51
|
Soliman GA, Schooling CM. Causal association between mTOR-dependent EIF-4E and EIF-4A circulating protein levels and type 2 diabetes: a Mendelian randomization study. Sci Rep 2020; 10:15737. [PMID: 32978410 PMCID: PMC7519073 DOI: 10.1038/s41598-020-71987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
The mammalian Target of Rapamycin complex 1 (mTORC1) nutrient-sensing pathway is a central regulator of cell growth and metabolism and is dysregulated in diabetes. The eukaryotic translation initiation factor 4E (EIF-4E) protein, a key regulator of gene translation and protein function, is controlled by mTORC1 and EIF-4E Binding Proteins (EIF4EBPs). Both EIF4EBPs and ribosomal protein S6K kinase (RP-S6K) are downstream effectors regulated by mTORC1 but converge to regulate two independent pathways. We investigated whether the risk of type 2 diabetes varied with genetically predicted EIF-4E, EIF-4A, EIF-4G, EIF4EBP, and RP-S6K circulating levels using Mendelian Randomization. We estimated the causal role of EIF-4F complex, EIF4EBP, and S6K in the circulation on type 2 diabetes, based on independent single nucleotide polymorphisms strongly associated (p = 5 × 10–6) with EIF-4E (16 SNPs), EIF-4A (11 SNPs), EIF-4G (6 SNPs), EIF4EBP2 (12 SNPs), and RP-S6K (16 SNPs). The exposure data were obtained from the INTERVAL study. We applied these SNPs for each exposure to publically available genetic associations with diabetes from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) case (n = 26,676) and control (n = 132,532) study (mean age 57.4 years). We meta-analyzed SNP-specific Wald-estimates using inverse variance weighting with multiplicative random effects and conducted sensitivity analysis. Mendelian Randomization (MR-Base) R package was used in the analysis. The PhenoScanner curated database was used to identify disease associations with SNP gene variants. EIF-4E is associated with a lowered risk of type 2 diabetes with an odds ratio (OR) 0.94, 95% confidence interval (0.88, 0.99, p = 0.03) with similar estimates from the weighted median and MR-Egger. Similarly, EIF-4A was associated with lower risk of type 2 diabetes with odds ratio (OR) 0.90, 95% confidence interval (0.85, 0.97, p = 0.0003). Sensitivity analysis using MR-Egger and weighed median analysis does not indicate that there is a pleiotropic effect. This unbiased Mendelian Randomization estimate is consistent with a protective causal association of EIF-4E and EIF-4A on type 2 diabetes. EIF-4E and EIF-4A may be targeted for intervention by repurposing existing therapeutics to reduce the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Ghada A Soliman
- Department of Environmental, Occupational and Geospatial Health Sciences, The City University of New York, Graduate School of Public Health and Health Policy, 55 West 125th St, New York, NY, 10027, USA.
| | - C Mary Schooling
- Department of Environmental, Occupational and Geospatial Health Sciences, The City University of New York, Graduate School of Public Health and Health Policy, 55 West 125th St, New York, NY, 10027, USA.,School of Public Health, Li Ka Shing, Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Hong Kong, China
| |
Collapse
|
52
|
Nagy L, Béke F, Juhász L, Kovács T, Juhász-Tóth É, Docsa T, Tóth A, Gergely P, Somsák L, Bai P. Glycogen phosphorylase inhibitor, 2,3-bis[(2E)-3-(4-hydroxyphenyl)prop-2-enamido] butanedioic acid (BF142), improves baseline insulin secretion of MIN6 insulinoma cells. PLoS One 2020; 15:e0236081. [PMID: 32960890 PMCID: PMC7508380 DOI: 10.1371/journal.pone.0236081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is characterized by insulin resistance and inadequate insulin secretion of β cells. Glycogen phosphorylase (GP) is the key enzyme in glycogen breakdown, and contributes to hepatic glucose production during fasting or during insulin resistance. Pharmacological GP inhibitors are potential glucose lowering agents, which may be used in T2DM therapy. A natural product isolated from the cultured broth of the fungal strain No. 138354, called 2,3-bis(4-hydroxycinnamoyloxy)glutaric acid (FR258900), was discovered a decade ago. In vivo studies showed that FR258900 significantly reduced blood glucose levels in diabetic mice. We previously showed that GP inhibitors can potently enhance the function of β cells. The purpose of this study was to assess whether an analogue of FR258900 can influence β cell function. BF142 (Meso-Dimethyl 2,3-bis[(E)-3-(4-acetoxyphenyl)prop-2-enamido]butanedioate) treatment activated the glucose-stimulated insulin secretion pathway, as indicated by enhanced glycolysis, increased mitochondrial oxidation, significantly increased ATP production, and elevated calcium influx in MIN6 cells. Furthermore, BF142 induced mTORC1-specific phosphorylation of S6K, increased levels of PDX1 and insulin protein, and increased insulin secretion. Our data suggest that BF142 can influence β cell function and can support the insulin producing ability of β cells.
Collapse
Affiliation(s)
- Lilla Nagy
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Béke
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Juhász
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Juhász-Tóth
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Pál Gergely
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Somsák
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
53
|
Roohi A, Nikougoftar M, Montazeri H, Navabi S, Shokri F, Ostad SN, Ghahremani MH. High Glucose Affects the Cytotoxic Potential of Rapamycin, Metformin and Hydrogen Peroxide in Cultured Human Mesenchymal Stem Cells. Curr Mol Med 2020; 19:688-698. [PMID: 31625470 DOI: 10.2174/1566524019666190722115842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oxidative stress and chronic hyperglycemia are two major side effects of type 2 diabetes affecting all cell types including mesenchymal stem cells (MSCs). As a cell therapy choice, understanding the behavior of MSCs will provide crucial information for efficient treatment. METHODS Placental mesenchymal stem cells were treated with various concentrations of glucose, metformin, rapamycin, and hydrogen peroxide to monitor their viability and cell cycle distribution. Cellular viability was examined via the MTT assay. Cell cycle distribution was studied by propidium iodide staining and apoptosis was determined using Annexin Vpropidium iodide staining and flow cytometry. Involvement of potential signaling pathways was evaluated by Western blotting for activation of Akt, P70S6K, and AMPK. RESULTS The results indicated that high glucose augmented cell viability and reduced metformin toxic potential. However, the hydrogen peroxide and rapamycin toxicities were exacerbated. CONCLUSION Our findings suggest that high glucose concentration has a major effect on placental mesenchymal stem cell viability in the presence of rapamycin, metformin and hydrogen peroxide in culture.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center- Higher Institute for Research and Education in Transfusion Medicine- Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy- International Campus, Iran University of Medical Sciences- Tehran, Iran
| | - Shadisadat Navabi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
55
|
Lu Y, Li Y, Li G, Lu H. Identification of potential markers for type 2 diabetes mellitus via bioinformatics analysis. Mol Med Rep 2020; 22:1868-1882. [PMID: 32705173 PMCID: PMC7411335 DOI: 10.3892/mmr.2020.11281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial and multigenetic disease, and its pathogenesis is complex and largely unknown. In the present study, microarray data (GSE201966) of β-cell enriched tissue obtained by laser capture microdissection were downloaded, including 10 control and 10 type 2 diabetic subjects. A comprehensive bioinformatics analysis of microarray data in the context of protein-protein interaction (PPI) networks was employed, combined with subcellular location information to mine the potential candidate genes for T2DM and provide further insight on the possible mechanisms involved. First, differential analysis screened 108 differentially expressed genes. Then, 83 candidate genes were identified in the layered network in the context of PPI via network analysis, which were either directly or indirectly linked to T2DM. Of those genes obtained through literature retrieval analysis, 27 of 83 were involved with the development of T2DM; however, the rest of the 56 genes need to be verified by experiments. The functional analysis of candidate genes involved in a number of biological activities, demonstrated that 46 upregulated candidate genes were involved in ‘inflammatory response’ and ‘lipid metabolic process’, and 37 downregulated candidate genes were involved in ‘positive regulation of cell death’ and ‘positive regulation of cell proliferation’. These candidate genes were also involved in different signaling pathways associated with ‘PI3K/Akt signaling pathway’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’ and ‘MAPK signaling pathway’, which are highly associated with the development of T2DM. Furthermore, a microRNA (miR)-target gene regulatory network and a transcription factor-target gene regulatory network were constructed based on miRNet and NetworkAnalyst databases, respectively. Notably, hsa-miR-192-5p, hsa-miR-124-5p and hsa-miR-335-5p appeared to be involved in T2DM by potentially regulating the expression of various candidate genes, including procollagen C-endopeptidase enhancer 2, connective tissue growth factor and family with sequence similarity 105, member A, protein phosphatase 1 regulatory inhibitor subunit 1 A and C-C motif chemokine receptor 4. Smad5 and Bcl6, as transcription factors, are regulated by ankyrin repeat domain 23 and transmembrane protein 37, respectively, which might also be used in the molecular diagnosis and targeted therapy of T2DM. Taken together, the results of the present study may offer insight for future genomic-based individualized treatment of T2DM and help determine the underlying molecular mechanisms that lead to T2DM.
