51
|
Žáček P, Bukowski M, Mehus A, Johnson L, Zeng H, Raatz S, Idso JP, Picklo M. Dietary saturated fatty acid type impacts obesity-induced metabolic dysfunction and plasma lipidomic signatures in mice. J Nutr Biochem 2019; 64:32-44. [DOI: 10.1016/j.jnutbio.2018.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
|
52
|
Mousa A, Naderpoor N, Mellett N, Wilson K, Plebanski M, Meikle PJ, de Courten B. Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:335-343. [PMID: 30586632 DOI: 10.1016/j.bbalip.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in mass spectrometry and lipidomics techniques are providing new insights into the role of lipid metabolism in obesity-related diseases. However, human lipidomic studies have been inconsistent, owing to the use of indirect proxy measures of metabolic outcomes and relatively limited coverage of the lipidome. Here, we employed comprehensive lipid profiling and gold-standard metabolic measures to test the hypothesis that distinct lipid signatures in obesity may signify early stages of pathogenesis toward type 2 diabetes. METHODS Using high-performance liquid chromatography-electrospray tandem mass spectrometry, we profiled >450 lipid species across 26 classes in 65 overweight or obese non-diabetic individuals. Intensive metabolic testing was conducted using direct gold-standard measures of adiposity (% body fat by dual X-ray absorptiometry), insulin sensitivity (hyperinsulinaemic-euglycaemic clamps), and insulin secretion (intravenous glucose tolerance tests), as well as measurement of serum inflammatory cytokines and adipokines (multiplex assays; flow cytometry). Univariable and multivariable linear regression models were computed using Matlab R2011a, and all analyses were corrected for multiple testing using the Benjamini-Hochberg method. RESULTS We present new evidence showing a strong and independent positive correlation between the lysophosphatidylinositol (LPI) lipid class and insulin secretion in vivo in humans (β [95% CI] = 781.9 [353.3, 1210.4], p = 0.01), supporting the insulinotropic effects of LPI demonstrated in mouse islets. Dihydroceramide, a sphingolipid precursor, was independently and negatively correlated with insulin sensitivity (β [95% CI] = -1.9 [-2.9, -0.9], p = 0.01), indicating a possible upregulation in sphingolipid synthesis in obese individuals. These associations remained significant in multivariable models adjusted for age, sex, and % body fat. The dihexosylceramide class correlated positively with interleukin-10 before and after adjustment for age, sex, and % body fat (p = 0.02), while the phosphatidylethanolamine class and its vinyl ether-linked (plasmalogen) derivatives correlated negatively with % body fat in both univariable and age- and sex-adjusted models (all p < 0.04). CONCLUSIONS Our data suggest that these lipid classes may signify early pathogenesis toward type 2 diabetes and could serve as novel therapeutic targets or biomarkers for diabetes prevention.
Collapse
Affiliation(s)
- Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Natalie Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Sciences, RMIT University, Corner Janefield Dr and Plenty Road, Bundoora, VIC 3083, Australia.
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| |
Collapse
|
53
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
54
|
Dasari S, Newsom SA, Ehrlicher SE, Stierwalt HD, Robinson MM. Remodeling of skeletal muscle mitochondrial proteome with high-fat diet involves greater changes to β-oxidation than electron transfer proteins in mice. Am J Physiol Endocrinol Metab 2018; 315:E425-E434. [PMID: 29812987 PMCID: PMC6230708 DOI: 10.1152/ajpendo.00051.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excess fat intake can increase lipid oxidation and expression of mitochondrial proteins, indicating remodeling of the mitochondrial proteome. Yet intermediates of lipid oxidation also accumulate, indicating a relative insufficiency to completely oxidize lipids. We investigated remodeling of the mitochondrial proteome to determine mechanisms of changes in lipid oxidation following high-fat feeding. C57BL/6J mice consumed a high-fat diet (HFD, 60% fat from lard) or a low-fat diet (LFD, 10% fat) for 12 wk. Mice were fasted for 4 h and then anesthetized by pentobarbital sodium overdose for tissue collection. A mitochondrial-enriched fraction was prepared from gastrocnemius muscles and underwent proteomic analysis by high-resolution mass spectrometry. Mitochondrial respiratory efficiency was measured as the ratio of ATP production to O2 consumption. Intramuscular acylcarnitines were measured by liquid chromatography-mass spectrometry. A total of 658 mitochondrial proteins were identified: 40 had higher abundance and 14 had lower abundance in mice consuming the HFD than in mice consuming the LFD. Individual proteins that changed with the HFD were primarily related to β-oxidation; there were fewer changes to the electron transfer system. Gene set enrichment analysis indicated that the HFD increased pathways of lipid metabolism and β-oxidation. Intramuscular concentrations of select acylcarnitines (C18:0) were greater in the HFD mice and reflected dietary lipid composition. Mitochondrial respiratory ATP production-to-O2 consumption ratio for lipids was not different between LFD and HFD mice. After the 60% fat diet, remodeling of the mitochondrial proteome revealed upregulation of proteins regulating lipid oxidation that was not evident for all mitochondrial pathways. The accumulation of lipid metabolites with obesity may occur without intrinsic dysfunction to mitochondrial lipid oxidation.
Collapse
Affiliation(s)
- Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic , Rochester, Minnesota
| | - Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| |
Collapse
|
55
|
Song G, Zhang M, Peng X, Yu X, Dai Z, Shen Q. Effect of deodorization method on the chemical and nutritional properties of fish oil during refining. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
56
|
Bukowiecka-Matusiak M, Burzynska-Pedziwiatr I, Sansone A, Malachowska B, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Ochedalski T, Cypryk K, Wozniak LA. Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS One 2018; 13:e0203799. [PMID: 30216387 PMCID: PMC6138398 DOI: 10.1371/journal.pone.0203799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a glucose intolerance that begins or is first recognized during pregnancy. It is currently a growing health problem worldwide affecting from 1% to 14% of all pregnant women depending on racial and ethnic group as well as the diagnostic and screening criteria. Our preliminary study aimed at investigating the erythrocyte membrane fatty acid profiles of pregnant women, in particular with diagnosed with gestational diabetes mellitus (GDM), and with normal glucose tolerant (NGT) pregnant women as a control group. The study group comprised 43 pregnant women, 32 of whom were diagnosed with GDM according to the WHO criteria, and 11 with normal glucose tolerance. The erythrocyte membrane phospholipids were obtained according to the Folch extraction procedure. Fatty acids (FA) were analyzed by gas chromatography (GC) as the corresponding fatty acid methyl esters (FAME). A cluster of 14 fatty acids identified contained >98% of the recognized peaks in the GC analysis. The analysis of fatty acids from erythrocytes revealed important differences between GDM and NGT women in the third trimester, and the results were correlated with biochemical data. Among the 14 measured FA representing the membrane lipidomic profile, the levels of three saturated FA (myristic, palmitic, stearic acids) tended to decrease in GDM patients, with the percentage content of stearic acid significantly changed. The relative content of monounsaturated fatty acids (MUFA) tended to increase, in particular the oleic acid and vaccenic acid contents were significantly increased in erythrocyte membranes of the GDM group in comparison with the NGT group. The GDM group demonstrated higher sapienic acid levels (+29%) but this change was not statistically significant. This study revealed association between an impaired cis-vaccenic acid concentration in erythrocytes membrane and GDM development. No significant changes of polyunsaturated fatty acids (PUFA) were observed in GDM and NGT erythrocytes. We postulate, basing on the differences between the GDM and NGT lipidomic profiles, that stearic and cis-vaccenic acids can be considered as dual biomarkers of specific SFA-MUFA conversion pathway, involving the coupling of delta-9 desaturase and elongase enzymes. Our results indicate that the SFA-MUFA families may be involved in the pathophysiology of metabolic diseases such as GDM, but the further studies are needed to confirm our hypothesis. In conclusion, the erythrocyte membranes of GDM women undergo remodeling resulting in abnormal fatty acid profiles, which are reflection of the long-term status of organism and can have great impact on both the mother and her offspring.
