51
|
Saager M, Hahn EW, Peschke P, Brons S, Huber PE, Debus J, Karger CP. Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation. JOURNAL OF RADIATION RESEARCH 2020; 61:791-798. [PMID: 32657322 PMCID: PMC7482157 DOI: 10.1093/jrr/rraa042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/26/2020] [Indexed: 06/11/2023]
Abstract
To test the hypothesis that the use of an angiotensin-converting enzyme inhibitor (ACEi) during radiotherapy may be ameliorative for treatment-related normal tissue damage, a pilot study was conducted with the clinically approved (ACE) inhibitor ramipril on the outcome of radiation-induced myelopathy in the rat cervical spinal cord model. Female Sprague Dawley rats were irradiated with single doses of either carbon ions (LET 45 keV/μm) at the center of a 6 cm spread-out Bragg peak (SOBP) or 6 MeV photons. The rats were randomly distributed into 4 experimental arms: (i) photons; (ii) photons + ramipril; (iii) carbon ions and (iv) carbon ions + ramipril. Ramipril administration (2 mg/kg/day) started directly after irradiation and was maintained during the entire follow-up. Complete dose-response curves were generated for the biological endpoint radiation-induced myelopathy (paresis grade II) within an observation time of 300 days. Administration of ramipril reduced the rate of paralysis at high dose levels for photons and for the first time a similar finding for high-LET particles was demonstrated, which indicates that the effect of ramipril is independent from radiation quality. The reduced rate of myelopathy is accompanied by a general prolongation of latency time for photons and for carbon ions. Although the already clinical approved drug ramipril can be considered as a mitigator of radiation-induced normal tissue toxicity in the central nervous system, further examinations of the underlying pathological mechanisms leading to radiation-induced myelopathy are necessary to increase and sustain its mitigative effectiveness.
Collapse
Affiliation(s)
- Maria Saager
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Eric W Hahn
- Preclinical Imaging Section, Department of Radiology, The University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter E Huber
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
52
|
Musa AE, Shabeeb D, Okoro NOE, Agbele AT. Radiation protection by Ex-RAD: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33592-33600. [PMID: 32583118 DOI: 10.1007/s11356-020-09618-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Protection of normal tissues against ionizing radiation-induced damages is a critical issue in clinical and environmental radiobiology. One of the ways of accomplishing radiation protection is through the use of radioprotectors. In the search for the most effective radioprotective agent, factors such as toxicity, effect on tumors, number of tissues protected, ease of administration, long-term stability, and compatibility with other drugs need to be assessed. Thus, in the present study, we systematically review existing studies on a chemical radioprotector, Ex-RAD, with the aim of examining its efficacy of radiation protection as well as underlying mechanisms. To this end, a systematic search of the electronic databases including Pubmed, Scopus, Embase, and Google Scholar was conducted to retrieve articles investigating the radioprotective effect of Ex-RAD. From an initial search of 268 articles, and after removal of duplicates as well as applying the predetermined inclusion and exclusion criteria, 10 articles were finally included for this systematic review. Findings from the reviewed studies indicated that Ex-RAD showed potentials for effective radioprotection of the studied organs with no side effect. Furthermore, the inhibition of apoptosis through p53 signaling pathway was the main mechanism of radioprotection by Ex-RAD. However, its radioprotective effect would need to be investigated for more organs in future studies.
Collapse
Affiliation(s)
- Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Dheyauldeen Shabeeb
- Department of Physiology, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan Health Directorate, Ministry of Health/Environment, Misan, Iraq
| | - Nnamdi O E Okoro
- Department of Radiology, Obijackson Women & Children's Hospital, Okija, Anambra State, Nigeria
| | - Alaba Tolulope Agbele
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Basic Medical Sciences, College of Health Sciences and Technology, Ijero-Ekiti, Nigeria
| |
Collapse
|
53
|
Aliper AM, Bozdaganyan ME, Sarkisova VA, Veviorsky AP, Ozerov IV, Orekhov PS, Korzinkin MB, Moskalev A, Zhavoronkov A, Osipov AN. Radioprotectors.org: an open database of known and predicted radioprotectors. Aging (Albany NY) 2020; 12:15741-15755. [PMID: 32805729 PMCID: PMC7467366 DOI: 10.18632/aging.103815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The search for radioprotectors is an ambitious goal with many practical applications. Particularly, the improvement of human radioresistance for space is an important task, which comes into view with the recent successes in the space industry. Currently, all radioprotective drugs can be divided into two large groups differing in their effectiveness depending on the type of exposure. The first of these is radioprotectors, highly effective for pulsed, and some types of relatively short exposure to irradiation. The second group consists of long-acting radioprotectors. These drugs are effective for prolonged and fractionated irradiation. They also protect against impulse exposure to ionizing radiation, but to a lesser extent than short-acting radioprotectors. Creating a database on radioprotectors is a necessity dictated by the modern development of science and technology. We have created an open database, Radioprotectors.org, containing an up-to-date list of substances with proven radioprotective properties. All radioprotectors are annotated with relevant chemical and biological information, including transcriptomic data, and can be filtered according to their properties. Additionally, the performed transcriptomics analysis has revealed specific transcriptomic profiles of radioprotectors, which should facilitate the search for potent radioprotectors.
Collapse
Affiliation(s)
| | - Marine E Bozdaganyan
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Viktoria A Sarkisova
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia
| | | | - Ivan V Ozerov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Philipp S Orekhov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,Lomonosov Moscow State University, School of Biology, Moscow, Russia.,The Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia
| | | | - Alexey Moskalev
- Department of Radioecology, Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the FRC of Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Andreyan N Osipov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,The Moscow Institute of Physics and Technology, Moscow Region, Dolgoprudny, Russia.,State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow, Russia
| |
Collapse
|
54
|
Mitigative efficacy of the clinical dosage administration of granulocyte colony-stimulating factor and romiplostim in mice with severe acute radiation syndrome. Stem Cell Res Ther 2020; 11:339. [PMID: 32746943 PMCID: PMC7398212 DOI: 10.1186/s13287-020-01861-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has been reported that the high-dosage administration of domestically approved pharmaceutical drugs, especially granulocyte colony-stimulating factor (G-CSF) and romiplostim (RP), is a rapid and appropriate medical treatment for preventing severe acute radiation syndrome (ARS) of victims exposed to lethal total-body irradiation (TBI). However, it remains unclear whether or not the clinical dosage administration of these drugs can ameliorate TBI-induced ARS and related high mortality in order to find various drug treatment options and less toxic optimum protocol depending on the situation surrounding the radiological accidents. METHODS We assessed the clinical dosage administration in combination with G-CSF and RP as intraperitoneal injection in C57BL/6 J mice exposed to more than 7-Gy lethal dose of X-ray TBI for the survival study evaluated by the log-rank test. Bone marrow and splenic cells were collected on the 21st day, when 1 week has passed from last administration, to detect the level of cell apoptosis, intracellular reactive oxygen species (ROS), and nuclear factor erythroid 2-related factor 2 (Nrf2)-related anti-oxidative gene expressions, and enzyme-linked immune sorbent assay using sera was performed for cell senescence and inflammation status analyzed with one-way ANOVA and Tukey-Kramer or Bonferroni/Dunn multiple comparison tests. RESULTS The combined once-daily administration of 10 μg/kg G-CSF for 4 times and 10 μg/kg RP once a week for 3 times improve the 30-day survival rate of lethal TBI mice compared with untreated TBI mice, accompanied by a gradual increase in the body weight and hematopoietic cell numbers. The radio-mitigative effect is probably attributed to the scavenging of ROS and the reduction in cell apoptosis. These changes were associated with the upregulation of Nrf2 and its downstream anti-oxidative targets in TBI mice. Furthermore, this combination modulated TBI-induced cell senescence an d inflammation markers. CONCLUSIONS This study suggested that the clinical dosage administration in combination with G-CSF and RP may also have radio-mitigative effects on mice exposed to lethal TBI and may be a potent therapeutic agent for mitigating radiation-induced severe ARS.
Collapse
|
55
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
Affiliation(s)
- Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Hoseini-Ghahfarokhi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
- Misan Radiotherapy Center, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
56
|
Cao J, Li H, Yuan R, Dong Y, Wu J, Wang M, Li D, Tian H, Dong H. Protective effects of new aryl sulfone derivatives against radiation-induced hematopoietic injury. JOURNAL OF RADIATION RESEARCH 2020; 61:388-398. [PMID: 32173735 PMCID: PMC7299261 DOI: 10.1093/jrr/rraa009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 05/12/2023]
Abstract
The hematopoietic system is sensitive to radiation. In this research, new aryl sulfone derivatives (XH-201 and XH-202) containing a nitrogen heterocycle were designed and synthesized and their radio-protective efficacies with regard to the hematopoietic system were evaluated. XH-201 administration significantly increased the survival rate of mice after 8.0 Gy total body irradiation (TBI). The results showed that XH-201 treatment not only increased the white blood cells, platelets counts and the percentage of hematopoietic progenitor cells and hematopoietic stem cells in mice exposed to 4.0 Gy TBI but also decreased DNA damage, as determined by flow cytometric analysis of histone H2AX phosphorylation. In addition, our data demonstrated that XH-201 decreased the mitochondrial reactive oxygen species (ROS) levels in hematopoietic cells. Overall, these data suggest that XH-201 is beneficial for the protection of the hemoatopoietic system against radiation-induced injuries.