Collapse
Affiliation(s)
- Yana Lu
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Yihang Li
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Guang Li
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, Yunnan 666100, P.R. China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
56
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
57
|
Kanno A, Asahara SI, Furubayashi A, Masuda K, Yoshitomi R, Suzuki E, Takai T, Kimura-Koyanagi M, Matsuda T, Bartolome A, Hirota Y, Yokoi N, Inaba Y, Inoue H, Matsumoto M, Inoue K, Abe T, Wei FY, Tomizawa K, Ogawa W, Seino S, Kasuga M, Kido Y. GCN2 regulates pancreatic β cell mass by sensing intracellular amino acid levels. JCI Insight 2020; 5:128820. [PMID: 32376799 DOI: 10.1172/jci.insight.128820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/01/2020] [Indexed: 01/09/2023] Open
Abstract
EIF2AK4, which encodes the amino acid deficiency-sensing protein GCN2, has been implicated as a susceptibility gene for type 2 diabetes in the Japanese population. However, the mechanism by which GCN2 affects glucose homeostasis is unclear. Here, we show that insulin secretion is reduced in individuals harboring the risk allele of EIF2AK4 and that maintenance of GCN2-deficient mice on a high-fat diet results in a loss of pancreatic β cell mass. Our data suggest that GCN2 senses amino acid deficiency in β cells and limits signaling by mechanistic target of rapamycin complex 1 to prevent β cell failure during the consumption of a high-fat diet.
Collapse
Affiliation(s)
- Ayumi Kanno
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Ayuko Furubayashi
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Katsuhisa Masuda
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Risa Yoshitomi
- Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| | - Emi Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | | | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Alberto Bartolome
- Naomi Berrie Diabetes Center and Department of Medicine, Columbia University, New York, New York, USA
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Takaya Abe
- Laboratory for Animal Resource Development and.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Kasuga
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, and.,Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Science, Kobe, Japan
| |
Collapse
|
58
|
Yin Y, Sun Y, Zhao L, Pan J, Feng Y. Computer-aided discovery of phenylpyrazole based amides as potent S6K1 inhibitors. RSC Med Chem 2020; 11:583-590. [PMID: 33479660 DOI: 10.1039/c9md00537d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal protein S6 kinase beta-1 (S6K1) is an attractive therapeutic target. In this study, computational analysis of five thiophene urea-based S6K1 inhibitors was performed. Molecular docking showed that the five compounds formed hydrogen bonds with residues Glu173 and Leu175 of S6K1 and hydrophobic interactions with residues Val105, Leu97 and Met225, and these interactions were key elements for the inhibitory potency of the compounds. Binding free energy (ΔG bind) decomposition analysis showed that Leu97, Glu173, Val 105, Leu175, Leu97 and Met225 contribute the most to ΔG bind. Based on the computer results, phenylpyrazole based amides (D1-D3) were designed and synthesized. Biological evaluation revealed that D2 exhibited 15.9 nM S6K1 inhibition, medium microsomal stability and desirable bioavailability.
Collapse
Affiliation(s)
- Yan Yin
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Yuxing Sun
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Lianhua Zhao
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Jinpeng Pan
- School of Chemical and Environmental Engineering , Shanghai Institute of Technology , 100 Hai Quan Rd. , Shanghai , 201418 , P. R. China .
| | - Yangbo Feng
- Medicinal Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , USA.,Reaction Biology Corporation , Malvern , PA 19355 , USA
| |
Collapse
|
59
|
Sirolimus and mTOR Inhibitors: A Review of Side Effects and Specific Management in Solid Organ Transplantation. Drug Saf 2020; 42:813-825. [PMID: 30868436 DOI: 10.1007/s40264-019-00810-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibitors of mechanistic target of rapamycin (mTOR inhibitors) are used as antiproliferative immunosuppressive drugs and have many clinical applications in various drug combinations. Experience in transplantation studies has been gained regarding the side effect profile of these drugs and the potential benefits and limitations compared with other immunosuppressive agents. This article reviews the adverse effects of mTOR inhibitors in solid organ transplantation, with special attention given to mechanisms hypothesized to cause adverse events and their management strategies.
Collapse
|
60
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
61
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
62
|
mTOR signaling in Brown and Beige adipocytes: implications for thermogenesis and obesity. Nutr Metab (Lond) 2019; 16:74. [PMID: 31708995 PMCID: PMC6836431 DOI: 10.1186/s12986-019-0404-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Brown and beige adipocytes are mainly responsible for nonshivering thermogenesis or heat production, despite the fact that they have distinguished features in distribution, developmental origin, and functional activation. As a nutrient sensor and critical regulator of energy metabolism, mechanistic target of rapamycin (mTOR) also plays an important role in the development and functional maintenance of adipocytes. While the recent studies support the notion that mTOR (mTORC1 and mTORC2) related signaling pathways are of great significance for thermogenesis and the development of brown and beige adipocytes, the exact roles of mTOR in heat production are controversial. The similarities and disparities in terms of thermogenesis might be ascribed to the use of different animal models and experimental systems, distinct features of brown and beige adipocytes, and the complexity of regulatory networks of mTORC1 and mTORC2 in energy metabolism.
Collapse
|
63
|
Xu X, Kobayashi S, Timm D, Huang Y, Zhao F, Shou W, Liang Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice. FASEB J 2019; 33:12800-12811. [PMID: 31469601 DOI: 10.1096/fj.201901206r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase mechanistic target of rapamycin (mTOR) performs diverse cellular functions through 2 distinct multiprotein complexes, mTOR complex (mTORC)1 and 2. Numerous studies using rapamycin, an mTORC1 inhibitor, have implicated a role for mTORC1 in several types of heart disease. People with diabetes are more susceptible to heart failure. mTORC1 activity is increased in the diabetic heart, but its functional significance remains controversial. To investigate the role of mTORC1 in the diabetic heart, we crossed OVE26 type 1 diabetic mice with transgenic mice expressing a constitutively active mTOR (mTORca) or kinase-dead mTOR (mTORkd) in the heart. The expression of mTORca or mTORkd affected only mTORC1 but not mTORC2 activities, with corresponding changes in the activities of autophagy, a cellular degradation pathway negatively regulated by mTORC1. Diabetic cardiac damage in OVE26 mice was dramatically reduced by mTORca but exacerbated by mTORkd expression as assessed by changes in cardiac function, oxidative stress, and myocyte apoptosis. These findings demonstrated that the enhanced mTORC1 signaling in the OVE26 diabetic heart was an adaptive response that limited cardiac dysfunction, suggesting that manipulations that enhance mTORC1 activity may reduce diabetic cardiac injury, in sharp contrast to the results previously obtained with rapamycin.-Xu, X., Kobayashi, S., Timm, D., Huang, Y., Zhao, F., Shou, W., Liang, Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice.
Collapse
Affiliation(s)
- Xianmin Xu
- Sanford Research, Sioux Falls, South Dakota, USA
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Derek Timm
- Sanford Research, Sioux Falls, South Dakota, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Fengyi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Weinian Shou
- Department of Pediatrics, Riley Heart Center, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
64
|
Lim JH, Hwang I, Cho JH, Kwon E, Jung HY, Choi JY, Park SH, Kim YL, Kim HK, Huh S, Won DI, Kim CD. Impact of Conversion From Cyclosporine to Tacrolimus on Glucose Metabolism and Cardiovascular Risk Profiles in Long-Term Stable Kidney Transplant Recipients. Transplant Proc 2019; 51:2697-2703. [PMID: 31439330 DOI: 10.1016/j.transproceed.2019.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Compared to tacrolimus, cyclosporine increases cardiovascular risk. Furthermore, tacrolimus has a negative effect on glucose metabolism compared to cyclosporine. This study investigated the effect of the conversion from cyclosporine to tacrolimus for immunosuppressive therapy on glucose metabolism and cardiovascular risk profiles in long-term stable kidney transplant recipients (KTRs). METHODS In this prospective, open-label, single-arm study, 36 KTRs were enrolled; 3 were excluded. Patients were evaluated for glucose metabolism and cardiovascular risk factors at baseline, 3, and 6 months after conversion of medication. Serial changes were analyzed by repeated analysis of variance. RESULTS The mean duration from transplantation was 12.6 ± 4.0 years and baseline serum creatinine levels were 1.10 ± .23 mg/dL. After conversion, fasting plasma glucose levels increased sequentially from 101.7 ± 18.5 to 107.4 ± 21.3 mg/dL (P = .007), and glycated hemoglobin levels increased from 5.7 ± .8 to 6.0 ± 1.2% (P = .016). Among cardiovascular risk factors, fibrinogen levels were decreased (P = .015), but other factors, including blood pressure and lipid profile, did not change (all P > .05). There was no change in renal function, including serum creatinine (P = .611) and urine protein-to-creatinine ratio (P = .092). Body mass index levels were decreased (P = .037) and body weight tended to decrease (P = .063). CONCLUSIONS Switching immunosuppressant therapy to tacrolimus has an apparent negative effect on glucose metabolism and imparts an unclear advantage on cardiovascular risk profiles for long-term stable KTRs.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Inryang Hwang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Eugene Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Young Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hyung-Kee Kim
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Seung Huh
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Dong-Il Won
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
65
|
Fasting and rapamycin: diabetes versus benevolent glucose intolerance. Cell Death Dis 2019; 10:607. [PMID: 31406105 PMCID: PMC6690951 DOI: 10.1038/s41419-019-1822-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Rapamycin (Sirolimus) slows aging, extends life span, and prevents age-related diseases, including diabetic complications such as retinopathy. Puzzlingly, rapamycin can induce insulin sensitivity, but may also induce insulin resistance or glucose intolerance without insulin resistance. This mirrors the effect of fasting and very low calorie diets, which improve insulin sensitivity and reverse type 2 diabetes, but also can cause a form of glucose intolerance known as benevolent pseudo-diabetes. There is no indication that starvation (benevolent) pseudo-diabetes is detrimental. By contrast, it is associated with better health and life extension. In transplant patients, a weak association between rapamycin/everolimus use and hyperglycemia is mostly due to a drug interaction with calcineurin inhibitors. When it occurs in cancer patients, the hyperglycemia is mild and reversible. No hyperglycemic effects of rapamycin/everolimus have been detected in healthy people. For antiaging purposes, rapamycin/everolimus can be administrated intermittently (e.g., once a week) in combination with intermittent carbohydrate restriction, physical exercise, and metformin.
