51
|
Lee PG, Halter JB. The Pathophysiology of Hyperglycemia in Older Adults: Clinical Considerations. Diabetes Care 2017; 40:444-452. [PMID: 28325795 DOI: 10.2337/dc16-1732] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/20/2017] [Indexed: 02/03/2023]
Abstract
Nearly a quarter of older adults in the U.S. have type 2 diabetes, and this population is continuing to increase with the aging of the population. Older adults are at high risk for the development of type 2 diabetes due to the combined effects of genetic, lifestyle, and aging influences. The usual defects contributing to type 2 diabetes are further complicated by the natural physiological changes associated with aging as well as the comorbidities and functional impairments that are often present in older people. This paper reviews the pathophysiology of type 2 diabetes among older adults and the implications for hyperglycemia management in this population.
Collapse
Affiliation(s)
- Pearl G Lee
- Geriatric Research Education and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, MI .,Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jeffrey B Halter
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
52
|
Espinoza SE, Wang CP, Tripathy D, Clement SC, Schwenke DC, Banerji MA, Bray GA, Buchanan TA, Henry RR, Kitabchi AE, Mudaliar S, Stentz FB, Reaven PD, DeFronzo RA, Musi N. Pioglitazone is equally effective for diabetes prevention in older versus younger adults with impaired glucose tolerance. AGE (DORDRECHT, NETHERLANDS) 2016; 38:485-493. [PMID: 27585671 PMCID: PMC5266219 DOI: 10.1007/s11357-016-9946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
To determine the efficacy of pioglitazone to prevent type 2 diabetes in older compared to younger adults with pre-diabetes. Six hundred two participants with impaired glucose tolerance (IGT) were randomized in double blind fashion to placebo or pioglitazone for diabetes prevention in the ACT NOW study (NEJM 364:1104-1115, 2011). Cox proportional hazard regression was used to compare time to development of diabetes over a mean of 2 years between older (≥61 years) and younger participants. We compared effects of pioglitazone versus placebo on metabolic profiles, inflammatory markers, adipokines, β cell function (disposition index), insulin sensitivity (Matsuda index), and body composition by ANOVA. Diabetes incidence was reduced by 85 % in older and 69 % in younger subjects (p = 0.41). β cell function (disposition index) increased by 35.0 % in the older and 26.7 % in younger subjects (p = 0.83). Insulin sensitivity (Matsuda index) increased by 3.07 (5.2-fold) in older and by 2.54 (3.8-fold) in younger participants (p = 0.58). Pioglitazone more effectively increased adiponectin in older versus younger subjects (22.9 ± 3.2 μg/mL [2.7-fold] vs. 12.7 ± 1.4 μg/mL [2.2-fold], respectively; p = 0.04). Younger subjects tended to have a greater increase in whole body fat mass compared to older subjects (3.6 vs. 3.1 kg; p = 0.061). Younger and older subjects had similar decreases in bone mineral density (0.018 ± 0.0071 vs. 0.0138 ± 0.021 g/cm2). Younger and older pre-diabetic adults taking pioglitazone had similar reductions in conversion to diabetes and older adults had similar or greater improvements in metabolic risk factors, demonstrating that pioglitazone is useful in preventing diabetes in older adults.
Collapse
Affiliation(s)
- Sara E Espinoza
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78223, USA.
- Geriatrics Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Blvd., San Antonio, TX, 78229, USA.
| | - Chen-Pin Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78223, USA
- Geriatrics Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Blvd., San Antonio, TX, 78229, USA
| | - Devjit Tripathy
- Texas Diabetes Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd., San Antonio, TX, 78229, USA
| | - Stephen C Clement
- Department of Medicine Division of Endocrinology and Metabolism, Georgetown University, 3700 O St NW, Washington, DC, 20057, USA
| | | | - Mary Ann Banerji
- Department of Medicine Division of Endocrinology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Thomas A Buchanan
- Department of Medicine Division of Endocrinology and Diabetes, University of Southern California, Los Angeles, CA, USA
| | - Robert R Henry
- Department of Medicine Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Abbas E Kitabchi
- Department of Medicine Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, 920 Court Ave, Memphis, TN, 38163, USA
| | - Sunder Mudaliar
- Department of Medicine Division of Endocrinology and Metabolism, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Frankie B Stentz
- Department of Medicine Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, 920 Court Ave, Memphis, TN, 38163, USA
| | - Peter D Reaven
- Phoenix Veterans Affairs Health Care System, 650 E Indian School Rd, Phoenix, AZ, 85012, USA
| | - Ralph A DeFronzo
- Texas Diabetes Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd., San Antonio, TX, 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78223, USA.
- Geriatrics Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Blvd., San Antonio, TX, 78229, USA.
- Texas Diabetes Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
53
|
Sato T, Ito Y, Nagasawa T. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8. Biogerontology 2016; 18:85-95. [PMID: 27752791 DOI: 10.1007/s10522-016-9663-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/13/2016] [Indexed: 01/01/2023]
Abstract
Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.
Collapse
Affiliation(s)
- Tomonori Sato
- Department of Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, 020-8550, Japan.
| | - Yoshiaki Ito
- Department of Biological Chemistry and Food Science, Graduate School of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Takashi Nagasawa
- Department of Biological Chemistry and Food Science, Graduate School of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
54
|
Ji LL, Kang C, Zhang Y. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 2016; 98:113-122. [PMID: 26916558 DOI: 10.1016/j.freeradbiomed.2016.02.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| | - Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sport Science, Tianjin University of Sport, China
| |
Collapse
|
55
|
Endurance training increases the efficiency of rat skeletal muscle mitochondria. Pflugers Arch 2016; 468:1709-24. [PMID: 27568192 PMCID: PMC5026720 DOI: 10.1007/s00424-016-1867-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
Abstract
Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.
Collapse
|
56
|
Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J 2016; 473:2295-314. [DOI: 10.1042/bcj20160009] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action.
Collapse
|
57
|
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 2016; 50:1-32. [PMID: 27370407 DOI: 10.1016/j.mam.2016.06.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases.
Collapse
Affiliation(s)
- Javier Angulo
- Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
| | | |
Collapse
|
58
|
Abstract
It is now well established that reactive oxygen species (ROS) play a dual role as both deleterious and beneficial species. In fact, ROS act as secondary messengers in intracellular signalling cascades; however, they can also induce cellular senescence and apoptosis. Aging is an intricate phenomenon characterized by a progressive decline in physiological functions and an increase in mortality, which is often accompanied by many pathological diseases. ROS are involved in age-associated damage to macromolecules, and this may cause derangement in ROS-mediated cell signalling, resulting in stress and diseases. Moreover, the role of oxidative stress in age-related sarcopenia provides strong evidence for the important contribution of physical activity to limit this process. Regular physical activity is considered a preventive measure against oxidative stress-related diseases. The aim of this review is to summarize the currently available studies investigating the effects of chronic and/or acute physical exercise on the oxidative stress process in healthy elderly subjects. Although studies on oxidative stress and physical activity are limited, the available information shows that acute exercise increases ROS production and oxidative stress damage in older adults, whereas chronic exercise could protect elderly subjects from oxidative stress damage and reinforce their antioxidant defences. The available studies reveal that to promote beneficial effects of physical activity on oxidative stress, elderly subjects require moderate-intensity training rather than high-intensity exercise.