Collapse
Affiliation(s)
- Jian Cao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongyan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Jing Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Meifang Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hui Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
- Corresponding author. Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, No 238, Baidi Road, Nankai district, Tianjin, China, 300192. Tel: 0086-22-85682291; Fax: 0086-22-85683033;
| |
Collapse
|
57
|
Modeling Direct and Indirect Action on Cell Survival After Photon Irradiation under Normoxia and Hypoxia. Int J Mol Sci 2020; 21:ijms21103471. [PMID: 32423018 PMCID: PMC7278970 DOI: 10.3390/ijms21103471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
The demand for personalized medicine in radiotherapy has been met by a surge of mechanistic models offering predictions of the biological effect of ionizing radiation under consideration of a growing number of parameters. We present an extension of our existing model of cell survival after photon irradiation to explicitly differentiate between the damage inflicted by the direct and indirect (radicals-mediated) action of ionizing radiation. Within our approach, we assume that the oxygenation status affects the indirect action. The effect of different concentrations of dimethyl sulfoxide (DMSO), an effective radical scavenger, has been simulated at different dose levels in normoxic and hypoxic conditions for various cell lines. Our model is found to accurately predict experimental data available in literature, validating the assumptions made in our approach. The presented extension adds further flexibility to our model and could act as basis for further developments of our model.
Collapse
|
58
|
Mashhadi Akbar Boojar M. An Overview of the Cellular Mechanisms of Flavonoids Radioprotective Effects. Adv Pharm Bull 2019; 10:13-19. [PMID: 32002357 PMCID: PMC6983988 DOI: 10.15171/apb.2020.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Considering the remarkable application of radiotherapy in the treatment and diagnosis of various diseases and even nuclear war, it is important to protect healthy tissues and people at risk from the radiation. Currently, there is no ideal and safe radioprotective agent available and we are seeing a great effort to find these agents from natural sources. Phenolic compounds, as well as flavonoid, are presented widely as the second metabolite in plants and they have been considered for investigation according to their benefits for human health, healing and preventing many disorders. The major bioactive benefits of flavonoids include antioxidant, anti-inflammatory, anti-tumor, anti-aging, anti-bacterial and viral, neuroprotection and radioprotective effects. Their lower toxicity and oral administration have made it suitable for radiotherapy patient, radiation, military forces, and even the general public. This review attempts to provide a summary of the main molecular mechanisms involved in flavonoid radio-protective effects. Data of these studies will provide a comprehensive perspective to flavonoids and can help to optimize their effects in radioprotection procedures.
Collapse
Affiliation(s)
- Mahdi Mashhadi Akbar Boojar
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Yakan S, Aydin T, Gulmez C, Ozden O, Eren Erdogan K, Daglioglu YK, Andic F, Atakisi O, Cakir A. The protective role of jervine against radiation-induced gastrointestinal toxicity. J Enzyme Inhib Med Chem 2019; 34:789-798. [PMID: 30871382 PMCID: PMC6419660 DOI: 10.1080/14756366.2019.1586681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated whether jervine (J) could prevent gastrointestinal (GI) side effects of abdominopelvic radiotherapy (RT) in Wistar-Albino female rats. Rats were divided into five groups: control (C), J only (J), J administered at 5 mg/kg/days for 7 days, RT only (RT), J before RT (J + RT), J administered for seven days before RT, J both before and after RT (J + RT + J), and J administered for 7 days before RT and after RT for 3 days. The weights of rats were measured on the 1st, 7th, and 10th days of the study. Rats were sacrificed to obtain tissues from the liver and intestine, which was followed by taking blood samples intracardially. In addition, the tissues were stained with pyruvate dehydrogenase (PDH) immunohistochemically. In our study, J supplementation markedly reduced weight loss, and histopathological, immunohistochemical, biochemical results suggest that J had a protective effect on GI toxicity following RT.
Collapse
Affiliation(s)
- Selvinaz Yakan
- Animal Health Department, Agri Ibrahim Cecen University Eleskirt Celal Oruc School of Animal Production, Agri, Turkey
| | - Tuba Aydin
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Ozkan Ozden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | | | | | - Fundagul Andic
- Department of Radiation Oncology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science and Literature, Kilis 7 Aralık University, Kilis, Turkey
| |
Collapse
|
60
|
Li M, Gu MM, Lang Y, Shi J, Chen BPC, Guan H, Yu L, Zhou PK, Shang ZF. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free Radic Biol Med 2019; 145:223-236. [PMID: 31580946 DOI: 10.1016/j.freeradbiomed.2019.09.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/21/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts. Pre-treatment with VND3207 significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells, the transient Ki67+ proliferating cells. Mechanistically, VND3207 decreased oxidative DNA damage and lipid peroxidation and maintained endogenous antioxidant status by increasing the level of superoxide dismutase and total antioxidant capacity. In addition, VND3207 maintained appropriate levels of activated p53 that triggered cell cycle arrest but were not sufficient to induce NOXA-mediated apoptosis, thus ensuring DNA damage repair in the irradiated small intestinal crypt cells. Furthermore, VND3207 treatment restores the intestinal bacterial flora structures altered by TBI exposure. In conclusion, VND3207 promoted intestinal repair following radiation injury by reducing reactive oxygen species-induced DNA damage and modulating appropriate levels of activated p53 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Meng-Meng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianming Shi
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lan Yu
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China.
| | - Ping-Kun Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China; Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
61
|
Checker R, Pal D, Patwardhan RS, Basu B, Sharma D, Sandur SK. Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, plumbagin, as a novel strategy for radioprotection. Free Radic Biol Med 2019; 143:560-572. [PMID: 31493505 DOI: 10.1016/j.freeradbiomed.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022]
Abstract
Radiation induced damage to normal cells is a major shortcoming of conventional radiotherapy, which necessitates the development of novel radio-protective drugs. An ideal radio-modulator would protect normal cells while having cytotoxic effects on cancer cells. Plumbagin is a potent anti-tumour agent and has been shown to sensitize tumour cells to radiation-induced damage. In the present study, we have evaluated the radio-protective potential of plumbagin and found that it protected normal lymphocytes against radiation-induced apoptosis, but did not protect cancer cells against radiation. Plumbagin offered radioprotection even when it was added to cells after irradiation. The ability of only thiol based antioxidants to abrogate the radio-protective effects of plumbagin suggested a pivotal role of thiol groups in the radio-protective activity of plumbagin. Further, protein interaction network (PIN) analysis was used to predict the molecular targets of plumbagin. Based on the inputs from plumbagin's PIN and in light of its well-documented ability to modulate thiol groups, we proposed that plumbagin may act via modulation of caspase enzyme which harbours a critical catalytic cysteine. Indeed, plumbagin suppressed radiation-induced increase in homogenous caspase and caspase-3 activity in lymphocytes. Plumbagin also inhibited the activity of recombinant caspase-3 and mass spectrometric analysis revealed that plumbagin covalently interacts with caspase-3. Further, the in vivo radioprotective efficacy of plumbagin (single dose of 2mg/kg body weight) was demonstrated by its ability to rescue mice against radiation (7.5 Gy; Whole Body Irradiation) induced mortality. These results indicate that plumbagin prevents radiation induced apoptosis specifically in normal cells by inhibition of caspase-3 activity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
62
|
Cheema AK, Li Y, Girgis M, Jayatilake M, Simas M, Wise SY, Olabisi AO, Seed TM, Singh VK. Metabolomic studies in tissues of mice treated with amifostine and exposed to gamma-radiation. Sci Rep 2019; 9:15701. [PMID: 31666611 PMCID: PMC6821891 DOI: 10.1038/s41598-019-52120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Although multiple radioprotectors are currently being investigated preclinically for efficacy and safety, few studies have investigated concomitant metabolic changes. This study examines the effects of amifostine on the metabolic profiles in tissues of mice exposed to cobalt-60 total-body gamma-radiation. Global metabolomic and lipidomic changes were analyzed using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in bone marrow, jejunum, and lung samples of amifostine-treated and saline-treated control mice. Results demonstrate that radiation exposure leads to tissue specific metabolic responses that were corrected in part by treatment with amifostine in a drug-dose dependent manner. Bone marrow exhibited robust responses to radiation and was also highly responsive to protective effects of amifostine, while jejunum and lung showed only modest changes. Treatment with amifostine at 200 mg/kg prior to irradiation seemed to impart maximum survival benefit, while the lower dose of 50 mg/kg offered only limited survival benefit. These findings show that the administration of amifostine causes metabolic shifts that would provide an overall benefit to radiation injury and underscore the utility of metabolomics and lipidomics to determine the underlying physiological mechanisms involved in the radioprotective efficacy of amifostine. This approach may be helpful in identifying biomarkers for radioprotective efficacy of amifostine and other countermeasures under development.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Madison Simas
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA
| | - Ayodele O Olabisi
- Armed Forces Radiobiology Research Institute, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA
| | | | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.
