51
|
Castoldi V, Zerbini G, Maestroni S, Viganò I, Rama P, Leocani L. Topical Nerve Growth Factor (NGF) restores electrophysiological alterations in the Ins2 Akita mouse model of diabetic retinopathy. Exp Eye Res 2023; 237:109693. [PMID: 37890756 DOI: 10.1016/j.exer.2023.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
People suffering from diabetes mellitus commonly have to face diabetic retinopathy (DR), an eye disease characterized by early retinal neurodegeneration and microvascular damage, progressively leading to sight loss. The Ins2Akita (Akita) diabetic mouse presents the characteristics of DR and experimental drugs can be tested on this model to check their efficacy before going to the clinic. Topical administration of Nerve Growth Factor (NGF) has been recently demonstrated to prevent DR in the Akita mouse, reverting the thinning of retinal layers and protecting the retinal ganglion cells (RGCs) from death. In this study, we characterize the effects of topical NGF on neuroretina function, quantified with the electroretinogram (ERG). In particular, we show that NGF can ameliorate RGC conduction in the retina of Akita mice, which correlates with a recovery of retinal nerve fiber plus ganglion cell layer (RNFL-GCL) structure. Overall, our preclinical results highlight that topical administration of NGF could be a promising therapeutic approach for DR, being capable of exerting a beneficial impact on retinal functionality.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Maestroni
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
52
|
Carvalho Silva R, Pisanu C, Maffioletti E, Menesello V, Bortolomasi M, Gennarelli M, Baune BT, Squassina A, Minelli A. Biological markers of sex-based differences in major depressive disorder and in antidepressant response. Eur Neuropsychopharmacol 2023; 76:89-107. [PMID: 37595325 DOI: 10.1016/j.euroneuro.2023.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023]
Abstract
Major depressive disorder (MDD) presents different clinical features in women and men, with women being more affected and responding differently to antidepressant treatment. Specific molecular mechanisms underlying these differences are not well studied and this narrative review aims at providing an overview of the neurobiological features underlying sex-differences in biological systems involved in MDD pathophysiology and response to antidepressant treatment, focusing on human studies. The majority of the reviewed studies were performed through candidate gene approaches, focusing on biological systems involved in MDD pathophysiology, including the stress response, inflammatory and immune, monoaminergic, neurotrophic, gamma-aminobutyric acid and glutamatergic, and oxytocin systems. The influence of the endocrine system and sex-specific hormone effects are also discussed. Genome, epigenome and transcriptome-wide approaches are less frequently performed and most of these studies do not focus on sex-specific alterations, revealing a paucity of omics studies directed to unravel sex-based differences in MDD. Few studies about sex-related differences in antidepressant treatment response have been conducted, mostly involving the inflammatory system, with less evidence on the monoaminergic system and sparse evidence in omics approaches. Our review covers the importance of accounting for sex-differences in research, optimizing patient stratification for a more precise diagnostic and individualized treatment for women and men.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Elisabetta Maffioletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany; Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, B3H 2E2, Canada
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
53
|
Kaczmarska A, Kwiatkowska D, Skrzypek KK, Kowalewski ZT, Jaworecka K, Reich A. Pathomechanism of Pruritus in Psoriasis and Atopic Dermatitis: Novel Approaches, Similarities and Differences. Int J Mol Sci 2023; 24:14734. [PMID: 37834183 PMCID: PMC10573181 DOI: 10.3390/ijms241914734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pruritus is defined as an unpleasant sensation that elicits a desire to scratch. Nearly a third of the world's population may suffer from pruritus during their lifetime. This symptom is widely observed in numerous inflammatory skin diseases-e.g., approximately 70-90% of patients with psoriasis and almost every patient with atopic dermatitis suffer from pruritus. Although the pathogenesis of atopic dermatitis and psoriasis is different, the complex intricacies between several biochemical mediators, enzymes, and pathways seem to play a crucial role in both conditions. Despite the high prevalence of pruritus in the general population, the pathogenesis of this symptom in various conditions remains elusive. This review aims to summarize current knowledge about the pathogenesis of pruritus in psoriasis and atopic dermatitis. Each molecule involved in the pruritic pathway would merit a separate chapter or even an entire book, however, in the current review we have concentrated on some reports which we found crucial in the understanding of pruritus. However, the pathomechanism of pruritus is an extremely complex and intricate process. Moreover, many of these signaling pathways are currently undergoing detailed analysis or are still unexplained. As a result, it is currently difficult to take an objective view of how far we have come in elucidating the pathogenesis of pruritus in the described diseases. Nevertheless, considerable progress has been made in recent years.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Dominika Kwiatkowska
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | | | | | - Kamila Jaworecka
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszów, Poland; (A.K.); (D.K.); (K.J.)
| |
Collapse
|
54
|
Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 2023; 26:444. [PMID: 37614437 PMCID: PMC10443056 DOI: 10.3892/etm.2023.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain-derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP-966, Tasquinimod, CM-414 and 44B), stimulating the brain by physiotherapy (such as near-infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
55
|
Bakry HM, Mansour NO, ElKhodary TR, Soliman MM. Efficacy of metformin in prevention of paclitaxel-induced peripheral neuropathy in breast cancer patients: a randomized controlled trial. Front Pharmacol 2023; 14:1181312. [PMID: 37583905 PMCID: PMC10424931 DOI: 10.3389/fphar.2023.1181312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Paclitaxel-induced peripheral neuropathy (PN) is a serious clinical problem with no approved drug for prevention. This study aimed to examine the neuroprotective effect of metformin against paclitaxel-induced PN in breast cancer patients. Methods: Patients with confirmed breast cancer diagnosis who were planned to receive paclitaxel were randomized to receive either metformin or placebo. Both groups received the standard chemotherapy protocol for breast cancer. Patients started metformin/placebo 1 week before paclitaxel initiation and continued study interventions thereafter for nine consecutive weeks. The primary outcome was the incidence of development of grade two or more paclitaxel-induced sensory PN. The PN was graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE). Patients' quality of life (QoL) was assessed by the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACTGOG-Ntx) subscale. Pain severity was measured by the Brief Pain Inventory Short Form (BPI-SF). Serum levels of nerve growth factor (NGF) and neurotensin (NT) were measured at baseline and at the end paclitaxel treatment. Results: A total of 73 patients (36 in the metformin arm and 37 in the control arm) were evaluated. The cumulative incidence of development of grade two or more PN was significantly lower in the metformin arm (14 (38.9%) than the control arm (28 (75.7%); p = 0.001). At the end of paclitaxel treatment, patients' QoL was significantly better in the metformin arm [median (IQR) FACTGOG-Ntx subscale of (24.0 (20.5-26.5)] compared to the control arm (21.0 (18.0-24.0); p = 0.003). The metformin arm showed lower "average" and "worst" pain scores than those detected in the control arm. At the end of the paclitaxel treatment, there was a significant difference in the median serum NGF levels between the two arms, favoring metformin (p < 0.05), while NT serum levels were deemed comparable between the two study arms (p = 0.09). Conclusion: The use of metformin in breast cancer patients offered a marked protection against paclitaxel-induced PN, which translated to better patient QoL. Clinical Trial Registration: https://classic.clinicaltrials.gov/ct2/show/NCT05351021, identifier NCT05351021.
Collapse
Affiliation(s)
- Hala M. Bakry
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha O. Mansour
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Tawfik R. ElKhodary
- Oncology Center, Medical Oncology Unit, Mansoura University, Mansoura, Egypt
| | - Moetaza M. Soliman
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
56
|
Juarez D, Arteaga I, Cortes H, Vazquez-Roque R, Lopez-Lopez G, Flores G, Treviño S, Guevara J, Diaz A. Chronic resveratrol administration reduces oxidative stress and brain cell loss and improves memory of recognition in old rats. Synapse 2023; 77:e22271. [PMID: 37130656 DOI: 10.1002/syn.22271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
The cognitive functions of people over 60 years of age have been diminished, due to the structural and functional changes that the brain has during aging. The most evident changes are at the behavioral and cognitive level, with decreased learning capacity, recognition memory, and motor incoordination. The use of exogenous antioxidants has been implemented as a potential pharmacological option to delay the onset of brain aging by attenuating oxidative stress and neurodegeneration. Resveratrol (RSVL) is a polyphenol present in various foods, such as red fruits, and drinks, such as red wine. This compound has shown great antioxidant capacity due to its chemical structure. In this study, we evaluated the effect of chronic RSVL treatment on oxidative stress and cell loss in the prefrontal cortex, hippocampus, and cerebellum of 20-month-old rats, as well as its impact on recognition memory and motor behavior. Rats treated with RSVL showed an improvement in locomotor activity and in short- and long-term recognition memory. Likewise, the concentration of reactive oxygen species and lipid peroxidation decreased significantly in the group with RSVL, coupled with an improvement in the activity of the antioxidant system. Finally, with the help of hematoxylin and eosin staining, it was shown that chronic treatment with RSVL prevented cell loss in the brain regions studied. Our results demonstrate the antioxidant and neuroprotective capacity of RSVL when administered chronically. This strengthens the proposal that RSVL could be an important pharmacological option to reduce the incidence of neurodegenerative diseases that affect older adults.