Collapse
Affiliation(s)
| | | | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Medical University of Lodz, Department of Biostatistics and Translational Medicine, Lodz, Poland
| | - Monika Zurawska-Klis
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Tomasz Ochedalski
- Medical University of Lodz, Department of Comparative Endocrinology, Lodz, Poland
| | - Katarzyna Cypryk
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | | |
Collapse
|
57
|
Lee JY, Wang H, Pyrgiotakis G, DeLoid GM, Zhang Z, Beltran-Huarac J, Demokritou P, Zhong W. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2018; 410:6155-6164. [PMID: 29845324 PMCID: PMC6119100 DOI: 10.1007/s00216-018-1145-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022]
Abstract
Nanoparticles (NPs) tend to adsorb matrix molecules like proteins and lipids incubated with biological fluids, forming a biological corona. While the formation and functions of protein corona have been studied extensively, little attention has been paid to lipid adsorption on NPs. However, lipids are also abundantly present in biological fluids and play important roles in processes like cell signaling and angiogenesis. Therefore, in this study, we established the analytical procedure for study of lipid adsorption on three different types of NPs in two matrices: human serum and heavy cream, using nanoflow liquid chromatography-mass spectrometry (nanoflowLC-MS). Serum was chosen to represent the common environment the NPs would be present once entering human body, and heavy cream was the representative food matrix NPs may be added to improve the color or taste. Steps of liquid-liquid extraction were established and optimized to achieve maximum recovery of the adsorbed, standard lipids from the NPs. Then, the LC-MS/MS method was developed to attain base-line separation of the standard lipids that represent the major lipid classes. At last, the lipid adsorption profiles of the three NPs were compared. We found that the lipid adsorption profile on the same type of NP was significantly different between the two matrices. The established method will help us investigate lipid adsorption on additional NPs and reveal how it could be affected by the physiochemical properties of NPs and the presence of proteins and other components in the biological matrix.
Collapse
Affiliation(s)
- Ju Yong Lee
- Department of Chemistry, University of California Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Hua Wang
- Department of Chemistry, University of California Riverside, 900 University Ave., Riverside, CA, 92521, USA
- Yancheng Normal University, Yancheng, 224051, Jiangsu, China
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Juan Beltran-Huarac
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
58
|
Lee JC, Park SM, Kim IY, Sung H, Seong JK, Moon MH. High-fat diet-induced lipidome perturbations in the cortex, hippocampus, hypothalamus, and olfactory bulb of mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:980-990. [PMID: 29787912 DOI: 10.1016/j.bbalip.2018.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Abstract
Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8 weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Se Mi Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea
| | - Hyerim Sung
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea.
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
59
|
Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab 2018; 29:178-190. [PMID: 29290500 DOI: 10.1016/j.tem.2017.11.009] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Increased plasma non-esterified fatty acids (NEFAs) link obesity with insulin resistance and type 2 diabetes mellitus (T2DM). However, in contrast to the saturated FA (SFA) palmitic acid, the monounsaturated FA (MUFA) oleic acid elicits beneficial effects on insulin sensitivity, and the dietary palmitic acid:oleic acid ratio impacts diabetes risk in humans. Here we review recent mechanistic insights into the beneficial effects of oleic acid compared with palmitic acid on insulin resistance and T2DM, including its anti-inflammatory actions, and its capacity to inhibit endoplasmic reticulum (ER) stress, prevent attenuation of the insulin signaling pathway, and improve β cell survival. Understanding the molecular mechanisms of the antidiabetic effects of oleic acid may contribute to understanding the benefits of this FA in the prevention or delay of T2DM.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
60
|
Summers SA. Could Ceramides Become the New Cholesterol? Cell Metab 2018; 27:276-280. [PMID: 29307517 DOI: 10.1016/j.cmet.2017.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022]
Abstract
The Mayo Clinic recently introduced a diagnostic test that quantifies plasma ceramides in order to identify patients at risk of major adverse cardiac events. By comparing recent discoveries about these biomarker ceramides with the exhaustive body of literature surrounding cholesterol, Summers aims to highlight important advances and critically needed areas of investigation on this exciting class of bioactive lipids.
Collapse
Affiliation(s)
- Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
61
|
Baye E, Ukropec J, de Courten MP, Vallova S, Krumpolec P, Kurdiova T, Aldini G, Ukropcova B, de Courten B. Effect of carnosine supplementation on the plasma lipidome in overweight and obese adults: a pilot randomised controlled trial. Sci Rep 2017; 7:17458. [PMID: 29234057 PMCID: PMC5727174 DOI: 10.1038/s41598-017-17577-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Carnosine has been shown to reduce oxidation and glycation of low density lipoprotein hence improving dyslipidaemia in rodents. The effect of carnosine on human plasma lipidome has thus far not been investigated. We aimed to determine whether carnosine supplementation improves the plasma lipidome in overweight and obese individuals. Lipid analysis was performed by liquid chromatography mass spectrometry in 24 overweight and obese adults: 13 were randomly assigned to 2 g carnosine daily and 11 to placebo, and treated for 12 weeks. Carnosine supplementation maintained trihexosylceramide (0.01 ± 0.19 vs -0.28 ± 0.34 nmol/ml, p = 0.04), phosphatidylcholine (77 ± 167 vs -81 ± 196 nmol/ml, p = 0.01) and free cholesterol (20 ± 80 vs -69 ± 80 nmol/ml, p = 0.006) levels compared to placebo. Trihexosylceramide was inversely related with fasting insulin (r = -0.6, p = 0.002), insulin resistance (r = -0.6, p = 0.003), insulin secretion (r = -0.4, p = 0.05) and serum carnosinase 1 activity (r = -0.3, p = 0.05). Both phosphatidylcholine and free cholesterol did not correlate with any cardiometabolic parameters. Our data suggest that carnosine may have beneficial effects on the plasma lipidome. Future larger clinical trials are needed to confirm this.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Silvia Vallova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Patrik Krumpolec
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia.,Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
62
|
Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle intervention in prepubertal children with obesity. Int J Obes (Lond) 2017; 42:72-78. [PMID: 28947825 DOI: 10.1038/ijo.2017.201] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Childhood obesity is a strong risk factor for adult obesity and metabolic diseases, including type 2 diabetes and cardiovascular disease. Early lifestyle intervention in children with obesity reduces future disease risk. The objective of this study is to identify metabolic signatures associated with lifestyle intervention in prepubertal children with obesity. METHODS Thirty-five prepubertal children (7-10 years) with obesity (body mass index (BMI)>2 standard deviations) were enrolled in the study and participated in a 6-month-long lifestyle intervention program. Physiological and biochemical data and blood samples were collected both at baseline and after the intervention. A liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach was applied to obtain a comprehensive profiling of plasma samples, identifying 2581 distinct metabolite. Principal component analysis (PCA) was performed to consolidate all features into 8 principal components. Associations between metabolites and physiological and biochemical variables were investigated. RESULTS The intervention program significantly decreased mean (95% CI) BMI standard deviation score from 3.56 (3.29-3.84) to 3.11 (2.88-3.34) (P<0.001). PCA identified one component (PC1) significantly altered by the intervention (Bonferroni adjusted P=0.008). A sphingolipid metabolism-related signature was identified as the major contributor to PC1. Sphingolipid metabolites were decreased by the intervention, and included multiple sphingomyelin, ceramide, glycosylsphingosine and sulfatide species. Changes in several sphingolipid metabolites were associated with intervention-induced improvements in HbA1c levels. CONCLUSIONS Decreased circulating sphingolipid-related metabolites were associated with lifestyle intervention in prepubertal children with obesity, and correlated to improvements in HbA1c.
Collapse
|
63
|
Mäkinen S, Nguyen YH, Skrobuk P, Koistinen HA. Palmitate and oleate exert differential effects on insulin signalling and glucose uptake in human skeletal muscle cells. Endocr Connect 2017; 6:331-339. [PMID: 28584168 PMCID: PMC5510447 DOI: 10.1530/ec-17-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Saturated fatty acids are implicated in the development of insulin resistance, whereas unsaturated fatty acids may have a protective effect on metabolism. We tested in primary human myotubes if insulin resistance induced by saturated fatty acid palmitate can be ameliorated by concomitant exposure to unsaturated fatty acid oleate. Primary human myotubes were pretreated with palmitate, oleate or their combination for 12 h. Glucose uptake was determined by intracellular accumulation of [3H]-2-deoxy-d-glucose, insulin signalling and activation of endoplasmic reticulum (ER) stress by Western blotting, and mitochondrial reactive oxygen species (ROS) production by fluorescent dye MitoSOX. Exposure of primary human myotubes to palmitate impaired insulin-stimulated Akt-Ser473, AS160 and GSK-3β phosphorylation, induced ER stress signalling target PERK and stress kinase JNK 54 kDa isoform. These effects were virtually abolished by concomitant exposure of palmitate-treated myotubes to oleate. However, an exposure to palmitate, oleate or their combination reduced insulin-stimulated glucose uptake. This was associated with increased mitochondrial ROS production in palmitate-treated myotubes co-incubated with oleate, and was alleviated by antioxidants MitoTempo and Tempol. Thus, metabolic and intracellular signalling events diverge in myotubes treated with palmitate and oleate. Exposure of human myotubes to excess fatty acids increases ROS production and induces insulin resistance.