- Armed Forces Radiobiology Research Institute, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
63
|
Clémenson C, Liu W, Bricout D, Soyez-Herkert L, Chargari C, Mondini M, Haddad R, Wang-Zhang X, Benel L, Bloy C, Deutsch E. Preventing Radiation-Induced Injury by Topical Application of an Amifostine Metabolite-Loaded Thermogel. Int J Radiat Oncol Biol Phys 2019; 104:1141-1152. [DOI: 10.1016/j.ijrobp.2019.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
64
|
Ren X, Huo M, Wang M, Lin H, Zhang X, Yin J, Chen Y, Chen H. Highly Catalytic Niobium Carbide (MXene) Promotes Hematopoietic Recovery after Radiation by Free Radical Scavenging. ACS NANO 2019; 13:6438-6454. [PMID: 31180624 DOI: 10.1021/acsnano.8b09327] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ionizing radiation (IR) has been extensively used in industry and radiotherapy, but IR exposure from nuclear or radiological accidents often causes serious health effects in an exposed individual, and its application in radiotherapy inevitably brings undesirable damage to normal tissues. In this work, we have developed ultrathin two-dimensional (2D) niobium carbide (Nb2C) MXene as a radioprotectant and explored its application in scavenging free radicals against IR. The 2D Nb2C MXene features intriguing antioxidant properties in effectively eliminating hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide radicals (O2•-). Pretreatment with biocompatible polyvinylpyrrolidone (PVP)-functionalized Nb2C nanosheets (Nb2C-PVP NSs) significantly reduces IR-induced production of reactive oxygen species (ROS), resulting in enhanced cell viability in vitro. A single intravenous injection of Nb2C-PVP significantly enhances the survival rate of 5 and 6.5 Gy irradiated mice to 100% and 81.25%, respectively, and significantly increases bone marrow mononuclear cells after IR. Critically, Nb2C-PVP reverses the damage of the hematopoietic system in irradiated mice. Single administration of Nb2C-PVP significantly increases superoxide dismutase (SOD) activities, decreases malondialdehyde levels, and thereby reduces IR-induced pathological damage in the testis, small intestine, lung, and liver of 5 Gy irradiated mice. Importantly, Nb2C-PVP is almost completely eliminated from the mouse body on day 14 post treatment, and no obvious toxicities are observed during the 30-day post treatment period. Our study pioneers the application of 2D MXenes with intrinsic radioprotective nature in vivo.
Collapse
Affiliation(s)
- Xiangyi Ren
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Science , Beijing , 100049 , People's Republic of China
| | - Mengmeng Wang
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
- University of Chinese Academy of Science , Beijing , 100049 , People's Republic of China
| | - Xuxia Zhang
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Jun Yin
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai , 200050 , People's Republic of China
| | - Honghong Chen
- Department of Radiation Biology, Institute of Radiation Medicine , Fudan University , Shanghai , 200032 , People's Republic of China
| |
Collapse
|
65
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
Affiliation(s)
- Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran.,Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Cheki
- Department of Radiologic Technology, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Yahyapour
- Department of Medical School, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Alireza Shirazi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
| | - Nouraddin Abdi Goushbolagh
- Department of medical Physics, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
66
|
Singh VK, Seed TM, Olabisi AO. Drug discovery strategies for acute radiation syndrome. Expert Opin Drug Discov 2019; 14:701-715. [PMID: 31008662 DOI: 10.1080/17460441.2019.1604674] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: There are at the minimum two major, quite different approaches to advance drug discovery. The first being the target-based drug discovery (TBDD) approach that is commonly referred to as the molecular approach. The second approach is the phenotype-based drug discovery (PBDD), also known as physiology-based drug discovery or empirical approach. Area covered: The authors discuss, herein, the need for developing radiation countermeasure agents for various sub-syndromes of acute radiation syndromes (ARS) following TBDD and PBDD approaches. With time and continuous advances in radiation countermeasure drug development research, the expectation is to have multiple radiation countermeasure agents for each sub-syndrome made available to radiation exposed victims. Expert opinion: The majority of the countermeasures currently being developed for ARS employ the PBDD approach, while the TBDD approach is clearly under-utilized. In the future, an improved drug development strategy might be a 'hybrid' strategy that is more reliant on TBDD for the initial drug discovery via large-scale screening of potential candidate agents, while utilizing PBDD for secondary screening of those candidates, followed by tertiary analytics phase in order to pinpoint efficacious candidates that target the specific sub-syndromes of ARS.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | | - Ayodele O Olabisi
- b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
67
|
Ershov AY, Vasilyeva MY, Levit ML, Lagoda IV, Baygildin VA, Shabsels BM, Martynenkov AA, Yakimansky AV. Synthesis of Gold Glyconanoparticles Based on Thiol-Containing d-Hexose Acylhydrazones and Their Modification by Thiolated Poly(2-deoxy-2-methacryloylamino-D-glucose). RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s107036321902021x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
68
|
Moulder JE, Fish BL, Cohen EP, Flowers JB, Medhora M. Effects of Diet on Late Radiation Injuries in Rats. HEALTH PHYSICS 2019; 116:566-570. [PMID: 30624356 PMCID: PMC6384138 DOI: 10.1097/hp.0000000000000944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It has been speculated that the addition of antioxidants to diet could act as either radioprotectors or as mitigators of radiation injury. In preparation for studies of the mitigation efficacy of antioxidants, rats were placed on a modified version of AIN-76A, the diet typically used in such studies. This AIN-76A diet is refined and has no synthetic antioxidants or isoflavones. Compared to the natural-ingredient Teklad 8904 diet used in previous studies, use of the AIN-76A diet from 1-18 wk after irradiation significantly reduced injury in a radiation nephropathy model. A confirmation study included an additional arm in which the AIN-76A diet was started 2 wk prior to irradiation; again, the switch to AIN-76A postirradiation mitigated radiation nephropathy (p < 0.001), but switching to the AIN-76A diet preirradiation had no effect (p > 0.2). The two diets do not differ in salt content, but the AIN-76A diet is somewhat lower in protein (18% vs. 24%). The protein source (primarily soy in Teklad 8904 vs. casein in AIN-76A) might explain the effects. However, replacing the casein in AIN-76A with soy did not change the mitigation efficacy of the diet (p > 0.2 for comparison of the different AIN-76A diets). A similar study in a rat radiation pneumonitis model also suggested mitigation by postirradiation use of AIN-76A, although the effect was not statistically significant (p = 0.07). In conclusion, base diet alone can have biologically significant effects on organ radiosensitivity, but the mechanistic basis for the effect and its dependence of timing relative to irradiation are unclear.
Collapse
Affiliation(s)
- John E. Moulder
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Eric P. Cohen
- Department of Medicine, University of Maryland School of Medicine and the Baltimore VA Medical Center, Baltimore, Maryland, U.S.A
| | | | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
69
|
Yang W, Shao L, Zhu S, Li H, Zhang X, Ding C, Wu X, Xu R, Yue M, Tang J, Kuang B, Fan G, Zhu Q, Zeng H. Transient Inhibition of mTORC1 Signaling Ameliorates Irradiation-Induced Liver Damage. Front Physiol 2019; 10:228. [PMID: 30984007 PMCID: PMC6449701 DOI: 10.3389/fphys.2019.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
Recurrent liver cancer after surgery is often treated with radiotherapy, which induces liver damage. It has been documented that activation of the TGF-β and NF-κB signaling pathways plays important roles in irradiation-induced liver pathologies. However, the significance of mTOR signaling remains undefined after irradiation exposure. In the present study, we investigated the effects of inhibiting mTORC1 signaling on irradiated livers. Male C57BL/6J mice were acutely exposed to 8.0 Gy of X-ray total body irradiation and subsequently treated with rapamycin. The effects of rapamycin treatment on irradiated livers were examined at days 1, 3, and 7 after exposure. The results showed that 8.0 Gy of irradiation resulted in hepatocyte edema, hemorrhage, and sinusoidal congestion along with a decrease of ALB expression. Exposure of mice to irradiation significantly activated the mTORC1 signaling pathway determined by pS6 and p-mTOR expression via western blot and immunostaining. Transient inhibition of mTORC1 signaling by rapamycin treatment consistently accelerated liver recovery from irradiation, which was evidenced by decreasing sinusoidal congestion and increasing ALB expression after irradiation. The protective role of rapamycin on irradiated livers might be mediated by decreasing cellular apoptosis and increasing autophagy. These data suggest that transient inhibition of mTORC1 signaling by rapamycin protects livers against irradiation-induced damage.
