51
|
Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spégel P, Mulder H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol 2018; 236:R145-R159. [PMID: 29431147 DOI: 10.1530/joe-17-0367] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts of insulin in response to glucose. This results in hyperglycemia and metabolic dysregulation. Evidence has recently been mounting that mitochondrial dysfunction plays an important role in these processes. Monogenic dysfunction of mitochondria is a rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted. We argue that alterations in mitochondria may be a culprit in the pathogenetic processes culminating in type 2 diabetes.
Collapse
Affiliation(s)
- Malin Fex
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Lisa M Nicholas
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Neelanjan Vishnu
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Anya Medina
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Vladimir V Sharoyko
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - David G Nicholls
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Peter Spégel
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
- Department of ChemistryCenter for Analysis and Synthesis, Lund University, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
52
|
Pearson G, Chai B, Vozheiko T, Liu X, Kandarpa M, Piper RC, Soleimanpour SA. Clec16a, Nrdp1, and USP8 Form a Ubiquitin-Dependent Tripartite Complex That Regulates β-Cell Mitophagy. Diabetes 2018; 67:265-277. [PMID: 29180353 PMCID: PMC5780060 DOI: 10.2337/db17-0321] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Mitophagy is a cellular quality-control pathway, which is essential for elimination of unhealthy mitochondria. While mitophagy is critical to pancreatic β-cell function, the posttranslational signals governing β-cell mitochondrial turnover are unknown. Here, we report that ubiquitination is essential for the assembly of a mitophagy regulatory complex, comprised of the E3 ligase Nrdp1, the deubiquitinase enzyme USP8, and Clec16a, a mediator of β-cell mitophagy with unclear function. We discover that the diabetes gene Clec16a encodes an E3 ligase, which promotes nondegradative ubiquitin conjugates to direct its mitophagy effectors and stabilize the Clec16a-Nrdp1-USP8 complex. Inhibition of the Clec16a pathway by the chemotherapeutic lenalidomide, a selective ubiquitin ligase inhibitor associated with new-onset diabetes, impairs β-cell mitophagy, oxygen consumption, and insulin secretion. Indeed, patients treated with lenalidomide develop compromised β-cell function. Moreover, the β-cell Clec16a-Nrdp1-USP8 mitophagy complex is destabilized and dysfunctional after lenalidomide treatment as well as after glucolipotoxic stress. Thus, the Clec16a-Nrdp1-USP8 complex relies on ubiquitin signals to promote mitophagy and maintain mitochondrial quality control necessary for optimal β-cell function.
Collapse
Affiliation(s)
- Gemma Pearson
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Biaoxin Chai
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Tracy Vozheiko
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Xueying Liu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Malathi Kandarpa
- Division of Hematology and Oncology, Department of Internal Medicine, University of
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI
| |
Collapse
|
53
|
Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunology 2017; 6:e162. [PMID: 29333267 PMCID: PMC5750451 DOI: 10.1038/cti.2017.51] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Genetic studies have identified >60 loci associated with the risk of developing type 1 diabetes (T1D). The vast majority of these are identified by genome-wide association studies (GWAS) using large case-control cohorts of European ancestry. More than 80% of the heritability of T1D can be explained by GWAS data in this population group. However, with few exceptions, their individual contribution to T1D risk is low and understanding their function in disease biology remains a huge challenge. GWAS on its own does not inform us in detail on disease mechanisms, but the combination of GWAS data with other omics-data is beginning to advance our understanding of T1D etiology and pathogenesis. Current knowledge supports the notion that genetic variation in both pancreatic β cells and in immune cells is central in mediating T1D risk. Advances, perspectives and limitations of GWAS are discussed in this review.