Collapse
Affiliation(s)
- Selina Mäkinen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland
- University of HelsinkiDepartment of Medicine, and Abdominal Center, Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
| | - Yen H Nguyen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland
- University of HelsinkiDepartment of Medicine, and Abdominal Center, Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
| | - Paulina Skrobuk
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland
- University of HelsinkiDepartment of Medicine, and Abdominal Center, Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki A Koistinen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland
- University of HelsinkiDepartment of Medicine, and Abdominal Center, Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
64
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
65
|
Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, Illig T, Rhee EP, Srinivas PR, Wang TJ, Jain M. Potential Impact and Study Considerations of Metabolomics in Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. ACTA ACUST UNITED AC 2017; 10:HCG.0000000000000032. [PMID: 28360086 DOI: 10.1161/hcg.0000000000000032] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Through the measure of thousands of small-molecule metabolites in diverse biological systems, metabolomics now offers the potential for new insights into the factors that contribute to complex human diseases such as cardiovascular disease. Targeted metabolomics methods have already identified new molecular markers and metabolomic signatures of cardiovascular disease risk (including branched-chain amino acids, select unsaturated lipid species, and trimethylamine-N-oxide), thus in effect linking diverse exposures such as those from dietary intake and the microbiota with cardiometabolic traits. As technologies for metabolomics continue to evolve, the depth and breadth of small-molecule metabolite profiling in complex systems continue to advance rapidly, along with prospects for ongoing discovery. Current challenges facing the field of metabolomics include scaling throughput and technical capacity for metabolomics approaches, bioinformatic and chemoinformatic tools for handling large-scale metabolomics data, methods for elucidating the biochemical structure and function of novel metabolites, and strategies for determining the true clinical relevance of metabolites observed in association with cardiovascular disease outcomes. Progress made in addressing these challenges will allow metabolomics the potential to substantially affect diagnostics and therapeutics in cardiovascular medicine.
Collapse
|
66
|
Kulkarni H, Mamtani M, Blangero J, Curran JE. Lipidomics in the Study of Hypertension in Metabolic Syndrome. Curr Hypertens Rep 2017; 19:7. [PMID: 28168678 DOI: 10.1007/s11906-017-0705-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
67
|
Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13:79-91. [PMID: 27767036 DOI: 10.1038/nrendo.2016.169] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease form a metabolic disease continuum that has seen a dramatic increase in prevalence in developed and developing countries over the past two decades. Dyslipidaemia resulting from hypercaloric diets is a major contributor to the pathogenesis of metabolic disease, and lipid-lowering therapies are the main therapeutic option for this group of disorders. However, the fact that dysfunctional lipid metabolism extends far beyond cholesterol and triglycerides is becoming increasingly clear. Lipidomic studies and mouse models are helping to explain the complex interactions between diet, lipid metabolism and metabolic disease. These studies are not only improving our understanding of this complex biology, but are also identifying potential therapeutic avenues to combat this growing epidemic. This Review examines what is currently known about phospholipid and sphingolipid metabolism in the setting of obesity and how metabolic pathways are being modulated for therapeutic effect.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 201 Presidents Circle, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
68
|
de Oliveira DASB, Licodiedoff S, Furigo A, Ninow JL, Bork JA, Podestá R, Block JM, Waszczynskyj N. Enzymatic extraction of oil from yellowfin tuna (Thunnus albacares) by-products: a comparison with other extraction methods. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dayse A. S. B. de Oliveira
- Graduate Program in Fishing Engineering; Federal Institute of Espírito Santo - IFES; 29285-000 Piúma ES Brazil
| | - Silvana Licodiedoff
- Department of Chemistry Engineering and Food Engineering; Federal University of Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Agenor Furigo
- Department of Chemistry Engineering and Food Engineering; Federal University of Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Jorge L. Ninow
- Department of Chemistry Engineering and Food Engineering; Federal University of Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Jonathan A. Bork
- Department of Chemistry Engineering and Food Engineering; Federal University of Santa Catarina; 88040-900 Florianópolis SC Brazil
| | - Rossana Podestá
- Department of Food Science and Technology; Federal University of Santa Catarina; 88.034-001 Florianópolis SC Brazil
| | - Jane Mara Block
- Department of Food Science and Technology; Federal University of Santa Catarina; 88.034-001 Florianópolis SC Brazil
| | - Nina Waszczynskyj
- Post Graduate in Food Engineering; Federal University of Paraná; 81531-980 Curitiba PR Brazil
| |
Collapse
|
69
|
Dong S, Zhang R, Liang Y, Shi J, Li J, Shang F, Mao X, Sun J. Changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy using UPLC/Q-TOF/MS analysis. Diabetol Metab Syndr 2017; 9:56. [PMID: 28736579 PMCID: PMC5520292 DOI: 10.1186/s13098-017-0249-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious cardiac dysfunction induced by changes in the structure and contractility of the myocardium that are initiated in part by alterations in energy substrates. The underlying mechanisms of DCM are still under controversial. The observation of lipids, especially lipidomics profiling, can provide an insight into the know the biomarkers of DCM. The aim of our research was to detect changes of myocardial lipidomics profiling in a rat model of diabetic cardiomyopathy. METHODS Diabetic cardiomyopathy was induced by feeding a high-sucrose/fat diet (HSFD) for 28 weeks and streptozotocin (30 mg/kg, intraperitoneally). The ultra-high-performance liquid chromatography (UPLC) coupled to quadruple time-of flight (QTOF) mass spectrometer was used to acquire and analyze the lipidomics profiling of myocardial tissue. Meanwhile, parameters of cardiac function were collected using cardiac catheterization, and the cardiac index was calculated, and fasting blood glucose and lipid levels were measured by an ultraviolet spectrophotometric method. RESULTS We detected 3023 positive ion peaks and 300 negative ion peaks. Levels of phosphatidylcholine (PC) (22:6/18:2), PC (22:6/18:1), PC (20:4/16:1), PC (16:1/18:3), phosphatidylethanolamine (PE) (20:4/18:2), and PE (20:4/16:0) were down-regulated, and PC (20:2/18:2), PC (18:0/16:0), and PC (20:4/18:0) were up-regulated in DCM model rats, when compared with control rats. Cardiac functions signed as values of left ventricular systolic pressure, maximal uprising velocity of left ventricular pressure and maximal decreasing velocity of left ventricular pressure were injured by 21-44%, and the cardiac index was increased by 25%, and fasting blood glucose and lipids were increased by 34-368%. Meanwhile, the cardiac lipid-related biomarkers have significant correlation with changes of cardiac function and cardiac index. CONCLUSIONS UPLC/Q-TOF/MS analysis data suggested changes of some potential lipid biomarkers in the development of cardiac dysfunction and hypertrophy of diabetic cardiomyopathy, which may serve as potential important targets for clinical diagnosis and therapeutic intervention of DCM in the future.
Collapse
Affiliation(s)
- Shifen Dong
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan South Road, Chaoyang District, Beijing, 100102 China
| | - Rong Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan South Road, Chaoyang District, Beijing, 100102 China
| | - Yaoyue Liang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan South Road, Chaoyang District, Beijing, 100102 China
| | - Jiachen Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan South Road, Chaoyang District, Beijing, 100102 China
| | - Jiajia Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan South Road, Chaoyang District, Beijing, 100102 China
| | - Fei Shang
- Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xuezhou Mao
- Biostatistics and Programming, Sanofi U.S., Bridgewater, NJ 08807 USA
| | - Jianning Sun
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 6 Wang Jing Zhong Huan South Road, Chaoyang District, Beijing, 100102 China
| |
Collapse
|
70
|
Liu X, Kris-Etherton PM, West SG, Lamarche B, Jenkins DJA, Fleming JA, McCrea CE, Pu S, Couture P, Connelly PW, Jones PJH. Effects of canola and high-oleic-acid canola oils on abdominal fat mass in individuals with central obesity. Obesity (Silver Spring) 2016; 24:2261-2268. [PMID: 27804268 PMCID: PMC5119743 DOI: 10.1002/oby.21584] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To determine the effect of diets low in saturated fatty acids and high in monounsaturated fatty acids (MUFA) or polyunsaturated fatty acids on body composition in participants at risk for metabolic syndrome (MetS). METHODS This study was a randomized, crossover, controlled feeding study. Participants (n = 101, ages 49.5 ± 1.2, BMI 29.4 ± 0.4 kg/m2 ) were randomized to five isocaloric diets containing treatment oils: Canola, CanolaOleic, CanolaDHA, Corn/Safflower, and Flax/Safflower. Each diet period was 4 weeks followed by a 2- to 4-week washout period. RESULTS Canola (3.1 kg, P = 0.026) and CanolaOleic oil diets (3.09 kg, P = 0.03) reduced android fat mass compared with the Flax/Saff oil diet (3.2 kg), particularly in men. The decrease in abdominal fat mass was correlated with the reduction in blood pressure after the Canola (systolic blood pressure: r = 0.26, P = 0.062; diastolic blood pressure: r = 0.38, P = 0.0049) and CanolaOleic oil diets (systolic blood pressure: r = 0.39 P = 0.004; diastolic blood pressure: r = 0.45, P = 0.0006). The decrease in abdominal fat mass also was associated with a reduction in triglyceride levels after the CanolaOleic oil diet (r = 0.42, P = 0.002). CONCLUSIONS Diets high in MUFA (compared with PUFA) reduced central obesity with an accompanying improvement in MetS risk factors. Diets high in MUFA may be beneficial for treating and perhaps preventing MetS.