Collapse
Affiliation(s)
- Wuping Yang
- Medical College of Nanchang University, Nanchang, China
| | - Lijian Shao
- Medical College of Nanchang University, Nanchang, China
| | - Sihong Zhu
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Health Vocational College, Nanchang, China
| | - Huan Li
- Medical College of Nanchang University, Nanchang, China
| | - Xinxin Zhang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Congcong Ding
- Medical College of Nanchang University, Nanchang, China
| | - Xincheng Wu
- Medical College of Nanchang University, Nanchang, China
| | - Rui Xu
- Medical College of Nanchang University, Nanchang, China
| | - Mengzhen Yue
- Medical College of Nanchang University, Nanchang, China
| | - Jiahui Tang
- Medical College of Nanchang University, Nanchang, China
| | - Bohai Kuang
- Medical College of Nanchang University, Nanchang, China
| | - Guangqin Fan
- Medical College of Nanchang University, Nanchang, China
| | - Qingxian Zhu
- Medical College of Nanchang University, Nanchang, China
| | - Huihong Zeng
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
70
|
ROS Reduction Does Not Decrease the Anticancer Efficacy of X-Ray in Two Breast Cancer Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3782074. [PMID: 31001373 PMCID: PMC6437742 DOI: 10.1155/2019/3782074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Radiotherapy is effective on a large number of cancer types and is one of the most frequently administrated treatments for cancer patients. The anticancer efficacy of X-ray radiotherapy has been frequently correlated with reactive oxygen species (ROS) elevation, which is also a limiting factor for its toxicity on normal tissues. Here, we found that although 4-10 Gy X-rays could significantly reduce cell numbers in both MDA-MB-231 and MCF-7 breast cancer cells, the ROS level changes are less in MCF-7 cells than in MDA-MB-231 cells. Moreover, although both the ROS scavenger N-acetyl-L-cysteine (NAC) and 1 T static magnetic field (SMF) could reduce X-ray-induced ROS elevation, they did not prevent X-ray-induced cell number reduction or cell death increase, which is significantly different from cisplatin. These results demonstrate that although the anticancer efficacy of cisplatin on two breast cancer cell lines is dependent on ROS, the anticancer efficacy of X-ray is not. Moreover, by testing 19 different cell lines, we found that 1 T SMF could effectively reduce ROS levels in multiple cell lines by 10-20%, which encourages further studies to investigate whether SMF could be used as a potential "physical antioxidant" in the future.
Collapse
|
71
|
Feliciano CP, Nagasaki Y. Antioxidant Nanomedicine Protects against Ionizing Radiation-Induced Life-Shortening in C57BL/6J Mice. ACS Biomater Sci Eng 2019; 5:5631-5636. [DOI: 10.1021/acsbiomaterials.8b01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chitho P. Feliciano
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Radiation Research Center (RRC), Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City 1101, Philippines
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
72
|
Radio-Protective Effects of Loliolus beka Gray Meat Consisted of a Plentiful Taurine Against Damages Caused by Gamma Ray Irradiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:729-738. [DOI: 10.1007/978-981-13-8023-5_63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
73
|
Demmerath EM, Bohler S, Kunze M, Erlacher M. In vitro and in vivo evaluation of possible pro-survival activities of PGE2, EGF, TPO and FLT3L on human hematopoiesis. Haematologica 2018; 104:669-677. [PMID: 30442724 PMCID: PMC6442978 DOI: 10.3324/haematol.2018.191569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Myelosuppression is a major and frequently dose-limiting side effect of anticancer therapy and is responsible for most treatment-related morbidity and mortality. In addition, repeated cycles of DNA damage and cell death of hematopoietic stem and progenitor cells, followed by compensatory proliferation and selection pressure, lead to genomic instability and pave the way for therapy-related myelodysplastic syndromes and secondary acute myeloid leukemia. Protection of hematopoietic stem and progenitor cells from chemo- and radiotherapy in patients with solid tumors would reduce both immediate complications and long-term sequelae. Epidermal growth factor (EGF) and prostaglandin E2 (PGE2) were reported to prevent chemo- or radiotherapy-induced myelosuppression in mice. We tested both molecules for potentially protective effects on human CD34+ cells in vitro and established a xenograft mouse model to analyze stress resistance and regeneration of human hematopoiesis in vivo. EGF was neither able to protect human stem and progenitor cells in vitro nor to promote hematopoietic regeneration following sublethal irradiation in vivo. PGE2 significantly reduced in vitro apoptotic susceptibility of human CD34+ cells to taxol and etoposide. This could, however, be ascribed to reduced proliferation rather than to a change in apoptosis signaling and BCL-2 protein regulation. Accordingly, 16,16-dimethyl-PGE2 (dmPGE2) did not accelerate regeneration of the human hematopoietic system in vivo. Repeated treatment of sublethally irradiated xenograft mice with known antiapoptotic substances, such as human FLT3L and thrombopoietin (TPO), which suppress transcription of the proapoptotic BCL-2 proteins BIM and BMF, also only marginally promoted human hematopoietic regeneration in vivo.
Collapse
Affiliation(s)
- Eva-Maria Demmerath
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg.,Faculty of Biology, University of Freiburg
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center of Freiburg
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg .,German Cancer Consortium (DKTK), Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
74
|
Protective effect of polydatin on radiation-induced injury of intestinal epithelial and endothelial cells. Biosci Rep 2018; 38:BSR20180868. [PMID: 30333253 PMCID: PMC6239250 DOI: 10.1042/bsr20180868] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022] Open
Abstract
This study aimed to examine the radioprotective effect of polydatin (PD) on crypt and endothelial cells of the small intestines of C57BL/6 mice that received abdominal irradiation (IR). Mice were treated with 6 MV X-ray (20 Gy) abdominal IR at a dose rate of 200 cGy/min. Thirty minutes before or after IR, mice were intraperitoneally injected with PD. The rate of survival of the mice at 30 days after IR was determined. The duodenum (upper small intestine), jejunum (middle small intestine), and ileum (lower small intestine) were collected and subjected to hematoxylin and eosin staining. Tissue sample sections were analyzed through light microscopy, and the lengths of at least 20 intestinal villi were measured in each group; the average number of crypts was obtained from 10 intestinal samples in each group. Microvessel density was assessed using CD31-positive (brown) vascular endothelial cells/cell clusters. FHs74Int cell proliferation was measured using the CCK-8 assay. PD administration (25 mg/kg) before IR was the most effective in prolonging the survival of C57BL/6 mice. PD reduced radiation-induced injury of intestinal villi, prevented loss of crypts, increased intestinal crypt growth, protected against IR-induced intestinal injury, and enhanced the proliferative potential and reduced the apoptosis of FHs74Int cells after IR. Moreover, PD increased small intestinal MVD and reduced the apoptosis of intestinal microvascular endothelial cells in mice after IR. Therefore, PD was found to be able to protect the two types of cells from radiation damage and to thus alleviate radiation-induced injury of small intestine.
Collapse
|
75
|
Qin W, Liu B, Yi M, Li L, Tang Y, Wu B, Yuan X. Antifibrotic Agent Pirfenidone Protects against Development of Radiation-Induced Pulmonary Fibrosis in a Murine Model. Radiat Res 2018; 190:396-403. [PMID: 30016220 DOI: 10.1667/rr15017.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced complications of the respiratory system are a common side effect of thoracic radiotherapy with no viable treatment option. Here, we investigated the potential therapeutic effect of the orphan drug pirfenidone for treating radiation-induced pulmonary fibrosis. C57BL/6 mice received a single fraction of 16 Gy to the thorax and were subsequently treated with 300 mg/kg/day pirfenidone for four weeks. Survival and body weight of the mice were quantified. Micro-CT in vivo lung imaging was performed to dynamically observe the developmental process of pulmonary fibrosis. The lungs were excised at the end of the experiment and evaluated for histological changes. Compared to the irradiated mice that received no pirfenidone, mice treated with pirfenidone after irradiation had an extended median survival time (>140 days vs. 73 days, P < 0.01). The accumulation of collagen and fibrosis in lung tissues after irradiation was decreased with pirfenidone treatment. Pirfenidone also reduced the expression of TGF-β1 and phosphorylation of Smad3 in lung tissues. The dose level of Pirfenidone used in this study attenuated pulmonary fibrosis and prolonged the life span of irradiated mice. It may offer a promising approach to treat or minimize radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wan Qin
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
76
|
Cheng X, Ni X, Wu R, Chong Y, Gao X, Ge C, Yin JJ. Evaluation of the structure–activity relationship of carbon nanomaterials as antioxidants. Nanomedicine (Lond) 2018. [DOI: 10.2217/nnm-2017-0314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To develop the potential application of carbon nanomaterials as antioxidants calls for better understanding of how the specific structure affects their antioxidant activity. Materials & methods: Several typical carbon nanomaterials, including graphene quantum dots and fullerene derivatives were characterized and their radical scavenging activities were evaluated; in addition, the in vitro and in vivo radioprotection experiments were performed. Results: These carbon nanomaterials can efficiently scavenge free radicals in a structure-dependent manner. In vitro assays demonstrate that administration of these carbon nanomaterials markedly increases the surviving fraction of cells exposed to ionizing radiation. Moreover, in vivo experiments confirm that their administration can also increase the survival rates of mice exposed to radiation. Conclusion: All results confirm that large, buckyball-shaped fullerenes show the strongest antioxidant properties and the best radioprotective efficiency. Our work will be useful in guiding the design and optimization of nanomaterials for potential antioxidant and radioprotection bio-applications.