Collapse
|
59
|
Jackson MJ. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med 2016; 50:33-40. [PMID: 27161871 DOI: 10.1016/j.mam.2016.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Physical frailty in the elderly is driven by loss of muscle mass and function and hence preventing this is the key to reduction in age-related physical frailty. Our current understanding of the key areas in which ROS contribute to age-related deficits in muscle is through increased oxidative damage to cell constituents and/or through induction of defective redox signalling. Recent data have argued against a primary role for ROS as a regulator of longevity, but studies have persistently indicated that aspects of the aging phenotype and age-related disorders may be mediated by ROS. There is increasing interest in the effects of defective redox signalling in aging and some studies now indicate that this process may be important in reducing the integrity of the aging neuromuscular system. Understanding how redox-signalling pathways are altered by aging and the causes of the defective redox homeostasis seen in aging muscle provides opportunities to identify targeted interventions with the potential to slow or prevent age-related neuromuscular decline with a consequent improvement in quality of life for older people.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK.
| |
Collapse
|
60
|
Carter HN, Chen CCW, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 2016; 30:208-23. [PMID: 25933821 DOI: 10.1152/physiol.00039.2014] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle health is dependent on the optimal function of its mitochondria. With advancing age, decrements in numerous mitochondrial variables are evident in muscle. Part of this decline is due to reduced physical activity, whereas the remainder appears to be attributed to age-related alterations in mitochondrial synthesis and degradation. Exercise is an important strategy to stimulate mitochondrial adaptations in older individuals to foster improvements in muscle function and quality of life.
Collapse
Affiliation(s)
- Heather N Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris C W Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Onyango IG, Dennis J, Khan SM. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies. Aging Dis 2016; 7:201-14. [PMID: 27114851 PMCID: PMC4809610 DOI: 10.14336/ad.2015.1007] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far.
Collapse
Affiliation(s)
- Isaac G Onyango
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| | - Jameel Dennis
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| | - Shaharyah M Khan
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| |
Collapse
|
62
|
Romanello V, Sandri M. Mitochondrial Quality Control and Muscle Mass Maintenance. Front Physiol 2016; 6:422. [PMID: 26793123 PMCID: PMC4709858 DOI: 10.3389/fphys.2015.00422] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Loss of muscle mass and force occurs in many diseases such as disuse/inactivity, diabetes, cancer, renal, and cardiac failure and in aging-sarcopenia. In these catabolic conditions the mitochondrial content, morphology and function are greatly affected. The changes of mitochondrial network influence the production of reactive oxygen species (ROS) that play an important role in muscle function. Moreover, dysfunctional mitochondria trigger catabolic signaling pathways which feed-forward to the nucleus to promote the activation of muscle atrophy. Exercise, on the other hand, improves mitochondrial function by activating mitochondrial biogenesis and mitophagy, possibly playing an important part in the beneficial effects of physical activity in several diseases. Optimized mitochondrial function is strictly maintained by the coordinated activation of different mitochondrial quality control pathways. In this review we outline the current knowledge linking mitochondria-dependent signaling pathways to muscle homeostasis in aging and disease and the resulting implications for the development of novel therapeutic approaches to prevent muscle loss.
Collapse
Affiliation(s)
| | - Marco Sandri
- Venetian Institute of Molecular MedicinePadova, Italy; Department of Biomedical Science, University of PadovaPadova, Italy; Institute of Neuroscience, Consiglio Nazionale delle RicerchePadova, Italy; Department of Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
63
|
Fan J, Kou X, Jia S, Yang X, Yang Y, Chen N. Autophagy as a Potential Target for Sarcopenia. J Cell Physiol 2015; 231:1450-9. [DOI: 10.1002/jcp.25260] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Jingjing Fan
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Xianjuan Kou
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Shaohui Jia
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Xiaoqi Yang
- Graduate School; Wuhan Sports University; Wuhan China
| | - Yi Yang
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| | - Ning Chen
- College of Health Science; Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion; Wuhan Sports University; Wuhan China
- Hubei Exercise Training and Monitoring Key Laboratory; Wuhan Sports University; Wuhan China
| |
Collapse
|
64
|
Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. ADVANCES IN PHYSIOLOGY EDUCATION 2015; 39:352-359. [PMID: 26628659 DOI: 10.1152/advan.00106.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
65
|
Szolnoki Z, Szekeres M, Szaniszlo I, Balda G, Bodor A, Kondacs A, Mandi Y, Somogyvari F. Decreased Number of Mitochondria in Leukoaraiosis. Arch Med Res 2015; 46:604-8. [PMID: 26577272 DOI: 10.1016/j.arcmed.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/02/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Leukoaraiosis (LA), one of the most frequent causes of an age-associated cognitive decline, can be associated with a poor quality of life, leading overall to far-reaching public health problems. Chronic hypoxia of the white matter of the brain may be a factor triggering this entity. LA may develop as a consequence of chronically insufficient cellular energy production and the accumulation of free radicals. METHODS In this context, after hypothesizing that the number of healthy mitochondria can be crucial in this complex process, a case-control LA study was carried out in which we analyzed the numbers of deleted and non-deleted mitochondria (the common D-loop deletion) per white blood cell. A total of 234 patients with LA and 123 MRI alteration-free subjects served as a control group. RESULTS Interestingly, it emerged that the ratio of deleted relative to non-deleted mitochondria is strongly associated with the risk of LA. The calculated K ratio in the LA group was significantly lower than the K ratio in the controls (LA: K 0.37 95% CI 0.05; controls: K 0.48, 95% CI 0.076, p < 0.001). CONCLUSIONS Our study suggests that the ratio of the dmDNA and mDNA can be of great importance in the pathogenesis of LA.