Collapse
Affiliation(s)
- Daniel Juarez
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Ivan Arteaga
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Haisha Cortes
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Ruben Vazquez-Roque
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Gonzalo Flores
- Institute of Physiology, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| | - Jorge Guevara
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alfonso Diaz
- Faculty of Chemical Sciences, Benemerita Autonomous University of Puebla, Puebla, Mexico
| |
Collapse
|
57
|
Simoes Braga Boisserand L, Bouchart J, Geraldo LH, Lee S, Sanganahalli BG, Parent M, Zhang S, Xue Y, Skarica M, Guegan J, Li M, Liu X, Poulet M, Askanase M, Osherov A, Spajer M, Kamouh MRE, Eichmann A, Alitalo K, Zhou J, Sestan N, Sansing LH, Benveniste H, Hyder F, Thomas JL. VEGF-C promotes brain-derived fluid drainage, confers neuroprotection, and improves stroke outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542708. [PMID: 37398128 PMCID: PMC10312491 DOI: 10.1101/2023.05.30.542708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.
Collapse
|
58
|
Malan L, van Wyk R, von Känel R, Ziemssen T, Vilser W, Nilsson PM, Magnusson M, Jujic A, Mak D, Steyn F, Malan NT. The chronic stress risk phenotype mirrored in the human retina as a neurodegenerative condition. Stress 2023:1-43. [PMID: 37154816 DOI: 10.1080/10253890.2023.2210687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The brain is the key organ that orchestrates the stress response which translates to the retina. The retina is an extension of the brain and retinal symptoms in subjects with neurodegenerative diseases substantiated the eye as a window to the brain. The retina is used in this study to determine whether chronic stress reflects neurodegenerative signs indicative of neurodegenerative conditions. A 3-year prospective cohort (n = 333; aged 46 ± 9 years) was stratified into stress-phenotype cases (n = 212) and controls (n = 121) by applying the Malan stress-phenotype index. Neurodegenerative risk markers included ischemia (astrocytic S100 calcium-binding protein B/S100B); 24h blood pressure, proteomics; inflammation (tumor-necrosis-factor-α/TNF-α); neuronal damage (neuron-specific-enolase); anti-apoptosis of retinal-ganglion-cells (beta-nerve-growth-factor), astrocytic activity (glial-fibrillary-acidic-protein); hematocrit (viscosity) and retinal follow-up data [vessels; stress-optic-neuropathy]. Stress-optic-neuropathy risk was calculated from two indices: a newly derived diastolic-ocular-perfusion-pressure cut-point ≥68 mmHg relating to the stress-phenotype; combined with an established cup-to-disc ratio cut-point ≥0.3. Higher stress-optic-neuropathy (39% vs. 17%) and hypertension (73% vs. 16%) prevalence was observed in the stress-phenotype cases vs. controls. Elevated diastolic-ocular-perfusion-pressure, indicating hypoperfusion, was related to arterial narrowing and trend for ischemia increases in the stress-phenotype. Ischemia in the stress-phenotype at baseline, follow-up and 3-yr changes was related to consistent inflammation (TNF-α and cytokine-interleukin-17-receptor-A), neuron-specific-enolase increases, consistent apoptosis (chitinase 3-like-1, low beta-nerve-growth-factor), glial-fibrillary-acidic-protein decreases, elevated viscosity, vein widening as risk marker of endothelial dysfunction in the blood-retinal-barrier, lower vein count, and elevated stress-optic-neuropathy. The stress-phenotype and related neurodegenerative signs of ongoing brain ischemia, apoptosis and endothelial dysfunction compromised blood-retinal-barrier permeability and optic nerve integrity. In fact, the stress-phenotype could identify persons at high risk of neurodegeneration to indicate a neurodegenerative condition.
Collapse
Affiliation(s)
- Leoné Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| | - Roelof van Wyk
- Surgical Ophthalmologist; 85 Peter Mokaba Street, Potchefstroom, South Africa
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus; Technische Universität Dresden, Germany
| | - Walthard Vilser
- Institute of Biomedical Engineering and informatics; Technical University Ilmenau, Germany
- Department of Pediatrics and Adolescent Medicine, Section Neonatalogy; University Hospital, Jena, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University; Malmö, Sweden
- Hypertension in Africa Research Team (HART); North-West University, Potchefstroom, South Africa
- Department of Cardiology; Skåne University Hospital, Malmö, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Malmö Sweden
| | - Amra Jujic
- Department of Clinical Sciences, Lund University; Malmö, Sweden
| | - Daniel Mak
- Centre for Regenerative Medicine and Health; Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, People's Republic of China
| | - Faans Steyn
- Statistical Consultation Services; North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Technology Transfer and Innovation-Support Office; Private Bag X1290, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
59
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
60
|
Canepa P, Canale C, Cavalleri O, Marletta G, Messina GML, Messori M, Novelli R, Mattioli SL, Apparente L, Detta N, Romeo T, Allegretti M. Adsorption of the rhNGF Protein on Polypropylene with Different Grades of Copolymerization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2076. [PMID: 36903190 PMCID: PMC10004483 DOI: 10.3390/ma16052076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The surface properties of drug containers should reduce the adsorption of the drug and avoid packaging surface/drug interactions, especially in the case of biologically-derived products. Here, we developed a multi-technique approach that combined Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM), Contact Angle (CA), Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), and X-ray Photoemission Spectroscopy (XPS) to investigate the interactions of rhNGF on different pharma grade polymeric materials. Polypropylene (PP)/polyethylene (PE) copolymers and PP homopolymers, both as spin-coated films and injected molded samples, were evaluated for their degree of crystallinity and adsorption of protein. Our analyses showed that copolymers are characterized by a lower degree of crystallinity and lower roughness compared to PP homopolymers. In line with this, PP/PE copolymers also show higher contact angle values, indicating a lower surface wettability for the rhNGF solution on copolymers than PP homopolymers. Thus, we demonstrated that the chemical composition of the polymeric material and, in turn, its surface roughness determine the interaction with the protein and identified that copolymers may offer an advantage in terms of protein interaction/adsorption. The combined QCM-D and XPS data indicated that protein adsorption is a self-limiting process that passivates the surface after the deposition of roughly one molecular layer, preventing any further protein adsorption in the long term.
Collapse
Affiliation(s)
- Paolo Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ornella Cavalleri
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Giovanni Marletta
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Grazia M. L. Messina
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Dipartimento di Scienze Chimiche, Università di Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Messori
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rubina Novelli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via Santa Lucia 6, 20122 Milano, Italy
| | - Simone Luca Mattioli
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Lucia Apparente
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Nicola Detta
- Research & Early Development, Dompè Farmaceutici S.p.A., Via De Amicis 95, 80131 Napoli, Italy
| | - Tiziana Romeo
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| | - Marcello Allegretti
- Research & Early Development, Dompè Farmaceutici S.p.A., Loc. Campo di Pile, 67100 L’Aquila, Italy
| |
Collapse
|
61
|
Shen Q, Zhang M, Jin Y, Di X, Liu R, Wang Z. Safety, Tolerability, Pharmacokinetics, and Immunogenicity of a Novel Recombination Human Nerve Growth Factor in Healthy Chinese Subjects. CNS Drugs 2023; 37:231-242. [PMID: 36811740 DOI: 10.1007/s40263-023-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Nerve growth factor (NGF), the first-discovered member of the neurotrophin family, has long been regarded as a potential drug to combat acute and chronic neurodegenerative processes. However, the pharmacokinetic profile of NGF is poorly described. OBJECTIVES The aim of this study was to investigate the safety, tolerability, pharmacokinetics, and immunogenicity of a novel recombinant human NGF (rhNGF) in healthy Chinese subjects. METHOD The study randomized 48 and 36 subjects to receive (i) single-ascending dose (SAD group; 7.5, 15, 30, 45, 60, 75 μg or placebo) and (ii) multiple-ascending dose (MAD group; 15, 30, 45 μg, or placebo) rhNGF intramuscular injections, respectively. In the SAD group, all participants received rhNGF or placebo only once. In the MAD group, participants were randomly assigned to receive multiple doses of rhNGF or placebo once a day for 7 consecutive days. Adverse events (AEs) and anti-drug antibodies (ADAs) were monitored throughout the study. Recombinant human NGF serum concentrations were determined using a highly sensitive enzyme-linked immunosorbent assay. RESULTS All AEs were mild, except for some injection-site pain and fibromyalgia, which were experienced as moderate AEs. Only one moderate AE was observed in the 15 μg cohort throughout the study and resolved within 24 hours of stopping dosing. Many participants (10% in 30 μg, 50% in 45 μg, and 50% in 60 μg in the SAD group; 10% in 15 μg, 30% in 30 μg, and 30% in 45 μg in the MAD group) experienced moderate fibromyalgia. However, all moderate fibromyalgia were resolved by the end of the subject's participation in the study. No severe AEs or clinically significant abnormalities were reported. All subjects in the 75 μg cohort experienced positive ADA in the SAD group, and one subject in the 30 μg dose and four subjects in the 45 μg dose also experienced positive ADA in the MAD group. Recombinant human nerve growth factor was absorbed (median Tmax, 4.0-5.3 h) and eliminated biexponentially (mean t1/2, 4.53-6.09 h) with a moderate speed. The Cmax and AUC increased in an approximately dose-proportional manner over the dose range of 7.5-45 μg, and at doses higher than 45 μg these parameters increased more than dose proportionally. There was no obvious accumulation after 7 days of daily dosing of rhNGF. CONCLUSION The favorable safety and tolerability and predictable pharmacokinetic profile of rhNGF in healthy Chinese subjects support its continuing clinical development for the treatment of nerve injury and neurodegenerative diseases. The AEs and immunogenicity of rhNGF will continue to be monitored in future clinical trials. TRIAL REGISTRATION This study was registered with Chinadrugtrials.org.cn (ChiCTR2100042094) on January 13th, 2021.