Collapse
|
66
|
Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes. Nat Commun 2019; 10:3312. [PMID: 31346174 PMCID: PMC6658524 DOI: 10.1038/s41467-019-11170-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Compromised function of insulin-secreting pancreatic β cells is central to the development and progression of Type 2 Diabetes (T2D). However, the mechanisms underlying β cell failure remain incompletely understood. Here, we report that metabolic stress markedly enhances macroautophagy-independent lysosomal degradation of nascent insulin granules. In different model systems of diabetes including of human origin, stress-induced nascent granule degradation (SINGD) contributes to loss of insulin along with mammalian/mechanistic Target of Rapamycin (mTOR)-dependent suppression of macroautophagy. Expression of Protein Kinase D (PKD), a negative regulator of SINGD, is reduced in diabetic β cells. Pharmacological activation of PKD counters SINGD and delays the onset of T2D. Conversely, inhibition of PKD exacerbates SINGD, mitigates insulin secretion and accelerates diabetes. Finally, reduced levels of lysosomal tetraspanin CD63 prevent SINGD, leading to increased insulin secretion. Overall, our findings implicate aberrant SINGD in the pathogenesis of diabetes and suggest new therapeutic strategies to prevent β cell failure. Impaired beta-cell insulin secretion is a key pathological feature of type 2 diabetes. Here, the authors describe metabolic stress induced lysosomal degradation of newly formed insulin granules, independent of macroautophagy, as a potential mechanism for beta-cell dysfunction.
Collapse
|
67
|
Konishi H, Shirakawa J, Arai M, Terauchi Y. Drug-induced hyperglycemia in the Japanese Adverse Drug Event Report database: association of evelolimus use with diabetes. Endocr J 2019; 66:571-574. [PMID: 30944270 DOI: 10.1507/endocrj.ej18-0553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Some categories of drugs are known for causing hyperglycemia or diabetes such as steroids, antipsychotics, and immunosuppressant. However, there has been little evidence from studies about the proportion of each drug in the context of drug-induced diabetes. In this study, we used data from the Japanese Adverse Drug Event Report (JADER) database, a spontaneous reporting system database maintained at the Pharmaceuticals and Medical Devices Agency (PMDA) of Japan, reported between April 2004 and June 2017. Among 459,250 reports of adverse drug reactions in JADER database, reported instances of the adverse event of hyperglycemia or diabetes were extracted. After the exclusion of anti-diabetes drugs, the drugs frequently implicated in the development of hyperglycemia or diabetes, including prednisolone, tacrolimus, everolimus, ribavirin, quetiapine, aripiprazole, interferon alfa-2b, risperidone, atorvastatin, dexamethasone, ciclosporin, nilotinib, methylprednisolone, or nivolumab, were identified. Everolimus, a mammalian target of rapamycin (mTOR) inhibitor, was manifested as the third most frequently associated drug with hyperglycemia or diabetes (340 cases), following prednisolone (694 cases) and tacrolimus (393 cases), and the reporting odds ratio (ROR 8.56, 95% CI 7.65-9.57) of this drug was higher than that of the two aforementioned drugs (ROR 3.96, 95% CI 3.66-4.28 and ROR 3.51, 95% CI 3.17-3.89). These results suggest that there is a potent association of evelolimus with hyperglycemia in clinical practice in Japan.
Collapse
Affiliation(s)
- Hiromi Konishi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masanori Arai
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
68
|
Discovery of Small-Molecule Selective mTORC1 Inhibitors via Direct Inhibition of Glucose Transporters. Cell Chem Biol 2019; 26:1203-1213.e13. [PMID: 31231029 DOI: 10.1016/j.chembiol.2019.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolic processes. Dysregulation of this kinase complex can result in a variety of human diseases. Rapamycin and its analogs target mTORC1 directly; however, chronic treatment in certain cell types and in vivo results in the inhibition of both mTORC1 and mTORC2. We have developed a high-throughput cell-based screen for the detection of phosphorylated forms of the mTORC1 (4E-BP1, S6K1) and mTORC2 (Akt) substrates and have identified and characterized a chemical scaffold that demonstrates a profile consistent with the selective inhibition of mTORC1. Stable isotope labeling of amino acids in cell culture-based proteomic target identification revealed that class I glucose transporters were the primary target for these compounds yielding potent inhibition of glucose uptake and, as a result, selective inhibition of mTORC1. The link between the glucose uptake and selective mTORC1 inhibition are discussed in the context of a yet-to-be discovered glucose sensor.
Collapse
|
69
|
Offspring of Mice Exposed to a Low-Protein Diet in Utero Demonstrate Changes in mTOR Signaling in Pancreatic Islets of Langerhans, Associated with Altered Glucagon and Insulin Expression and a Lower β-Cell Mass. Nutrients 2019; 11:nu11030605. [PMID: 30871106 PMCID: PMC6471519 DOI: 10.3390/nu11030605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Low birth weight is a risk factor for gestational and type 2 diabetes (T2D). Since mammalian target of rapamycin (mTOR) controls pancreatic β-cell mass and hormone release, we hypothesized that nutritional insult in utero might permanently alter mTOR signaling. Mice were fed a low-protein (LP, 8%) or control (C, 20%) diet throughout pregnancy, and offspring examined until 130 days age. Mice receiving LP were born 12% smaller and β-cell mass was significantly reduced throughout life. Islet mTOR levels were lower in LP-exposed mice and localized predominantly to α-rather than β-cells. Incubation of isolated mouse islets with rapamycin significantly reduced cell proliferation while increasing apoptosis. mRNA levels for mTORC complex genes mTOR, Rictor and Raptor were elevated at 7 days in LP mice, as were the mTOR and Raptor proteins. Proglucagon gene expression was similarly increased, but not insulin or the immune/metabolic defense protein STING. In human and mouse pancreas STING was strongly associated with islet β-cells. Results support long-term changes in islet mTOR signaling in response to nutritional insult in utero, with altered expression of glucagon and insulin and a reduced β-cell mass. This may contribute to an increased risk of gestational or type 2 diabetes.
Collapse
|
70
|
Abstract
Solid organ transplantation (SOT) is a life-saving procedure and an established treatment for patients with end-stage organ failure. However, transplantation is also accompanied by associated cardiovascular risk factors, of which post-transplant diabetes mellitus (PTDM) is one of the most important. PTDM develops in 10-20% of patients with kidney transplants and in 20-40% of patients who have undergone other SOT. PTDM increases mortality, which is best documented in patients who have received kidney and heart transplants. PTDM results from predisposing factors (similar to type 2 diabetes mellitus) but also as a result of specific post-transplant risk factors. Although PTDM has many characteristics in common with type 2 diabetes mellitus, the prevention and treatment of the two disorders are often different. Over the past 20 years, the lifespan of patients who have undergone SOT has increased, and PTDM becomes more common over the lifespan of these patients. Accordingly, PTDM becomes an important condition not only to be aware of but also to treat. This Review presents the current knowledge on PTDM in patients receiving kidney, heart, liver and lung transplants. This information is not only for transplant health providers but also for endocrinologists and others who will meet these patients in their clinics.