Collapse
Affiliation(s)
- Zoltan Szolnoki
- Department of Cerebrovascular Diseases, Pándy Kálmán County Hospital, Gyula, Hungary.
| | - Marta Szekeres
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Istvan Szaniszlo
- Department of Cerebrovascular Diseases, Pándy Kálmán County Hospital, Gyula, Hungary
| | - Gyorgy Balda
- Department of Cerebrovascular Diseases, Pándy Kálmán County Hospital, Gyula, Hungary
| | - Anita Bodor
- Department of Pathology, Réthy Pál County Hospital, Békéscsaba, Hungary
| | - Andras Kondacs
- Department of Cerebrovascular Diseases, Pándy Kálmán County Hospital, Gyula, Hungary
| | - Yvette Mandi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ferenc Somogyvari
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
66
|
Gram M, Vigelsø A, Yokota T, Helge JW, Dela F, Hey-Mogensen M. Skeletal muscle mitochondrial H2 O2 emission increases with immobilization and decreases after aerobic training in young and older men. J Physiol 2015; 593:4011-27. [PMID: 26096818 PMCID: PMC4575583 DOI: 10.1113/jp270211] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/14/2022] Open
Abstract
Currently, it is not known whether impaired mitochondrial function contributes to human ageing or whether potential impairments in mitochondrial function with age are secondary to physical inactivity. The present study investigated mitochondrial respiratory function and reactive oxygen species emission at a predefined membrane potential in young and older men subjected to 2 weeks of one-leg immobilization followed by 6 weeks of aerobic cycle training. Immobilization increased reactive oxygen species emission and decreased ATP generating respiration. Subsequent aerobic training reversed these effects. By contrast, age had no effect on the measured variables. The results of the present study support the notion that increased mitochondrial reactive oxygen species production mediates the detrimental effects seen after physical inactivity and that ageing per se does not cause mitochondrial dysfunction. Mitochondrial dysfunction, defined as increased oxidative stress and lower capacity for energy production, may be seen with ageing and may cause frailty, or it could be that it is secondary to physical inactivity. We studied the effect of 2 weeks of one-leg immobilization followed by 6 weeks of supervised cycle training on mitochondrial function in 17 young (mean ± SEM: 23 ± 1 years) and 15 older (68 ± 1 years) healthy men. Submaximal H2 O2 emission and respiration were measured simultaneously at a predefined membrane potential in isolated mitochondria from skeletal muscle using two protocols: pyruvate + malate (PM) and succinate + rotenone (SR). This allowed measurement of leak and ATP generating respiration from which the coupling efficiency can be calculated. The protein content of the anti-oxidants manganese superoxide dismuthase (MnSOD), CuZn superoxide dismuthase, catalase and gluthathione peroxidase 1 was measured by western blotting. Immobilization decreased ATP generating respiration using PM and increased H2 O2 emission using both PM and SR similarly in young and older men. Both were restored to baseline after the training period. Furthermore, MnSOD and catalase content increased with endurance training. The young men had a higher leak respiration at inclusion using PM and a higher membrane potential in State 3 using both substrate combinations. Collectively, the findings of the present study support the notion that increased mitochondrial reactive oxygen species mediates the detrimental effects seen after physical inactivity. Age, on the other hand, was not associated with impairments in anti-oxidant protein levels, mitochondrial respiration or H2 O2 emission using either protocol.
Collapse
Affiliation(s)
- Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Andreas Vigelsø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Takashi Yokota
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark,Department of Cardiovascular Medicine, Hokkaido University Graduate School of MedicineSapporo, Japan
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark,Corresponding author F. Dela: Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Martin Hey-Mogensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark,Present address: Diabetes Research Unit, Novo Nordisk A/SNovo Nordisk Park, Måløv, Denmark
| |
Collapse
|
67
|
Frank P, Andersson E, Pontén M, Ekblom B, Ekblom M, Sahlin K. Strength training improves muscle aerobic capacity and glucose tolerance in elderly. Scand J Med Sci Sports 2015; 26:764-73. [PMID: 26271931 DOI: 10.1111/sms.12537] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/11/2022]
Abstract
The primary aim of this study was to investigate the effect of short-term resistance training (RET) on mitochondrial protein content and glucose tolerance in elderly. Elderly women and men (age 71 ± 1, mean ± SEM) were assigned to a group performing 8 weeks of resistance training (RET, n = 12) or no training (CON, n = 9). The RET group increased in (i) knee extensor strength (concentric +11 ± 3%, eccentric +8 ± 3% and static +12 ± 3%), (ii) initial (0-30 ms) rate of force development (+52 ± 26%) and (iii) contents of proteins related to signaling of muscle protein synthesis (Akt +69 ± 20 and mammalian target of rapamycin +69 ± 32%). Muscle fiber type composition changed to a more oxidative profile in RET with increased amount of type IIa fibers (+26.9 ± 6.8%) and a trend for decreased amount of type IIx fibers (-16.4 ± 18.2%, P = 0.068). Mitochondrial proteins (OXPHOS complex II, IV, and citrate synthase) increased in RET by +30 ± 11%, +99 ± 31% and +29 ± 8%, respectively. RET resulted in improved oral glucose tolerance measured as reduced area under curve for glucose (-21 ± 26%) and reduced plasma glucose 2 h post-glucose intake (-14 ± 5%). In CON parameters were unchanged or impaired. In conclusion, short-term resistance training in elderly not only improves muscular strength, but results in robust increases in several parameters related to muscle aerobic capacity.
Collapse
Affiliation(s)
- P Frank
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E Andersson
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Pontén
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - B Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - M Ekblom
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - K Sahlin
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
68
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
69
|
Hood DA, Tryon LD, Vainshtein A, Memme J, Chen C, Pauly M, Crilly MJ, Carter H. Exercise and the Regulation of Mitochondrial Turnover. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:99-127. [PMID: 26477912 DOI: 10.1016/bs.pmbts.2015.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exercise is a well-known stimulus for the expansion of the mitochondrial pool within skeletal muscle. Mitochondria have a remarkable ability to remodel their networks and can respond to an array of signaling stimuli following contractile activity to adapt to the metabolic demands of the tissue, synthesizing proteins to expand the mitochondrial reticulum. In addition, when they become dysfunctional, these organelles can be recycled by a specialized intracellular system. The signals regulating this mitochondrial life cycle of synthesis and degradation during exercise are still an area of great research interest. As mitochondrial turnover has valuable consequences in physical performance, in addition to metabolic health, disease, and aging, consideration of the signals which control this cycle is vital. This review focuses on the regulation of mitochondrial turnover in skeletal muscle and summarizes our current understanding of the impact that exercise has in modulating this process.