Collapse
Affiliation(s)
- Flemming Pociot
- Department of Pediatrics, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
54
|
Chen L, Liu C, Gao J, Xie Z, Chan LW, Keating DJ, Yang Y, Sun J, Zhou F, Wei Y, Men X, Yang S. Inhibition of Miro1 disturbs mitophagy and pancreatic β-cell function interfering insulin release via IRS-Akt-Foxo1 in diabetes. Oncotarget 2017; 8:90693-90705. [PMID: 29207597 PMCID: PMC5710878 DOI: 10.18632/oncotarget.20963] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial function is essential to meet metabolic demand of pancreatic beta cells respond to high nutrient stress. Mitophagy is an essential component to normal pancreatic β-cell function and has been associated with β-cell failure in Type 2 diabetes (T2D). Our previous studies have indicated that mitochondrial Rho (Miro) GTPase-mediated mitochondrial dysfunction under high nutrient stress leads to NOD-like receptor 3 (NLRP3)-dependent proinflammatory responses and subsequent insulin resistance. However, the in vivo mechanism by which Miro1 underlies mitophagy has not been identified. Here we show firstly that the expression of Miro is reduced in human T2D and mouse db/db islets and in INS-1 cell line exposed to high glucose and palmitate. β-cell specific ablation of Miro1 (Miro1f/f: Rip-cre mice, or (IKO) under high nutrient stress promotes the development of hyperglycemia. β-cells from IKO mice display an inhibition of mitophagy under oxidative stress and induces mitochondrial dysfunction. Dysfunctional mitophagy in IKO mice is represented by damaged islet beta cell mitochondrial and secretory capacity, unbalanced downstream MKK-JNK signalling without affecting the levels of MEK, ERK or p38 activation and subsequently, impaired insulin secretion signaling via inhibition IRS-AKT-Foxo1 pathway, leading to worsening glucose tolerance in these mice. Thus, these data suggest that Miro1 may be responsible for mitophagy deficiency and β-cell dysfunction in T2D and that strategies target Miro1 in vivo may provide a therapeutic target to enhance β-cell mitochondrial quality and insulin secretion to ameliorate complications associated with T2D.
Collapse
Affiliation(s)
- Lingling Chen
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
- Department of Cell Biology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, P.R. China
| | - Chunyan Liu
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Jianfeng Gao
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
| | - Zhiwen Xie
- School of Bioscience and Technology , Weifang Medical University, Weifang Shandong, P.R. China
| | - Lawrence W.C. Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Damien J. Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Yibin Yang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jiazhong Sun
- Department of Respiratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Fuling Zhou
- Department of Hematology and Radiation, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yongchang Wei
- Department of Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Xiuli Men
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, P.R. China
| | - Sijun Yang
- ABSL-3 Laboratory at the Center for Animal Experiment and Institute of Animal Model for Human Disease, Wuhan University School of Medicine, Wuhan, P. R. China
| |
Collapse
|
55
|
Tien T, Zhang J, Muto T, Kim D, Sarthy VP, Roy S. High Glucose Induces Mitochondrial Dysfunction in Retinal Müller Cells: Implications for Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 58:2915-2921. [PMID: 28586916 PMCID: PMC5460955 DOI: 10.1167/iovs.16-21355] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate whether high glucose (HG) induces mitochondrial dysfunction and promotes apoptosis in retinal Müller cells. Methods Rat retinal Müller cells (rMC-1) grown in normal (N) or HG (30 mM glucose) medium for 7 days were subjected to MitoTracker Red staining to identify the mitochondrial network. Digital images of mitochondria were captured in live cells under confocal microscopy and analyzed for mitochondrial morphology changes based on form factor (FF) and aspect ratio (AR) values. Mitochondrial metabolic function was assessed by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a bioenergetic analyzer. Cells undergoing apoptosis were identified by differential dye staining and TUNEL assay, and cytochrome c levels were assessed by Western blot analysis. Results Cells grown in HG exhibited significantly increased mitochondrial fragmentation compared to those grown in N medium (FF = 1.7 ± 0.1 vs. 2.3 ± 0.1; AR = 2.1 ± 0.1 vs. 2.5 ± 0.2; P < 0.01). OCR and ECAR were significantly reduced in cells grown in HG medium compared to those grown in N medium (steady state: 75% ± 20% of control, P < 0.02; 64% ± 22% of control, P < 0.02, respectively). These cells also exhibited a significant increase (∼2-fold) in the number of apoptotic cells compared to those grown in N medium (P < 0.01), with a concomitant increase in cytochrome c levels (247% ± 94% of control, P < 0.05). Conclusions Findings indicate that HG-induced mitochondrial morphology changes and subsequent mitochondrial dysfunction may contribute to retinal Müller cell loss associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Thomas Tien
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Joyce Zhang
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Tetsuya Muto
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Vijay P Sarthy
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
56
|
Mulder H. Transcribing β-cell mitochondria in health and disease. Mol Metab 2017; 6:1040-1051. [PMID: 28951827 PMCID: PMC5605719 DOI: 10.1016/j.molmet.2017.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background The recent genome-wide association studies (GWAS) of Type 2 Diabetes (T2D) have identified the pancreatic β-cell as the culprit in the pathogenesis of the disease. Mitochondrial metabolism plays a crucial role in the processes controlling release of insulin and β-cell mass. This notion implies that mechanisms controlling mitochondrial function have the potential to play a decisive pathogenetic role in T2D. Scope of the review This article reviews studies demonstrating that there is indeed mitochondrial dysfunction in islets in T2D, and that GWAS have identified a variant in the gene encoding transcription factor B1 mitochondrial (TFB1M), predisposing to T2D due to mitochondrial dysfunction and impaired insulin secretion. Mechanistic studies of the nature of this pathogenetic link, as well as of other mitochondrial transcription factors, are described. Major conclusions Based on this, it is argued that transcription and translation in mitochondria are critical processes determining mitochondrial function in β-cells in health and disease.