Collapse
Affiliation(s)
- Xiaju Cheng
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xiaohu Ni
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Renfei Wu
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yu Chong
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xingfa Gao
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Cuicui Ge
- School for Radiological & Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jun-Jie Yin
- Division of Bioanalytical Chemistry & Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD 20740, USA
| |
Collapse
|
77
|
Renin angiotensin system and its role in biomarkers and treatment in gliomas. J Neurooncol 2018; 138:1-15. [PMID: 29450812 DOI: 10.1007/s11060-018-2789-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary intrinsic tumor in the brain and are classified as low- or high-grade according to the World Health Organization (WHO). Patients with high-grade gliomas (HGG) who undergo surgical resection with adjuvant therapy have a mean overall survival of 15 months and 100% recurrence. The renin-angiotensin system (RAS), the primary regulator of cardiovascular circulation, exhibits local action and works as a paracrine system. In the context of this local regulation, the expression of RAS peptides and receptors has been detected in different kinds of tumors, including gliomas. The dysregulation of RAS components plays a significant role in the proliferation, angiogenesis, and invasion of these tumors, and therefore in their outcomes. The study and potential application of RAS peptides and receptors as biomarkers in gliomas could bring advantages against the limitations of current tumoral markers and should be considered in the future. The targeting of RAS components by RAS blockers has shown potential of being protective against cancer and improving immunotherapy. In gliomas, RAS blockers have shown a broad spectrum for beneficial effects and are being considered for use in treatment protocols. This review aims to summarize the background behind how RAS plays a role in gliomagenesis and explore the evidence that could lead to their use as biomarkers and treatment adjuvants.
Collapse
|
78
|
Duan Y, Yao X, Zhu J, Li Y, Zhang J, Zhou X, Qiao Y, Yang M, Li X. Effects of yak-activated protein on hematopoiesis and related cytokines in radiation-induced injury in mice. Exp Ther Med 2017; 14:5297-5304. [PMID: 29285056 PMCID: PMC5740812 DOI: 10.3892/etm.2017.5256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/24/2017] [Indexed: 11/08/2022] Open
Abstract
The aim of the present study was to investigate the protective effects of yak-activated protein on hematopoiesis and cytokine function in radiation-induced injury in mice. A total of 180 Kunming mice were randomly divided into three groups (A, B and C). Of these, 60 were randomly divided into a normal control group, a radiation model group, a positive control group and 3 yak-activated protein groups (high, medium and low dose groups; 10, 5 and 2.5 mg/kg, respectively). The other 120 mice were used for the subsequent experiments on days 7 and 14 following radiation. Yak-activated protein was administered orally to mice in the treatment groups and an equal volume of saline was administered orally to mice in the normal control and radiation model groups for 14 days. The positive control group received amifostine (150 mg/kg) via intraperitoneal injection. With the exception of the control group, the groups of mice received a 5 Gy quantity of X-radiation evenly over their whole body once. Changes in the peripheral hemogram, thymus and spleen indices, DNA content in the bone marrow, interleukin (IL)-2 and IL-6 levels, and the expression levels of B cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) following irradiation were assessed. The low dose of yak-activated protein significantly increased Spleen indices in mice 14 days after irradiation and the high and middle dose of yak-activated protein significantly increased Thymus indices in mice 14 days after irradiation (P<0.05) compared with the control group. In addition, hemogram results increased gradually in the low-yak-activated protein dose group and were significantly higher 7 days after irradiation compared with the radiation model group (P<0.05). The DNA content in the bone marrow was markedly increased in the yak-activated protein groups, and increased significantly in the low dose group at 7 days post-irradiation compared with the radiation model group (P<0.05). The IL-2 content was significantly increased in the yak-activated protein groups (P<0.05). Furthermore, Bcl-2 expression was increased and Bax expression was decreased (P<0.05). These results suggest that yak-activated protein exerts protective effects against radiation-induced injury in mice. The optimal effects of yak-activated protein were observed in the medium dose group 14 days after irradiation.
Collapse
Affiliation(s)
- Yabin Duan
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China
| | - Xingchen Yao
- Department of Radiotherapy Oncology, Qinghai People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Junbo Zhu
- Department of Pharmacy, Medical College, Quinghai University, Xining, Qinghai 810001, P.R. China
| | - Yongping Li
- Department of Traditional Chinese Medicine, Medical College, Quinghai University, Xining, Qinghai 810001, P.R. China
| | - Juanling Zhang
- Department of Biology Resources, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Xuejiao Zhou
- Department of Biology Resources, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Yijie Qiao
- Department of Pharmacy, Medical College, Quinghai University, Xining, Qinghai 810001, P.R. China
| | - Meng Yang
- Department of Biology Resources, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Xiangyang Li
- Medical College, Qinghai University, Xining, Qinghai 810016, P.R. China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, P.R. China
| |
Collapse
|
79
|
Yun K, Bai JH, Wang Z. In Vitro Bioassay-guided Isolation of Radioprotective Fractions from Extracts of Pinus koraiensis Bark. Pharmacogn Mag 2017; 13:712-718. [PMID: 29200738 PMCID: PMC5701416 DOI: 10.4103/pm.pm_409_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/08/2016] [Indexed: 11/04/2022] Open
Abstract
Objective The aim of this study was to evaluate radioprotective effect of extracts of Pinus koraiensis bark and its fractions on rat splenocytes by using bioassay-guided isolation in order to obtain the best active fraction. Materials and Methods P. koraiensis bark was ground and extracted with water, 40% acetone, 95% ethanol. Bio-guided assay was selected as an evaluation method to further fractionate radioprotective component from P. koraiensis bark extract. Total phenolic and flavonoid contents in fractions were also measured. Rat splenocytes were prepared by using mechanical trituration method. DNA damage was assessed as comet parameters (tail DNA%, tail length, tail moment, olive tail moment). The levels of malondialdehyde (MDA), and activity of superoxide dismutase (SOD), catalase (CAT) in cultured rat splenocytes were also measured. Results The radioprotective effects decreased from rutin >95% ethanol extracts of Pinus koraiensis bark (95EEP) >40AEP > WEP. The stimulating effects decreased from rutin > n-butanol extract (NBE) > EAE. The results demonstrate that there exists toxic ingredients (PEE and dichloromethane extract), proliferative-promoting, radioprotective component (EAE and NBE) in 95EEP. fraction eluted from n-butanol fractions of 95EEP with 50% methanol solution (NBEPKB-50ME), a fraction of NBE result from bio-guided isolation, demonstrates good radioprotective efficacy on rat splenocytes. NBEPKB-50ME pretreated rat splenocytes demonstrated progressively reduced levels of MDA when compared with γ-ray exposed cells. Different dose of NBEPKB-50ME pretreatment with 8 Gy-irration showed an increase in enzymatic antioxidant. Conclusions Proliferative-promoting efficacy, radioprotective effect of different solvents extracts of the bark of P. koraiensis were investigated in this work. NBEPKB-50ME was the best elution in NBE, especially in restoring SOD, CAT activities, content of GSH, decreasing DNA damage. SUMMARY The radioprotective effects decreased from rutin > 95EEP > 40AEP > WEP. The extract of Petroleum ether, dichloromethane extract (DME) of 95% ethanol extract of P. koraiensis (PEE, DME) show toxic effect on rat splenocytes. The extract of Ethyl acetate, n-butanol extract of 95% ethanol extract of P. koraiensis (EAE, NBE) show proliferative-promoting, radioprotective effect on rat splenocytesSingle-cell gel electrophoresis was used to evaluate the spleen cell DNA damage parameters affected by gamma-radiation and addition of best component NBEPKB-50Me from extract of P. koraiensis barkNBEPKB-50ME pretreatment with 8 Gy-irradiation showed an increase in enzymatic antioxidant capacity. NBEPKB-50ME pretreated (80, 160, 320, 480 mg/ml) rat splenocytes demonstrated progressively reduced levels of MDA when compared with g-ray exposed cells. Abbreviations used: MDA: Malondialdehyde; SOD: Superoxide dismutase; CAT: Catalase; PEE: Petroleum ether Extract; DME: Dichloromethane extract; EAE: Ethyl acetate extract; NBE: n-butanol extract; WAP: Water extracts of Pinus koraiensis bark; 40AEP: 40% acetone extracts of Pinus koraiensis bark; 95EEP: 95% ethanol extracts of Pinus koraiensis bark; TPC: Total phenolic content; TFC: Total flavonoid content; NBEPKB-50ME: Fraction eluted from n-Butanol fractions of 95EEP with 50% methanol solution.
Collapse
Affiliation(s)
- Keli Yun
- Department of Food science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China
| | - Jian-Hai Bai
- Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 064300, P.R. China
| | - ZhenYu Wang
- Department of Food science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China
| |
Collapse
|
80
|
Nguyen MH, Pham ND, Dong B, Nguyen THN, Bui CB, Hadinoto K. Radioprotective activity of curcumin-encapsulated liposomes against genotoxicity caused by Gamma Cobalt-60 irradiation in human blood cells. Int J Radiat Biol 2017; 93:1267-1273. [DOI: 10.1080/09553002.2017.1380329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Minh-Hiep Nguyen
- Radiation Technology Center, Nuclear Research Institute, Dalat City, Vietnam
| | - Ngoc-Duy Pham
- Biotechnology Center, Nuclear Research Institute, Dalat City, Vietnam
| | - Bingxue Dong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | | | - Chi-Bao Bui
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Hochiminh City, Hochiminh City, Vietnam
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
81
|
Mishra K, Alsbeih G. Appraisal of biochemical classes of radioprotectors: evidence, current status and guidelines for future development. 3 Biotech 2017; 7:292. [PMID: 28868219 DOI: 10.1007/s13205-017-0925-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
The search for efficient radioprotective agents to protect from radiation-induced toxicity, due to planned or accidental radiation exposure, is still ongoing worldwide. Despite decades of research and development of widely different biochemical classes of natural and derivative compounds, a safe and effective radioprotector is largely unmet. In this comprehensive review, we evaluated the evidence for the radioprotective performance of classical thiols, vitamins, minerals, dietary antioxidants, phytochemicals, botanical and bacterial preparations, DNA-binding agents, cytokines, and chelators including adaptogens. Where radioprotection was demonstrated, the compounds have shown moderate dose modifying factors ranging from 1.1 to 2.7. To date, only few compounds found way to clinic with limited margin of dose prescription due to side effects. Most of these compounds (amifostine, filgratism, pegfilgrastim, sargramostim, palifermin, recombinant salmonella flagellin, Prussian blue, potassium iodide) act primarily via scavenging of free radicals, modulation of oxidative stress, signal transduction, cell proliferation or enhance radionuclide elimination. However, the gain in radioprotection remains hampered with low margin of tolerance. Future development of more effective radioprotectors requires an appropriate nontoxic compound, a model system and biomarkers of radiation exposure. These are important to test the effectiveness of radioprotection on physiological tissues during radiotherapy and field application in cases of nuclear eventualities.