Collapse
Affiliation(s)
- David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| | - Liam D Tryon
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Anna Vainshtein
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Jonathan Memme
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Marion Pauly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Matthew J Crilly
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Heather Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Jackson MJ. Redox regulation of muscle adaptations to contractile activity and aging. J Appl Physiol (1985) 2015; 119:163-71. [PMID: 25792715 PMCID: PMC4526708 DOI: 10.1152/japplphysiol.00760.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Superoxide and nitric oxide are generated by skeletal muscle, and these species are increased by contractile activity. Mitochondria have long been assumed to play the primary role in generation of superoxide in muscle, but recent studies indicate that, during contractile activity, membrane-localized NADPH oxidase(s) rapidly generate(s) superoxide that plays a role in redox signaling. This process is important in upregulation of rapid and specific cytoprotective responses that aid maintenance of cell viability following contractile activity, but the overall extent to which redox signaling contributes to regulation of muscle metabolism and homeostasis following contractile activity is currently unclear, as is identification of key redox-sensitive protein targets involved in these processes. Reactive oxygen and nitrogen species have also been implicated in the loss of muscle mass and function that occurs with aging, although recent work has questioned whether oxidative damage plays a key role in these processes. A failure of redox signaling occurs in muscle during aging and may contribute to the age-related loss of muscle fibers. Whether such changes in redox signaling reflect primary age-related changes or are secondary to the fundamental mechanisms is unclear. For instance, denervated muscle fibers within muscles from aged rodents or humans appear to generate large amounts of mitochondrial hydrogen peroxide that could influence adjacent innervated fibers. Thus, in this instance, a "secondary" source of reactive oxygen species may be potentially generated as a result of a primary age-related pathology (loss of neurons), but, nevertheless, may contribute to loss of muscle mass and function during aging.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
71
|
Deleidi M, Jäggle M, Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 2015; 9:172. [PMID: 26089771 PMCID: PMC4453474 DOI: 10.3389/fnins.2015.00172] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michela Deleidi
- Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Madeline Jäggle
- Department of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Hertie Institute for Clinical Brain Research, University of Tübingen Tübingen, Germany
| | - Graziella Rubino
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen Tübingen, Germany
| |
Collapse
|
72
|
Konopka AR, Asante A, Lanza IR, Robinson MM, Johnson ML, Dalla Man C, Cobelli C, Amols MH, Irving BA, Nair KS. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes 2015; 64:2104-15. [PMID: 25605809 PMCID: PMC4439568 DOI: 10.2337/db14-1701] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/13/2015] [Indexed: 01/06/2023]
Abstract
The notion that mitochondria contribute to obesity-induced insulin resistance is highly debated. Therefore, we determined whether obese (BMI 33 kg/m(2)), insulin-resistant women with polycystic ovary syndrome had aberrant skeletal muscle mitochondrial physiology compared with lean, insulin-sensitive women (BMI 23 kg/m(2)). Maximal whole-body and mitochondrial oxygen consumption were not different between obese and lean women. However, obese women exhibited lower mitochondrial coupling and phosphorylation efficiency and elevated mitochondrial H2O2 (mtH2O2) emissions compared with lean women. We further evaluated the impact of 12 weeks of aerobic exercise on obesity-related impairments in insulin sensitivity and mitochondrial energetics in the fasted state and after a high-fat mixed meal. Exercise training reversed obesity-related mitochondrial derangements as evidenced by enhanced mitochondrial bioenergetics efficiency and decreased mtH2O2 production. A concomitant increase in catalase antioxidant activity and decreased DNA oxidative damage indicate improved cellular redox status and a potential mechanism contributing to improved insulin sensitivity. mtH2O2 emissions were refractory to a high-fat meal at baseline, but after exercise, mtH2O2 emissions increased after the meal, which resembles previous findings in lean individuals. We demonstrate that obese women exhibit impaired mitochondrial bioenergetics in the form of decreased efficiency and impaired mtH2O2 emissions, while exercise effectively restores mitochondrial physiology toward that of lean, insulin-sensitive individuals.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Albert Asante
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Ian R Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew M Robinson
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Matthew L Johnson
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mark H Amols
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - Brian A Irving
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| | - K S Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition Research, Mayo Clinic College of Medicine, Rochester, MN
| |
Collapse
|
73
|
Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev 2015; 146-148:81-7. [PMID: 25959712 DOI: 10.1016/j.mad.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
Abstract
Ageing is a cellular process with many facets, some of which are currently undergoing a paradigm change. It is the case of "mitochondrial theory of ageing", which, interestingly, has been found lately to cross paths with another ageing dysfunctional process - intracellular signalling - in an unexpected point (or place) - caveolae. The latter represent membrane microdomains altered in senescent cells, scaffolded by proteins modified (posttranslational or as expression) with ageing. An important determinant of these alterations is oxidative stress, through increased production of reactive oxygen species that originate at mitochondrial site. Spanning from physical contact points, to shared structural proteins and similar function domains, caveolae and mitochondria might have more in common than originally thought. By reviewing recent data on oxidative stress impact on caveolae and caveolins, as well as possible interactions between caveolae and mitochondria, we propose a hypothesis for senescence-related involvement of caveolins.
Collapse
|
74
|
Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015; 5:356-77. [PMID: 25866921 PMCID: PMC4496677 DOI: 10.3390/biom5020356] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.
Collapse
|
75
|
Irving BA, Lanza IR, Henderson GC, Rao RR, Spiegelman BM, Nair KS. Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab 2015; 100:1654-63. [PMID: 25599385 PMCID: PMC4399307 DOI: 10.1210/jc.2014-3081] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
CONTEXT Skeletal muscle from sedentary older adults exhibits reduced mitochondrial abundance and oxidative capacity. OBJECTIVE The primary objective was to determine whether 8 weeks of combined training (CT) has a more robust effect than endurance training (ET) or resistance training (RT) on mitochondrial physiology in healthy young (18-30 years) and older (≥ 65 years) adults. INTERVENTION Thirty-four young and 31 older adults were randomly assigned to 8 weeks of ET, RT, and control/CT. Control subjects completed 8 weeks of no exercise (control) followed by 8 weeks of CT. Body composition, skeletal muscle strength, and peak oxygen uptake were measured before and after the intervention. Vastus lateralis muscle biopsy samples were obtained before and 48 hours after the intervention. Mitochondrial physiology was evaluated by high-resolution respirometry and expression of mitochondrial proteins and transcription factors by quantitative PCR and immunoblotting. RESULTS ET and CT significantly increased oxidative capacity and expression of mitochondrial proteins and transcription factors. All training modalities improved body composition, cardiorespiratory fitness, and skeletal muscle strength. CT induced the most robust improvements in mitochondria-related outcomes and physical characteristics despite lower training volumes for the ET and RT components. Importantly, most of the adaptations to training occurred independent of age. CONCLUSION Collectively, these results demonstrate that both ET and CT increase muscle mitochondrial abundance and capacity although CT induced the most robust improvements in the outcomes measured. In conclusion, CT provides a robust exercise regimen to improve muscle mitochondrial outcomes and physical characteristics independent of age.
Collapse
Affiliation(s)
- Brian A Irving
- Division of Endocrinology (B.A.I., I.R.L., G.D.H., K.S.N.), Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Department of Cancer Biology (R.R.R., B.M.S.), Dana-Farber Cancer Institute, Boston, Massachusetts 02215; and Department of Cell Biology (R.R.R., B.M.S.), Harvard Medical School, Boston, Massachusetts 02215
| | | | | | | | | | | |
Collapse
|
76
|
Ghosh S, Lertwattanarak R, Garduño JDJ, Galeana JJ, Li J, Zamarripa F, Lancaster JL, Mohan S, Hussey S, Musi N. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci 2015; 70:232-46. [PMID: 24846769 PMCID: PMC4311182 DOI: 10.1093/gerona/glu067] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/07/2014] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia.