Collapse
Affiliation(s)
- Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Anders Hartmann
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
71
|
Pan Q, Qin T, Gao Y, Li S, Li D, Peng M, Zhai H, Xu G. Hepatic mTOR-AKT2-Insig2 signaling pathway contributes to the improvement of hepatic steatosis after Roux-en-Y Gastric Bypass in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:525-534. [DOI: 10.1016/j.bbadis.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
|
72
|
Maria G, Antonia D, Michael A, Kate M, Sian E, Sarah FE, Mehul D, Pratik S. Sirolimus: Efficacy and Complications in Children With Hyperinsulinemic Hypoglycemia: A 5-Year Follow-Up Study. J Endocr Soc 2019; 3:699-713. [PMID: 30882046 PMCID: PMC6411415 DOI: 10.1210/js.2018-00417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction Sirolimus, a mammalian target of rapamycin inhibitor, has been used in congenital hyperinsulinism (CHI) unresponsive to diazoxide and octreotide. Reported response to sirolimus is variable, with high incidence of adverse effects. To the best of our knowledge, we report the largest group of CHI patients treated with sirolimus followed for the longest period to date. Methods Retrospective study of CHI patients treated with sirolimus in a tertiary service and review of the 15 publications reporting CHI patients treated with mammalian target of rapamycin inhibitors. Comparison was made between the findings of this study with those previously published. Results Twenty-two CHI patients treated with sirolimus were included in this study. Twenty showed partial response, one showed complete response, and one was unresponsive. Five of the partially/fully responsive patients had compound heterozygous ABCC8 mutations and five had heterozygous ABCC8 mutations. A total of 86.4% (19/22) developed complications, with infection being the most frequent (17/22), of which 11 were of bacterial etiology, followed by persistent diarrhea (3/22) and hyperglycemia (2/22). Seventeen patients stopped sirolimus: 13 from infections; 2 from hyperglycemia; and 2 from alternative treatment (lanreotide) response. Compared with data previously published, our study identified a higher number of partially sirolimus-responsive CHI cases, although the high rate of complications while on this medication limited its potential usefulness. Conclusion Sirolimus candidates must be carefully selected given its frequent and potentially life-threatening side effects. Its use as a short-term, last-resort therapy until normoglycemia is achieved with other agents such as lanreotide could avoid pancreatectomy. Further studies evaluating the use of sirolimus in patients with CHI are required.
Collapse
Affiliation(s)
- Güemes Maria
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | - Dastamani Antonia
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ashworth Michael
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Morgan Kate
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ellard Sian
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Flanagan E Sarah
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, United Kingdom
| | - Dattani Mehul
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| | - Shah Pratik
- Endocrinology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, University College London Great Ormond Street Hospital Institute of Child Health, London, United Kingdom
| |
Collapse
|
73
|
Uchenunu O, Pollak M, Topisirovic I, Hulea L. Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. J Mol Endocrinol 2019; 62:R83-R103. [PMID: 30072418 PMCID: PMC6347283 DOI: 10.1530/jme-18-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Abstract
Notwithstanding that metabolic perturbations and dysregulated protein synthesis are salient features of cancer, the mechanism underlying coordination of cellular energy balance with mRNA translation (which is the most energy consuming process in the cell) is poorly understood. In this review, we focus on recently emerging insights in the molecular underpinnings of the cross-talk between oncogenic kinases, translational apparatus and cellular energy metabolism. In particular, we focus on the central signaling nodes that regulate these processes (e.g. the mechanistic/mammalian target of rapamycin MTOR) and the potential implications of these findings on improving the anti-neoplastic efficacy of oncogenic kinase inhibitors.
Collapse
Affiliation(s)
- Oro Uchenunu
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
| | - Michael Pollak
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
| | - Laura Hulea
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Correspondence should be addressed to L Hulea:
| |
Collapse
|
74
|
Tyagi S, Singh N, Virdi JK, Jaggi AS. Diabetes abolish cardioprotective effects of remote ischemic conditioning: evidences and possible mechanisms. J Physiol Biochem 2019; 75:19-28. [PMID: 30729392 DOI: 10.1007/s13105-019-00664-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus significantly hampers the development of cardioprotective response to remote pre/post/perconditioning stimuli by impairing the activation of cardioprotective signaling pathways. Among the different pathways, the impairment in O-linked β-N-acetylglucosamine (O-GlcNAc) signaling and release of cardioprotective humoral factor may contribute in attenuating remote preconditioning-induced cardioprotection. Moreover, the failure to phosphorylate extracellular signal related kinase (ERK), phosphoinositide-3-kinase (PI3K), and AKT along with up-regulation of mechanistic target of rapamycin (mTOR) and decrease in autophagy may also attenuate remote preconditioning-induced cardioprotection. Remote perconditioning stimulus also fails to phosphorylate AKT kinase in diabetic heart. In addition, diabetes may increase the oxidative stress, reactive oxygen species (ROS) production, decrease the beclin expression, and inhibit autophagy to attenuate remote perconditioning-induced cardioprotection. Moreover, diabetes-induced increase in the Rho-associated kinase (ROCK) activity, decrease in the arginase activity, and reduction in nitric oxide (NO) bioavailability may also contribute in decreasing remote perconditioning-induced cardioprotection. Diabetes may reduce the phosphorylation of adenosine 5'-monophosphate activated protein kinase (AMPKα) and increase the phosphorylation of mTOR to attenuate cardioprotection of remote postconditioning. The present review describes the role of diabetes in attenuating remote ischemic conditioning-induced cardioprotection along with the possible mechanisms.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Jasleen Kaur Virdi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
75
|
Shariff AI, Syed S, Shelby RA, Force J, Clarke JM, D'Alessio D, Corsino L. Novel cancer therapies and their association with diabetes. J Mol Endocrinol 2019; 62:R187-R199. [PMID: 30532995 DOI: 10.1530/jme-18-0002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, there has been a shift in the focus of cancer therapy from conventional cytotoxic drugs to therapies more specifically directed to cancer cells. These novel therapies include immunotherapy, targeted therapy and precision medicine, each developed in great part with a goal of limiting collateral destruction of normal tissues, while enhancing tumor destruction. Although this approach is sound in theory, even new, specific therapies have some undesirable, 'off target effects', in great part due to molecular pathways shared by neoplastic and normal cells. One such undesirable effect is hyperglycemia, which results from either the loss of immune tolerance and autoimmune destruction of pancreatic β-cells or dysregulation of the insulin signaling pathway resulting in insulin resistance. These distinct pathogenic mechanisms lead to clinical presentations similar to type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Both types of diabetes have been reported in patients across clinical trials, and data on the mechanism(s) for developing hyperglycemia, prevalence, prognosis and effect on cancer mortality is still emerging. With the rapidly expanding list of clinical indications for new cancer therapies, it is essential to understand the impact of their adverse effects. In this review, we focus on hyperglycemia and diabetes related to cancer therapies, describe what is known about mechanism(s) leading to dysregulated glucose metabolism and provide a guide to management of complex oncology patients with a new diagnosis of diabetes.
Collapse
Affiliation(s)
- Afreen Idris Shariff
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sohail Syed
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca A Shelby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeremy Force
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeffrey Melson Clarke
- Division of Medical Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David D'Alessio
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Leonor Corsino
- Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
76
|
Cantley J, Davenport A, Vetterli L, Nemes NJ, Whitworth PT, Boslem E, Thai LM, Mellett N, Meikle PJ, Hoehn KL, James DE, Biden TJ. Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass. Diabetologia 2019; 62:99-111. [PMID: 30334081 PMCID: PMC6290731 DOI: 10.1007/s00125-018-4743-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo. METHODS Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques. RESULTS βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect. CONCLUSIONS/INTERPRETATION Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood.