Collapse
Affiliation(s)
- Qi Shen
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Mengyu Zhang
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Ying Jin
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Xiangjie Di
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Runhan Liu
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China
| | - Zhenlei Wang
- Clinical Trial Center/NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, West China Hospital of Sichuan University, Telecom Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
62
|
Wang X, Ma Y, Chen J, Liu Y, Liu G, Wang P, Wang B, Taketo MM, Bellido T, Tu X. A novel decellularized matrix of Wnt signaling-activated osteocytes accelerates the repair of critical-sized parietal bone defects with osteoclastogenesis, angiogenesis, and neurogenesis. Bioact Mater 2023; 21:110-128. [PMID: 36093329 PMCID: PMC9411072 DOI: 10.1016/j.bioactmat.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cell source is the key to decellularized matrix (DM) strategy. This study compared 3 cell types, osteocytes with/without dominant active Wnt/β-catenin signaling (daCO and WTO) and bone marrow stromal cells (BMSCs) for their DMs in bone repair. Decellularization removes all organelles and >95% DNA, and retained >74% collagen and >71% GAG, maintains the integrity of cell basement membrane with dense boundaries showing oval and honeycomb structure in osteocytic DM and smooth but irregular shape in the BMSC-DM. DM produced higher cell survival rate (90%) and higher proliferative activity. In vitro, daCO-DM induces more and longer stress fibers in BMSCs, conducive to cell adhesion, spreading, and osteogenic differentiation. 8-wk after implantation of the critical-sized parietal bone defect model, daCO-DM formed tight structures, composed of a large number of densely-arranged type-I collagen under polarized light microscope, which is similar to and integrated with host bone. BV/TV (>54%) was 1.5, 2.9, and 3.5 times of WTO-DM, BMSC-DM, and none-DM groups, and N.Ob/T.Ar (3.2 × 102/mm2) was 1.7, 2.9, and 3.3 times. At 4-wk, daCO-DM induced osteoclastogenesis, 2.3 times higher than WTO-DM; but BMSC-DM or none-DM didn't. daCO-DM increased the expression of RANKL and MCSF, Vegfa and Angpt1, and Ngf in BMSCs, which contributes to osteoclastogenesis, angiogenesis, and neurogenesis, respectively. daCO-DM promoted H-type vessel formation and nerve markers β3-tubulin and NeuN expression. Conclusion: daCO-DM produces metabolic and neurovascularized organoid bone to accelerate the repair of bone defects. These features are expected to achieve the effect of autologous bone transplantation, suitable for transformation application. Decellularized matrix of osteocytes with dominant-active β-catenin (daCO-DM) promotes osteogenesis for regenerative repair. daCO-DM induces BMSCs to form stress fibers, conducive to cell adhesion, spreading, and differentiation towards osteoblasts. daCO-DM-induced osteoblasts have strong activity secreting dense and orderly-arranged type I collagen as host bone’s. daCO-DM induces BMSCs to express pre-osteoclastogenic cytokine RANKL and MCSF for osteoclastogenesis of marrow monocytes. daCO-DM enhances BMSCs to express angiogenic Vegfa and Angpt1, and neurogenic Ngf potentially for neurovascularization.
Collapse
Affiliation(s)
- Xiaofang Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yufei Ma
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Chen
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujiao Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Guangliang Liu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Pengtao Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Corresponding author. Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
63
|
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent Advances in Biomaterials-Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromol Biosci 2023; 23:e2200577. [PMID: 36758541 DOI: 10.1002/mabi.202200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic brain injury (TBI), a major public health problem accompanied with numerous complications, usually leads to serve disability and huge financial burden. The adverse and unfavorable pathological environment triggers a series of secondary injuries, resulting in serious loss of nerve function and huge obstacle of endogenous nerve regeneration. With the advances in adaptive tissue regeneration biomaterials, regulation of detrimental microenvironment to reduce the secondary injury and to promote the neurogenesis becomes possible. The adaptive biomaterials could respond and regulate biochemical, cellular, and physiological events in the secondary injury, including excitotoxicity, oxidative stress, and neuroinflammation, to rebuild circumstances suitable for regeneration. In this review, the development of pathology after TBI is discussed, followed by the introduction of adaptive biomaterials based on various pathological characteristics. The adaptive biomaterials carried with neurotrophic factors and stem cells for TBI treatment are then summarized. Finally, the current drawbacks and future perspective of biomaterials for TBI treatment are suggested.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiping Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
64
|
Zhao S, Chi H, Yang Q, Chen S, Wu C, Lai G, Xu K, Su K, Luo H, Peng G, Xia Z, Cheng C, Lu P. Identification and validation of neurotrophic factor-related gene signatures in glioblastoma and Parkinson's disease. Front Immunol 2023; 14:1090040. [PMID: 36825022 PMCID: PMC9941742 DOI: 10.3389/fimmu.2023.1090040] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common cancer of the central nervous system, while Parkinson's disease (PD) is a degenerative neurological condition frequently affecting the elderly. Neurotrophic factors are key factors associated with the progression of degenerative neuropathies and gliomas. METHODS The 2601 neurotrophic factor-related genes (NFRGs) available in the Genecards portal were analyzed and 12 NFRGs with potential roles in the pathogenesis of Parkinson's disease and the prognosis of GBM were identified. LASSO regression and random forest algorithms were then used to screen the key NFRGs. The correlation of the key NFRGs with immune pathways was verified using GSEA (Gene Set Enrichment Analysis). A prognostic risk scoring system was constructed using LASSO (Least absolute shrinkage and selection operator) and multivariate Cox risk regression based on the expression of the 12 NFRGs in the GBM cohort from The Cancer Genome Atlas (TCGA) database. We also investigated differences in clinical characteristics, mutational landscape, immune cell infiltration, and predicted efficacy of immunotherapy between risk groups. Finally, the accuracy of the model genes was validated using multi-omics mutation analysis, single-cell sequencing, QT-PCR, and HPA. RESULTS We found that 4 NFRGs were more reliable for the diagnosis of Parkinson's disease through the use of machine learning techniques. These results were validated using two external cohorts. We also identified 7 NFRGs that were highly associated with the prognosis and diagnosis of GBM. Patients in the low-risk group had a greater overall survival (OS) than those in the high-risk group. The nomogram generated based on clinical characteristics and risk scores showed strong prognostic prediction ability. The NFRG signature was an independent prognostic predictor for GBM. The low-risk group was more likely to benefit from immunotherapy based on the degree of immune cell infiltration, expression of immune checkpoints (ICs), and predicted response to immunotherapy. In the end, 2 NFRGs (EN1 and LOXL1) were identified as crucial for the development of Parkinson's disease and the outcome of GBM. CONCLUSIONS Our study revealed that 4 NFRGs are involved in the progression of PD. The 7-NFRGs risk score model can predict the prognosis of GBM patients and help clinicians to classify the GBM patients into high and low risk groups. EN1, and LOXL1 can be used as therapeutic targets for personalized immunotherapy for patients with PD and GBM.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenxi Wu
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Ke Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peihua Lu
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
- Department of Clinical Research Center, Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
65
|
Sun B, Wang Z, Zhao B, Jin Y, Li Y, Yang S. Preparation of biotin-labeled graphene film for detecting nerve growth factor. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
66
|
Reis C, Chambel S, Ferreira A, Cruz CD. Involvement of nerve growth factor (NGF) in chronic neuropathic pain - a systematic review. Rev Neurosci 2023; 34:75-84. [PMID: 35792932 DOI: 10.1515/revneuro-2022-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 01/11/2023]
Abstract
Pain is a complex experience, encompassing physiological and psychological components. Amongst the different types of pain, neuropathic pain, resulting from injuries to the peripheral or central nervous system, still constitutes a challenge for researchers and clinicians. Nerve growth factor (NGF) is currently regarded as a key contributor and may serve as a therapeutic target in many types of pain, likely including neuropathic pain. Here, we reviewed the role of NGF in neuropathic pain of peripheral and central origin, also addressing its potential use as a pharmacological target to better help patients dealing with this condition that severely impacts the everyday life. For this, we conducted a search in the databases PubMed and Scopus. Our search resulted in 1103 articles (458 in PubMed and 645 in Scopus). Only articles related to the involvement of NGF in pain or articles that approached its potential use as a target in treatment of pain symptoms were included. Duplicates were eliminated and 274 articles were excluded. After careful analysis, 23 articles were selected for review. Original articles studying the role of NGF in pathology as well as its modulation as a possible therapeutic target were included. We found that NGF is widely regarded as a key player in neuropathic pain and seen as a putative therapeutic target. However, evidence obtained from years of clinical trials highlights the toxic adverse effects of anti-NGF therapeutics, precluding its use in clinical context. Further studies are, thus, needed to improve treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Catarina Reis
- Faculty of Medicine of Porto, University of Porto, Porto, Portugal
| | - Sílvia Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Ana Ferreira
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
67
|
NGF and Its Role in Immunoendocrine Communication during Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24031957. [PMID: 36768281 PMCID: PMC9916855 DOI: 10.3390/ijms24031957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR. NGF is essential for glucose-stimulated insulin secretion and the complete development of pancreatic islets. Plus, this factor is involved in regulating lipolysis and thermogenesis in adipose tissue. Immune cells produce and respond to NGF, modulating their inflammatory phenotype and the secretion of cytokines, contributing to insulin resistance and metabolic homeostasis. This neurotrophin regulates the synthesis of gonadal steroid hormones, which ultimately participate in the metabolic homeostasis of other tissues. Therefore, we propose that this neurotrophin's imbalance in concentrations and signaling during metabolic syndrome contribute to its pathophysiology. In the present work, we describe the multiple roles of NGF in immunoendocrine organs that are important in metabolic homeostasis and related to the pathophysiology of metabolic syndrome.