Collapse
Key Words
- AMPK, AMP-dependent protein kinase
- ATGL, adipocyte triglyceride lipase
- COX, Cytochrome c oxidase
- CYTB, Cytochrome b
- ERR-α, Estrogen-related receptor-α
- Expression quantitative trait locus (eQTL)
- GDH, Glutamate dehydrogenase
- GSIS, Glucose-stimulated insulin secretion
- GWAS, Genome-wide association study
- Genome-wide association study (GWAS)
- HSL, Hormone-sensitive lipase
- ICDc, Cytosolic isocitrate dehydrogenase
- Insulin secretion
- Islets
- KATP, ATP-dependent K+-channel
- MTERF, Mitochondrial transcription termination factor
- Mitochondria
- ND, NADH dehydrogenase
- NRF, Nuclear respiratory factor
- NSUN4, NOP2/Sun RNA methyltransferase family member 4
- OXPHOS, Oxidative phosphorylation
- PC, Pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PGC, Peroxisome proliferator-activated receptor-γ co-activator
- POLRMT, Mitochondrial RNA polymerase
- POLγ, DNA polymerase-γ
- PPARγ, Peroxisome proliferator-activated receptor-γ
- PRC, PGC1-related coactivator
- SENP1, Sentrin/SUMO-specific protease-1
- SNP, Single Nucleotide Polymorphism
- SUR1, Sulphonylurea receptor-1
- T2D, Type 2 Diabetes
- TCA, Tricarboxylic acid
- TEFM, Mitochondrial transcription elongation factor
- TFAM, Transcription factor A mitochondrial
- TFB1M, Transcription factor B1 mitochondrial
- TFB2M, Transcription factor B2 mitochondrial
- eQTL, Expression quantitative trait locus
- β-Cell
Collapse
Affiliation(s)
- Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
57
|
Mitochondrial transcription factor B2 is essential for mitochondrial and cellular function in pancreatic β-cells. Mol Metab 2017; 6:651-663. [PMID: 28702322 PMCID: PMC5485242 DOI: 10.1016/j.molmet.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Objective Insulin release from pancreatic β-cells is controlled by plasma glucose levels via mitochondrial fuel metabolism. Therefore, insulin secretion is critically dependent on mitochondrial DNA (mtDNA) and the genes it encodes. Mitochondrial transcription factor B2 (TFB2M) controls transcription of mitochondrial-encoded genes. However, its precise role in mitochondrial metabolism in pancreatic β-cells and, consequently, in insulin secretion remains unknown. Methods To elucidate the role of TFB2M in mitochondrial function and insulin secretion in vitro and in vivo, mice with a β-cell specific homozygous or heterozygous knockout of Tfb2m and rat clonal insulin-producing cells in which the gene was silenced were examined with an array of metabolic and functional assays. Results There was an effect of gene dosage on Tfb2m expression and function. Loss of Tfb2m led to diabetes due to disrupted transcription of mitochondrial DNA (mtDNA) and reduced mtDNA content. The ensuing mitochondrial dysfunction activated compensatory mechanisms aiming to limit cellular dysfunction and damage of β-cells. These processes included the mitochondrial unfolded protein response, mitophagy, and autophagy. Ultimately, however, these cell-protective systems were overridden, leading to mitochondrial dysfunction and activation of mitochondrial-dependent apoptotic pathways. In this way, β-cell function and mass were reduced. Together, these perturbations resulted in impaired insulin secretion, progressive hyperglycemia, and, ultimately, development of diabetes. Conclusions Loss of Tfb2m in pancreatic β-cells results in progressive mitochondrial dysfunction. Consequently, insulin secretion in response to metabolic stimuli is impaired and β-cell mass reduced. Our findings indicate that TFB2M plays an important functional role in pancreatic β-cells. Perturbations of its actions may lead to loss of functional β-cell mass, a hallmark of T2D. Loss of TFB2M leads to mitochondrial dysfunction and impaired insulin secretion. There was an effect of gene dosage on Tfb2m expression and function. TFB2M plays a key role in cellular and mitochondrial function in pancreatic β-cells.