Collapse
Affiliation(s)
- Krishnanand Mishra
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Ghazi Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| |
Collapse
|
82
|
Singh VK, Garcia M, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part II. Countermeasures for limited indications, internalized radionuclides, emesis, late effects, and agents demonstrating efficacy in large animals with or without FDA IND status. Int J Radiat Biol 2017; 93:870-884. [DOI: 10.1080/09553002.2017.1338782] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Melissa Garcia
- Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
83
|
Feliciano CP, Tsuboi K, Suzuki K, Kimura H, Nagasaki Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017; 129:68-82. [DOI: 10.1016/j.biomaterials.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
|
84
|
Xu Y, Chen Y, Liu H, Lei X, Guo J, Cao K, Liu C, Li B, Cai J, Ju J, Gao F, Yang Y. Heat-killed salmonella typhimurium (HKST) protects mice against radiation in TLR4-dependent manner. Oncotarget 2017; 8:67082-67093. [PMID: 28978017 PMCID: PMC5620157 DOI: 10.18632/oncotarget.17859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
It is urgently required to develop novel safe and effective radioprotectors to alleviate radiation damages. Recently, several toll like receptors (TLRs), including TLR2, TLR4, TLR5, TLR9, have been proved to exert protective effects against ionizing radiation. Due to different tissue-distribution and distinct functions of TLRs, we hypothesized that co-activation of multiple TLRs simultaneously may produce extensive and stronger radioprotective effects. In this study, we found the co-agonist of TLR2, TLR4 and TLR5, heat-killed salmonella typhimurium (HKST) significantly inhibited radiation-induced cell apoptosis, increased cell survival and alleviated DNA damage. HKST also prolonged animal survival and protected radiosensitive tissues against radiation damages, such as bone marrow, spleen and testis. Decrease of CD4+ and CD8+ cells were also reversed by HKST treatment. By using TLR2 and TLR4 knockout mice, we found that most of radioprotective effects of HKST were abrogated in TLR4 knock out mice. And HKST failed to inhibited cell apoptosis in TLR5 knock down cells. In conclusion, we demonstrated that HKST effectively protected cells and radiosensitive tissues against radiation injury in a TLR4 biased mechanism, suggesting HKST as a potential radioprotector with low toxicity.
Collapse
Affiliation(s)
- Yang Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jiaming Guo
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jintao Ju
- Faculty of Naval Medicine, Second Military Medical University, 200433, Shanghai, P.R. China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
85
|
Singh VK, Olabisi AO. Nonhuman primates as models for the discovery and development of radiation countermeasures. Expert Opin Drug Discov 2017; 12:695-709. [PMID: 28441902 DOI: 10.1080/17460441.2017.1323863] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past six decades toward the development of safe and effective radiation countermeasures for humans using animal models, only two pharmaceutical agents have been approved by United States Food and Drug Administration (US FDA) for hematopoietic acute radiation syndrome (H-ARS). Additional research efforts are needed to further develop large animal models for improving the prediction of clinical safety and effectiveness of radiation countermeasures for ARS and delayed effects of acute radiation exposure (DEARE) in humans. Area covered: The authors review the suitability of animal models for the development of radiation countermeasures for ARS following the FDA Animal Rule with a special focus on nonhuman primate (NHP) models of ARS. There are seven centers in the United States currently conducting studies with irradiated NHPs, with the majority of studies being conducted with rhesus monkeys. Expert opinion: The NHP model is considered the gold standard animal model for drug development and approval by the FDA. The lack of suitable substitutes for NHP models for predicting response in humans serves as a bottleneck for the development of radiation countermeasures. Additional large animal models need to be characterized to support the development and FDA-approval of new radiation countermeasures.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Ayodele O Olabisi
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
86
|
Keramati Yazdi F, Shabestani Monfared A, Tashakkorian H, Mahmoudzadeh A, Borzoueisileh S. Radioprotective effect of Zamzam (alkaline) water: A cytogenetic study. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 167:166-169. [PMID: 27839844 DOI: 10.1016/j.jenvrad.2016.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/07/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Radioprotectors are useful compounds to reduce radiation toxicity of normal cells. Many natural radioprotectors have antioxidant power and display fewer toxicity and side effects than the chemical ones. Alkaline waters such as Zamzam have antioxidant power potentially. This study aimed to investigate the radioprotective effect of Zamzam water in mice bone marrow exposed to gamma radiation by micronuclei test. METHOD Five study groups including control group which was fed by ordinary water, the second group was fed by Zamzam water, and radiation groups were received 2Gy gamma with ordinary and Zamzam water for 10 days and another for 20 days. The frequency of micronuclei and polychromatic erythrocytes to normochromatic erythrocytes ratio were calculated by micronuclei test. RESULT In the absence of radiation, no significant difference was found between Zamzam group and control in the number of micronuclei in normochromatic erythrocytes, micronuclei in polychromatic erythrocytes, and the polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte ratio. But all of these indices were significantly different between irradiated and non-irradiated groups. The frequency of micronuclei in polychromatic erythrocytes was not significantly different between 10 and 20 days Zamzam irradiated groups, but the reduction in micronuclei in normochromatic erythrocytes and an increase in the polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte ratio compared to ordinary water were seen in 20 days Zamzam group. Dose reduction factor was 1.36 and 2 for Zamzam water groups of 10 days and 20 days, respectively. CONCLUSION The results demonstrated that Zamzam alkaline water could reduce clastogenic and cytotoxic effects of gamma irradiation.
Collapse
Affiliation(s)
- Fatemeh Keramati Yazdi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Hamed Tashakkorian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Aziz Mahmoudzadeh
- Laboratory of Cytogenetics, Novin Medical Radiation Institute, Tehran, Iran
| | - Sajad Borzoueisileh
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
87
|
Zhang J, Li H, Lu L, Yan L, Yang X, Shi Z, Li D. The Yiqi and Yangyin Formula ameliorates injury to the hematopoietic system induced by total body irradiation. JOURNAL OF RADIATION RESEARCH 2017; 58:1-7. [PMID: 27422936 PMCID: PMC5321178 DOI: 10.1093/jrr/rrw056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/08/2016] [Accepted: 04/11/2016] [Indexed: 05/02/2023]
Abstract
In this study, we examined whether the Yiqi and Yangyin Formula (YYF), used in traditional Chinese medicine, could ameliorate damage to the hematopoietic system induced by total body irradiation (TBI). Treatment with 15 g/kg of YYF increased the survival rate of Institute of Cancer Research (ICR) mice exposed to 7.5 Gy TBI. Furthermore, YYF treatment increased the white blood cell (WBC), red blood cell (RBC), hemoglobin (HGB) and hematocrit (HCT) counts in ICR mice exposed to 2 Gy or 4 Gy TBI. Treatment with YYF also increased the number of bone marrow cells, hematopoietic progenitor cells (HPCs), hematopoietic stem cells (HSCs) and the colony-forming ability of granulocyte-macrophage cells. YYF alleviated TBI-induced suppression of the differentiation ability of HPCs and HSCs and decreased the reactive oxygen species (ROS) levels in bone marrow mononuclear cells (BMMNCs), HPCs and HSCs from mice exposed to 2 Gy or 4 Gy TBI. Overall, our data suggest that YYF can ameliorate myelosuppression by reducing the intracellular ROS levels in hematopoietic cells after TBI at doses of 2 Gy and 4 Gy.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Hongyu Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Lixiang Yan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiangdong Yang
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhexin Shi
- Department of Hematology and Oncology, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
88
|
Zhang J, Xue X, Han X, Yao C, Lu L, Li D, Hou Q, Miao W, Meng A, Fan S. Vam3 ameliorates total body irradiation-induced hematopoietic system injury partly by regulating the expression of Nrf2-targeted genes. Free Radic Biol Med 2016; 101:455-464. [PMID: 27989754 DOI: 10.1016/j.freeradbiomed.2016.10.501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/13/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
Abstract
Vam3, a resveratrol dimer, has been implicated in the regulation of chronic obstructive pulmonary disease. However, the effect of Vam3 on total body irradiation (TBI)-induced hematopoietic progenitor cells (HPCs), and hematopoietic stem cells (HSCs) injury is unknown. In this study, we examined whether Vam3could ameliorate hematopoietic system injury induced by TBI. Our results indicated that Vam3 alleviated TBI-induced injury by improving the self-renewal and differentiation of HPCs, and HSCs. Vam3 decreased the intracellular ROS levels in irradiated mice HPCs/HSCs or c-kit positive cells and inhibited apoptosis and DNA damage in LSKs and HPCs after TBI. Vam3 up-regulated the expression of Nrf2 and related genes and proteins in irradiated c-kit positive cells in vitro. However, Vam3 did not increase the cell viability or the number of CFU-GM c-kit positive cells in irradiated Nrf2-/- mice but decreased the cellular ROS level. The above data showed that Vam3 ameliorates total body irradiation-induced hematopoietic system injury and that Nrf2 is essential in mediating Vam3's protective effect on the proliferation of c-kit positive cells after irradiation but not its ability to scavenge for free radicals.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Xiaolei Xue
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Xiaodan Han
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Chunsuo Yao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lu Lu
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China
| | - Qi Hou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Weimin Miao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300041, China
| | - Aimin Meng
- Institute of Laboratory Animal Science, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100021, China.