Collapse
Affiliation(s)
- Xiaoran Liu
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Sheila G West
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - David J A Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Fleming
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Cindy E McCrea
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shuaihua Pu
- Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Philip W Connelly
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Peter J H Jones
- Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
71
|
Lerin C, Goldfine AB, Boes T, Liu M, Kasif S, Dreyfuss JM, De Sousa-Coelho AL, Daher G, Manoli I, Sysol JR, Isganaitis E, Jessen N, Goodyear LJ, Beebe K, Gall W, Venditti CP, Patti ME. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol Metab 2016; 5:926-936. [PMID: 27689005 PMCID: PMC5034611 DOI: 10.1016/j.molmet.2016.08.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. METHODS To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. RESULTS Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. CONCLUSIONS Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.
Collapse
Affiliation(s)
- Carles Lerin
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA; Endocrinology Department, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona 08950, Spain.
| | - Allison B Goldfine
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Tanner Boes
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Manway Liu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Simon Kasif
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ana Luisa De Sousa-Coelho
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Grace Daher
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Irini Manoli
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Justin R Sysol
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Niels Jessen
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | - Walt Gall
- Metabolon, Inc., Durham, NC 27723, USA
| | - Charles P Venditti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
72
|
Dumas JA, Bunn JY, Nickerson J, Crain KI, Ebenstein DB, Tarleton EK, Makarewicz J, Poynter ME, Kien CL. Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metabolism 2016; 65:1582-8. [PMID: 27621193 PMCID: PMC5023067 DOI: 10.1016/j.metabol.2016.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous literature suggests that a higher ratio of palmitic acid (PA)/oleic acid (OA) in the diet induces inflammation, which may result in deficient brain insulin signaling, and, secondarily, impaired physical activity, sleep efficiency, and cognitive functioning. OBJECTIVE We hypothesized that lowering the typical dietary PA/OA would affect the activation of relevant brain networks during a working memory task and would also lower secretion of pro-inflammatory cytokines. DESIGN In 12 female subjects participating in a randomized, cross-over trial comparing 3-week high PA diet (HPA) and low PA and a high OA diet (HOA), we evaluated functional magnetic resonance imaging (fMRI) using an N-back test of working memory, cytokine secretion by lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMC), and plasma cytokine concentrations. RESULTS Brain activation during the HPA diet compared to the HOA diet was increased in regions of the basal ganglia including the caudate and putamen (p<0.005). In addition, compared to the HOA diet, during the HPA diet, the plasma concentrations of IL-6 (p=0.04) and IL-1β (p=0.05) were higher, and there was a higher secretion of IL-18 (p=0.015) and a trend for higher IL-1β secretion (p=0.066) from LPS-stimulated PBMCs. CONCLUSIONS The HPA diet resulted in increased brain activation in the basal ganglia compared to the HOA diet as well as increased secretion of pro-inflammatory cytokines. These data provide evidence that short-term (2week) diet interventions impact brain network activation during a working memory task and that these effects are reversible since the order of the study diets was randomized. These data are consistent with the hypothesis that lowering the dietary PA content via substitution with OA also could affect cognition.
Collapse
Affiliation(s)
- Julie A Dumas
- Department of Psychiatry, University of Vermont, Burlington, VT, USA.
| | - Janice Y Bunn
- Department of Medical Biostatistics, University of Vermont, Burlington, VT, USA
| | - Joshua Nickerson
- Department of Radiology, University of Vermont, Burlington, VT, USA
| | - Karen I Crain
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Emily K Tarleton
- College of Medicine Clinical Research Center, University of Vermont, Burlington, VT, USA
| | - Jenna Makarewicz
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Craig Lawrence Kien
- Department of Medicine, University of Vermont, Burlington, VT, USA; Department of Pediatrics, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
73
|
Rico JE, Mathews AT, Lovett J, Haughey NJ, McFadden JW. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge. J Dairy Sci 2016; 99:8817-8830. [PMID: 27638262 DOI: 10.3168/jds.2016-11296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022]
Abstract
Reduced insulin action is a key adaptation that facilitates glucose partitioning to the mammary gland for milk synthesis and enhances adipose tissue lipolysis during early lactation. The progressive recovery of insulin sensitivity as cows advance toward late lactation is accompanied by reductions in circulating nonesterified fatty acids (NEFA) and milk yield. Because palmitic acid can promote insulin resistance in monogastrics through sphingolipid ceramide-dependent mechanisms, palmitic acid (C16:0) feeding may enhance milk production by restoring homeorhetic responses. We hypothesized that feeding C16:0 to mid-lactation cows would enhance ceramide supply and ceramide would be positively associated with milk yield. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows were randomly assigned to a sorghum silage-based diet containing no supplemental fat (control; n=10; 138±45 d in milk) or C16:0 at 4% of ration dry matter (PALM; 98% C16:0; n=10; 136±44 d in milk). Blood and milk were collected at routine intervals. Liver and skeletal muscle tissue were biopsied at d 47 of treatment. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. The plasma and tissue concentrations of ceramide and glycosylated ceramide were determined using liquid chromatography coupled with tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield, energy-corrected milk, and milk fat yield. The most abundant plasma and tissue sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide (GlcCer), and C16:0-lactosylceramide. Plasma concentrations of total ceramide and GlcCer decreased as lactation advanced, and ceramide and GlcCer were elevated in cows fed PALM. Palmitic acid feeding increased hepatic ceramide levels, a response not observed in skeletal muscle tissue. Plasma ceramides (e.g., C24:0-ceramide) were positively correlated with plasma NEFA and milk yield, and positively correlated with NEFA levels following a glucose challenge. Our data demonstrate a remodeled plasma and hepatic sphingolipidome in mid-lactation dairy cows fed PALM. The potential involvement in ceramide in homeorhetic nutrient partitioning to support lactation requires further consideration.
Collapse
Affiliation(s)
- J E Rico
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26506
| | - A T Mathews
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26506
| | - J Lovett
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - N J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - J W McFadden
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26506.
| |
Collapse
|
74
|
Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat Commun 2016; 7:11365. [PMID: 27098609 PMCID: PMC4844681 DOI: 10.1038/ncomms11365] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis. The kinase mTOR controls anabolic metabolism. Here, the authors create fat-specific mTORC2 knockout mice using the Adiponectin-Cre driver and show mTORC2 signalling is important for systemic metabolic homeostasis by controlling adipocyte de novo lipogenesis and glucose uptake.
Collapse
|
75
|
de Oliveira DASB, Minozzo MG, Licodiedoff S, Waszczynskyj N. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis. Food Chem 2016; 207:187-94. [PMID: 27080896 DOI: 10.1016/j.foodchem.2016.03.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/30/2016] [Accepted: 03/20/2016] [Indexed: 11/26/2022]
Abstract
In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA.