Collapse
Affiliation(s)
- James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - Aimee Davenport
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Laurène Vetterli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Nandor J Nemes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - P Tess Whitworth
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ebru Boslem
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Le May Thai
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Natalie Mellett
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - David E James
- The Charles Perkins Centre, School of Molecular Biosciences, School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Trevor J Biden
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
77
|
Liang H, Nie J, Van Skike CE, Valentine JM, Orr ME. Mammalian Target of Rapamycin at the Crossroad Between Alzheimer's Disease and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:185-225. [PMID: 31062331 DOI: 10.1007/978-981-13-3540-2_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that Alzheimer's disease may manifest as a metabolic disorder with pathology and/or dysfunction in numerous tissues. Adults with Alzheimer's disease suffer with significantly more comorbidities than demographically matched Medicare beneficiaries (Zhao et al, BMC Health Serv Res 8:108, 2008b). Reciprocally, comorbid health conditions increase the risk of developing Alzheimer's disease (Haaksma et al, PLoS One 12(5):e0177044, 2017). Type 2 diabetes mellitus is especially notable as the disease shares many overlapping pathologies observed in patients with Alzheimer's disease, including hyperglycemia, hyperinsulinemia, insulin resistance, glucose intolerance, dyslipidemia, inflammation, and cognitive dysfunction, as described in Chap. 8 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al, Neurology 53(9):1937-1942, 1999; Voisin et al, Rev Med Interne 24(Suppl 3):288s-291s, 2003; Janson et al. Diabetes 53(2):474-481, 2004; Ristow M, J Mol Med (Berl) 82(8):510-529, 2004; Whitmer et al, BMJ 330(7504):1360, 2005, Curr Alzheimer Res 4(2):103-109, 2007; Ohara et al, Neurology 77(12):1126-1134, 2011). Although nondiabetic older adults also experience age-related cognitive decline, diabetes is uniquely associated with a twofold increased risk of Alzheimer's disease, as described in Chap. 2 of this book (Yoshitake et al, Neurology 45(6):1161-1168, 1995; Leibson et al, Am J Epidemiol 145(4):301-308, 1997; Ott et al. Neurology 53(9):1937-1942, 1999; Ohara et al, Neurology 77(12):1126-1134, 2011). Good glycemic control has been shown to improve cognitive status (Cukierman-et al, Diabetes Care 32(2):221-226, 2009), and the use of insulin sensitizers is correlated with a lower rate of cognitive decline in older adults (Morris JK, Burns JM, Curr Neurol Neurosci Rep 12(5):520-527, 2012). At the molecular level, the mechanistic/mammalian target of rapamycin (mTOR) plays a key role in maintaining energy homeostasis. Nutrient availability and cellular stress information, both extracellular and intracellular, are integrated and transduced through mTOR signaling pathways. Aberrant regulation of mTOR occurs in the brains of patients with Alzheimer's disease and in numerous tissues of individuals with type 2 diabetes (Mannaa et al, J Mol Med (Berl) 91(10):1167-1175, 2013). Moreover, modulating mTOR activity with a pharmacological inhibitor, rapamycin, provides wide-ranging health benefits, including healthy life span extension in numerous model organisms (Vellai et al, Nature 426(6967):620, 2003; Jia et al, Development 131(16):3897-3906, 2004; Kapahi et al, Curr Biol 14(10):885-890, 2004; Kaeberlein et al, Science 310(5751):1193-1196, 2005; Powers et al, Genes Dev 20(2):174-184, 2006; Harrison et al, Nature 460(7253):392-395, 2009; Selman et al, Science 326(5949):140-144, 2009; Sharp ZD, Strong R, J Gerontol A Biol Sci Med Sci 65(6):580-589, 2010), which underscores its importance to overall organismal health and longevity. In this chapter, we discuss the physiological role of mTOR signaling and the consequences of mTOR dysregulation in the brain and peripheral tissues, with emphasis on its relevance to the development of Alzheimer's disease and link to type 2 diabetes.
Collapse
Affiliation(s)
- Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joseph M Valentine
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- San Antonio Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, USA.
| |
Collapse
|
78
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
79
|
Erfanian Omidvar M, Ghaedi H, Kazerouni F, Kalbasi S, Shanaki M, Miraalamy G, Zare A, Rahimipour A. Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J Cell Biochem 2018; 120:9315-9323. [PMID: 30506719 DOI: 10.1002/jcb.28206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS The risk of type 2 diabetes (T2D) is determined by a combination of genetic and environmental factors. Multiple studies have proposed that long noncoding RNAs (lncRNAs) are crucial molecules in regulating several biological processes and complex diseases. The study was aimed at investigating the association between the expression levels of lncRNA VIM-AS1, lncRNA CTBP1-AS2, and T2D susceptibility. METHODS lncRNA VIM-AS1 and lncRNA CTBP1-AS2 in the peripheral blood mononuclear cell (PBMC) of 100 healthy individuals and 100 T2D patients were collected for Quantitative Real-Time RT-PCR analysis. A logistic regression was performed to understand whether the likelihood of T2D can be predicted based on the expression levels of lncRNA VIM-AS1 and lncRNA CTBP1-AS2. Receiver operating characteristic (ROC) analysis was also performed to determine the statistical analysis of VIM-AS1 and CTBP1-AS2 levels in 200 samples. RESULTS Our results display that decreased levels of VIM-AS1 and CTBP1-AS2 in PBMC were associated with diabetes in Iranian population. The logistic regression revealed that Systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL-C), Fasting blood glucose (FBG) and CTBP1-AS2 are substantial predictors of T2D. The ROC analysis of CTBP1-AS2 revealed the area under the ROC curve (AUC) of 0.68 with a sensitivity of 58.7% and specificity of 75.3% in distinguishing nondiabetic from diabetic subjects. The ROC analysis of VIM-AS1 determined AUC of 0.63 with a sensitivity of 56.1% and specificity of 68.37% in distinguishing the two diagnostic groups. CONCLUSION lncRNA VIM-AS1 and lncRNA CTBP1-AS2 expression levels are associated with T2D susceptibility.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kalbasi
- Department of endocrinology, Loghman Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shanaki
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Miraalamy
- Ali-Asghar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zare
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rahimipour
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
80
|
Riahi Y, Israeli T, Yeroslaviz R, Chimenez S, Avrahami D, Stolovich-Rain M, Alter I, Sebag M, Polin N, Bernal-Mizrachi E, Dor Y, Cerasi E, Leibowitz G. Inhibition of mTORC1 by ER stress impairs neonatal β-cell expansion and predisposes to diabetes in the Akita mouse. eLife 2018; 7:e38472. [PMID: 30412050 PMCID: PMC6294551 DOI: 10.7554/elife.38472] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Unresolved ER stress followed by cell death is recognized as the main cause of a multitude of pathologies including neonatal diabetes. A systematic analysis of the mechanisms of β-cell loss and dysfunction in Akita mice, in which a mutation in the proinsulin gene causes a severe form of permanent neonatal diabetes, showed no increase in β-cell apoptosis throughout life. Surprisingly, we found that the main mechanism leading to β-cell dysfunction is marked impairment of β-cell growth during the early postnatal life due to transient inhibition of mTORC1, which governs postnatal β-cell growth and differentiation. Importantly, restoration of mTORC1 activity in neonate β-cells was sufficient to rescue postnatal β-cell growth, and to improve diabetes. We propose a scenario for the development of permanent neonatal diabetes, possibly also common forms of diabetes, where early-life events inducing ER stress affect β-cell mass expansion due to mTOR inhibition.
Collapse
Affiliation(s)
- Yael Riahi
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Tal Israeli
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Yeroslaviz
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Shoshana Chimenez
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Dana Avrahami
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-CanadaThe Hebrew University of JerusalemJerusalemIsrael
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-CanadaThe Hebrew University of JerusalemJerusalemIsrael
| | - Ido Alter
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Marina Sebag
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Nava Polin
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, Miller School of MedicineUniversity of MiamiMiamiUnited States
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-CanadaThe Hebrew University of JerusalemJerusalemIsrael
| | - Erol Cerasi
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| | - Gil Leibowitz
- The Endocrine Service, The Hebrew University-Hadassah Medical SchoolThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
81
|
Abstract
The mammalian targets of rapamycin (mTOR) inhibitors are potent immunosuppressors used for prevention of acute rejection after transplantation and have been more recently used as anticancer drugs. mTOR inhibitors have a significant impact on glucose metabolism and frequently induce diabetes. mTOR inhibitors, when used as immunosuppressive agents (sirolimus, everolimus), can induce diabetes with an incidence which is low when used without calcineurin inhibitors but high when used in combination with calcineurin inhibitors (from 11.0% to 38.1%). mTOR inhibitors used as anticancer agents (everolimus, temsirolimus) increase significantly the risk for new-onset diabetes and induce a 5-fold increase in the risk for severe hyperglycemia. The deleterious effect of mTOR inhibitors on glucose metabolism is due to an increased insulin resistance secondary to a reduction of the insulin signaling pathway within the cell and a reduction of insulin secretion via a direct effect on the pancreatic beta cells. Because of the risk for diabetes, it is recommended, when starting a treatment with an mTOR inhibitor, to check fasting blood glucose every 2 weeks during the first month of treatment then every month and HbA1c every 3 months and to intensify self-monitoring of blood glucose in patients with known diabetes. When fasting blood glucose is more than 126 mg/dL (7.0 mmol/L), when plasma glucose is more than 200 mg/dL at any time, or when HbA1c is more than 6.5%, it is recommended to start antidiabetic treatment.