Collapse
Affiliation(s)
- Sangeeta Ghosh
- Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio. Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging
| | | | | | | | | | | | | | - Sumathy Mohan
- Department of Pathology, University of Texas Health Science Center, San Antonio
| | - Sophie Hussey
- Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio. Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging
| | - Nicolas Musi
- Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio. Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging,
| |
Collapse
|
77
|
Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never! Biogerontology 2014; 16:249-64. [PMID: 25537184 DOI: 10.1007/s10522-014-9546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Collapse
|
78
|
Ji LL, Kang C. Role of PGC-1a in Sarcopenia: Etiology and Potential Intervention - A Mini-Review. Gerontology 2014; 61:139-48. [DOI: 10.1159/000365947] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
|
79
|
Peinado JR, Diaz-Ruiz A, Frühbeck G, Malagon MM. Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 2014; 14:452-66. [PMID: 24339000 DOI: 10.1002/pmic.201300376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023]
Abstract
Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, Ciudad Real, Spain
| | | | | | | |
Collapse
|
80
|
Halter JB, Musi N, McFarland Horne F, Crandall JP, Goldberg A, Harkless L, Hazzard WR, Huang ES, Kirkman MS, Plutzky J, Schmader KE, Zieman S, High KP. Diabetes and cardiovascular disease in older adults: current status and future directions. Diabetes 2014; 63:2578-89. [PMID: 25060886 PMCID: PMC4113072 DOI: 10.2337/db14-0020] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of diabetes increases with age, driven in part by an absolute increase in incidence among adults aged 65 years and older. Individuals with diabetes are at higher risk for cardiovascular disease, and age strongly predicts cardiovascular complications. Inflammation and oxidative stress appear to play some role in the mechanisms underlying aging, diabetes, cardiovascular disease, and other complications of diabetes. However, the mechanisms underlying the age-associated increase in risk for diabetes and diabetes-related cardiovascular disease remain poorly understood. Moreover, because of the heterogeneity of the older population, a lack of understanding of the biology of aging, and inadequate study of the effects of treatments on traditional complications and geriatric conditions associated with diabetes, no consensus exists on the optimal interventions for older diabetic adults. The Association of Specialty Professors, along with the National Institute on Aging, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Heart, Lung, and Blood Institute, and the American Diabetes Association, held a workshop, summarized in this Perspective, to discuss current knowledge regarding diabetes and cardiovascular disease in older adults, identify gaps, and propose questions to guide future research.
Collapse
Affiliation(s)
- Jeffrey B Halter
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Nicolas Musi
- Geriatric Research, Education and Clinical Center, University of Texas Health Sciences Center at San Antonio and South Texas Veterans Health Care System, San Antonio, TX
| | | | - Jill P Crandall
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY
| | - Andrew Goldberg
- University of Maryland School of Medicine and Baltimore VA Medical Center Geriatric Research Education and Clinical Center, Baltimore, MD
| | | | - William R Hazzard
- Department of Medicine, University of Washington, Puget Sound VA Health Care System, Seattle, WA
| | - Elbert S Huang
- Department of Medicine, Division of General Internal Medicine, University of Chicago, Chicago, IL
| | - M Sue Kirkman
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| | - Kenneth E Schmader
- Geriatric Research, Education and Clinical Center, Duke University School of Medicine and Durham VA Medical Center, Durham, NC
| | | | - Kevin P High
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
81
|
Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nat Commun 2014; 5:3837. [PMID: 24815183 PMCID: PMC4024759 DOI: 10.1038/ncomms4837] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/09/2014] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity.
Collapse
|
82
|
Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:238463. [PMID: 24818134 PMCID: PMC4003832 DOI: 10.1155/2014/238463] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
Age-related changes in mitochondria are associated with decline in mitochondrial function. With advanced age, mitochondrial DNA volume, integrity and functionality decrease due to accumulation of mutations and oxidative damage induced by reactive oxygen species (ROS). In aged subjects, mitochondria are characterized by impaired function such as lowered oxidative capacity, reduced oxidative phosphorylation, decreased ATP production, significant increase in ROS generation, and diminished antioxidant defense. Mitochondrial biogenesis declines with age due to alterations in mitochondrial dynamics and inhibition of mitophagy, an autophagy process that removes dysfunctional mitochondria. Age-dependent abnormalities in mitochondrial quality control further weaken and impair mitochondrial function. In aged tissues, enhanced mitochondria-mediated apoptosis contributes to an increase in the percentage of apoptotic cells. However, implementation of strategies such as caloric restriction and regular physical training may delay mitochondrial aging and attenuate the age-related phenotype in humans.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow 117997, Russia
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Moscow 121552, Russia
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Victor V. Revin
- Biological Faculty, N.P. Ogaryov Mordovian State University, Saransk 430005, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular Mechanisms of Atherogenesis, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 143025, Russia
| | - Yuri V. Bobryshev
- Biological Faculty, N.P. Ogaryov Mordovian State University, Saransk 430005, Russia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| |
Collapse
|
83
|
Beltran Valls MR, Wilkinson DJ, Narici MV, Smith K, Phillips BE, Caporossi D, Atherton PJ. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia. J Gerontol A Biol Sci Med Sci 2014; 70:174-81. [PMID: 24621945 PMCID: PMC4301601 DOI: 10.1093/gerona/glu007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with a gradual loss of muscle mass termed sarcopenia, which has significant impact on quality-of-life. Because oxidative stress is proposed to negatively impact upon musculoskeletal aging, we investigated links between human aging and markers of oxidative stress, and relationships to muscle mass and strength in young and old nonsarcopenic and sarcopenic adults. Sixteen young and 16 old males (further subdivided into “old” and “old sarcopenic”) were studied. The abundance of protein carbonyl adducts within skeletal muscle sarcoplasmic, myofibrillar, and mitochondrial protein subfractions from musculus vastus lateralis biopsies were determined using Oxyblot immunoblotting techniques. In addition, concentrations of recognized cytoprotective proteins (eg, heat shock proteins [HSP], αβ-crystallin) were also assayed. Aging was associated with increased mitochondrial (but not myofibrillar or sarcoplasmic) protein carbonyl adducts, independently of (stage-I) sarcopenia. Correlation analyses of all subjects revealed that mitochondrial protein carbonyl abundance negatively correlated with muscle strength ([1-repetition maximum], p = .02, r2 = −.16), but not muscle mass (p = .13, r2 = −.08). Abundance of cytoprotective proteins, including various HSPs (HSP 27 and 70), were unaffected by aging/sarcopenia. To conclude, these data reveal that mitochondrial protein carbonylation increases moderately with age, and that this increase may impact upon skeletal muscle function, but is not a hallmark of (stage-I) sarcopenia, per se.