Collapse
|
68
|
Hao M, Cheng Y, Wu J, Cheng Y, Wang J. Clinical observation of recombinant human nerve growth factor in the treatment of neurotrophic keratitis. Int J Ophthalmol 2023; 16:60-66. [PMID: 36659958 PMCID: PMC9815986 DOI: 10.18240/ijo.2023.01.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 12/29/2022] Open
Abstract
AIM To characterize changes of corneal nerve morphology and tear indices in patients with neurotrophic keratitis (NK) treated with recombinant human nerve growth factor (rhNGF). METHODS In a prospective observational study, six patients (nine eyes) were locally treated with rhNGF. Visual acuity, corneal fluorescein staining score, the heights of the tear river, lipid layer thickness (LLT), tear ferning (TF) test, conjunctival impression cytology (CIC) examination, the densities of cornea subbasal nerve fibers were determined before and after treatment. RESULTS Compared with baseline, there was a significant difference in corneal fluorescence staining scores (P<0.01); all patient corneal epithelial defects recovered completely within 8wk, but there was no significant improvement in the height of the tear river (P=0.202). LLT was significantly increased when compared with baseline (P=0.042); however, the function of conjunctival goblet cells and mucin content did not significantly improve using the TF test and CIC examination (P=0.557, P=0.539). After 8wk of treatment, the average corneal subbasal nerve fiber density increased significantly (P<0.01), as did the number of corneal nerve fiber branches (P=0.001). CONCLUSION RhNGF can increase the density of corneal subbasal nerve fibers, promote the healing of persistent corneal epithelial defects and corneal ulcers in patients with NK, also improving tear function partially.
Collapse
|
69
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
70
|
Nerve growth factor causes epinephrine release dysfunction by regulating phenotype alterations and the function of adrenal medullary chromaffin cells in mice with allergic rhinitis. Mol Med Rep 2023; 27:39. [PMID: 36601769 PMCID: PMC9835056 DOI: 10.3892/mmr.2023.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of allergic rhinitis (AR) is an increased risk factor for the occurrence of bronchial asthma (BA). Nerve growth factor (NGF), in addition to its key role in the development and differentiation of neurons, may also be an important inflammatory factor in AR and BA. However, the pathogenesis of the progression of AR to BA remains to be elucidated. The present study aimed to investigate the ability of NGF to mediate nasobronchial interactions and explore possible underlying molecular mechanisms. In the present study, an AR mouse model was established and histology of nasal mucosa tissue injury was determined. The level of phenylethanolamine N‑methyl transferase in adrenal medulla was determined by immunofluorescence. Primary adrenal medullary chromaffin cells (AMCCs) were isolated and cultured from the adrenal medulla of mice. The expression levels of synaptophysin (SYP), STAT1, JAK1, p38 and ERK in NGF‑treated and untreated AMCCs were detected by reverse‑transcription‑quantitative PCR and western blotting. The epinephrine (EPI) and norepinephrine (NE) concentrations were measured by ELISA. It was found that the expression of SYP in AMCCs was enhanced in the presence of NGF, whereas, the concentration of EPI decreased significantly under the same conditions. Furthermore, NGF mediated the phenotypic and functional changes of AMCCs, resulting in decreased EPI secretion via JAK1/STAT1, p38 and ERK signaling. In conclusion, these findings could provide novel evidence for the role of NGF in regulating neuroendocrine mechanisms.
Collapse
|
71
|
Liu Q, Li X, Zhu J, Sun B, Li S. TrkA inhibition alleviates bladder overactivity in cyclophosphamide-induced cystitis by targeting hyperpolarization-activated cyclic nucleotide-gated channels. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:701-707. [PMID: 37275761 PMCID: PMC10237166 DOI: 10.22038/ijbms.2023.68528.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/15/2023] [Indexed: 06/07/2023]
Abstract
Objectives To investigate the potential of Tropomyosin receptor kinase A (TrkA) for the treatment of interstitial cystitis/ bladder pain syndrome (IC/BPS). Materials and Methods Sixty-four female rats were randomly assigned to the control and cyclophosphamide (CYP) groups. Quantitative reverse transcription polymerase chain reaction was utilized to detect the mRNA level of TrkA. Western blot analysis was used to measure the protein levels of TNF-α, IL-6, and TrkA. Immunostaining was used to detect the expression of TrkA in bladder sections. Contractility studies and urodynamic measurements were utilized to test the spontaneous contractions of detrusor muscle strips and the global bladder activity, respectively. Results Rat models of chronic cystitis were successfully established. The mRNA and protein levels of TrkA were significantly increased in the bladders of CYP-treated rats. Also, results of immunohistochemical staining and immunofluorescence staining showed that increased TrkA expression in the CYP group was mainly observed in the urothelium layer and bladder interstitial Cajal-like cells (ICC-LCs) but not in the detrusor smooth muscle cells. The specific inhibitor of TrkA, GW441756 (10 μM), significantly suppressed the robust spontaneous contractions of detrusor muscle strips in the CYP group and alleviated the overall bladder overactivity of CYP-treated rats. However, the inhibitory effects of GW441756 (10 μM) on the spontaneous contractions of detrusor muscle strips and the overall bladder activity were eliminated after pretreatments with the specific blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, ZD7288 (50 μM). Conclusion Our results suggested that increased TrkA expression during chronic cystitis promotes the development of bladder overactivity by targeting the HCN channels.
Collapse
Affiliation(s)
- Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaodong Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shadan Li
- Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
72
|
Baldassarro VA, Cescatti M, Rocco ML, Aloe L, Lorenzini L, Giardino L, Calzà L. Nerve growth factor promotes differentiation and protects the oligodendrocyte precursor cells from in vitro hypoxia/ischemia. Front Neurosci 2023; 17:1111170. [PMID: 36875668 PMCID: PMC9978228 DOI: 10.3389/fnins.2023.1111170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Nerve growth factor (NGF) is a pleiotropic molecule acting on different cell types in physiological and pathological conditions. However, the effect of NGF on the survival, differentiation and maturation of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), the cells responsible for myelin formation, turnover, and repair in the central nervous system (CNS), is still poorly understood and heavily debated. Methods Here we used mixed neural stem cell (NSC)-derived OPC/astrocyte cultures to clarify the role of NGF throughout the entire process of OL differentiation and investigate its putative role in OPC protection under pathological conditions. Results We first showed that the gene expression of all the neurotrophin receptors (TrkA, TrkB, TrkC, and p75NTR ) dynamically changes during the differentiation. However, only TrkA and p75NTR expression depends on T3-differentiation induction, as Ngf gene expression induction and protein secretion in the culture medium. Moreover, in the mixed culture, astrocytes are the main producer of NGF protein, and OPCs express both TrkA and p75NTR . NGF treatment increases the percentage of mature OLs, while NGF blocking by neutralizing antibody and TRKA antagonist impairs OPC differentiation. Moreover, both NGF exposure and astrocyte-conditioned medium protect OPCs exposed to oxygenglucose deprivation (OGD) from cell death and NGF induces an increase of AKT/pAKT levels in OPCs nuclei by TRKA activation. Discussion This study demonstrated that NGF is implicated in OPC differentiation, maturation, and protection in the presence of metabolic challenges, also suggesting implications for the treatment of demyelinating lesions and diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Bologna, Italy.,IRET Foundation, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Montecatone Rehabilitation Institute, Bologna, Italy
| |
Collapse
|
73
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
74
|
Chalfun G, Araújo Brasil AD, Paravidino VB, Soares-Lima SC, Souza Almeida Lopes MD, Santos Salú MD, Barbosa E Dos Santos PV, P da Cunha Trompiere AC, Vieira Milone LT, Rodrigues-Santos G, Genuíno de Oliveira MB, Robaina JR, Lima-Setta F, Reis MM, Ledo Alves da Cunha AJ, Prata-Barbosa A, de Magalhães-Barbosa MC. NR3C1 gene methylation and cortisol levels in preterm and healthy full-term infants in the first 3 months of life. Epigenomics 2022; 14:1545-1561. [PMID: 36861354 DOI: 10.2217/epi-2022-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Aim: To describe NR3C1 exon-1F methylation and cortisol levels in newborns. Materials & methods: Preterm ≤1500 g and full-term infants were included. Samples were collected at birth and at days 5, 30 and 90 (or at discharge). Results: 46 preterm and 49 full-term infants were included. Methylation was stable over time in full-term infants (p = 0.3116) but decreased in preterm infants (p = 0.0241). Preterm infants had higher cortisol levels on the fifth day, while full-term infants showed increasing levels (p = 0.0177) over time. Conclusion: Hypermethylated sites in NR3C1 at birth and higher cortisol levels on day 5 suggest that prematurity, reflecting prenatal stress, affects the epigenome. Methylation decrease over time in preterm infants suggests that postnatal factors may modify the epigenome, but their role needs to be clarified.
