sepulveda Campus (116-A), 16111 Plummer Street, North Hills, CA 91343, USA
| |
Collapse
|
56
|
Vellas B, Andrieu S, Sampaio C, Wilcock G. Disease-modifying trials in Alzheimer's disease: a European task force consensus. Lancet Neurol 2007; 6:56-62. [PMID: 17166802 DOI: 10.1016/s1474-4422(06)70677-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
After symptomatic treatments, the new target for therapeutic approaches in Alzheimer's disease is the development of disease-modifying drugs. The concept of disease modification in Alzheimer's disease is controversial and the design of these trials raises many questions. Which populations should be studied? For how long? With which principal and secondary endpoints? Are surrogate markers available? Here, we present a European consensus on disease-modifying trials in Alzheimer's disease, agreed under the auspices of the European Alzheimer's Disease Consortium and based on the European perspective of the concept of disease modification, study designs, the role for biomarkers, risk benefit, and pharmacoeconomic issues.
Collapse
Affiliation(s)
- Bruno Vellas
- Alzheimer Disease Research and Clinical Center, University of Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
57
|
Scatena R, Martorana GE, Bottoni P, Botta G, Pastore P, Giardina B. An update on pharmacological approaches to neurodegenerative diseases. Expert Opin Investig Drugs 2007; 16:59-72. [PMID: 17155854 DOI: 10.1517/13543784.16.1.59] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases are now generally considered as a group of disorders that seriously and progressively impair the functions of the nervous system through selective neuronal vulnerability of specific brain regions. Alzheimer's disease is the most common neurodegenerative disease, followed in incidence by Parkinson's disease; much less common are frontotemporal dementia, Huntington's disease, amyothrophic lateral sclerosis (Lou Gehrig's disease), progressive supranuclear palsy, spinocerebellar ataxia, Pick's disease and, lastly, prion disease. In this review, the authors intend to survey new drugs in different clinical phases but not in the preclinical or discovery stages nor already in the market, with new molecules aimed at interrupting or at attenuating different pathogenic pathways of neurodegeneration and/or at ameliorating symptoms. Drugs in different pharmacological phases are under study or are ready to be introduced into therapy for Alzheimer's disease, which display anti-beta-amyloid activity or nerve growth factor-like activity or anti-inflammatory properties. Other drugs possess mixed mechanisms of action, such as acetylcholinesterase inhibition and impairment of beta-amyloid formation through inhibition of beta-amyloid precursor protein synthesis and/or modulation of secretase activity. Other therapeutic approaches are based on immunotherapy, control of metal ions interactions with beta-amyloid and ensuing oxidative reactions as well as metabolic or hormonal regulation. The symptomatic therapy of motor behaviour in Parkinson's disease, based on l-DOPA, is registering adenosine A(2A) receptor antagonists, monoamine oxidase B inhibitors and ion channel modulators, as well as dopamine uptake inhibitors and glutamate AMPA receptor antagonists. There are also many other drugs involved, including astrocyte-modulating agents, 5-HT(1A) agonists and alpha(2)-adrenergic receptor antagonists, which are targeted at preventing or ameliorating Parkinson's disease-related or l-DOPA-induced dyskinesias. Huntington's disease therapy envisages a Phase III drug, LAX-101, which displays antiapoptotic properties by promoting membrane stabilisation and mitochondrial integrity. Other drugs with antioxidant and antiapoptotic steroid-like and neuroprotective activity are under investigation for the therapy of the less common neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberto Scatena
- Istituto di Biochimica e Biochimica Clinica, Universita' Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Morbo di Alzheimer. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
60
|
Nishitomi K, Sakaguchi G, Horikoshi Y, Gray AJ, Maeda M, Hirata-Fukae C, Becker AG, Hosono M, Sakaguchi I, Minami SS, Nakajima Y, Li HF, Takeyama C, Kihara T, Ota A, Wong PC, Aisen PS, Kato A, Kinoshita N, Matsuoka Y. BACE1 inhibition reduces endogenous Abeta and alters APP processing in wild-type mice. J Neurochem 2006; 99:1555-63. [PMID: 17083447 DOI: 10.1111/j.1471-4159.2006.04178.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accumulation of amyloid beta peptide (Abeta) in brain is a hallmark of Alzheimer's disease (AD). Inhibition of beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE1), the enzyme that initiates Abeta production, and other Abeta-lowering strategies are commonly tested in transgenic mice overexpressing mutant APP. However, sporadic AD cases, which represent the majority of AD patients, are free from the mutation and do not necessarily have overproduction of APP. In addition, the commonly used Swedish mutant APP alters APP cleavage. Therefore, testing Abeta-lowering strategies in transgenic mice may not be optimal. In this study, we investigated the impact of BACE1 inhibition in non-transgenic mice with physiologically relevant APP expression. Existing Abeta ELISAs are either relatively insensitive to mouse Abeta or not specific to full-length Abeta. A newly developed ELISA detected a significant reduction of full-length soluble Abeta 1-40 in mice with the BACE1 homozygous gene deletion or BACE1 inhibitor treatment, while the level of x-40 Abeta was moderately reduced due to detection of non-full-length Abeta and compensatory activation of alpha-secretase. These results confirmed the feasibility of Abeta reduction through BACE1 inhibition under physiological conditions. Studies using our new ELISA in non-transgenic mice provide more accurate evaluation of Abeta-reducing strategies than was previously feasible.