Collapse
Affiliation(s)
- Dayse A S B de Oliveira
- Department of Course Coordination, Instituto Federal do Espírito Santo - IFES, Rua Costa de Oliveira, 660, CEP 29285-000 Piúma, ES, Brazil.
| | - Marcelo G Minozzo
- Department of Course Coordination, Instituto Federal do Espírito Santo - IFES, Rua Costa de Oliveira, 660, CEP 29285-000 Piúma, ES, Brazil
| | - Silvana Licodiedoff
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Trindade, CEP 88040-900 Florianópolis, SC, Brazil
| | - Nina Waszczynskyj
- Graduation Program in Food Technology, Universidade Federal do Paraná, Rua Francisco H. dos Santos, CEP 81531-980 Curitiba, PR, Brazil
| |
Collapse
|
76
|
Petersen MC, Jurczak MJ. CrossTalk opposing view: Intramyocellular ceramide accumulation does not modulate insulin resistance. J Physiol 2016; 594:3171-4. [PMID: 26997581 DOI: 10.1113/jp271677] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/10/2016] [Indexed: 01/13/2023] Open
Affiliation(s)
- Max C Petersen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Jurczak
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
77
|
Yew Tan C, Virtue S, Murfitt S, Roberts LD, Robert LD, Phua YH, Dale M, Griffin JL, Tinahones F, Scherer PE, Vidal-Puig A. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Sci Rep 2015; 5:18366. [PMID: 26679101 PMCID: PMC4683622 DOI: 10.1038/srep18366] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022] Open
Abstract
The non-essential fatty acids, C18:1n9, C16:0, C16:1n7, C18:0 and C18:1n7 account for over 75% of fatty acids in white adipose (WAT) triacylglycerol (TAG). The relative composition of these fatty acids (FA) is influenced by the desaturases, SCD1-4 and the elongase, ELOVL6. In knock-out models, loss of SCD1 or ELOVL6 results in reduced Δ9 desaturated and reduced 18-carbon non-essential FA respectively. Both Elovl6 KO and SCD1 KO mice exhibit improved insulin sensitivity. Here we describe the relationship between WAT TAG composition in obese mouse models and obese humans stratified for insulin resistance. In mouse models with increasing obesity and insulin resistance, there was an increase in scWAT Δ9 desaturated FAs (SCD ratio) and FAs with 18-carbons (Elovl6 ratio) in mice. Data from mouse models discordant for obesity and insulin resistance (AKT2 KO, Adiponectin aP2-transgenic), suggested that scWAT TAG Elovl6 ratio was associated with insulin sensitivity, whereas SCD1 ratio was associated with fat mass. In humans, a greater SCD1 and Elovl6 ratio was found in metabolically more harmful visceral adipose tissue when compared to subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Chong Yew Tan
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC. Addenbrooke's Hospital, Cambridge, CB2 0QQ
| | - Samuel Virtue
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC. Addenbrooke's Hospital, Cambridge, CB2 0QQ
| | - Steven Murfitt
- University of Cambridge Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA
| | | | - Lee D Robert
- University of Cambridge Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA.,Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, Uk
| | - Yi Hui Phua
- University of Cambridge Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA
| | - Martin Dale
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC. Addenbrooke's Hospital, Cambridge, CB2 0QQ
| | - Julian L Griffin
- University of Cambridge Department of Biochemistry, 80 Tennis Court Road, Cambridge, CB2 1GA.,Medical Research Council - Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, Uk
| | - Francisco Tinahones
- UGC Endocrinologia y Nutrición (IBIMA), Hospital Virgen de la Victoria. CIBER of Physiopathology, Obesity and Nutrition (CIBEROBN) Málaga, Spain
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC. Addenbrooke's Hospital, Cambridge, CB2 0QQ.,Wellcome Trust Sanger Institute, Hinxton, Uk
| |
Collapse
|
78
|
Yang L, Li M, Shan Y, Shen S, Bai Y, Liu H. Recent advances in lipidomics for disease research. J Sep Sci 2015; 39:38-50. [PMID: 26394722 DOI: 10.1002/jssc.201500899] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
Lipidomics is an important branch of metabolomics, which aims at the detailed analysis of lipid species and their multiple roles in the living system. In recent years, the development of various analytical methods for effective identification and characterization of lipids has greatly promoted the process of lipidomics. Meanwhile, as many diseases demonstrate a remarkable alteration in lipid profiles compared with that of healthy people, lipidomics has been extensively introduced to disease research. The comprehensive lipid profiling provides a chance to discover novel biomarkers for specific disease. In addition, it plays a crucial role in the study of lipid metabolism, which could illuminate the pathogenesis of diseases. In this review, after brief discussion of analytical methods for lipidomics in clinical research, we focus on the recent advances of lipidomics related to four types of diseases, including cancer, atherosclerosis, diabetes mellitus, and Alzheimer's disease.
Collapse
Affiliation(s)
- Li Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Min Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yabing Shan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,National Research Center for Geoanalysis, Beijing, China
| | - Sensen Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
79
|
Glynn EL, Piner LW, Huffman KM, Slentz CA, Elliot-Penry L, AbouAssi H, White PJ, Bain JR, Muehlbauer MJ, Ilkayeva OR, Stevens RD, Porter Starr KN, Bales CW, Volpi E, Brosnan MJ, Trimmer JK, Rolph TP, Newgard CB, Kraus WE. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans. Diabetologia 2015; 58:2324-35. [PMID: 26254576 PMCID: PMC4793723 DOI: 10.1007/s00125-015-3705-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/24/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESES Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. METHODS Whole-body leucine turnover, IS by hyperinsulinaemic-euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). RESULTS IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. CONCLUSIONS/INTERPRETATION A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. TRIAL REGISTRATION Clinicaltrials.gov NCT01786941.
Collapse
Affiliation(s)
- Erin L Glynn
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Lucy W Piner
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Cris A Slentz
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Lorraine Elliot-Penry
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Hiba AbouAssi
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Phillip J White
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - James R Bain
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | | | - Connie W Bales
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Division of Geriatrics, Duke University Medical Center, Durham, NC, USA
- GRECC, Durham VA Medical Center, Durham, NC, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - M Julia Brosnan
- The CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Jeff K Trimmer
- The CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Timothy P Rolph
- The CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition & Metabolism Center, Duke University Medical Center, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA.
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.
- Department of Cardiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
80
|
Abstract
A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.
Collapse
Affiliation(s)
- Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico, 87131-0001, USA
| | - Henry C Lin
- Division of Gastroenterology, New Mexico VA Health Care System, Albuquerque, New Mexico, 87108, USA; Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, 87131-0001, USA
| |
Collapse
|
81
|
Visioli F. Lipidomics to Assess Omega 3 Bioactivity. J Clin Med 2015; 4:1753-60. [PMID: 26371049 PMCID: PMC4600157 DOI: 10.3390/jcm4091753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
How can we resolve the conflict between the strong epidemiological evidence pointing to the usefulness of fish—and, thus, omega 3—consumption with the debacle of supplementation trials? One potential explanation is that the null results obtained thus far are the consequences of ill-contrived investigations that do not allow us to conclude on the effects (or lack thereof) of omega 3 fatty acid supplementation. One potential solution is through the use of lipidomics, which should prove very useful to screen suitable patients and to correlate plasma (or red blood cells, or whole blood, or phospholipid) fatty acid profile with outcomes. This has never been done in omega 3 trials. The wise use of lipidomics should be essential part of future omega 3 trials and would help in untangling this current riddle.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Via 8 Febbraio, 2-35122 Padova, Italy.
| |
Collapse
|
82
|
Bergman BC, Brozinick JT, Strauss A, Bacon S, Kerege A, Bui HH, Sanders P, Siddall P, Kuo MS, Perreault L. Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. Am J Physiol Endocrinol Metab 2015; 309:E398-408. [PMID: 26126684 PMCID: PMC4537923 DOI: 10.1152/ajpendo.00134.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Ceramides and sphingolipids are a family of lipid molecules that circulate in serum and accumulate in skeletal muscle, promoting insulin resistance. Plasma ceramide and dihydroceramide are related to insulin resistance, yet less is known regarding other ceramide and sphingolipid species. Despite its association with insulin sensitivity, chronic endurance exercise training does not change plasma ceramide and sphingolipid content, with little known regarding a single bout of exercise. We measured basal relationships and the effect of acute exercise (1.5 h at 50% V̇o2 max) and recovery on serum ceramide and sphingolipid content in sedentary obese individuals, endurance-trained athletes, and individuals with type 2 diabetes (T2D). Basal serum C18:0, C20:0, and C24:1 ceramide and C18:0 and total dihydroceramide were significantly higher in T2D and, along with C16:0 ceramide and C18:0 sphingomyelin, correlated positively with insulin resistance. Acute exercise significantly increased serum ceramide, glucosylceramide, and GM3 gangliosides, which largely decreased to basal values in recovery. Sphingosine 1-phosphate and sphingomyelin did not change during exercise but decreased below basal values in recovery. Serum C16:0 and C18:0 ceramide and C18:0 sphingomyelin, but not the total concentrations of either of them, were positively correlated with markers of muscle NF-κB activation, suggesting that specific species activate intracellular inflammation. Interestingly, a subset of sphingomyelin species, notably C14:0, C22:3, and C24:4 species, was positively associated with insulin secretion and glucose tolerance. Together, these data show that unique ceramide and sphingolipid species associate with either protective or deleterious features for diabetes and could provide novel therapeutic targets for the future.