Collapse
Affiliation(s)
- Georgia Chalfun
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
- Department of Neonatology, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, 22240-000, Brazil
| | - Aline de Araújo Brasil
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Vitor Barreto Paravidino
- Department of Epidemiology, Institute of Social Medicine, University of the State of Rio de Janeiro (UERJ), 20550-013, Brazil
- Department of Physical Education & Sports, Naval Academy, Brazilian Navy, Rio de Janeiro, RJ, 20021-010, Brazil
| | - Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, RJ, 20230-130, Brazil
| | | | - Margarida Dos Santos Salú
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | | | | | - Leo Travassos Vieira Milone
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Gustavo Rodrigues-Santos
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | | | - Jaqueline Rodrigues Robaina
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Fernanda Lima-Setta
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Marcelo Martins Reis
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
| | - Antônio José Ledo Alves da Cunha
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
- Postgraduate Program in Perinatal Health, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, 22240-000, Brazil
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D'Or Institute for Research & Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil
- Postgraduate Program in Perinatal Health, Maternity School, Federal University of Rio de Janeiro (UFRJ), RJ, 22240-000, Brazil
| | | |
Collapse
|
75
|
Ardianto C, Shen R, Barus JF, Sasmita PK, Turana Y, Lilis L, Sidharta VM. Secretome as neuropathology-targeted intervention of Parkinson’s disease. Regen Ther 2022; 21:288-293. [PMID: 36092507 PMCID: PMC9441294 DOI: 10.1016/j.reth.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease, characterized by apoptosis of dopaminergic neurons in substansia nigra pars compacta (SNpc) caused by ⍺-synuclein aggregation. The use of secretomes released by medicinal signaling cells (MSCs) is one the promising preventive approaches that target several mechanisms in the neuropathology of PD. Its components target the lack of neurotrophin factors, proteasome dysfunction, oxidative stress, mitochondrial dysfunction, and at last neuroinflammation via several pathways. The complex and obscure pathology of PD induce the difficulty of the search of potential preventive approach for this disease. We described the potential of secretome of MSC as the novel preventive approach for PD, especially by targeting the said major pathogenesis of PD. Secretome targets the major pathogenesis of PD. Secretome regulates inflammation by balancing pro- and anti-inflammatory cytokines. Secretome induces autophagy providing cytoprotective effects. Secretome has anti-oxidative, neuroprotective, and neurotrophic due to neurotrophic factors as its component.
Collapse
Affiliation(s)
- Christian Ardianto
- Department of Histology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Robert Shen
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Jimmy F.A. Barus
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Poppy Kristina Sasmita
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Lilis Lilis
- Department of Anatomical Pathology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
| | - Veronika Maria Sidharta
- Department of Histology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Master Program in Biomedical Sciences, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia
- Corresponding author. Jalan Pluit Raya No. 2, Pluit, Jakarta Utara, Indonesia,
| |
Collapse
|
76
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
77
|
Latif S, Kang YS. Protective Effects of Choline against Inflammatory Cytokines and Characterization of Transport in Motor Neuron-like Cell Lines (NSC-34). Pharmaceutics 2022; 14:2374. [PMID: 36365192 PMCID: PMC9699384 DOI: 10.3390/pharmaceutics14112374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 02/02/2024] Open
Abstract
Choline, a component of the neurotransmitter acetylcholine, is essential for nervous system functions, brain development, and gene expression. In our study, we investigated the protective effect and transport characteristics of choline in amyotrophic lateral sclerosis (ALS) model cell lines. We used the wild-type (WT) motor neuron-like hybrid cell line (NSC-34/hSOD1WT) as a control and the mutant-type (MT; NSC-34/hSOD1G93A) as a disease model. The uptake of [3H]choline was time-, pH-, and concentration-dependent. [3H]Choline transport was sodium-dependent, and, upon pretreatment with valinomycin, induced membrane depolarization. Gene knockdown of Slc44a1 revealed that choline-like transporter 1 (CTL1) mediates the transport of choline. In NSC-34 cell lines, the specific choline transporter inhibitor, hemicholinium-3 demonstrated significant inhibition. Donepezil and nifedipine caused dose-dependent inhibition of [3H]choline uptake by the MT cell line with minimal half inhibitory concentration (IC50) values of 0.14 mM and 3.06 mM, respectively. Four-day pretreatment with nerve growth factor (NGF) resulted in an inhibitory effect on [3H]choline uptake. Choline exerted protective and compensatory effects against cytokines mediators. Hence, the choline transport system CLT1 may act as a potential target for the delivery of novel pharmacological drugs, and the combination of drugs with choline can help treat symptoms related to ALS.
Collapse
Affiliation(s)
| | - Young-Sook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| |
Collapse
|
78
|
Ma W, Wei X, Gu H, Liu D, Luo W, Cao S, Jia S, He Y, Chen L, Bai Y, Yuan Z. Intra-amniotic transplantation of brain-derived neurotrophic factor-modified mesenchymal stem cells treatment for rat fetuses with spina bifida aperta. Stem Cell Res Ther 2022; 13:413. [PMID: 35964077 PMCID: PMC9375302 DOI: 10.1186/s13287-022-03105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Spina bifida aperta (SBA) is a relatively common clinical type of neural tube defect. Although prenatal fetal surgery has been proven to be an effective treatment for SBA, the recovery of neurological function remains unsatisfactory due to neuron deficiencies. Our previous results demonstrated that intra-amniotic transplanted bone marrow mesenchymal stem cells (BMSCs) could preserve neural function through lesion-specific engraftment and regeneration. To further optimize the role of BMSCs and improve the environment of defective spinal cords so as to make it more conducive to nerve repair, the intra-amniotic transplanted BMSCs were modified with brain-derived neurotrophic factor (BDNF-BMSCs), and the therapeutic potential of BDNF-BMSCs was verified in this study. Methods BMSCs were modified by adenovirus encoding a green fluorescent protein and brain-derived neurotrophic factor (Ad-GFP-BDNF) in vitro and then transplanted into the amniotic cavity of rat fetuses with spina bifida aperta which were induced by all-trans-retinoic acid on embryonic day 15. Immunofluorescence, western blot and real-time quantitative PCR were used to detect the expression of different neuron markers and apoptosis-related genes in the defective spinal cords. Lesion areas of the rat fetuses with spina bifida aperta were measured on embryonic day 20. The microenvironment changes after intra-amniotic BDNF-BMSCs transplantation were investigated by a protein array with 90 cytokines. Results We found that BDNF-BMSCs sustained the characteristic of directional migration, engrafted at the SBA lesion area, increased the expression of BDNF in the defective spinal cords, alleviated the apoptosis of spinal cord cells, differentiated into neurons and skin-like cells, reduced the area of skin lesions, and improved the amniotic fluid microenvironment. Moreover, the BDNF-modified BMSCs showed a better effect than pure BMSCs on the inhibition of apoptosis and promotion of neural differentiation. Conclusion These findings collectively indicate that intra-amniotic transplanted BDNF-BMSCs have an advantage of promoting the recovery of defective neural tissue of SBA fetuses. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03105-6.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Lizhu Chen
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
79
|
Fang J, Peng T, Liu J, Liu H, Liu T, Zhang Z, Zhao C, Li Y, Wang Q, Chen H, Li T, Huang S, Pu X. Muscle-derived Stem Cells Combined With Nerve Growth Factor Transplantation in the Treatment of Stress Urinary Incontinence. Urology 2022; 166:126-132. [PMID: 35490902 DOI: 10.1016/j.urology.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the efficacy of muscle-derived stem cells (MDSCs) combined with nerve growth factor (NGF) in the treatment of stress urinary incontinence (SUI) METHODS: MDSCs were isolated and extracted from 90 SD rats, and the stem cell characteristics of the cells were identified using flow cytometry. NGF overexpression (oe-NGF) plasmid was coated with adenovirus and qRT-PCR was applied to verify adenovirus transfection efficiency. The rat models of SUI were constructed and randomly divided into 5 groups: control group, phosphate buffer (PBS) group, MDSCs + oe-NGF group, MDSCs + vector group, and MDSCs group. After 8 weeks of feeding, the leakage point pressure (LPP) rats, and Masson staining of rat urethral sections were detected. The expression of NGF and vascular endothelial growth factor (VEGF) was detected by western blot and IHC staining. RESULTS Compared with the control group, the LPP and the ratio of muscle fibers/collagen fibers were significantly increased in the MDSCs treated groups, with the highest increase in the MDSCs + oe-NGF group. Western blot and IHC results showed that the expression of NGF and VEGF in the urethral tissues in the MDSCs treated groups were significantly up-regulated comparing with the control group, with the highest increase in the MDSCs + oe-NGF group. CONCLUSION MDSCs alone can relieve SUI, while MDSCs combined with NGF is more effective, which may be related to the up-regulating of VEGF.