Collapse
|
58
|
Xu L, Xu C, Zhou S, Liu X, Wang J, Liu X, Qian S, Xin Y, Gao Y, Zhu Y, Tang X. PAX4 promotes PDX1-induced differentiation of mesenchymal stem cells into insulin-secreting cells. Am J Transl Res 2017; 9:874-886. [PMID: 28386318 PMCID: PMC5375983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
A shortage of postmortem pancreatic tissue for islet isolation impedes the application of cell replacement therapy in patients with diabetes. As an alternative for islet cell transplantation, transcription factors, including PDX1, PAX4, and neurogenin-3, that aid in the formation of insulin-producing β cells during development have been investigated. The present study evaluated the effects of PAX4 and PDX1 on the differentiation of mesenchymal stem cells (MSCs) into insulin-producing β-like cells in vitro using recombinant adenoviruses carrying PDX1 or PDX1 plus PAX4. RT-PCR, Western blot, and immunofluorescence assays were used to detect the expression levels of relevant genes and proteins, and enzyme-linked immunosorbent assays were used to determine the amount of insulin and C-peptide secreted by the virus-infected cells following stimulation with high glucose. The results showed that PAX4 markedly enhanced the propensity of PDX1-positive MSCs to form mature islet-like clusters and functional insulin-producing β-like cells. Our findings provide a novel foundation for generating β-like cells from MSCs with PAX4 and PDX1 for future clinical application.
Collapse
Affiliation(s)
- Lifa Xu
- Stem Cell Engineering Research Center, School of Medical, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| | - Congjing Xu
- Department of Respiration, Tumour Hospital of Affiliated Huainan Oriental Hospital Group, Anhui University of Science and TechnologyHuainan 232035, P.R. China
| | - Shuping Zhou
- Huainan First People’s Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| | - Xueke Liu
- Stem Cell Engineering Research Center, School of Medical, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| | - Jian Wang
- Stem Cell Engineering Research Center, School of Medical, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| | - Xinkuang Liu
- Huainan First People’s Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| | - Suping Qian
- Department of Respiration, Tumour Hospital of Affiliated Huainan Oriental Hospital Group, Anhui University of Science and TechnologyHuainan 232035, P.R. China
| | - Yingru Xin
- Department of Respiration, Tumour Hospital of Affiliated Huainan Oriental Hospital Group, Anhui University of Science and TechnologyHuainan 232035, P.R. China
| | - Yi Gao
- Huainan First People’s Hospital and First Affiliated Hospital of Medical College, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| | - Yongqiang Zhu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, P.R. China
| | - Xiaolong Tang
- Stem Cell Engineering Research Center, School of Medical, Anhui University of Science & TechnologyHuainan 232001, P.R. China
| |
Collapse
|
59
|
Hayes HL, Peterson BS, Haldeman JM, Newgard CB, Hohmeier HE, Stephens SB. Delayed apoptosis allows islet β-cells to implement an autophagic mechanism to promote cell survival. PLoS One 2017; 12:e0172567. [PMID: 28212395 PMCID: PMC5315295 DOI: 10.1371/journal.pone.0172567] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 01/09/2023] Open
Abstract
Increased β-cell death coupled with the inability to replicate existing β-cells drives the decline in β-cell mass observed in the progression of both major forms of diabetes. Understanding endogenous mechanisms of islet cell survival could have considerable value for the development of novel strategies to limit β-cell loss and thereby promote β-cell recovery. Insulinoma cells have provided useful insight into β-cell death pathways but observations made in cell lines sometimes fail to translate to primary islets. Here, we report dramatic differences in the temporal regulation and engagement of the apoptotic program in primary rodent islets relative to the INS-1 derived 832/13 cell line. As expected, 832/13 cells rapidly induced cell stress markers in response to ER stress or DNA damage and were fully committed to apoptosis, resulting in >80% cell death within 24 h. In contrast, primary rat islets were largely refractory to cell death in response to ER stress and DNA damage, despite rapid induction of stress markers, such as XBP-1(s), CHOP, and PUMA. Gene expression profiling revealed a general suppression of pro-apoptotic machinery, such as Apaf-1 and caspase 3, and sustained levels of pro-survival factors, such as cIAP-1, cIAP-2, and XIAP, in rat islets. Furthermore, we observed sustained induction of autophagy following chronic ER stress and found that inhibition of autophagy rendered islet β-cells highly vulnerable to ER stress-induced cell death. We propose that islet β-cells dampen the apoptotic response to delay the onset of cell death, providing a temporal window in which autophagy can be activated to limit cellular damage and promote survival.