Collapse
Affiliation(s)
- Bryan C Bergman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | - Allison Strauss
- University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Samantha Bacon
- University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Anna Kerege
- University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | | | | | | | - Leigh Perreault
- University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
83
|
Park JY, Lee SH, Shin MJ, Hwang GS. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction. PLoS One 2015; 10:e0135228. [PMID: 26258408 PMCID: PMC4530944 DOI: 10.1371/journal.pone.0135228] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023] Open
Abstract
Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.
Collapse
Affiliation(s)
- Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Cardiology Division, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
84
|
Kien CL, Bunn JY, Fukagawa NK, Anathy V, Matthews DE, Crain KI, Ebenstein DB, Tarleton EK, Pratley RE, Poynter ME. Lipidomic evidence that lowering the typical dietary palmitate to oleate ratio in humans decreases the leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes. J Nutr Biochem 2015; 26:1599-606. [PMID: 26324406 DOI: 10.1016/j.jnutbio.2015.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/09/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
We recently reported that lowering the high, habitual palmitic acid (PA) intake in ovulating women improved insulin sensitivity and both inflammatory and oxidative stress. In vitro studies indicate that PA can activate both cell membrane toll-like receptor-4 and the intracellular nucleotide oligomerization domain-like receptor protein (NLRP3). To gain further insight into the relevance to human metabolic disease of dietary PA, we studied healthy, lean and obese adults enrolled in a randomized, crossover trial comparing 3-week, high-PA (HPA) and low-PA/high-oleic-acid (HOA) diets. After each diet, both hepatic and peripheral insulin sensitivities were measured, and we assessed cytokine concentrations in plasma and in supernatants derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells (PBMCs) as well as proinflammatory gene expression in skeletal muscle. Insulin sensitivity was unaffected by diet. Plasma concentration of tumor necrosis factor-α was higher during the HPA diet. Lowering the habitually high PA intake by feeding the HOA diet resulted in lower secretion of interleukin (IL)-1β, IL-18, IL-10, and tumor necrosis factor-α by PBMCs, as well as lower relative mRNA expression of cJun and NLRP3 in muscle. Principal components analysis of 156 total variables coupled to analysis of covariance indicated that the mechanistic pathway for the differential dietary effects on PBMCs involved changes in the PA/OA ratio of tissue lipids. Our results indicate that lowering the dietary and tissue lipid PA/OA ratio resulted in lower leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes, but the relevance to diabetes risk is uncertain.
Collapse
Affiliation(s)
- C Lawrence Kien
- Department of Pediatrics, University of Vermont, Burlington, VT; Department of Medicine, University of Vermont, Burlington, VT.
| | - Janice Y Bunn
- Department of Medical Biostatistics, University of Vermont, Burlington, VT
| | | | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT
| | - Dwight E Matthews
- Department of Medicine, University of Vermont, Burlington, VT; Department of Chemistry, University of Vermont, Burlington, VT
| | - Karen I Crain
- Department of Medicine, University of Vermont, Burlington, VT
| | | | - Emily K Tarleton
- College of Medicine Clinical Research Center, University of Vermont, Burlington, VT
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Sanford-Burnham Medical Research Institute, Orlando, FL
| | | |
Collapse
|
85
|
Hinterwirth H, Stegemann C, Mayr M. Lipidomics: quest for molecular lipid biomarkers in cardiovascular disease. ACTA ACUST UNITED AC 2015; 7:941-54. [PMID: 25516624 DOI: 10.1161/circgenetics.114.000550] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipidomics is the comprehensive analysis of molecular lipid species, including their quantitation and metabolic pathways. The huge diversity of native lipids and their modifications make lipidomic analyses challenging. The method of choice for sensitive detection and quantitation of molecular lipid species is mass spectrometry, either by direct infusion (shotgun lipidomics) or coupled with liquid chromatography. Although shotgun lipidomics allows for high-throughput analysis, low-abundant lipid species are not detected. Previous separation of lipid species by liquid chromatography increases ionization efficiency and is better suited for quantifying low abundant and isomeric lipid species. In this review, we will discuss the potential of lipidomics for cardiovascular research. To date, cardiovascular research predominantly focuses on the role of lipid classes rather than molecular entities. An in-depth knowledge about the molecular lipid species that contribute to the pathophysiology of cardiovascular diseases may provide better biomarkers and novel therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Helmut Hinterwirth
- From the King's British Heart Foundation Centre, King's College, London, United Kingdom
| | - Christin Stegemann
- From the King's British Heart Foundation Centre, King's College, London, United Kingdom
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College, London, United Kingdom.
| |
Collapse
|
86
|
Kien CL, Matthews DE, Poynter ME, Bunn JY, Fukagawa NK, Crain KI, Ebenstein DB, Tarleton EK, Stevens RD, Koves TR, Muoio DM. Increased palmitate intake: higher acylcarnitine concentrations without impaired progression of β-oxidation. J Lipid Res 2015; 56:1795-807. [PMID: 26156077 DOI: 10.1194/jlr.m060137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 01/19/2023] Open
Abstract
Palmitic acid (PA) is associated with higher blood concentrations of medium-chain acylcarnitines (MCACs), and we hypothesized that PA may inhibit progression of FA β-oxidation. Using a cross-over design, 17 adults were fed high PA (HPA) and low PA/high oleic acid (HOA) diets, each for 3 weeks. The [1-(13)C]PA and [13-(13)C]PA tracers were administered with food in random order with each diet, and we assessed PA oxidation (PA OX) and serum AC concentration to determine whether a higher PA intake promoted incomplete PA OX. Dietary PA was completely oxidized during the HOA diet, but only about 40% was oxidized during the HPA diet. The [13-(13)C]PA/[1-(13)C]PA ratio of PA OX had an approximate value of 1.0 for either diet, but the ratio of the serum concentrations of MCACs to long-chain ACs (LCACs) was significantly higher during the HPA diet. Thus, direct measurement of PA OX did not confirm that the HPA diet caused incomplete PA OX, despite the modest, but statistically significant, increase in the ratio of MCACs to LCACs in blood.
Collapse
Affiliation(s)
- C Lawrence Kien
- Departments of Pediatrics, University of Vermont, Burlington, VT Medicine, University of Vermont, Burlington, VT
| | - Dwight E Matthews
- Medicine, University of Vermont, Burlington, VT Chemistry, University of Vermont, Burlington, VT
| | | | - Janice Y Bunn
- Medical Biostatistics, University of Vermont, Burlington, VT
| | | | | | | | - Emily K Tarleton
- College of Medicine Clinical Research Center, University of Vermont, Burlington, VT
| | - Robert D Stevens
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| |
Collapse
|
87
|
Morris C, O'Grada CM, Ryan MF, Gibney MJ, Roche HM, Gibney ER, Brennan L. Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study. Lipids Health Dis 2015; 14:65. [PMID: 26123789 PMCID: PMC4489019 DOI: 10.1186/s12944-015-0062-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022] Open
Abstract
Background The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. Methods 214 healthy adults aged 18–60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS. Results Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides. Conclusion This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by fitness level. Future lipidomic studies should take into account environmental factors such as diet and fitness level during biomarker discovery work. Trial registration Data, clinicaltrials.gov, NCT01172951 Electronic supplementary material The online version of this article (doi:10.1186/s12944-015-0062-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ciara Morris
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Colm M O'Grada
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Miriam F Ryan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael J Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Roche
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lorraine Brennan
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
88
|
Schwab U, Uusitupa M. Diet heart controversies--Quality of fat matters. Nutr Metab Cardiovasc Dis 2015; 25:617-622. [PMID: 25921848 DOI: 10.1016/j.numecd.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 01/02/2023]
Abstract
There has been a lot a debate recently regarding the effect of the quality of dietary fat on the risk of atherosclerotic vascular diseases, especially coronary heart disease (CHD). Long term randomized controlled interventions are almost lacking and the body of evidence is based on epidemiological data which allows conclusions only regarding associations, instead of effects. However, a recent systematic review, which included prospective cohort studies with high or moderate quality, showed convincing evidence on the favorable effect of partially replacing saturated fatty acids by polyunsaturated fatty acids on the risk of CHD. For some reason it seems tempting even in the scientific discussion to question the evidence of the quality of dietary fat on the risk of CHD every time when a controversial scientific article is published.