Collapse
Affiliation(s)
- Jianxiong Fang
- Department of Urology, Jiangmen Central Hospital, Jiangmen, PR China; Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Tianming Peng
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Haosheng Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Tianqi Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; Shantou University Medical College, Shantou, PR China
| | - Zhenhui Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Chao Zhao
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Yong Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Qianqian Wang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Hanzhong Chen
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Teng Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Shang Huang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
80
|
Hua T, Shi H, Zhu M, Chen C, Su Y, Wen S, Zhang X, Chen J, Huang Q, Wang H. Glioma‑neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int J Oncol 2022; 61:104. [PMID: 35856439 PMCID: PMC9339490 DOI: 10.3892/ijo.2022.5394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
An increasing body of evidence has become available to reveal the synaptic and functional integration of glioma into the brain network, facilitating tumor progression. The novel discovery of glioma-neuronal interactions has fundamentally challenged our understanding of this refractory disease. The present review aimed to provide an overview of how the neuronal activities function through synapses, neurotransmitters, ion channels, gap junctions, tumor microtubes and neuronal molecules to establish communications with glioma, as well as a simplified explanation of the reciprocal effects of crosstalk on neuronal pathophysiology. In addition, the current state of therapeutic avenues targeting critical factors involved in glioma-euronal interactions is discussed and an overview of clinical trial data for further investigation is provided. Finally, newly emerging technologies, including immunomodulation, a neural stem cell-based delivery system, optogenetics techniques and co-culture of neuron organoids and glioma, are proposed, which may pave a way towards gaining deeper insight into both the mechanisms associated with neuron- and glioma-communicating networks and the development of therapeutic strategies to target this currently lethal brain tumor.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Huanxiao Shi
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Mengmei Zhu
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yandong Su
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Shengjia Wen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
81
|
Wang Y, Qin X, Han Y, Li B. VGF: A prospective biomarker and therapeutic target for neuroendocrine and nervous system disorders. Biomed Pharmacother 2022; 151:113099. [PMID: 35594706 DOI: 10.1016/j.biopha.2022.113099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuroendocrine regulatory polypeptide VGF (nerve growth factor inducible) was firstly found in the rapid induction of nerve growth factor on PC12 cells. It was selectively distributed in neurons and many neuroendocrine tissues. This paper reviewed the latest literatures on the gene structure, transcriptional regulation, protein processing, distribution and potential receptors of VGF. The neuroendocrine roles of VGF and its derived polypeptides in regulating energy, water electrolyte balance, circadian rhythm and reproductive activities were also summarized. Furthermore, based on the experimental evidence in vivo and in vitro, dysregulation of VGF in different neuroendocrine diseases and the possible mechanism mediated by VGF polypeptides were discussed. We next discussed the potential as the clinical diagnosis and therapy for VGF related diseases in the future.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China; Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
82
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
83
|
Mohan N, Chakrabarti A, Nazm N, Mehta R, Edward DP. Newer advances in medical management of glaucoma. Indian J Ophthalmol 2022; 70:1920-1930. [PMID: 35647957 PMCID: PMC9359258 DOI: 10.4103/ijo.ijo_2239_21] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The burden of irreversible vision loss from Glaucoma continues to rise. While the disease pathogenesis is not well understood, intraocular pressure (IOP) is the only modifiable risk factor identified to prevent glaucomatous vision loss. Medical management remains the first-line of treatment in most adult glaucomas and the evolution of medical therapy for glaucoma has followed an exponential curve. This review tracks the rapid development of new medications and drug delivery systems in the recent years. Introduction of Rho kinase inhibitors with an entirely new mechanism of action from that of the currently used anti glaucoma medications has been a significant milestone. Latanoprostene Bunod is a novel, single molecule which provides two active metabolites that work through two different pathways for reducing intra ocular pressure. Bimatoprost implants and travoprost punctum plugs attempt to ease chronic medication use in glaucoma patients. Nanotechnology is an evolving route of drug delivery. Role of cannabinoids in medical management of glaucoma remain equivocal. The relatively short term effect on IOP, the risks of developing tolerance and side effects impacting patients' neurocognitive health greatly outweigh the potential benefit. Research on Latrunculin B, Adenosine receptor agonists, Specific gene silencing and Stem cell therapy are poised to make an impact on glaucoma treatment. While there is some evidence to support the role of Brimonidine in neuroprotection, further research is needed to clarify the role of Memantine and Neurotrophins. Evidence for benefit from dietary supplementation with Alpha lipoic acid, Forskolin , and Ginko Biloba is limited.
Collapse
Affiliation(s)
- Neethu Mohan
- Department of Glaucoma, Aravind Eye Hospital, Chennai, Tamil Nadu, India
| | - Arup Chakrabarti
- Department of Glaucoma, Chakrabarti Eye Care Centre, Trivandrum, Kerala, India
| | - Nazneen Nazm
- Department of Ophthalmology, ESI-PGIMSR, ESIC Medical College and Hospital, Kolkata, West Bengal, India
| | - Rajvi Mehta
- Department of Glaucoma, Duke Eye Centre, Durham, NC, USA
| | - Deepak P Edward
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
84
|
Kolesnikova IM, Rumyantsev SA, Volkova NI, Gaponov AM, Grigor’eva TV, Laikov AV, Makarov VV, Yudin SM, Borisenko OV, Shestopalov AV. Influence of Obesity and Its Metabolic Type on the Serum Concentration of Neurotrophins. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
85
|
Ivanov SV, Ostrovskaya RU, Khlybova AS, Gudasheva TA. Low-Molecular-Weight Perorally Active Nerve Growth Factor Mimetic Reduces Manifestations of Diabetic Neuropathy in Wistar Rats. Bull Exp Biol Med 2022; 173:37-40. [PMID: 35622256 DOI: 10.1007/s10517-022-05488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 10/18/2022]
Abstract
A low-molecular-weight nerve growth factor mimetic, compound GK-2 (bis-(N-monosuccinyl- L-glutamyl-L-lysine)hexamethylenediamide) that previously demonstrated antidiabetic activity in rats with streptozotocin-induced type 2 diabetes mellitus was studied on the model of diabetic neuropathy. It was found that in 8 weeks after diabetes mellitus development, untreated diabetic rats demonstrated impaired tactile sensitivity in von Frey test, while GK-2 therapy (7.5 mg/kg orally for 28 days) restored this parameter. The decrease of tactile sensitivity in diabetic neuropathy closely correlated with the severity of hyperglycemia (r=0.76). Our findings are consistent with the concept on the role of glucose toxicity and nerve growth factor deficiency in the pathogenesis of diabetic neuropathy and attest to feasibility of further studies of nerve growth factor mimetic GK-2 as a potential treatment for diabetes and diabetic neuropathy.
Collapse
Affiliation(s)
- S V Ivanov
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia.
| | - R U Ostrovskaya
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - A S Khlybova
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - T A Gudasheva
- V. V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
86
|
Wu Y, Li W, Tang S, Liu C, Ji G, Wang F. Electrophysiological and pathological changes in the vastus medialis and vastus lateralis muscles after early patellar reduction and nerve growth factor injection in rabbits with patellar dislocation. J Orthop Surg Res 2022; 17:274. [PMID: 35570303 PMCID: PMC9107667 DOI: 10.1186/s13018-022-03170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Patellar dislocation can cause a series of changes in the trochlear groove and patella. However, the influence of patellar dislocation on the medialis (VM) and vastus lateralis (VL) muscles and whether nerve growth factor (NGF) is beneficial to proprioceptive rehabilitation for patellar dislocation are unknown. The purpose of this study was to investigate the effects on VM and VL after the injection of NGF and early reduction in rabbits for patellar dislocation with electrophysiological and pathological analysis. METHODS Sixty 2-month-old rabbits were randomly divided into four groups (15 rabbits in each group). Rabbits in Group 1, Group 2, and Group 3 underwent patellar dislocation surgery, and rabbits in Group 4 underwent sham surgery. One month later, patellar reduction was performed in Groups 1 and 2. NGF was injected into the rabbits of Group 1. The electrophysiological and pathological changes in VM and VL were analyzed at 1 month and 3 months after patellar reduction. RESULTS The electrophysiological and pathological indices in Groups 1 and 2 were significantly different from those in Group 3 at 1 and 3 months after patellar reduction. There were significant differences between NGF injection Group 1 and Group 2 without NGF injection. There was no significant difference between Group 1 and Group 4 at 3 months after patellar reduction. CONCLUSIONS Patellar dislocation can cause abnormal electrophysiological and pathological effects on VM and VL. Patellar reduction should be performed as early as possible, and NGF injection may be beneficial to the rehabilitation of proprioception.
Collapse
Affiliation(s)
- Yu Wu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Weifeng Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Shiyu Tang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Changli Liu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Gang Ji
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Fei Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
87
|
Hypoxia Induces DPSC Differentiation versus a Neurogenic Phenotype by the Paracrine Mechanism. Biomedicines 2022; 10:biomedicines10051056. [PMID: 35625792 PMCID: PMC9138575 DOI: 10.3390/biomedicines10051056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.
Collapse
|
88
|
Labib A, Ju T, Vander Does A, Yosipovitch G. Immunotargets and Therapy for Prurigo Nodularis. Immunotargets Ther 2022; 11:11-21. [PMID: 35502157 PMCID: PMC9056055 DOI: 10.2147/itt.s316602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Prurigo nodularis is a chronic inflammatory skin disease consisting of severely pruritic nodules that can be very debilitating for patients. The basis of this skin condition is immunological dysregulation and neural amplification, driven by T-lymphocytes, mast cells, eosinophilic granulocytes, macrophages, and cytokines mediating itchy processes. Further complicating this already taxing diagnosis is the lack of approved treatment and consensus on management; although there are off-label treatments utilized as therapy. Immunomodulators are the cornerstone of treatment for PN, and additional novel therapies targeting key players in the immunological cascade are currently undergoing investigation. In this review, we will highlight targets of the immune cascade and explore current immunomodulating treatments as well as immunotherapies on the horizon for the management of prurigo nodularis.
Collapse
Affiliation(s)
- Angelina Labib
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Teresa Ju
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ashley Vander Does
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Correspondence: Gil Yosipovitch, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave RMSB Building 2067B, Miami, FL, USA, Tel +1 305 213-5824, Email
| |
Collapse
|
89
|
Morys J, Borkowska P, Zielinska A, Kowalski J. Study of the influence of NGF-β gene overexpression in human mesenchymal stem cells on the expression level of SOX1 and neural pathway genes. Mol Biol Rep 2022; 49:4435-4441. [PMID: 35348963 DOI: 10.1007/s11033-022-07283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nerve growth factor (NGF) is a protein exhibiting an influence on the neural development and also, its' impact on the stem cells remains a great potential treatment strategy. The influence of its overexpression on the neural pathway differentiation on Wharton's Jelly derived MSC (WJ-MSC) has not been studied so far, but considering the fact that these cells are relatively easy to obtain, using them may indicate an innovative change in stem cell therapies. The aim of this study was to evaluate the effect of NGF overexpression in human mesenchymal stem cells (MSC) on SOX1 and genes related to the neural pathway. METHODS AND RESULTS The lentiviral transduction was performed in order to obtain the NGF overexpression, as well as RT-PCR to evaluate the expression level SOX1, SOX2, NES, NGF under influence of overexpressed NGF protein in WJ-MSC. During the study we have observed a decrease in SOX1 expression as the marker of neural stem cells. Other than that an increase of SOX2, NES and NGF was noticed, as they all are markers of early-neural as well as already differentiated neural cells. The results show a great potential of using those examined genes' expression as a form of a new stem cell therapy. CONCLUSIONS The achieved overexpression of NGF in this study, led the modified MSC onto the neural pathway as well as caused a decrease of SOX1 expression and an increase of expression of genes related to neural differentiated cells.