| | - Saijun Fan
- Tianjin Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| |
Collapse
|
89
|
De Ruysscher D, Defraene G, Ramaekers BLT, Lambin P, Briers E, Stobart H, Ward T, Bentzen SM, Van Staa T, Azria D, Rosenstein B, Kerns S, West C. Optimal design and patient selection for interventional trials using radiogenomic biomarkers: A REQUITE and Radiogenomics consortium statement. Radiother Oncol 2016; 121:440-446. [PMID: 27979370 PMCID: PMC5557371 DOI: 10.1016/j.radonc.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/25/2022]
Abstract
The optimal design and patient selection for interventional trials in radiogenomics seem trivial at first sight. However, radiogenomics do not give binary information like in e.g. targetable mutation biomarkers. Here, the risk to develop severe side effects is continuous, with increasing incidences of side effects with higher doses and/or volumes. In addition, a multi-SNP assay will produce a predicted probability of developing side effects and will require one or more cut-off thresholds for classifying risk into discrete categories. A classical biomarker trial design is therefore not optimal, whereas a risk factor stratification approach is more appropriate. Patient selection is crucial and this should be based on the dose-response relations for a specific endpoint. Alternatives to standard treatment should be available and this should take into account the preferences of patients. This will be discussed in detail.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | | | - Bram L T Ramaekers
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, The Netherlands
| | - Philippe Lambin
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), The Netherlands
| | | | | | - Tim Ward
- Patient Advocate, Manchester, UK
| | | | - Tjeerd Van Staa
- The University of Manchester, Manchester Academic Health Science Centre, UK
| | - David Azria
- Department of Radiation Oncology and Medical Physics, Institut Regional du Cancer Montpellier, France
| | - Barry Rosenstein
- Department of Radiation Oncology and Medical Physics, Institut Regional du Cancer Montpellier, France
| | | | - Catharine West
- The University of Manchester, Translational Radiobiology Group I Institute of Cancer Sciences, The Christie NHS Foundation Trust, UK
| |
Collapse
|
90
|
Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, Sioli M, Zoccoli A, Durante M. Hibernation for space travel: Impact on radioprotection. LIFE SCIENCES IN SPACE RESEARCH 2016; 11:1-9. [PMID: 27993187 DOI: 10.1016/j.lssr.2016.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Hibernation is a state of reduced metabolic activity used by some animals to survive in harsh environmental conditions. The idea of exploiting hibernation for space exploration has been proposed many years ago, but in recent years it is becoming more realistic, thanks to the introduction of specific methods to induce hibernation-like conditions (synthetic torpor) in non-hibernating animals. In addition to the expected advantages in long-term exploratory-class missions in terms of resource consumptions, aging, and psychology, hibernation may provide protection from cosmic radiation damage to the crew. Data from over half century ago in animal models suggest indeed that radiation effects are reduced during hibernation. We will review the mechanisms of increased radioprotection in hibernation, and discuss possible impact on human space exploration.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S.Donato 2, 40126 Bologna, Italy; National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Walter Tinganelli
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Matteo Negrini
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Alexander Helm
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Emanuele Scifoni
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Francesco Tommasino
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy; Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Maximiliano Sioli
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy ; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Antonio Zoccoli
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy ; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Marco Durante
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy.
| |
Collapse
|
91
|
Tas S, Ozkan OF, Cikman O, Kiraz A, Akgun Y, Karaayvaz M. L-carnitine has a protective effect on the colonic mucosa during abdominopelvic radiotherapy in rats. Acta Cir Bras 2016; 31:615-620. [PMID: 27737347 DOI: 10.1590/s0102-865020160090000007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022] Open
Abstract
PURPOSE: To evaluate histopathologically the radioprotective effect of L-carnitine on the colonic mucosa in rats undergoing abdominopelvic irradiation. METHODS: Thirty-two rats were randomly assigned to four experimental groups: intraperitoneal administration of normal saline (group 1) or L-carnitine (300 mL/kg; group 2), followed in groups 3 and 4, respectively, by one dose of abdominopelvic radiation (20 Gy) 30 min later. Rats were sacrificed 5 days after radiation, and their descending colons were resected for histopathological evaluation of the presence and severity of damage. RESULTS: Average damage scores did not differ significantly between groups 1 and 2 (0.13 ± 0.35 and 0.25 ± 0.46, respectively); the group 3 score was highest (10.25 ± 0.71), and the group 4 score (3.63 ± 1.41) was significantly lower than that of group 3 (both p = 0.0001). Pre-radiation L-carnitine administration significantly reduced mucosal thinning, crypt distortion, reactive atypia, inflammation, cryptitis, and reactive lymph-node hyperplasia (all p < 0.01). CONCLUSIONS: L-carnitine had a radioprotective effect on rat colonic mucosa. L-carnitine use should be explored for patients with gastrointestinal cancer, who have reduced serum L-carnitine levels.
Collapse
Affiliation(s)
- Sukru Tas
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey. Conception and design of the study, technical procedures, manuscript writing, final approval
| | - Omer Faruk Ozkan
- Associated Professor, Department of General Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey. Scientific and intellectual content of the study, statistical analysis
| | - Oztekin Cikman
- Assistant Professor, Department of General Surgery, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey. Acquisition of data, manuscript writing
| | - Asli Kiraz
- Specialist Doctor, Department of Medical Microbiology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey. Histopathological examinations, manuscript writing, critical revision
| | - Yilmaz Akgun
- Professor, Department of General Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey. Analysis and interpretation of data, manuscript preparation, critical revision
| | - Muammer Karaayvaz
- Professor, Department of General Surgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey. Conception and design of the study, critical revision
| |
Collapse
|
92
|
Radiation protective effects of baclofen predicted by a computational drug repurposing strategy. Pharmacol Res 2016; 113:475-483. [PMID: 27664700 DOI: 10.1016/j.phrs.2016.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022]
Abstract
Exposure to ionizing radiation causes damage to living tissues; however, only a small number of agents have been approved for use in radiation injuries. Radioprotector is the primary countermeasure to radiation injury and none radioprotector has indeed reached the drug development stage. Repurposing the long list of approved, non-radioprotective drugs is an attractive strategy to find new radioprotective agents. Here, we applied a computational approach to discover new radioprotectors in silico by comparing publicly available gene expression data of ionizing radiation-treated samples from the Gene Expression Omnibus (GEO) database with gene expression signatures of more than 1309 small-molecule compounds from the Connectivity Map (cmap) dataset. Among the best compounds predicted to be therapeutic for ionizing radiation damage by this approach were some previously reported radioprotectors and baclofen (P<0.01), a chemical that was not previously used as radioprotector. Validation using a cell-based model and a rodent in vivo model demonstrated that treatment with baclofen reduced radiation-induced cytotoxicity in vitro (P<0.01), attenuated bone marrow damage and increased survival in vivo (P<0.05). These findings suggest that baclofen might serve as a radioprotector. The drug repurposing strategy by connecting the GEO data and cmap can be used to identify known drugs as potential radioprotective agents.
Collapse
|
93
|
Gupta P, Gayen M, Smith JT, Gaidamakova EK, Matrosova VY, Grichenko O, Knollmann-Ritschel B, Daly MJ, Kiang JG, Maheshwari RK. MDP: A Deinococcus Mn2+-Decapeptide Complex Protects Mice from Ionizing Radiation. PLoS One 2016; 11:e0160575. [PMID: 27500529 PMCID: PMC4976947 DOI: 10.1371/journal.pone.0160575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/21/2016] [Indexed: 11/24/2022] Open
Abstract
The radioprotective capacity of a rationally-designed Mn2+-decapeptide complex (MDP), based on Mn antioxidants in the bacterium Deinococcus radiodurans, was investigated in a mouse model of radiation injury. MDP was previously reported to be extraordinarily radioprotective of proteins in the setting of vaccine development. The peptide-component (DEHGTAVMLK) of MDP applied here was selected from a group of synthetic peptides screened in vitro for their ability to protect cultured human cells and purified enzymes from extreme damage caused by ionizing radiation (IR). We show that the peptides accumulated in Jurkat T-cells and protected them from 100 Gy. MDP preserved the activity of T4 DNA ligase exposed to 60,000 Gy. In vivo, MDP was nontoxic and protected B6D2F1/J (female) mice from acute radiation syndrome. All irradiated mice treated with MDP survived exposure to 9.5 Gy (LD70/30) in comparison to the untreated mice, which displayed 63% lethality after 30 days. Our results show that MDP provides early protection of white blood cells, and attenuates IR-induced damage to bone marrow and hematopoietic stem cells via G-CSF and GM-CSF modulation. Moreover, MDP mediated the immunomodulation of several cytokine concentrations in serum including G-CSF, GM-CSF, IL-3 and IL-10 during early recovery. Our results present the necessary prelude for future efforts towards clinical application of MDP as a promising IR countermeasure. Further investigation of MDP as a pre-exposure prophylactic and post-exposure therapeutic in radiotherapy and radiation emergencies is warranted.