Collapse
Affiliation(s)
- U Schwab
- Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland.
| | - M Uusitupa
- Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
89
|
Ritter O, Jelenik T, Roden M. Lipid-mediated muscle insulin resistance: different fat, different pathways? J Mol Med (Berl) 2015; 93:831-43. [PMID: 26108617 DOI: 10.1007/s00109-015-1310-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
Increased dietary fat intake and lipolysis result in excessive lipid availability, which relates to impaired insulin sensitivity. Over the last years, several mechanisms possibly underlying lipid-mediated insulin resistance evolved. Lipid intermediates such as diacylglycerols (DAG) associate with changes in insulin sensitivity in many models. DAG activate novel protein kinase C (PKC) isoforms followed by inhibitory serine phosphorylation of insulin receptor substrate 1 (IRS1). Activation of Toll-like receptor 4 (TLR4) raises another lipid class, ceramides (CER), which induce pro-inflammatory pathways and lead to inhibition of Akt phosphorylation. Inhibition of glucosylceramide and ganglioside synthesis results in improved insulin sensitivity and increased activatory tyrosine phosphorylation of IRS1 in the muscle. Incomplete fat oxidation can increase acylcarnitines (ACC), which in turn stimulate pro-inflammatory pathways. This review analyzed the effects of lipid metabolites on insulin action in skeletal muscle of humans and rodents. Despite the evidence for the association of both DAG and CER with insulin resistance, its causal relevance may differ depending on the subcellular localization and the tested cohorts, e.g., athletes. Nevertheless, recent data indicate that individual lipid species and their degree of fatty acid saturation, particularly membrane and cytosolic C18:2 DAG, specifically activate PKCθ and induce both acute lipid-induced and chronic insulin resistance in humans.
Collapse
Affiliation(s)
- Olesja Ritter
- Institute for Clinical Diabetology, German Diabetes Center, c/o Auf'm Hennekamp 65, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
90
|
Carta G, Murru E, Lisai S, Sirigu A, Piras A, Collu M, Batetta B, Gambelli L, Banni S. Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS One 2015; 10:e0120424. [PMID: 25775474 PMCID: PMC4361611 DOI: 10.1371/journal.pone.0120424] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
Background Several evidences suggest that the position of palmitic acid (PA) in dietary triacylglycerol (TAG) influences different biological functions. We aimed at evaluating whether dietary fat with highly enriched (87%) PA in sn-2 position (Hsn-2 PA), by increasing PA incorporation into tissue phospholipids (PL), modifies fatty acid profile and biosynthesis of fatty acid—derived bioactive lipids, such as endocannabinoids and their congeners. Study Design Rats were fed for 5 weeks diets containing Hsn-2 PA or fat with PA randomly distributed in TAG with 18.8% PA in sn-2 position (Lsn-2 PA), and similar total PA concentration. Fatty acid profile in different lipid fractions, endocannabinoids and congeners were measured in intestine, liver, visceral adipose tissue, muscle and brain. Results Rats on Hsn-2 PA diet had lower levels of anandamide with concomitant increase of its congener palmitoylethanolamide and its precursor PA into visceral adipose tissue phospholipids. In addition, we found an increase of oleoylethanolamide, an avid PPAR alpha ligand, in liver, muscle and brain, associated to higher levels of its precursor oleic acid in liver and muscle, probably derived by elongation and further delta 9 desaturation of PA. Changes in endocannabinoids and congeners were associated to a decrease of circulating TNF alpha after LPS challenge, and to an improved feed efficiency. Conclusions Dietary Hsn-2 PA, by modifying endocannabinoids and congeners biosynthesis in different tissues may potentially concur in the physiological regulation of energy metabolism, brain function and body fat distribution.
Collapse
Affiliation(s)
- Gianfranca Carta
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Elisabetta Murru
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Sara Lisai
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Annarita Sirigu
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Antonio Piras
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Maria Collu
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | - Barbara Batetta
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
| | | | - Sebastiano Banni
- Dipartimento Scienze Biomediche, Università di Cagliari, Cagliari Italy
- * E-mail:
| |
Collapse
|
91
|
Pereira S, Breen DM, Naassan AE, Wang PYT, Uchino H, Fantus IG, Carpentier AC, Gutierrez-Juarez R, Brindley DN, Lam TKT, Giacca A. In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity. Metabolism 2015; 64:315-22. [PMID: 25467844 DOI: 10.1016/j.metabol.2014.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Free fatty acids (FFAs) cause insulin resistance and are often elevated in obesity. Chronic ingestion of diets rich in saturated fat induces more insulin resistance than diets rich in unsaturated fat, however, it remains unclear whether different FFAs cause distinct levels of insulin resistance in the short-term, which is relevant to the feeding and fasting cycle. Protein kinase C (PKC)-δ is implicated in hepatic insulin resistance. Therefore, we investigated the effects of short-term elevation of fatty acids with different degrees of unsaturation on hepatic insulin action and liver PKC-δ membrane translocation, a marker of activation. MATERIALS/METHODS Triglyceride emulsions of Soybean Oil+Heparin (polyunsaturated (POLY)), Olive Oil+Heparin (monounsaturated (MONO)), Lard Oil+Heparin (saturated (SATU)), or saline (SAL) were infused intravenously for 7h to elevate plasma FFA concentrations ~3-4 fold in rats. During the last 2h of infusion, a hyperinsulinemic-euglycemic clamp with tritiated glucose methodology was performed to examine hepatic and peripheral insulin sensitivity. RESULTS Surprisingly, SATU, MONO, and POLY impaired peripheral insulin sensitivity (glucose utilization divided by insulin) to a similar extent. Furthermore, all lipids induced a similar degree of hepatic insulin resistance compared to SAL. Although there were changes in hepatic content of lipid metabolites, there were no significant differences in liver PKC-δ membrane translocation across fat groups. CONCLUSIONS In summary, in the short-term, FFAs with different degrees of unsaturation impair peripheral insulin sensitivity and induce hepatic insulin resistance as well as hepatic PKC-δ translocation to the same extent.
Collapse
MESH Headings
- Animals
- Cell Membrane/enzymology
- Dietary Fats/administration & dosage
- Dietary Fats/adverse effects
- Dietary Fats/analysis
- Dietary Fats/metabolism
- Dietary Fats, Unsaturated/administration & dosage
- Dietary Fats, Unsaturated/adverse effects
- Dietary Fats, Unsaturated/analysis
- Dietary Fats, Unsaturated/metabolism
- Enzyme Activation
- Fat Emulsions, Intravenous
- Fatty Acids/adverse effects
- Fatty Acids/analysis
- Fatty Acids/blood
- Fatty Acids/metabolism
- Fatty Acids, Monounsaturated/adverse effects
- Fatty Acids, Monounsaturated/analysis
- Fatty Acids, Monounsaturated/blood
- Fatty Acids, Monounsaturated/metabolism
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Fatty Acids, Unsaturated/adverse effects
- Fatty Acids, Unsaturated/analysis
- Fatty Acids, Unsaturated/blood
- Fatty Acids, Unsaturated/metabolism
- Female
- Glucose Clamp Technique
- Insulin Resistance
- Liver/enzymology
- Liver/metabolism
- Olive Oil
- Plant Oils/administration & dosage
- Plant Oils/adverse effects
- Plant Oils/chemistry
- Plant Oils/metabolism
- Protein Kinase C-delta/chemistry
- Protein Kinase C-delta/metabolism
- Protein Transport
- Rats, Wistar
- Soybean Oil/administration & dosage
- Soybean Oil/adverse effects
- Soybean Oil/chemistry
- Soybean Oil/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Danna M Breen
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Anthony E Naassan
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Penny Y T Wang
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Hiroshi Uchino
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - I George Fantus
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Department of Medicine, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Université de Sherbrooke, 3001-12(e) Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.
| | - Roger Gutierrez-Juarez
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| | - David N Brindley
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, 357 Heritage Medical Research Center, Edmonton, AB, T6G 2S2, Canada.
| | - Tony K T Lam
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Adria Giacca
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Department of Medicine, University of Toronto, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
92
|
Lindeboom L, Nabuurs CI, Hoeks J, Brouwers B, Phielix E, Kooi ME, Hesselink MKC, Wildberger JE, Stevens RD, Koves T, Muoio DM, Schrauwen P, Schrauwen-Hinderling VB. Long-echo time MR spectroscopy for skeletal muscle acetylcarnitine detection. J Clin Invest 2014; 124:4915-25. [PMID: 25271624 DOI: 10.1172/jci74830] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/28/2014] [Indexed: 11/17/2022] Open
Abstract
Animal models suggest that acetylcarnitine production is essential for maintaining metabolic flexibility and insulin sensitivity. Because current methods to detect acetylcarnitine involve biopsy of the tissue of interest, noninvasive alternatives to measure acetylcarnitine concentrations could facilitate our understanding of its physiological relevance in humans. Here, we investigated the use of long-echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) to measure skeletal muscle acetylcarnitine concentrations on a clinical 3T scanner. We applied long-TE 1H-MRS to measure acetylcarnitine in endurance-trained athletes, lean and obese sedentary subjects, and type 2 diabetes mellitus (T2DM) patients to cover a wide spectrum in insulin sensitivity. A long-TE 1H-MRS protocol was implemented for successful detection of skeletal muscle acetylcarnitine in these individuals. There were pronounced differences in insulin sensitivity, as measured by hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial function, as measured by phosphorus-MRS (31P-MRS), across groups. Insulin sensitivity and mitochondrial function were highest in trained athletes and lowest in T2DM patients. Skeletal muscle acetylcarnitine concentration showed a reciprocal distribution, with mean acetylcarnitine concentration correlating with mean insulin sensitivity in each group. These results demonstrate that measuring acetylcarnitine concentrations with 1H-MRS is feasible on clinical MR scanners and support the hypothesis that T2DM patients are characterized by a decreased formation of acetylcarnitine, possibly underlying decreased insulin sensitivity.