Collapse
Affiliation(s)
- Maria R Beltran Valls
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "ForoItalico," Italy
| | - Daniel J Wilkinson
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Marco V Narici
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Kenneth Smith
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Bethan E Phillips
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "ForoItalico," Italy
| | - Philip J Atherton
- Division of Medical Sciences & Graduate Entry Medicine, MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre.
| |
Collapse
|
84
|
Oxidative stress in aging: advances in proteomic approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:573208. [PMID: 24688629 PMCID: PMC3943264 DOI: 10.1155/2014/573208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022]
Abstract
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Collapse
|
85
|
Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol 2014; 592:1873-86. [PMID: 24514907 DOI: 10.1113/jphysiol.2013.270256] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim was to investigate the metabolic and anti-inflammatory effects of resveratrol alone and when combined with exercise training in skeletal muscle of aged human subjects. Healthy, physically inactive men (60-72 years old) were randomized to either 8 weeks of daily intake of 250 mg resveratrol or placebo or to 8 weeks of high-intensity exercise training with 250 mg resveratrol or placebo. Before and after the interventions, resting blood samples and muscle biopsies were obtained and a one-legged knee-extensor endurance exercise test was performed. Exercise training increased skeletal muscle peroxisome proliferator-activated receptor-γ co-activator-1α mRNA ~1.5-fold, cytochrome c protein ~1.3-fold, cytochrome c oxidase I protein ~1.5-fold, citrate synthase activity ~1.3-fold, 3-hydroxyacyl-CoA dehydrogenase activity ~1.3-fold, inhibitor of κB-α and inhibitor of κB-β protein content ~1.3-fold and time to exhaustion in the one-legged knee-extensor endurance exercise test by ∼1.2-fold, with no significant additive or adverse effects of resveratrol on these parameters. Despite an overall ~25% reduction in total acetylation level in skeletal muscle with resveratrol, no exclusive resveratrol-mediated metabolic effects were observed on the investigated parameters. Notably, however, resveratrol blunted an exercise training-induced decrease (~20%) in protein carbonylation and decrease (~40%) in tumour necrosis factor α mRNA content in skeletal muscle. In conclusion, resveratrol did not elicit metabolic improvements in healthy aged subjects; in fact, resveratrol even impaired the observed exercise training-induced improvements in markers of oxidative stress and inflammation in skeletal muscle. Collectively, this highlights the metabolic efficacy of exercise training in aged subjects and does not support the contention that resveratrol is a potential exercise mimetic in healthy aged subjects.
Collapse
Affiliation(s)
- Jesper Olesen
- August Krogh Building, Universitetsparken 13, 4th floor, 2100 KBH Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
86
|
Sczelecki S, Besse-Patin A, Abboud A, Kleiner S, Laznik-Bogoslavski D, Wrann CD, Ruas JL, Haibe-Kains B, Estall JL. Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. Am J Physiol Endocrinol Metab 2014; 306:E157-67. [PMID: 24280126 PMCID: PMC4073996 DOI: 10.1152/ajpendo.00578.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes risk increases significantly with age and correlates with lower oxidative capacity in muscle. Decreased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (Pgc-1α) and target gene pathways involved in mitochondrial oxidative phosphorylation are associated with muscle insulin resistance, but a causative role has not been established. We sought to determine whether a decline in Pgc-1α and oxidative gene expression occurs during aging and potentiates the development of age-associated insulin resistance. Muscle-specific Pgc-1α knockout (MKO) mice and wild-type littermate controls were aged for 2 yr. Genetic signatures of skeletal muscle (microarray and mRNA expression) and metabolic profiles (glucose homeostasis, mitochondrial metabolism, body composition, lipids, and indirect calorimetry) of mice were compared at 3, 12, and 24 mo of age. Microarray and gene set enrichment analysis highlighted decreased function of the electron transport chain as characteristic of both aging muscle and loss of Pgc-1α expression. Despite significant reductions in oxidative gene expression and succinate dehydrogenase activity, young mice lacking Pgc-1α in muscle had lower fasting glucose and insulin. Consistent with loss of oxidative capacity during aging, Pgc-1α and Pgc-1β expression were reduced in aged wild-type mouse muscle. Interestingly, the combination of age and loss of muscle Pgc-1α expression impaired glucose tolerance and led to increased fat mass, insulin resistance, and inflammatory markers in white adipose and liver tissues. Therefore, loss of Pgc-1α expression and decreased mitochondrial oxidative capacity contribute to worsening glucose tolerance and chronic systemic inflammation associated with aging.
Collapse
|
87
|
Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA, Aubertin-Leheudre M, Hepple RT. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 2013; 28:1621-33. [PMID: 24371120 DOI: 10.1096/fj.13-242750] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.7±2.7 yr; mean±SD) and older (71.2±4.9 yr) men. Although mitochondrial ROS and maximal respiratory capacity were unaffected, the acceptor control ratio was reduced by 18% with aging, suggesting mild uncoupling of oxidative phosphorylation. CRC was reduced by 50% with aging, indicating sensitization of the mitochondrial permeability transition pore (mPTP) to apoptosis. Consistent with the mPTP sensitization, older muscles showed a 3-fold greater fraction of endonuclease G (a mitochondrial proapoptotic factor)-positive myonuclei. Aged muscles also had lower mitophagic potential, based on a 43% reduction in Parkin to the voltage-dependent anion channel (VDAC) protein ratio. Collectively, these results show that mitochondrial-mediated apoptotic signaling is increased in older human muscle and suggest that accumulation of dysfunctional mitochondria with exaggerated apoptotic sensitivity is due to impaired mitophagy.
Collapse
Affiliation(s)
- Gilles Gouspillou
- 1Department of Critical Care Medicine, Royal Victoria Hospital, 687 Pine Ave. W., Montreal, QC, Canada H3A 1A.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Muscogiuri G, Salmon AB, Aguayo-Mazzucato C, Li M, Balas B, Guardado-Mendoza R, Giaccari A, Reddick RL, Reyna SM, Weir G, DeFronzo RA, Van Remmen H, Musi N. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function. Diabetes 2013; 62:4201-7. [PMID: 24009256 PMCID: PMC3837066 DOI: 10.2337/db13-0314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| | | | - Mengyao Li
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Bogdan Balas
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | | | - Andrea Giaccari
- Division of Endocrinology and Metabolic Diseases, Università Cattolica del Sacro Cuore, Policlinico “A. Gemelli,” Rome, and Fondazione Don Gnocchi, Milan, Italy
| | - Robert L. Reddick
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Sara M. Reyna
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Gordon Weir
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts
| | - Ralph A. DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
| | - Nicolas Musi
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, San Antonio, Texas
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas
- Corresponding author: Nicolas Musi,
| |
Collapse
|
89
|
Pulliam DA, Bhattacharya A, Van Remmen H. Mitochondrial dysfunction in aging and longevity: a causal or protective role? Antioxid Redox Signal 2013; 19:1373-87. [PMID: 23025472 DOI: 10.1089/ars.2012.4950] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Among the most highly investigated theories of aging is the mitochondrial theory of aging. The basis of this theory includes a central role for altered or compromised mitochondrial function in the pathophysiologic declines associated with aging. In general, studies in various organisms, including nematodes, rodents, and humans, have largely upheld that aging is associated with mitochondrial dysfunction. However, results from a number of studies directly testing the mitochondrial theory of aging by modulating oxidant production or scavenging in vivo in rodents have generally been inconsistent with predictions of the theory. RECENT ADVANCES Interestingly, electron transport chain mutations or deletions in invertebrates and mice that causes mitochondrial dysfunction paradoxically leads to enhanced longevity, further challenging the mitochondrial theory of aging. CRITICAL ISSUES How can mitochondrial dysfunction contribute to lifespan extension in the mitochondrial mutants, and what does it mean for the mitochondrial theory of aging? FUTURE DIRECTIONS It will be important to determine the potential mechanisms that lead to enhanced longevity in the mammalian mitochondrial mutants.