Collapse
|
82
|
Cassano T, Magini A, Giovagnoli S, Polchi A, Calcagnini S, Pace L, Lavecchia MA, Scuderi C, Bronzuoli MR, Ruggeri L, Gentileschi MP, Romano A, Gaetani S, De Marco F, Emiliani C, Dolcetta D. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer's disease. Exp Neurol 2018; 311:88-105. [PMID: 30243986 DOI: 10.1016/j.expneurol.2018.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/05/2023]
Abstract
The discovery that mammalian target of rapamycin (mTOR) inhibition increases lifespan in mice and restores/delays many aging phenotypes has led to the identification of a novel potential therapeutic target for the treatment of Alzheimer's disease (AD). Among mTOR inhibitors, everolimus, which has been developed to improve the pharmacokinetic characteristics of rapamycin, has been extensively profiled in preclinical and clinical studies as anticancer and immunosuppressive agent, but no information is available about its potential effects on neurodegenerative disorders. Using a reliable mouse model of AD (3 × Tg-AD mice), we explored whether short-term treatment with everolimus injected directly into the brain by osmotic pumps was able to modify AD-like pathology with low impact on peripheral organs. We first established in non-transgenic mice the stability of everolimus at 37 °C in comparison with rapamycin and, then, evaluated its pharmacokinetics and pharmacodynamics profiles through either a single peripheral (i.p.) or central (i.c.v.) route of administration. Finally, 6-month-old (symptomatic phase) 3 × Tg-AD mice were treated with continuous infusion of either vehicle or everolimus (0.167 μg/μl/day, i.c.v.) using the osmotic pumps. Four weeks after the beginning of infusion, we tested our hypothesis following an integrated approach, including behavioral (tests for cognitive and depressive-like alterations), biochemical and immunohistochemical analyses. Everolimus (i) showed higher stability than rapamycin at 37 °C, (ii) poorly crossed the blood-brain barrier after i.p. injection, (iii) was slowly metabolized in the brain due to a longer t1/2 in the brain compared to blood, and (iv) was more effective in the CNS when administered centrally compared to a peripheral route. Moreover, the everolimus-induced mTOR inhibition reduced human APP/Aβ and human tau levels and improved cognitive function and depressive-like phenotype in the 3 × Tg-AD mice. The intrathecal infusion of everolimus may be effective to treat early stages of AD-pathology through a short and cyclic administration regimen, with short-term outcomes and a low impact on peripheral organs.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, 71100 Foggia, Italy.
| | - Alessandro Magini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy
| | - Alice Polchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy
| | - Silvio Calcagnini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Lorenzo Pace
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, 71100 Foggia, Italy
| | - Michele Angelo Lavecchia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Loredana Ruggeri
- Division of Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, 06132 Perugia, Italy
| | - Maria Pia Gentileschi
- UOSD SAFU, RiDAIT Dept, The Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Adele Romano
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Federico De Marco
- UOSD SAFU, RiDAIT Dept, The Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06126 Perugia, Italy
| | - Diego Dolcetta
- UOSD SAFU, RiDAIT Dept, The Regina Elena National Cancer Institute, 00144 Rome, Italy.
| |
Collapse
|
83
|
den Hartigh LJ, Goodspeed L, Wang SA, Kenerson HL, Omer M, O'Brien KD, Ladiges W, Yeung R, Subramanian S. Chronic oral rapamycin decreases adiposity, hepatic triglycerides and insulin resistance in male mice fed a diet high in sucrose and saturated fat. Exp Physiol 2018; 103:1469-1480. [PMID: 30117227 DOI: 10.1113/ep087207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Whether chronic oral rapamycin promotes beneficial effects on glucose/lipid metabolism and energy balance when administered to mice with an obesogenic diet rich in saturated fat and sucrose has not been explored. What is the main finding and its importance? Chronic oral rapamycin reduces body weight and fat gain, improves insulin sensitivity and reduces hepatic steatosis when administered to mice with a high-fat, high-sucrose diet. In addition, we make the new observation that there appear to be tissue-specific effects of rapamycin. Although rapamycin appears to impart its effects mainly on visceral adipose tissue, its effects on insulin sensitivity are mediated by subcutaneous adipose tissue. ABSTRACT Excess adiposity is commonly associated with insulin resistance, which can increase the risk of cardiovascular disease. However, the exact molecular mechanisms by which obesity results in insulin resistance are yet to be understood clearly. The intracellular nutrient-sensing protein, mechanistic target of rapamycin (mTOR), is a crucial signalling component in the development of obesity-associated insulin resistance. Given that increased tissue activation of mTOR complex-1 (mTORC1) occurs in obesity, diabetes and ageing, we hypothesized that pharmacological inhibition of mTORC1 would improve metabolic dysregulation in diet-induced obesity. We administered continuous rapamycin, a specific mTORC1 inhibitor, orally to C57BL/6J mice concurrently with a high-fat, high-sucrose (HFHS) diet for 20 weeks. The control group received placebo microcapsules. Rapamycin-treated mice showed significantly reduced weight gain and adiposity (33.6 ± 4.9 versus 40.4 ± 3.0% body fat, P < 0.001, n = 8 mice per group), despite increased or equivalent food intake compared with the placebo group. The rapamycin-fed mice also demonstrated reduced plasma glucose (252 ± 57 versus 297 ± 67 mg dl-1 , P < 0.001) and improved insulin sensitivity during insulin and glucose tolerance testing. Rapamycin-treated mice also had lower plasma triglycerides (48 ± 13 versus 67 ± 11 mg/dL, P < 0.01) and hepatic triglyceride content (89 ± 15 versus 110 ± 19 mg/g liver, P < 0.05) compared with the placebo group. A moderately low dose of rapamycin decreased adiposity and improved the metabolic profile in a model of diet-induced obesity. These data suggest that low-grade chronic mTORC1 inhibition might be a potential strategy for anti-obesity therapies.
Collapse
Affiliation(s)
- Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Shari A Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, 98019, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Kevin D O'Brien
- Diabetes Institute, University of Washington, Seattle, WA, 98019, USA.,Division of Cardiology, University of Washington, Seattle, WA, 98019, USA
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98019, USA
| | - Raymond Yeung
- Department of Surgery, University of Washington, Seattle, WA, 98019, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| |
Collapse
|
84
|
Bouillet B, Buffier P, Smati S, Archambeaud F, Cariou B, Vergès B. Expert opinion on the metabolic complications of mTOR inhibitors. ANNALES D'ENDOCRINOLOGIE 2018; 79:583-590. [PMID: 30144939 DOI: 10.1016/j.ando.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using mTOR inhibitors (mTORi) as anticancer drugs led to hyperglycemia (12-50%) and hyperlipidemia (7-73%) in phase-III trials. These high rates require adapted treatment in cancer patients. Before initiating mTORi treatment, lipid profile screening should be systematic, with fasting glucose assay in non-diabetic patients and HbA1C in diabetic patients. After initiation, lipid profile monitoring should be systematic, with fasting glucose assay in non-diabetic patients, every 2 weeks for the first month and then monthly. The HbA1C target is≤8%, before and after treatment initiation in known diabetic patients and in case of onset of diabetes under mTORi. LDL-cholesterol targets should be adapted to general health status and cardiovascular and oncologic prognosis. If treatment is indicated, pravastatin should be prescribed in first line; atorvastatin and simvastatin are contraindicated. Fenofibrate should be prescribed for hypertriglyceridemia>5g/l resisting dietary measures adapted to oncologic status. In non-controllable hypertriglyceridemia exceeding 10g/l, mTORi treatment should be interrupted and specialist opinion should be sought.
Collapse
Affiliation(s)
- Benjamin Bouillet
- Service d'endocrinologie, diabétologie, maladies métaboliques, CHU de Dijon, 2, boulevard du Maréchal-de-Lattre, BP 77908, 21000 Dijon, France; Unité Inserm, LNC-UMR 1231, université de Bourgogne, Dijon, France.
| | - Perrine Buffier
- Service d'endocrinologie, diabétologie, maladies métaboliques, CHU de Dijon, 2, boulevard du Maréchal-de-Lattre, BP 77908, 21000 Dijon, France
| | - Sarra Smati
- Clinique d'endocrinologie, Institut du Thorax, CHU de Nantes, Nantes, France
| | | | - Bertrand Cariou
- Clinique d'endocrinologie, Institut du Thorax, CHU de Nantes, Nantes, France
| | - Bruno Vergès
- Service d'endocrinologie, diabétologie, maladies métaboliques, CHU de Dijon, 2, boulevard du Maréchal-de-Lattre, BP 77908, 21000 Dijon, France; Unité Inserm, LNC-UMR 1231, université de Bourgogne, Dijon, France
| |
Collapse
|
85
|
Ali M, Bukhari SA, Ali M, Lee HW. Upstream signalling of mTORC1 and its hyperactivation in type 2 diabetes (T2D). BMB Rep 2018; 50:601-609. [PMID: 29187279 PMCID: PMC5749905 DOI: 10.5483/bmbrep.2017.50.12.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) plays a major role in cell growth, proliferation, polarity, differentiation, development, and controls transitioning between anabolic and catabolic states of the cell. It collects almost all extracellular and intracellular signals from growth factors, nutrients, and maintains cellular homeostasis, and is involved in several pathological conditions including, neurodegeneration, Type 2 diabetes (T2D), obesity, and cancer. In this review, we summarize current knowledge of upstream signaling of mTORC1 to explain etiology of T2D and hypertriglyceridemia, in which state, the role of telomere attrition is explained. We discuss if chronic inhibition of mTORC1 can reverse adverse effects resulting from hyperactivation. In conclusion, we suggest the regulatory roles of telomerase (TERT) and hexokinase II (HKII) on mTORC1 as possible remedies to treat hyperactivation. The former inhibits mTORC1 under nutrient-rich while the latter under starved condition. We provide an idea of TOS (TOR signaling) motifs that can be used for regulation of mTORC1.