Collapse
|
93
|
Diet, insulin secretion and insulin sensitivity--the Dose-Responses to Exercise Training (DR's EXTRA) Study (ISRCTN45977199). Br J Nutr 2014; 112:1530-41. [PMID: 25230681 DOI: 10.1017/s0007114514002426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intakes of saturated fat (SF) and dietary fibre, body mass and physical activity are all associated with the incidence of type 2 diabetes mellitus. Their relative importance for the maintenance of normal glucose metabolism is not fully known. In a population-based sample of 1114 individuals, aged 58-78 years, dietary intakes were assessed by 4 d food records and cardiorespiratory fitness as maximal oxygen uptake. Insulin secretion, insulin sensitivity, the early-phase disposition index (DI30) and the total disposition index (DI120) were assessed based on an oral glucose tolerance test. Linear associations were modelled using linear regression. Combined effects were studied by introducing SF and fibre intakes, as well as cardiorespiratory fitness and waist circumference (WC) as dichotomised variables in general linear models. Intakes of dietary fibre and whole-grain bread were positively associated with insulin sensitivity, independent of physical fitness and WC. In women, dietary fibre intake was also positively associated with DI30. The negative association of high WC with DI30 was attenuated by a combination of low SF intake and high cardiorespiratory fitness. In conclusion, dietary fibre and a combination of low SF intake and high cardiorespiratory fitness may contribute to the maintenance of normal glucose metabolism, independent of WC.
Collapse
|
94
|
Zheng Y, Qi L. Diet and lifestyle interventions on lipids: combination with genomics and metabolomics. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
95
|
Sachleben JR, Yi R, Volden PA, Conzen SD. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by ¹H NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 59:161-73. [PMID: 24831341 PMCID: PMC4479961 DOI: 10.1007/s10858-014-9836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/02/2014] [Indexed: 06/03/2023]
Abstract
Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues.
Collapse
Affiliation(s)
- Joseph R Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA,
| | | | | | | |
Collapse
|
96
|
Nardi F, Lipina C, Magill D, Hage Hassan R, Hajduch E, Gray A, Hundal HS. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. PLoS One 2014; 9:e92255. [PMID: 24632852 PMCID: PMC3954878 DOI: 10.1371/journal.pone.0092255] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
AIMS/HYPOTHESIS Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. PRINCIPAL FINDINGS We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt- and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine307phosphorylation - events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A. CONCLUSIONS/INTERPRETATION Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A.
Collapse
Affiliation(s)
- Francesca Nardi
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Magill
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rima Hage Hassan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, UMR-S 872, Paris, France
- Université Pierre et Marie Curie – Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Eric Hajduch
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, UMR-S 872, Paris, France
- Université Pierre et Marie Curie – Paris 6, UMR-S 872, Paris, France
- Université Paris Descartes, UMR-S 872, Paris, France
| | - Alexander Gray
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Harinder S. Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
97
|
Affiliation(s)
- J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | |
Collapse
|
98
|
Kien CL, Bunn JY, Stevens R, Bain J, Ikayeva O, Crain K, Koves TR, Muoio DM. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am J Clin Nutr 2014; 99:436-45. [PMID: 24429541 PMCID: PMC3927687 DOI: 10.3945/ajcn.113.070557] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/13/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Epidemiologic evidence has suggested that diets with a high ratio of palmitic acid (PA) to oleic acid (OA) increase risk of cardiovascular disease (CVD). OBJECTIVE To gain additional insights into the relative effect of dietary fatty acids and their metabolism on CVD risk, we sought to identify a metabolomic signature that tracks with diet-induced changes in blood lipid concentrations and whole-body fat oxidation. DESIGN We applied comprehensive metabolomic profiling tools to biological specimens collected from 18 healthy adults enrolled in a crossover trial that compared a 3-wk high-palmitic acid (HPA) with a low-palmitic acid and high-oleic acid (HOA) diet. RESULTS A principal components analysis of the data set including 329 variables measured in 15 subjects in the fasted state identified one factor, the principal components analysis factor in the fasted state (PCF1-Fasted), which was heavily weighted by the PA:OA ratio of serum and muscle lipids, that was affected by diet (P < 0.0001; HPA greater than HOA). One other factor, the additional principal components analysis factor in the fasted state (PCF2-Fasted), reflected a wide range of acylcarnitines and was affected by diet in women only (P = 0.0198; HPA greater than HOA). HOA lowered the ratio of serum low-density lipoprotein to high-density lipoprotein (LDL:HDL) in men and women, and adjustment for the PCF1-Fasted abolished the effect. In women only, adjustment for the PCF2-Fasted eliminated the HOA-diet effect on serum total- and LDL-cholesterol concentrations. The respiratory exchange ratio in the fasted state was lower with the HPA diet (P = 0.04), and the diet effect was eliminated after adjustment for the PCF1-Fasted. The messenger RNA expression of the cholesterol regulatory gene insulin-induced gene-1 was higher with the HOA diet (P = 0.008). CONCLUSIONS These results suggest that replacing dietary PA with OA reduces the blood LDL concentration and whole-body fat oxidation by modifying the saturation index of circulating and tissue lipids. In women, these effects are also associated with a higher production and accumulation of acylcarnitines, possibly reflecting a shift in fat catabolism.
Collapse
Affiliation(s)
- C Lawrence Kien
- Departments of Pediatrics (CLK), Medicine (CLK and KC), and Medical Biostatistics (JYB), University of Vermont, Burlington, VT, and the Stedman Nutrition and Metabolism Center (RS, JB, OI, TRK, and DMM) and Departments of Medicine (TRK and DMM) and Pharmacology and Cancer Biology (DMM), Duke University, Durham, NC
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight loss intervention. J Physiol Biochem 2014; 70:593-602. [DOI: 10.1007/s13105-013-0311-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/22/2013] [Indexed: 12/13/2022]
|
100
|
Krishnan S, Cooper JA. Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr 2013; 53:691-710. [PMID: 24363161 DOI: 10.1007/s00394-013-0638-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/30/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE Dietary fat content is a primary factor associated with the increase in global obesity rates. There is a delay in achieving fat balance following exposure to a high-fat (HF) diet (≥ 40% of total energy from fat) and fat balance is closely linked to energy balance. Exercise has been shown to improve this rate of adaptation to a HF diet. Recently, however, the role of dietary fatty acid composition on energy and macronutrient balance has come into question. METHODS We chose studies that compared monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA). We have reviewed studies that measured diet-induced thermogenesis (DIT), energy expenditure (EE), or fat oxidation (FOx) in response to a HF meal challenge, or long-term dietary intervention comparing these fatty acids. RESULTS While single-meal studies show that SFA induce lower DIT and FOx compared to unsaturated fats, the effect of the degree of unsaturation (MUFA vs. PUFA) appears to yet be determined. Long-term dietary interventions also support the notion that unsaturated fats induce greater EE, DIT, and/or FOx versus SFA and that a high MUFA diet induces more weight loss compared to a high SFA diet. Sex and BMI status also affect the metabolic responses to different fatty acids; however, more research in these areas is warranted. CONCLUSION SFA are likely more obesigenic than MUFA, and PUFA. The unsaturated fats appear to be more metabolically beneficial, specifically MUFA ≥ PUFA > SFA, as evidenced by the higher DIT and FOx following HF meals or diets.
Collapse
Affiliation(s)
- Sridevi Krishnan
- Department of Nutrition, Hospitality, and Retailing, Texas Tech University, PO Box 41240, Lubbock, TX, 79409, USA,
| | | |
Collapse
|