Collapse
Affiliation(s)
- Heather L. Hayes
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brett S. Peterson
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jonathan M. Haldeman
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Division of Endocrinology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hans E. Hohmeier
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Division of Endocrinology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Samuel B. Stephens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
60
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
61
|
Hatakeyama J, Wald JH, Rafidi H, Cuevas A, Sweeney C, Carraway KL. The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3. Sci Signal 2016; 9:ra65. [PMID: 27353365 DOI: 10.1126/scisignal.aaf1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ErbB3 and ErbB4 are receptor tyrosine kinases that are activated by the neuregulin (NRG) family of growth factors. These receptors govern various developmental processes, and their dysregulation contributes to several human disease states. The abundance of ErbB3 and ErbB4, and thus signaling through these receptors, is limited by the E3 ubiquitin ligase Nrdp1, which targets ErbB3 and ErbB4 for degradation. Reticulons are proteins that influence the morphology of the endoplasmic reticulum (ER) by promoting the formation of tubules, a response of cells to some stressors. We found that the ER structural protein reticulon 4A (Rtn4A, also known as Nogo-A) increased ErbB3 abundance and proliferative signaling by suppressing Nrdp1 function. Rtn4A interacted with Nrdp1 and stabilized ErbB3 in an Nrdp1-dependent manner. Rtn4A overexpression induced the redistribution of Nrdp1 from a cytosolic or perinuclear localization to ER tubules. Rtn4A knockdown in human breast tumor cells decreased ErbB3 abundance, NRG-stimulated signaling, and cellular proliferation and migration. Because proteins destined for the plasma membrane are primarily synthesized in the sheet portions of the ER, our observations suggest that Rtn4A counteracts the Nrdp1-mediated degradation of ErbB3 by sequestering the ubiquitin ligase into ER tubules. The involvement of a reticulon suggests a molecular link between ER structure and the sensitivity of cells to receptor tyrosine kinase-mediated survival signals at the cell surface.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hanine Rafidi
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
62
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
63
|
Perry JSA, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016; 271:141-55. [PMID: 27088912 PMCID: PMC4837647 DOI: 10.1111/imr.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of T-cell self-tolerance in the thymus is important for establishing immune homeostasis and preventing autoimmunity. Here, we review the components of T-cell tolerance, which includes T-cell receptor (TCR) self-reactivity, costimulation, cytokines, and antigen presentation by a variety of antigen-presenting cells (APCs) subsets. We discuss the current evidence on the process of regulatory T (Treg) cell and negative selection and the importance of TCR signaling. We then examine recent evidence showing unique roles for bone marrow (BM)-derived APCs and medullary thymic epithelial cells (mTECs) on the conventional and Treg TCR repertoire, as well as emerging data on the role of B cells in tolerance. Finally, we review the accumulating data that suggest that cooperative antigen presentation is a prominent component of T -ell tolerance. With the development of tools to interrogate the function of individual APC subsets in the medulla, we have gained greater understanding of the complex cellular and molecular events that determine T-cell tolerance.
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
64
|
Brun T, Maechler P. Beta-cell mitochondrial carriers and the diabetogenic stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2540-9. [PMID: 26979549 DOI: 10.1016/j.bbamcr.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
Mitochondria play a central role in pancreatic beta-cells by coupling metabolism of the secretagogue glucose to distal events of regulated insulin exocytosis. This process requires transports of both metabolites and nucleotides in and out of the mitochondria. The molecular identification of mitochondrial carriers and their respective contribution to beta-cell function have been uncovered only recently. In type 2 diabetes, mitochondrial dysfunction is an early event and may precipitate beta-cell loss. Under diabetogenic conditions, characterized by glucotoxicity and lipotoxicity, the expression profile of mitochondrial carriers is selectively modified. This review describes the role of mitochondrial carriers in beta-cells and the selective changes in response to glucolipotoxicity. In particular, we discuss the importance of the transfer of metabolites (pyruvate, citrate, malate, and glutamate) and nucleotides (ATP, NADH, NADPH) for beta-cell function and dysfunction. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, Geneva University Medical Centre, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|