Collapse
Affiliation(s)
- Daniel A Pulliam
- 1 Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | |
Collapse
|
90
|
Konopka AR, Sreekumaran Nair K. Mitochondrial and skeletal muscle health with advancing age. Mol Cell Endocrinol 2013; 379:19-29. [PMID: 23684888 PMCID: PMC3788080 DOI: 10.1016/j.mce.2013.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
With increasing age there is a temporal relationship between the decline of mitochondrial and skeletal muscle volume, quality and function (i.e., health). Reduced mitochondrial mRNA expression, protein abundance, and protein synthesis rates appear to promote the decline of mitochondrial protein quality and function. Decreased mitochondrial function is suspected to impede energy demanding processes such as skeletal muscle protein turnover, which is critical for maintaining protein quality and thus skeletal muscle health with advancing age. The focus of this review was to discuss promising human physiological systems underpinning the decline of mitochondrial and skeletal muscle health with advancing age while highlighting therapeutic strategies such as aerobic exercise and caloric restriction for combating age-related functional impairments.
Collapse
Affiliation(s)
- Adam R Konopka
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | | |
Collapse
|
91
|
Barbieri E, Sestili P, Vallorani L, Guescini M, Calcabrini C, Gioacchini AM, Annibalini G, Lucertini F, Piccoli G, Stocchi V. Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach. Muscles Ligaments Tendons J 2013; 3:254-266. [PMID: 24596688 PMCID: PMC3940498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Low-level oxidative stress induces an adaptive response commonly defined as hormesis; this type of stress is often related to reactive oxygen species (ROS) originating from the mitochondrial respiratory chain (mitochondrial hormesis or mitohormesis). The accumulation of transient low doses of ROS either through chronic physical activity or caloric restriction influences signaling from the mitochondrial compartment to the cell, reduces glucose metabolism, induces mitochondrial metabolism, increases stress resistance and ultimately, increases lifespan. Mitochondrial formation of presumably harmful levels (chronic and/or excessive) of ROS within skeletal muscle has been observed in insulin resistance of obese subjects, type 2 diabetes mellitus, as well as in impaired muscle function associated with normal aging. Advances in mitochondrial bioimaging combined with mitochondrial biochemistry and proteome research have broadened our knowledge of specific cellular signaling and other related functions of the mitochondrial behavior. In this review, we describe mitochondrial remodeling in response to different degrees of oxidative insults induced in vitro in myocytes and in vivo in skeletal muscle, focusing on the potential application of a combined morphological and biochemical approach. The use of such technologies could yield benefits for our overall understanding of physiology for biotechnological research related to drug design, physical activity prescription and significant lifestyle changes.
Collapse
Affiliation(s)
- Elena Barbieri
- Corresponding author: Elena Barbieri, Department of Biomolecular Sciences, Division of Exercise and Health Sciences, University Carlo Bo, Via I Maggetti, 26, 61029 Urbino, Italy, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Panayiotou G, Grivas GV, Zafeiridis A, Dipla K, Vrabas IS. Aging is not a barrier to muscle and redox adaptations: Applying the repeated eccentric exercise model. Exp Gerontol 2013; 48:734-43. [DOI: 10.1016/j.exger.2013.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/04/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
|
93
|
Konopka AR, Suer MK, Wolff CA, Harber MP. Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci 2013; 69:371-8. [PMID: 23873965 DOI: 10.1093/gerona/glt107] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Perturbations in mitochondrial health may foster age-related losses of aerobic capacity (VO2peak) and skeletal muscle size. However, limited data exist regarding mitochondrial dynamics in aging human skeletal muscle and the influence of exercise. The purpose of this study was to examine proteins regulating mitochondrial biogenesis and dynamics, VO2peak, and skeletal muscle size before and after aerobic exercise training in young men (20 ± 1 y) and older men (74 ± 3 y). Exercise-induced skeletal muscle hypertrophy occurred independent of age, whereas the improvement in VO2peak was more pronounced in young men. Aerobic exercise training increased proteins involved with mitochondrial biogenesis, fusion, and fission, independent of age. This is the first study to examine pathways of mitochondrial quality control in aging human skeletal muscle with aerobic exercise training. These data indicate normal aging does not influence proteins associated with mitochondrial health or the ability to respond to aerobic exercise training at the mitochondrial and skeletal muscle levels.
Collapse
Affiliation(s)
- Adam R Konopka
- Human Performance Laboratory, Ball State University, Muncie, IN 47306.
| | | | | | | |
Collapse
|
94
|
Karami-Mohajeri S, Hadian MR, Fouladdel S, Azizi E, Ghahramani MH, Hosseini R, Abdollahi M. Mechanisms of muscular electrophysiological and mitochondrial dysfunction following exposure to malathion, an organophosphorus pesticide. Hum Exp Toxicol 2013; 33:251-63. [PMID: 23774768 DOI: 10.1177/0960327113493300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle dysfunction in acute organophosphorus (OP) poisoning is a cause of death in human. The present study was conducted to identify the mechanism of action of OP in terms of muscle mitochondrial dysfunction. Electromyography (EMG) was conducted on rats exposed to the acute oral dose of malathion (400 mg/kg) that could inhibit acetylcholinesterase activity up to 70%. The function of mitochondrial respiratory chain and the rate of production of reactive oxygen species (ROS) from intact mitochondria were measured. The bioenergetic pathways were studied by measurement of adenosine triphosphate (ATP), lactate, and glycogen. To identify mitochondrial-dependent apoptotic pathways, the messenger RNA (mRNA) expression of bax and bcl-2, protein expression of caspase-9, mitochondrial cytochrome c release, and DNA damage were measured. The EMG confirmed muscle weakness. The reduction in activity of mitochondrial complexes and muscular glycogen with an elevation of lactate was in association with impairment of cellular respiration. The reduction in mitochondrial proapoptotic stimuli is indicative of autophagic process inducing cytoprotective effects in the early stage of stress. Downregulation of apoptotic signaling may be due to reduction in ATP and ROS, and genotoxic potential of malathion. The maintenance of mitochondrial integrity by means of artificial electron donors and increasing exogenous ATP might prevent toxicity of OPs.