Collapse
Affiliation(s)
- Muhammad Ali
- Departments of Biochemistry, Government College University, Faisalabad, 38000 Pakistan
| | - Shazia Anwer Bukhari
- Departments of Biochemistry, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Ali
- Departments of Zoology, Government College University, Faisalabad, 38000 Pakistan
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
86
|
Walters HE, Cox LS. mTORC Inhibitors as Broad-Spectrum Therapeutics for Age-Related Diseases. Int J Mol Sci 2018; 19:E2325. [PMID: 30096787 PMCID: PMC6121351 DOI: 10.3390/ijms19082325] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Chronological age represents the greatest risk factor for many life-threatening diseases, including neurodegeneration, cancer, and cardiovascular disease; ageing also increases susceptibility to infectious disease. Current efforts to tackle individual diseases may have little impact on the overall healthspan of older individuals, who would still be vulnerable to other age-related pathologies. However, recent progress in ageing research has highlighted the accumulation of senescent cells with chronological age as a probable underlying cause of pathological ageing. Cellular senescence is an essentially irreversible proliferation arrest mechanism that has important roles in development, wound healing, and preventing cancer, but it may limit tissue function and cause widespread inflammation with age. The serine/threonine kinase mTOR (mechanistic target of rapamycin) is a regulatory nexus that is heavily implicated in both ageing and senescence. Excitingly, a growing body of research has highlighted rapamycin and other mTOR inhibitors as promising treatments for a broad spectrum of age-related pathologies, including neurodegeneration, cancer, immunosenescence, osteoporosis, rheumatoid arthritis, age-related blindness, diabetic nephropathy, muscular dystrophy, and cardiovascular disease. In this review, we assess the use of mTOR inhibitors to treat age-related pathologies, discuss possible molecular mechanisms of action where evidence is available, and consider strategies to minimize undesirable side effects. We also emphasize the urgent need for reliable, non-invasive biomarkers of senescence and biological ageing to better monitor the efficacy of any healthy ageing therapy.
Collapse
Affiliation(s)
- Hannah E Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
87
|
Benedini S, Ermetici F, Briganti S, Codella R, Terruzzi I, Maffi P, Caldara R, Secchi A, Nano R, Piemonti L, Alejandro R, Ricordi C, Luzi L. Insulin-mimetic effects of short-term rapamycin in type 1 diabetic patients prior to islet transplantation. Acta Diabetol 2018; 55:715-722. [PMID: 29654388 DOI: 10.1007/s00592-018-1141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The immunosuppressive drug rapamycin may influence insulin sensitivity in insulin-responsive tissues. AIMS This study aimed at evaluating the effectiveness of rapamycin pre-treatment before pancreatic islet allotransplantation (ITx) in patients with type 1 diabetes mellitus (T1DM). METHODS Forty-one T1DM patients were studied. Thirteen patients with poor glycemic control underwent a short-term rapamycin treatment before ITx (Group 1), and they were compared to 28 patients undergoing ITx without rapamycin pre-treatment (Group 2). Outcomes were daily insulin requirement (DIR), fasting blood glucose, HbA1c, C-peptide and the SUITO index of beta-cell function. A subgroup of patients pre-treated with rapamycin before ITx underwent euglycemic hyperinsulinemic clamp with [6,6-2H2] glucose before and after ITx to evaluate insulin sensitivity. RESULTS We found a significant reduction in DIR after rapamycin pre-treatment (- 8 ± 6 U/day, mean ± SD, p < 0.001) and 1 year after ITx. DIR reduction 1 year after ITx was greater in Group 1 as compared to Group 2 (- 37 ± 15 vs. - 19 ± 13 U/day, p = 0.005) and remained significant after adjusting for gender, age, glucose and baseline HbA1c (beta = 18.2 ± 5.9, p = 0.006). Fasting glucose and HbA1c significantly decreased 1 year after ITx in Group 1 (HbA1c: - 2.1 ± 1.4%, p = 0.002), while fasting C-peptide (+0.5 ± 0.3 nmol/l, p = 0.002) and SUITO index increased (+57.4 ± 39.7, p = 0.016), without differences between the two groups. Hepatic glucose production decreased after rapamycin pre-treatment (- 1.1 ± 1.1 mg/kg/min, p = 0.04) and after ITx (- 1.6 ± 0.6 mg/kg/min, p = 0.015), while no changes in peripheral glucose disposal were observed. CONCLUSIONS Rapamycin pre-treatment before ITx succeeds in reducing insulin requirement, enhancing hepatic insulin sensitivity. This treatment may improve short-term ITx outcomes, possibly in selected patients with T1DM complicated by insulin resistance. CLINICAL TRIAL Clinicaltrials.gov NCT01060605; NCT00014911.
Collapse
Affiliation(s)
- Stefano Benedini
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese (Milan), Italy.
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.
| | - Federica Ermetici
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese (Milan), Italy
| | - Silvia Briganti
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese (Milan), Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Department of Internal Medicine, Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Rossana Caldara
- Department of Internal Medicine, Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Secchi
- Department of Internal Medicine, Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Rita Nano
- Department of Internal Medicine, Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Department of Internal Medicine, Transplant Medicine Unit, San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Rodolfo Alejandro
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Livio Luzi
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, Via Morandi 30, 20097, San Donato Milanese (Milan), Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
88
|
Yamamoto S, Kuramoto K, Wang N, Situ X, Priyadarshini M, Zhang W, Cordoba-Chacon J, Layden BT, He C. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Rep 2018; 23:3286-3299. [PMID: 29898399 PMCID: PMC6054876 DOI: 10.1016/j.celrep.2018.05.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/23/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1F121A) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development.
Collapse
Affiliation(s)
- Soh Yamamoto
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kenta Kuramoto
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nan Wang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaolei Situ
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Medha Priyadarshini
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiran Zhang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T Layden
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL 60612, USA; Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
89
|
Wang Y, He Z, Li X. Chronic Rapamycin Treatment Improved Metabolic Phenotype but Inhibited Adipose Tissue Browning in High-Fat Diet-Fed C57BL/6J Mice. Biol Pharm Bull 2018; 40:1352-1360. [PMID: 28867720 DOI: 10.1248/bpb.b16-00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rapamycin (Rap) has been demonstrated to affect lipid metabolism through stimulating lipolysis, inhibiting de novo lipogenesis and reducing adiposity. In the present study, we investigated rapamycin exposure's influence on adipose tissue browning in high-fat diet-induced fatty mice. Four-week old C57BL/6J mice were fed normal chow or high-fat diet for a period of 6 weeks and then divided into three groups: (1) Nor group: mice fed with normal chow; (2) high fat diet (HFD) group: fatty mice fed with high-fat diet; (3) Rap group: high-fat diet-fed fatty mice treated intragastrically with rapamycin at a dose of 2.5 mg/kg per day for 5 weeks. Body weights and food intakes of the mice were recorded weekly. At the end of the study, blood samples were collected for glucose, lipid and insulin evaluations. Adipose tissues were weighed and lipid contents were monitored. Moreover, real-time PCR and Western blotting were applied to detect the expression levels of beige and brown fat marker genes in white adipose tissue (WAT) and brown adipose tissue (BAT). Our data demonstrated that Rap exposure significantly ameliorated metabolic defects including hyperglycaemia, dyslipidaemia and insulin resistance in the fatty mice. Furthermore, Rap treatment led to decreased tissue weights and lipid contents both in WAT and BAT. Remarkably, expression levels of BAT marker genes including uncoupling protein-1 (UCP-1), cell death-inducing DNA fragmentation factor-alpha-like effector A (CIDEA), PR-domain containing protein-16 (PRDM16) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were significantly down-regulated in Rap-treated fatty mice. This report demonstrates Rap exposure is capable of inhibiting adipose tissue browning in high-fat diet-induced fatty mice, and provides evidence for deeper understanding of Rap's influence on lipid homeostasis.
Collapse
Affiliation(s)
- Yan Wang
- Pharmacy Department, The First People's Hospital of Foshan
| | - Zhi He
- Medical School of China Three Gorges University
| | - Xianhui Li
- Institute of Medicine, College of Medicine, Jishou University
| |
Collapse
|
90
|
Marasco MR, Linnemann AK. β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology 2018; 159:2127-2141. [PMID: 29617763 PMCID: PMC5913620 DOI: 10.1210/en.2017-03273] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
Nearly 100 years have passed since Frederick Banting and Charles Best first discovered and purified insulin. Their discovery and subsequent improvements revolutionized the treatment of diabetes, and the field continues to move at an ever-faster pace with respect to unique treatments for both type 1 and type 2 diabetes. Despite these advances, we still do not fully understand how apoptosis of the insulin-producing β-cells is triggered, presenting a challenge in the development of preventative measures. In recent years, the process of autophagy has generated substantial interest in this realm due to discoveries highlighting its clear role in the maintenance of cellular homeostasis. As a result, the number of studies focused on islet and β-cell autophagy has increased substantially in recent years. In this review, we will discuss what is currently known regarding the role of β-cell autophagy in type 1 and type 2 diabetes pathogenesis, with an emphasis on new and exciting developments over the past 5 years. Further, we will discuss how these discoveries might be translated into unique treatments in the coming years.