Collapse
Affiliation(s)
- Kouhei Nishitomi
- Pain & Neurology, Discovery Research Laboratories, Shionogi Co. Ltd, Shiga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Evans CG, Wisén S, Gestwicki JE. Heat shock proteins 70 and 90 inhibit early stages of amyloid beta-(1-42) aggregation in vitro. J Biol Chem 2006; 281:33182-91. [PMID: 16973602 DOI: 10.1074/jbc.m606192200] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alzheimer disease is a neurological disorder that is characterized by the presence of fibrils and oligomers composed of the amyloid beta (Abeta) peptide. In models of Alzheimer disease, overexpression of molecular chaperones, specifically heat shock protein 70 (Hsp70), suppresses phenotypes related to Abeta aggregation. These observations led to the hypothesis that chaperones might interact with Abeta and block self-association. However, although biochemical evidence to support this model has been collected in other neurodegenerative systems, the interaction between chaperones and Abeta has not been similarly explored. Here, we examine the effects of Hsp70/40 and Hsp90 on Abeta aggregation in vitro. We found that recombinant Hsp70/40 and Hsp90 block Abeta self-assembly and that these chaperones are effective at substoichiometric concentrations (approximately 1:50). The anti-aggregation activity of Hsp70 can be inhibited by a nonhydrolyzable nucleotide analog and encouraged by pharmacological stimulation of its ATPase activity. Finally, we were interested in discerning what type of amyloid structures can be acted upon by these chaperones. To address this question, we added Hsp70/40 and Hsp90 to pre-formed oligomers and fibrils. Based on thioflavin T reactivity, the combination of Hsp70/40 and Hsp90 caused structural changes in oligomers but had little effect on fibrils. These results suggest that if these chaperones are present in the same cellular compartment in which Abeta is produced, Hsp70/40 and Hsp90 may suppress the early stages of self-assembly. Thus, these results are consistent with a model in which pharmacological activation of chaperones might have a favorable therapeutic effect on Alzheimer disease.
Collapse
Affiliation(s)
- Christopher G Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
62
|
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss new data on presently approved drugs for dementia, such as cholinesterase inhibitors and memantine, and concerns regarding the use of antipsychotics for treating neuropsychiatric symptoms, as well as to summarize some relevant studies recently published on emerging therapies with potential disease-modifying effects. RECENT FINDINGS The main focuses of recent studies of cholinesterase inhibitors and memantine have been on efficacy and safety aspects in extended clinical trials, combined treatments or comparative analysis between agents, and also on potential neuroprotective effects and new indications. Other publications have assessed the evidence of efficacy and the increased risk of cerebrovascular events, rapid cognitive decline, and mortality with the use of antipsychotics in dementia, providing important information in relation to the controversy surrounding its use. Although more studies are warranted, a sizable literature on novel treatment options under investigation is currently available as a result of a better understanding of pathogenesis of dementia. SUMMARY So far, there is no established method to predict better responders or long-term benefits with currently approved drugs for treatment of dementia. Recent systematic reviews and new research on current treatment, however, provide valuable information for clinicians, and novel drugs under investigation reveal promising new therapeutic strategies.
Collapse
Affiliation(s)
- João Carlos Machado
- Aurus IEPE - Institute of Research and Education on Aging, Lucas Machado Foundation, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, Brazil.