Collapse
Affiliation(s)
- S Karami-Mohajeri
- 1Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Islamic Republic of Iran
| | | | | | | | | | | | | |
Collapse
|
95
|
Johnson ML, Robinson MM, Nair KS. Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab 2013; 24:247-56. [PMID: 23375520 PMCID: PMC3641176 DOI: 10.1016/j.tem.2012.12.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
Decline in human muscle mass and strength (sarcopenia) is a hallmark of the aging process. A growing body of research in the areas of bioenergetics and protein turnover has placed the mitochondria at the center of this process. It is now clear that, unless an active lifestyle is rigorously followed, skeletal muscle mitochondrial decline occurs as humans age. Increasing research on mitochondrial biology has elucidated the regulatory pathways involved in mitochondrial biogenesis, many of which are potential therapeutic targets, and highlight the beneficial effects of vigorous physical activity on skeletal muscle health for an aging population.
Collapse
Affiliation(s)
- Matthew L Johnson
- Mayo Clinic, Division of Endocrinology, 200 First Street SW, Joseph 5-194, Rochester, MN 55905, USA
| | | | | |
Collapse
|
96
|
Gradinaru D, Borsa C, Ionescu C, Margina D. Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics 2013; 92:313-22. [PMID: 23587667 DOI: 10.1016/j.jprot.2013.03.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED We aimed to explore the association of advanced oxidation and advanced glycation of proteins, and their interrelations with endothelial nitric oxide synthesis, oxidative stress, metabolic profile as well as other atherosclerotic risk markers in prediabetic and diabetic elderly subjects. Advanced glycation end products (AGEs), advanced oxidation protein products (AOPPs), low-density lipoprotein susceptibility to oxidation (oxLDL) and nitric oxide metabolic pathway products (NOx) were assessed in subjects with impaired fasting glucose (prediabetes, IFG; n=90), and type 2 diabetes mellitus (T2DM, n=95) versus control subjects (n=88). Higher levels of AOPPs, AGEs, oxLDL, NOx, atherosclerosis risk markers, and insulin resistance were pointed out in IFG and T2DM groups compared with control. Strong positive associations (p<0.01) of AGEs with fasting glucose and HbA1c were found in both hyperglycemic groups, whereas AOPPs were significantly correlated (p<0.01) only in T2DM. In T2DM, AGEs and AOPPs significantly (p<0.01) correlated with insulin resistance index HOMA-IR, oxLDL and small LDL particle size (TG/HDL-C), and positively with NOx. Direct associations of AGEs and AOPPs with TC/HDL-C and oxLDL/HDL-C, and AGEs-AOPPs interrelations (p<0.01) were identified in IFG and T2DM groups. AGEs and AOPPs in combination with oxLDL and NOx could be important biomarkers for evaluating the association between diabetes and atherosclerotic disorders in aging diabetic patients. BIOLOGICAL SIGNIFICANCE In the present study we have made an attempt to approach the biological and clinical significance of the oxidative and glycoxidative protein damage, in subjects with prediabetes and type-2 diabetes mellitus. AGEs and AOPPs in combination with oxLDL and NOx appear to be important biomarkers for evaluating the association between diabetes and atherosclerotic disorders in aging diabetic patients. More importantly, this cluster of biomarkers that links the short term, "real time" metabolic impairment parameters (NOx, serum glucose, HOMA-IR, serum lipid profile) and the "metabolic memory" markers resulting from the long-term hyperglycemia and hyperlipidemia-induced oxidative stress (HbA1c, AGEs, AOPPs and oxLDL), could be valuable in predicting not only vascular complications in T2DM, but also the onset of diabetes, hence enabling therapeutic interventions from the early stages of diabetes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Daniela Gradinaru
- Ana Aslan - National Institute of Gerontology and Geriatrics, Bucharest, Romania; Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania.
| | | | | | | |
Collapse
|
97
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
98
|
Liang H, Tantiwong P, Sriwijitkamol A, Shanmugasundaram K, Mohan S, Espinoza S, Defronzo RA, Dubé JJ, Musi N. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. J Physiol 2013; 591:2897-909. [PMID: 23529132 DOI: 10.1113/jphysiol.2012.247510] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.
Collapse
Affiliation(s)
- Hanyu Liang
- N. Musi: Audie L. Murphy VA Medical Center, 7400 Merton Minter, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Sales V, Patti ME. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 7:46-59. [PMID: 23459395 DOI: 10.1007/s12170-012-0283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu remains a scientific challenge but we are one step closer.
Collapse
Affiliation(s)
- Vicencia Sales
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School ; Department of Biophysics, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | | |
Collapse
|
100
|
Petrofsky JS, Berk L, Alshammari F, Lee H, Hamdan A, Yim JE, Kodawala Y, Patel D, Nevgi B, Shetye G, Moniz H, Chen WT, Alshaharani M, Pathak K, Neupane S, Somanaboina K, Shenoy S, Cho S, Dave B, Desai R, Malthane S, Al-Nakhli H. The interrelationship between air temperature and humidity as applied locally to the skin: the resultant response on skin temperature and blood flow with age differences. Med Sci Monit 2012; 18:CR201-8. [PMID: 22460091 PMCID: PMC3560817 DOI: 10.12659/msm.882619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Most studies of the skin and how it responds to local heat have been conducted with either water, thermodes, or dry heat packs. Very little has been accomplished to look at the interaction between air humidity and temperature on skin temperature and blood flow. With variable air temperatures and humidity's around the world, this, in many ways, is a more realistic assessment of environmental impact than previous water bath studies. MATERIAL/METHODS Eight young and 8 older subjects were examined in an extensive series of experiments where on different days, air temperature was 38, 40, or 42°C. and at each temperature, humidity was either 0%, 25%, 50%, 75%, or 100% humidity. Over a 20 minute period of exposure, the response of the skin in terms of its temperature and blood flow was assessed. RESULTS For both younger and older subjects, for air temperatures of 38 and 40°C., the humidity of the air had no effect on the blood flow response of the skin, while skin temperature at the highest humidity was elevated slightly. However, for air temperatures of 42°C., at 100% humidity, there was a significant elevation in skin blood flow and skin temperature above the other four air humidity's (p<0.05). In older subjects, the blood flow response was less and the skin temperature was much higher than younger individuals for air at 42°C. and 100% humidity (p<0.05). CONCLUSIONS Thus, in older subjects, warm humid air caused a greater rise in skin temperature with less protective effect of blood flow to protect the skin from overheating than is found in younger subjects.
Collapse
Affiliation(s)
- Jerrold S Petrofsky
- Department of Physical Therapy, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|