Collapse
Affiliation(s)
- Paridhi Gupta
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
- * E-mail: (PG); (MJD)
| | - Manoshi Gayen
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
- Biological Sciences Group, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Elena K. Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
| | - Vera Y. Matrosova
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
| | - Olga Grichenko
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
| | - Barbara Knollmann-Ritschel
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
| | - Michael J. Daly
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
- * E-mail: (PG); (MJD)
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Radha K. Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Bethesda, Maryland, United States of America
| |
Collapse
|
94
|
Protection against Radiotherapy-Induced Toxicity. Antioxidants (Basel) 2016; 5:antiox5030022. [PMID: 27399787 PMCID: PMC5039571 DOI: 10.3390/antiox5030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/18/2023] Open
Abstract
Radiation therapy is a highly utilized therapy in the treatment of malignancies with up to 60% of cancer patients receiving radiation therapy as a part of their treatment regimen. Radiation therapy does, however, cause a wide range of adverse effects that can be severe and cause permanent damage to the patient. In an attempt to minimize these effects, a small number of compounds have been identified and are in use clinically for the prevention and treatment of radiation associated toxicities. Furthermore, there are a number of emerging therapies being developed for use as agents that protect against radiation-induced toxicities. The aim of this review was to evaluate and summarise the evidence that exists for both the known radioprotectant agents and the agents that show promise as future radioprotectant agents.
Collapse
|
95
|
Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O’Banion MK, Puzas E. Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiat Res 2016; 186:1-16. [PMID: 27332954 PMCID: PMC4991354 DOI: 10.1667/rr14473.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joe V. Chakkalakal
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Edward Puzas
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
96
|
Xu W, Yang F, Zhang Y, Shen X. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice. JOURNAL OF RADIATION RESEARCH 2016; 57:356-62. [PMID: 27006381 PMCID: PMC4973645 DOI: 10.1093/jrr/rrw021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony-forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of (137)Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice.
Collapse
Affiliation(s)
- Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Yujie Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| | - Xiu Shen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 238 Bai Di Road, Nan Kai District, Tianjin, 300192, China
| |
Collapse
|
97
|
Emerging targets for radioprotection and radiosensitization in radiotherapy. Tumour Biol 2016; 37:11589-11609. [DOI: 10.1007/s13277-016-5117-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/09/2016] [Indexed: 01/12/2023] Open
|
98
|
Li D, Tian Z, Tang W, Zhang J, Lu L, Sun Z, Zhou Z, Fan F. The Protective Effects of 5-Methoxytryptamine-α-lipoic Acid on Ionizing Radiation-Induced Hematopoietic Injury. Int J Mol Sci 2016; 17:ijms17060935. [PMID: 27314327 PMCID: PMC4926468 DOI: 10.3390/ijms17060935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are prospective radioprotectors because of their ability to scavenge radiation-induced reactive oxygen species (ROS). The hematopoietic system is widely studied in radiation research because of its high radiosensitivity. In the present study, we describe the beneficial effects of 5-methoxytryptamine-α-lipoic acid (MLA), which was synthesized from melatonin and α-lipoic acid, against radiation-induced hematopoietic injury. MLA administration significantly enhanced the survival rate of mice after 7.2 Gy total body irradiation. The results showed that MLA not only markedly increased the numbers and clonogenic potential of hematopoietic cells but also decreased DNA damage, as determined by flow cytometric analysis of histone H2AX phosphorylation. In addition, MLA decreased the levels of ROS in hematopoietic cells by inhibiting NOX4 expression. These data demonstrate that MLA prevents radiation-induced hematopoietic syndrome by increasing the number and function of and by inhibiting DNA damage and ROS production in hematopoietic cells. These data suggest MLA is beneficial for the protection of radiation injuries.
Collapse
Affiliation(s)
- Deguan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Zhenyuan Tian
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Weisheng Tang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Junling Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Zhaojin Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Zewei Zhou
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Feiyue Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
99
|
Çakir ZÜ, Demirel C, Kilciksiz SC, Gürgül S, Zincircioğlu SB, Erdal N. Melatonin can Ameliorate Radiation-Induced Oxidative Stress and Inflammation-Related Deterioration of Bone Quality in Rat Femur. Inflammation 2016; 39:1134-40. [PMID: 27052631 DOI: 10.1007/s10753-016-0347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to evaluate the radioprotective effects of melatonin on the biomechanical properties of bone in comparison to amifostine (WR-2721). Forty Sprague Dawley rats were divided equally into 5 groups namely; control (C), irradiation (R; single dose of 50 Gy), irradiation + WR-2721 (R + WR-2721; irradiation + 200 mg/kg WR-2721) radiation + melatonin 25 mg/kg (R + M25; irradiation + 25 mg/kg melatonin), and radiation + melatonin 50 mg/kg (R + M50; irradiation + 50 mg/kg melatonin). In order to measure extrinsic (organ-level mechanical properties of bone; the ultimate strength, deformation, stiffness, energy absorption capacity) and intrinsic (tissue-level mechanical properties of bone; ultimate stress, ultimate strain, elastic modulus, toughness) features of the bone, a three-point bending (TPB) test was performed for biomechanical evaluation. In addition, a bone mineral density (BMD) test was carried out. The BMD and extrinsic properties of the diaphyseal femur were found to be significantly higher in the R + M25 group than in group R (p < 0.05). A significant increase was observed in R + M50 (p < 0.05) in comparison to group R in the cross-sectional area of the femoral shaft and elastic modulus parameter. The protective effect of melatonin was similar to that of WR-2721. Thus, biomechanical quality of irradiated bone can be ameliorated by free radical scavenger melatonin.
Collapse
Affiliation(s)
- Zelal Ünlü Çakir
- Department of Biophysics, Faculty of Medicine, Gaziantep University, Gaziantep, TR-27310, Turkey
| | - Can Demirel
- Department of Biophysics, Faculty of Medicine, Gaziantep University, Gaziantep, TR-27310, Turkey.
| | | | - Serkan Gürgül
- Department of Biophysics, Faculty of Medicine, Gaziosmanpaşa University, Tokat, TR-60000, Turkey
| | | | - Nurten Erdal
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, TR-33169, Turkey
| |
Collapse
|
100
|
Kavaz E, Perişanoğlu U, Ekinci N, Özdemır Y. Determination of energy absorption and exposure buildup factors by using G-P fitting approximation for radioprotective agents. Int J Radiat Biol 2016; 92:380-7. [PMID: 27124103 DOI: 10.1080/09553002.2016.1175681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Recently, there has been an increase in interest into research into radioprotective agents. Radioprotectors are compounds that protect against radiation injury when given orally (through drinking water) prior to radiation exposure. The purpose is to achieve preferred protection of normal tissues against injury inflicted by ionizing radiation used to treat tumors. The main aim of this work is to investigate energy absorption (EABF) and exposure buildup factors (EBF) of commonly used some radioprotective agents. MATERIALS AND METHODS We have used the Geometric Progression (G-P) fitting method for calculating the equivalent atomic number (Zeq), for EABF and EBF buildup factors of the radioprotective agents in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. RESULTS Significant variations in both EABF and EBF values were observed for several agents at the moderate energy region. At energies below 0.1 MeV, EABF and EBF values increased with decreasing equivalent atomic number Zeq of the samples. At energies >0.15 MeV, EABF and EBF values were found to decrease with decreasing Zeq of all agents. In addition, EABF and EBF were the largest for carnosin, tempol, melatonin, interferon gamma and orientine at 0.05 and 0.06 MeV, respectively, and the minimum values of buildup factors were at 0.1 MeV for cysteine, amifostine, penicillamine and glutathione. CONCLUSIONS Cysteine and amifostine are good compounds for gamma rays absorption applications among the selected compounds. The presented results in this study are expected to be helpful in radiation dosimetry.
Collapse
Affiliation(s)
- Esra Kavaz
- a Department of Physics, Faculty of Sciences , Ataturk University , Erzurum
| | - Ufuk Perişanoğlu
- a Department of Physics, Faculty of Sciences , Ataturk University , Erzurum ;,b Department of Materials Science and Engineering, Faculty of Engineering , Hakkari University , Hakkari , Turkey
| | - Neslihan Ekinci
- a Department of Physics, Faculty of Sciences , Ataturk University , Erzurum
| | - Yüksel Özdemır
- a Department of Physics, Faculty of Sciences , Ataturk University , Erzurum
| |
Collapse
|