Collapse
Affiliation(s)
- Julia Morys
- Department of Medical Genetics, Medical University of Silesia, Jednosci 8 street, 41-200, Sosnowiec, Poland.
| | - Paulina Borkowska
- Department of Medical Genetics, Medical University of Silesia, Jednosci 8 street, 41-200, Sosnowiec, Poland
| | - Aleksandra Zielinska
- Department of Medical Genetics, Medical University of Silesia, Jednosci 8 street, 41-200, Sosnowiec, Poland
| | - Jan Kowalski
- Department of Medical Genetics, Medical University of Silesia, Jednosci 8 street, 41-200, Sosnowiec, Poland
| |
Collapse
|
90
|
ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses. Biomolecules 2022; 12:biom12030424. [PMID: 35327616 PMCID: PMC8946810 DOI: 10.3390/biom12030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Tackling neurodegeneration and neuroinflammation is particularly challenging due to the complexity of central nervous system (CNS) disorders, as well as the limited drug accessibility to the brain. The activation of tropomyosin-related kinase A (TRKA) receptor signaling by the nerve growth factor (NGF) or the neurosteroid dehydroepiandrosterone (DHEA) may combat neurodegeneration and regulate microglial function. In the present study, we synthesized a C-17-spiro-cyclopropyl DHEA derivative (ENT-A010), which was capable of activating TRKA. ENT-A010 protected PC12 cells against serum starvation-induced cell death, dorsal root ganglia (DRG) neurons against NGF deprivation-induced apoptosis and hippocampal neurons against Aβ-induced apoptosis. In addition, ENT-A010 pretreatment partially restored homeostatic features of microglia in the hippocampus of lipopolysaccharide (LPS)-treated mice, enhanced Aβ phagocytosis, and increased Ngf expression in microglia in vitro. In conclusion, the small molecule ENT-A010 elicited neuroprotective effects and modulated microglial function, thereby emerging as an interesting compound, which merits further study in the treatment of CNS disorders.
Collapse
|
91
|
Cocchiaro P, Di Donato V, Rubbini D, Mastropasqua R, Allegretti M, Mantelli F, Aramini A, Brandolini L. Intravitreal Administration of rhNGF Enhances Regenerative Processes in a Zebrafish Model of Retinal Degeneration. Front Pharmacol 2022; 13:822359. [PMID: 35330834 PMCID: PMC8940169 DOI: 10.3389/fphar.2022.822359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Nerve growth factor (NGF) is the best characterized neurotrophin, and it is known to play an important role in ocular homeostasis. Here, we demonstrated the expression of NGF receptors in adult zebrafish retina and optimized a light-induced retina degeneration (LID) zebrafish model that mimics human cone-rod disorders, demonstrating that intravitreal (IV) administration of rhNGF can boost zebrafish retinal regeneration in this model. Adult zebrafish retinae exposed to 60 h of light irradiation (60 h LID) displayed evident reduction of outer nuclear layer (ONL) thickness and cell number with presence of apoptotic cells. Retinal histologic evaluation at different time points showed that IV therapeutic injection of rhNGF resulted in an increase of ONL thickness and cell number at late time points after damage (14 and 21 days post injury), ultimately accelerating retinal tissue recovery by driving retinal cell proliferation. At a molecular level, rhNGF activated the ERK1/2 pathway and enhanced the regenerative potential of Müller glia gfap- and vim-expressing cells by stimulating at early time points the expression of the photoreceptor regeneration factor Drgal1-L2. Our results demonstrate the highly conserved nature of NGF canonical pathway in zebrafish and thus support the use of zebrafish models for testing new compounds with potential retinal regenerative properties. Moreover, the pro-regenerative effects of IV-injected NGF that we observed pave the way to further studies aimed at evaluating its effects also in mammals, in order to expedite the development of novel rhNGF-based therapeutic approaches for ophthalmological disorders.
Collapse
Affiliation(s)
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
- *Correspondence: Vincenzo Di Donato, ; Laura Brandolini,
| | - Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Rodolfo Mastropasqua
- Institute of Ophthalmology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Laura Brandolini
- Dompé Farmaceutici SpA, Napoli, Italy
- *Correspondence: Vincenzo Di Donato, ; Laura Brandolini,
| |
Collapse
|
92
|
Protective Effects of a synthetic glycosaminoglycan mimetic (OTR4132) in a rat immunotoxic lesion model of septohippocampal cholinergic degeneration. Glycoconj J 2022; 39:107-130. [PMID: 35254602 PMCID: PMC8979900 DOI: 10.1007/s10719-022-10047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.
Collapse
|
93
|
Sims SK, Wilken-Resman B, Smith CJ, Mitchell A, McGonegal L, Sims-Robinson C. Brain-Derived Neurotrophic Factor and Nerve Growth Factor Therapeutics for Brain Injury: The Current Translational Challenges in Preclinical and Clinical Research. Neural Plast 2022; 2022:3889300. [PMID: 35283994 PMCID: PMC8906958 DOI: 10.1155/2022/3889300] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Ischemic stroke and traumatic brain injury (TBI) are among the leading causes of death and disability worldwide with impairments ranging from mild to severe. Many therapies are aimed at improving functional and cognitive recovery by targeting neural repair but have encountered issues involving efficacy and drug delivery. As a result, therapeutic options for patients are sparse. Neurotrophic factors are one of the key mediators of neural plasticity and functional recovery. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) serve as potential therapeutic options to increase neural repair and recovery as they promote neuroprotection and regeneration. BDNF and NGF have demonstrated the ability to improve functional recovery in preclinical and to a lesser extent clinical studies. Direct and indirect methods to increase levels of neurotrophic factors in animal models have been successful in improving postinjury outcome measures. However, the translation of these studies into clinical trials has been limited. Preclinical experiments have largely failed to result in significant impacts in clinical research. This review will focus on the administration of these neurotrophic factors in preclinical and clinical stroke and TBI and the challenges in translating these therapies from the bench to the clinic.
Collapse
Affiliation(s)
- Serena-Kaye Sims
- Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29424, USA
| | | | - Crystal J. Smith
- Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29424, USA
| | - Ashley Mitchell
- Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29424, USA
| | - Lilly McGonegal
- College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | | |
Collapse
|
94
|
Treatment with platelet-rich plasma attenuates proprioceptor abnormalities in a rat model of postpartum stress urinary incontinence. Int Urogynecol J 2022; 33:2159-2167. [PMID: 35195739 DOI: 10.1007/s00192-022-05112-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Stress urinary incontinence (SUI) is the most prevalent form of urinary incontinence, and vaginal delivery is a major risk factor for developing SUI. We evaluated the hypothesis that applying the autologous platelet rich plasma (PRP) to the pelvic floor muscles via injection affects expression of proprioceptors and improves postpartum stress urinary incontinence (PSUI) in rats. METHODS Virgin female Sprague-Dawley rats were divided into control (n = 10) and experimental group(n = 20). Vaginal dilation was used to establish PSUI, and the rats in the experimental group were further divided into the PSUI group (n = 10) and PSUI+PRP group (n = 10). Pelvic floor muscles from rats in the PSUI+PRP group were positioned under ultrasound guidance for PRP injection. The morphology and number of pelvic floor muscle spindles were assessed using H&E staining, proprioceptors evaluated by gold chloride staining, and changes in the expression of neurotrophin-3 (NT-3) and skeletal myosin MY-32 determined by immunohistochemistry. RESULTS After 28 days,bladder leak point pressure (BLPP) and abdominal leaking-urine point pressure (ALPP) in rats with PSUI were significantly lower than in control animals (P<0.01). Both BLPP and ALPP increased significantly in the PSUI+PRP group (P<0.01). Compared with the control group, muscle spindle morphology and structure in the PSUI and PSUI+PRP groups had different pathological changes,with higher variations in the PSUI group. The positive signals for NT-3/MY-32 expression in control rats were higher than those from PSUI or PSUI+PRP groups, however, the expression for NT-3/MY-32 in PSUI+PRP animals was higher than that seen in the PSUI group (P < 0.01). CONCLUSIONS PSUI rats have an abnormal expression of pelvic proprioceptors, which affect proprioceptive function, and further the contractibility of pelvic floor muscles. A PRP injection may restore the sensory function of pelvic proprioceptors, thus improving urine leakage in PSUI rats.