Collapse
Affiliation(s)
- Michelle R Marasco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amelia K Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
91
|
Zhu L, Hao J, Cheng M, Zhang C, Huo C, Liu Y, Du W, Zhang X. Hyperglycemia-induced Bcl-2/Bax-mediated apoptosis of Schwann cells via mTORC1/S6K1 inhibition in diabetic peripheral neuropathy. Exp Cell Res 2018; 367:186-195. [PMID: 29621478 DOI: 10.1016/j.yexcr.2018.03.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
Abstract
Schwann cell apoptosis is one of the characteristics of diabetic peripheral neuropathy (DPN). The mammalian target of rapamycin (mTOR) is a multifunctional signaling pathway that regulates cell apoptosis in various types of tissues and cells. To investigate whether the mTOR pathway is involved in cell apoptosis in the Schwann cells of DPN, diabetic mice and rat Schwann cells (RSC96) were chosen to detect phospho-mTOR (Ser 2448), phospho-S6K1 (Thr 389), phospho-4EBP1 (Thr 37/46), Bcl-2, Bax and cleaved caspase-3 by diverse pathological and biological techniques. The results showed that phospho-mTOR (Ser 2448) was decreased in the sciatic nerves of diabetic mice, concomitant with decreased Bcl-2, increased Bax, cleaved caspase-3 and cell apoptosis. In addition, high glucose treatment for 72 h caused a 35.95% decrease in the phospho-mTOR (Ser 2448)/mTOR ratio, a 65.50% decrease in the phospho-S6K1 (Thr 389)/S6K1 ratio, a 3.67-fold increase in the Bax/Bcl-2 ratio and a 1.47-fold increase in the cleaved caspase-3/caspase-3 ratio. Furthermore, mTORC1 inhibition, rather than mTORC2 inhibition, resulted in mitochondrial controlled apoptosis in RSC96 cells by silencing RAPTOR or RICTOR. Again, suppression of the mTORC1 pathway by a chemical inhibitor led to mitochondrial controlled apoptosis in cultured RSC96 cells in vitro. By contrast, activation of the mTORC1 pathway with MHY1485 prevented decreased phospho-S6K1 (Thr 389) levels caused by high glucose and cell apoptosis. Additionally, constitutive activation of S6K1 avoided high glucose-induced cell apoptosis in RSC96 cells. In summary, our findings suggest that activating mTORC1/S6K1 signaling in Schwann cells may be a promising strategy for the prevention and treatment of DPN.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Department of Electromyogram, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Meijuan Cheng
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Cuihong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Department of Radiation Oncology, Bethune International Peace Hospital, Shijiazhuang 050051, China
| | - Chunxiu Huo
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaping Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xianghong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China; Lab of Pathology, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
92
|
Tuo Y, Xiang M. mTOR: A double‐edged sword for diabetes. J Leukoc Biol 2018; 106:385-395. [DOI: 10.1002/jlb.3mr0317-095rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yali Tuo
- Department of PharmacologySchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ming Xiang
- Department of PharmacologySchool of PharmacyTongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
93
|
mTORC2 Signaling: A Path for Pancreatic β Cell's Growth and Function. J Mol Biol 2018; 430:904-918. [PMID: 29481838 DOI: 10.1016/j.jmb.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.
Collapse
|
94
|
Mahoney SJ, Narayan S, Molz L, Berstler LA, Kang SA, Vlasuk GP, Saiah E. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling. Nat Commun 2018; 9:548. [PMID: 29416044 PMCID: PMC5803267 DOI: 10.1038/s41467-018-03035-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.
Collapse
Affiliation(s)
- Sarah J Mahoney
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA.
| | - Sridhar Narayan
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA
| | - Lisa Molz
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA
| | - Lauren A Berstler
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA
| | - Seong A Kang
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA
| | - George P Vlasuk
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA
| | - Eddine Saiah
- Navitor Pharmaceuticals, Inc., 1030 Massachusetts Ave. #410, Cambridge, MA, 02138, USA
| |
Collapse
|
95
|
Ardestani A, Lupse B, Kido Y, Leibowitz G, Maedler K. mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metab 2018; 27:314-331. [PMID: 29275961 DOI: 10.1016/j.cmet.2017.11.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of metabolic and nutrient cues that integrates environmental inputs into downstream signaling pathways to control cellular metabolism, growth, and survival. While numerous in vitro and in vivo studies reported the positive functions of mTORC1 in the regulation of β cell survival and proliferation under physiological conditions, more recent work demonstrates the opposite in the long term; this is exemplified by the constitutive inappropriate hyper-activation of mTORC1 in diabetic islets or β cells under conditions of increased β cell stress and metabolic demands. These recent findings uncover mTORC1's importance as an emerging significant player in the development and progression of β cell failure in type 2 diabetes and suggest that mTORC1 may act as a "double edge sword" in the regulation of β cell mass and function in response to metabolic stress such as nutrient overload and insulin resistance.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Gil Leibowitz
- Endocrinology and Metabolism Service and the Hadassah Diabetes Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
96
|
|
97
|
Lay AC, Coward RJM. The Evolving Importance of Insulin Signaling in Podocyte Health and Disease. Front Endocrinol (Lausanne) 2018; 9:693. [PMID: 30524379 PMCID: PMC6258712 DOI: 10.3389/fendo.2018.00693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide, occuring in approximately one-third of diabetic patients. One of the earliest hallmarks of DKD is albuminuria, often occurring following disruptions to the glomerular filtration barrier. Podocytes are highly specialized cells with a central role in filtration barrier maintenance; hence, podocyte dysfunction is a major cause of albuminuria in many settings, including DKD. Numerous studies over the last decade have highlighted the importance of intact podocyte insulin responses in the maintenance of podocyte function. This review summarizes our current perspectives on podocyte insulin signaling, highlighting evidence to support the notion that dysregulated podocyte insulin responses contribute toward podocyte damage, particularly during the pathogenesis of DKD.
Collapse
|
98
|
Bettedi L, Foukas LC. Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing. Biogerontology 2017; 18:913-929. [PMID: 28795262 PMCID: PMC5684302 DOI: 10.1007/s10522-017-9724-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023]
Abstract
The field of the biology of ageing has received increasing attention from a biomedical point of view over the past decades. The main reason has been the realisation that increases in human population life expectancy are accompanied by late onset diseases. Indeed, ageing is the most important risk factor for a number of neoplastic, neurodegenerative and metabolic pathologies. Advances in the knowledge of the genetics of ageing, mainly through research in model organisms, have implicated various cellular processes and the respective signalling pathways that regulate them in cellular and organismal ageing. Associated with ageing is a dysregulation of metabolic homeostasis usually manifested as age-related obesity, diminished insulin sensitivity and impaired glucose and lipid homeostasis. Metabolic deterioration contributes to the ageing phenotype and metabolic pathologies are thought to be one of the main factors limiting the potential for lifespan extension. Great efforts have been directed towards identifying pharmacological interventions with the potential to improve healthspan and a number of natural and synthetic compounds have shown promise in achieving beneficial metabolic effects.
Collapse
Affiliation(s)
- Lucia Bettedi
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lazaros C Foukas
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
99
|
Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells. Cell Rep 2017; 17:137-148. [PMID: 27681427 PMCID: PMC5055474 DOI: 10.1016/j.celrep.2016.08.093] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/28/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway. IPCs directly sense extracellular leucine levels via minidiscs (MND) MND knockdown in IPCs abolishes loss of DILP2 and DILP5 This leads to a strong increase in hemolymph sugar levels and reduces growth GDH knockdown in IPCs reduces leucine-dependent DILP release
Collapse
|
100
|
Dastamani A, Güemes M, Walker J, Shah P, Hussain K. Sirolimus precipitating diabetes mellitus in a patient with congenital hyperinsulinaemic hypoglycaemia due to autosomal dominant ABCC8 mutation. J Pediatr Endocrinol Metab 2017; 30:1219-1222. [PMID: 28985184 DOI: 10.1515/jpem-2017-0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/07/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sirolimus (mTOR inhibitor) is proven to be effective in children with congenital hyperinsulinism (CHI). Studies in animals suggest that sirolimus may have diabetogenic actions. However, its role in precipitating diabetes mellitus (DM) in children with CHI has not been reported. CASE PRESENTATION A 16-year-old female with CHI due to a dominant ABCC8 gene mutation was switched from diazoxide therapy to sirolimus, due to the hypertrichosis side effect of diazoxide. She developed facial cellulitis that was treated with clarithromycin and a month later, once the infection was resolved, she was found to have persistent hyperglycaemia, and was diagnosed with DM. She was unresponsive to oral sulfonylurea therapy and is currently managed with metformin. Her mother, who had the same ABCC8 mutation, developed DM at her 30s. CONCLUSIONS Patients with dominant ABCC8 gene mutations are prone to DM in adulthood, but Sirolimus therapy might increase the risk of developing diabetes at an early age, as this case illustrates.
Collapse
|