| | | |
Collapse
|
63
|
Jellinger KA. Alzheimer 100 – highlights in the history of Alzheimer research. J Neural Transm (Vienna) 2006; 113:1603-23. [PMID: 17039299 DOI: 10.1007/s00702-006-0578-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 09/11/2006] [Indexed: 11/24/2022]
Abstract
Alzheimer disease, a progressive neurodegenerative disorder of hitherto unknown etiology leading progressively to severe incapacity and death, has become the pandemic of the 21(st) century. On World Alzheimer Day, September 21, 2006, the 100(th) anniversary of the first description of the clinical and histological findings in this disorder by A. Alzheimer, was celebrated. This retrospective review of the most important events and advances in Alzheimer research presents its early history in which only clinical and histologic signs of this peculiar disease were described. Electron microscopy, quantitative morphology and modern biochemistry emerging in the second half of the 20(th) century opened a new era in dementia research with description of the ultrastructure and biochemistry of senile plaques and neurofibrillary tangles, the major disease markers of AD. Advances in the development of clinical, neuropathological, and neuroimaging criteria, modern instruments and algorithms in the diagnosis of the disorder followed, enabling long-term studies and more exact diagnosis of AD and related disorders. Landmark studies were the development of operational criteria for the post mortem diagnosis of AD based on semiquantitative assessment and developmental patterns of its major markers. Basic research gave insight into the molecular genetics and pathophysiology of AD, and, based on the biochemical findings, new pharmacological treatment options were opened. Recently, biological and other surrogate, in particular functional neuroimaging, markers allow an early detection of presymptomatic stages of AD, their risk factors and progression which, in the future, might be prevented or at least slowed by new therapeutic approaches. Since the etiology of AD is hitherto unknown, causative therapies are still not available. The paper discusses future research needs and challenges for developing new diagnostic strategies for early and accurate detection of neurodegenerative processes leading to dementia, better epidemiologic and gender data as well as more insights into the pathogenic cascade of AD and other dementing disorders which will depend on international networks and close cooperation between clinicians, neuroscientists, caregivers, public health institutions, and individual sponsors.
Collapse
Affiliation(s)
- K A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
64
|
Kountouras J, Gavalas E, Zavos C, Stergiopoulos C, Chatzopoulos D, Kapetanakis N, Gisakis D. Alzheimer's disease and Helicobacter pylori infection: Defective immune regulation and apoptosis as proposed common links. Med Hypotheses 2006; 68:378-88. [PMID: 16979298 DOI: 10.1016/j.mehy.2006.06.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 06/21/2006] [Indexed: 11/20/2022]
Abstract
Although degenerative diseases of the central nervous system, including Alzheimer's disease (AD), have an increasingly high impact on aged population their association with Helicobacter pylori (H. pylori) infection has not as yet been thoroughly researched. Current H. pylori infection appears to induce irregular humoral and cellular immune responses that, owing to the sharing of homologous epitopes (molecular mimicry), cross-react with components of nerves, thereby contributing and possibly perpetuating the apoptotic neural tissue damage observed in neurodegenerative diseases including AD. An association between AD and H. pylori infection has been recently addressed by two studies. A higher seropositivity for anti-H. pylori immunoglobulin G antibodies in 30 patients with AD than in 30 age-matched controls was reported in one study; this serological test, however, has limitations because it does not discriminate between current and old infections. In the other study, by introducing the histological method (the actual gold standard) for diagnosis of H. pylori infection, we reported a higher prevalence of H. pylori infection in 50 AD patients than in 30 anemic controls. This pathogen may influence the pathophysiology of AD by promoting platelet and platelet-leukocyte aggregation; releasing various pro-inflammatory and vasoactive substances; developing cross-mimicry with host antigens; producing reactive oxygen metabolites and circulating lipid peroxides; influencing the apoptotic process; and increasing, through induction of atrophic gastritis, homocysteine, which contributes to vascular disorders implicated in endothelial damage and neurodegeneration.
Collapse
Affiliation(s)
- Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
65
|
Nourhashémi F. Actualités et perspectives thérapeutiques de la maladie d'Alzheimer. Rev Med Interne 2006; 27:585-7. [PMID: 16782240 DOI: 10.1016/j.revmed.2006.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
|
66
|
Affiliation(s)
- Lary C Walker
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
67
|
Siemers ER, Dean RA, Demattos R, May PC. New pathways in drug discovery for alzheimer’s disease. Curr Neurol Neurosci Rep 2006; 6:372-8. [PMID: 16928346 DOI: 10.1007/s11910-996-0017-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Specific treatments for Alzheimer's disease (AD) were first introduced in the 1990s using the acetyl-cholinesterase inhibitors. More recently, the N-methyl-D-aspartate (NMDA) antagonist memantine has become available. Although these treatments do provide a modest improvement in the cognitive abnormalities present in AD, their pharmacology is based on manipulation of neurotransmitter systems, and there is no compelling evidence that they interfere with the underlying pathogenic process. Pathologic and genetic data have led to the hypothesis that a peptide called amyloid ss(Abeta) plays a primary role in the pathophysiology of AD. Several investigational therapies targeting Abeta are now undergoing clinical trials. This paper reviews the available data regarding Abeta-directed therapies that are in the clinic and summarizes the approach to biomarkers and clinical trial designs that can provide evidence of modification of the underlying disease process.
Collapse
Affiliation(s)
- Eric R Siemers
- Eli Lilly and Company, Lilly Corporate Center,Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|