Collapse
|
95
|
Hua X, Church K, Walker W, L'Hostis P, Viardot G, Danjou P, Hendrix S, Moebius HJ. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Positive Modulator of HGF/MET, Fosgonimeton, in Healthy Volunteers and Subjects with Alzheimer's Disease: Randomized, Placebo-Controlled, Double-Blind, Phase I Clinical Trial. J Alzheimers Dis 2022; 86:1399-1413. [PMID: 35180125 PMCID: PMC9108585 DOI: 10.3233/jad-215511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Fosgonimeton (ATH-1017) is being developed as a first-in-class regenerative therapy for people with Alzheimer’s disease (AD) and dementia; potentially improving dementia symptoms and altering disease progression by reversing synaptic disconnection and neuronal loss. Objective: This randomized, double-blind, placebo-controlled phase I trial (NCT03298672) evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of fosgonimeton. Methods: Fosgonimeton was administered once daily via subcutaneous injection to 88 subjects. The single ascending dose study enrolled healthy young male subjects (n = 48; age, 33.4±6.3 years; dose, 2, 6, 20, 40, 60, or 90 mg); the multiple ascending dose study enrolled healthy elderly subjects (n = 29; age, 63.8±4.0 years; dose, 20, 40, 60, or 80 mg; 9-day duration); and the fixed-dose study enrolled AD subjects (n = 11; age, 69.2±7.1 years; dose, 40 mg; 9-day duration). Quantitative electroencephalogram (qEEG) and event-related potential (ERP) P300 measured neurophysiological signals following fosgonimeton treatment, supporting brain penetration and target engagement. Results: Fosgonimeton and placebo were shown to be safe and well-tolerated across all doses. Pharmacokinetic results for fosgonimeton were dose-proportional, with no sex effect or accumulation over 9 days. The main effect of fosgonimeton on qEEG was acute and sustained gamma power induction. In AD subjects, there was a significant effect toward ERP P300 latency normalization compared with placebo (p = 0.027; n = 7 at 40 mg fosgonimeton versus n = 4 placebo). Conclusion: These results support the continued development of fosgonimeton as a novel therapeutic for people with AD and dementia. The fast-onset normalization of ERP P300 latency in AD subjects suggests enhancement of synaptic function and potential procognitive effects.
Collapse
Affiliation(s)
- Xue Hua
- Athira Pharma, Inc., Bothell, WA, USA
| | | | | | - Philippe L'Hostis
- Core Lab, Drug Evaluation and Pharmacology Research, Biotrial, Rennes, France
| | - Geoffrey Viardot
- Core Lab, Drug Evaluation and Pharmacology Research, Biotrial, Rennes, France
| | - Philippe Danjou
- Phase 1 Unite, Drug Evaluation and Pharmacology Research, Biotrial, Newark, NJ, USA
| | | | | |
Collapse
|
96
|
Wang C, Chen S, Li S, Mi H. A Prognostic Model for Predicting Tumor Mutation Burden and Tumor-Infiltrating Immune Cells in Bladder Urothelial Carcinoma. Front Genet 2022; 13:708003. [PMID: 35251120 PMCID: PMC8896886 DOI: 10.3389/fgene.2022.708003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tremendous progress has been made in development of immunotherapeutic approaches for treatment of bladder urothelial carcinoma (BLCA). However, efficacy and safety of these approaches remain unsatisfactory, necessitating further investigations for identification of indicators for predicting prognosis and efficacy. In this study, we downloaded transcriptomic and clinical data of BLCA patients from The Cancer Genome Atlas (TCGA) database, and identified differentially expressed genes (DEGs) between tumor and normal tissues. We incorporated these DEGs in an intersection analysis with immune-related genes (IRGs) obtained from the Immunology Database and Analysis Portal (ImmPort) database, and identified immune-related DEGs. These genes were subjected to Cox and least absolute shrinkage and selection operator (LASSO) regression analyses, then a prognostic model containing AHNAK, OAS1, NGF, PPY and SCG2 genes was constructed, for prediction of prognosis of BLCA and efficacy of immunotherapy. Finally, we explored the relationship between the prognostic model and tumor mutational burden (TMB), abundance of tumor-infiltrating immune cells (TICs) and immunotherapeutic targets, and found that patients with higher risk score (RS) had poorer prognosis and significantly lower levels of TMB. Patients in the low-RS group exhibited higher numbers of lymphoid cells, whereas those in the high-RS group exhibited higher proportions of myeloid cells. However, patients with high-RS tended to respond better to immunotherapy relative to those in the low-RS group. The constructed prognostic model provides a new tool for predicting prognosis of BLCA patients and efficacy of immunotherapy, offering a feasible option for management of the disease.
Collapse
Affiliation(s)
- Chengbang Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China
- Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Songheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Hua Mi,
| |
Collapse
|
97
|
Lee SM, Lee JE, Lee YK, Yoo DA, Seon DB, Lee DW, Kim CB, Choi H, Lee KH. Thermal-Corrosion-Free Electrode-Integrated Cell Chip for Promotion of Electrically Stimulated Neurite Outgrowth. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00049-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
98
|
Pietrasik S, Cichon N, Bijak M, Gorniak L, Saluk-Bijak J. Carotenoids from Marine Sources as a New Approach in Neuroplasticity Enhancement. Int J Mol Sci 2022; 23:ijms23041990. [PMID: 35216103 PMCID: PMC8877331 DOI: 10.3390/ijms23041990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.
Collapse
Affiliation(s)
- Sylwia Pietrasik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
- Correspondence:
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.B.); (L.G.)
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (S.P.); (J.S.-B.)
| |
Collapse
|
99
|
Beykin G, Stell L, Halim MS, Nuñez M, Popova L, Nguyen BT, Groth SL, Dennis A, Li Z, Atkins M, Khavari T, Wang SY, Chang R, Fisher AC, Sepah YJ, Goldberg JL. Phase 1b Randomized Controlled Study of Short Course Topical Recombinant Human Nerve Growth Factor (rhNGF) for Neuroenhancement in Glaucoma: Safety, Tolerability, and Efficacy Measure Outcomes. Am J Ophthalmol 2022; 234:223-234. [PMID: 34780798 PMCID: PMC8821405 DOI: 10.1016/j.ajo.2021.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE No approved therapies directly target retinal ganglion cells (RGCs) for neuroprotection or neuroenhancement in glaucoma. Recombinant human nerve growth factor (rhNGF) has been shown to promote RGC survival and function in animal models of optic neuropathy. Here we evaluate the safety, tolerability, and efficacy of short-term, high-dose rhNGF eye drops versus placebo in a cohort of glaucoma patients. DESIGN This was a prospective, phase 1b, single-center, randomized, double-masked, vehicle-controlled, parallel-group study. METHODS This study was designed to assess safety and tolerability as well as short-term neuroenhancement of structure and function (clinicaltrials.gov NCT02855450). A total of 60 open-angle glaucoma patients were randomized 40:20 to receive either 180 μg/mL rhNGF or vehicle control eye drops in both eyes, 3 times daily for 8 weeks, with a 24-week post-treatment follow-up. One eye was officially selected as the study eye, although both eyes were studied and dosed. Primary endpoints were safety, as assessed by adverse events, and tolerability, as assessed by patient-reported outcomes. Secondary outcome measures included best corrected visual acuity (BCVA), Humphrey visual field, electroretinograpy (ERG), and optical coherence tomography (OCT) of retinal nerve fiber layer (RNFL) thickness at baseline, after 8 weeks of treatment, and at 4 and 24 weeks after treatment (12 and 32 weeks total). RESULTS Of the 60 randomized patients, 23 were female (38%) and the average age was 66.1 years. Through week 32, there were no treatment-related serious adverse events, including no unexpectedly severe progression of optic neuropathy, no adverse events affecting ocular function or pressure, and no drug-related systemic toxicity. Topical high-dose rhNGF was tolerated well, with a low level of symptom burden mainly eliciting periocular ache (in 52% of treated group and 5% of placebo group) and only 3 patients (7.5%) discontinuing treatment because of discomfort, of whom 1 patient (2.5%) prematurely withdrew from the study. There were no statistically significant differences in global indices of Humphrey visual field and no meaningful differences in total, quadrant, or clock-hour mean RNFL thickness between the groups, although both of these function and structure measures showed nonsignificant trends toward significance in favor of rhNGF. Real-world participant data was used to generate an estimate of cohort size needed to power subsequent studies. CONCLUSIONS Use of rhNGF is safe and tolerable in a topical 180-μg/mL formulation. Although no statistically significant short-term neuroenhancement was detected in this trial, given the strong effects of NGF in preclinical models and the trends detected in this study, analysis for efficacy in a neuroprotection trial is warranted. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
100
|
Liu PP, Si RJ, Yang X, Zhang ZR, Han J, Wang AM, Zhang J. Tazarotene gel promotes healing of deep tissue injury in mice. Biotech Histochem 2022; 97:99-106. [PMID: 33827340 DOI: 10.1080/10520295.2021.1905181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the efficacy and molecular mechanisms of tazarotene gel for healing deep tissue injury (DTI). We used male C57BL/6J mice to establish a DTI model. Animals were divided randomly into control, tazarotene gel and purilon gel groups. We injected 100 ul tazarotene gel, purilon gel or saline every 48 h for 20 days. Hematoxylin and eosin staining was used to observe pathological changes on days 14 and 21. The mRNA and protein expression of VEGF-α, TGF-β1 and HIF-1α were detected by qRT-PCR and western blot, respectively. Wound sites exhibited accelerated healing by 20 days in the tazarotene gel group. Fewer inflammatory cells and more granulation tissue were found in both experimental groups compared to controls. The mRNA and protein expression of VEGF-α and TGF-β1 in the experimental groups were increased compared to the control group by day 14. Expression of HIF-1α in the experimental groups was significantly less than in the controls. Tazarotene gel promoted wound healing independent of the HIF-1α/VEGF signalling pathway during tissue repair of DTI. Tazarotene and purilon gels exhibited similar macroscopic healing of wounds and expression of genes and proteins.
Collapse
Affiliation(s)
- P P Liu
- Shandong Qingdao No.2 Health School Province, Qingdao, China
| | - R J Si
- School of Nursing, Qingdao University, Qingdao, China
| | - X Yang
- School of Nursing, Qingdao University, Qingdao, China
| | - Z R Zhang
- School of Nursing, Qingdao University, Qingdao, China
| | - J Han
- School of Nursing, Qingdao University, Qingdao, China
| | - A M Wang
- School of Nursing, Qingdao University, Qingdao, China
| | - J Zhang
- School of Nursing, Qingdao University, Qingdao, China
| |
Collapse
|